Tutorials for 'Real Closed Fields and Integer Parts' Exercise Sheet 4: Peano Arithmetic

General Note: All statements must always be proven. The bonus exercise is voluntary and will be awarded extra points.

Exercise 4.1 (Definability of the Non-Standard Part)

Consider the \mathcal{L}_{semr} -substructure of the polynomial ring $\mathbb{Z}[X]$ with domain

$$\omega[X] = \left\{ p = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X] \mid n \in \omega \text{ and } a_i \in \omega \text{ for all } i \in \{0, \dots, n\} \right\}.$$

- (i) Define a linear ordering < on $\omega[X]$ such that ω is an initial segment of $(\omega[X], <)$ and the resulting \mathcal{L}_{PA} -structure $\omega[X]_{PA}$ satisfies the axioms (ii), (iii), (vii) and (xiii) from Definition 3.1.1.
- (ii) Show that the \mathcal{L}_{PA} -structure $\omega[X]_{PA}$, equipped with the ordering from (i), is not a model of PA^- by proving that it does not satisfy axiom (viii) from Definition 3.1.1.
- (iii) Show that the set $\omega[X] \setminus \omega$ of infinite elements is \mathcal{L}_{PA} -definable in $\omega[X]_{PA}$.

Exercise 4.2 (Cuts, Least Number Principle, Underspill and Overspill)

- (a) Let $\mathcal{M} \models PA^-$. Prove the following statements of Remark 3.1.7.(ii):
 - (i) The standard part of \mathcal{M} is a cut of \mathcal{M} , which is proper if and only if \mathcal{M} is a non-standard model.
 - (ii) The standard part of \mathcal{M} is the smallest cut of \mathcal{M} .
- (b) Let $\mathcal{M} \models PA$ be non-standard.
 - (i) Let $\varphi(x)$ be an \mathcal{L}_{PA} -formula. Suppose that for any non-standard element $a \in M$ there exists a non-standard element $b \in M$ such that $\mathcal{M} \models b < a \land \varphi(b)$. Show that there exists a standard element $c \in M$ such that $\mathcal{M} \models \varphi(c)$.
 - (ii) Let $\varphi(x)$ be an \mathcal{L}_{PA} -formula. Suppose that for any standard element $a \in M$ there exists a standard element $b \in M$ such that $\mathcal{M} \models a \leq b \land \varphi(b)$. Show that for any non-standard element $c \in M$ there exists a non-standard element $d \in M$ such that $\mathcal{M} \models d < c \land \varphi(d)$.
 - (iii) Show that neither the standard part nor the non-standard part of \mathcal{M} are \mathcal{L}_{PA} -definable in \mathcal{M} (cf. [Lecture Notes, Exercise 3.1.11]).

Exercise 4.3 (Models of PA^- and Discretely Ordered Rings)

- (a) Let $\mathcal{M} \models PA^-$. Define an \mathcal{L}_{or} -structure $\mathcal{Z}_M = (Z_M, +, -, \cdot, 0, 1, <)$ fulfilling the following conditions:
 - $\mathcal{Z}_M \models T_{dor}$ (see Definition E.4.1),
 - $\mathcal{M} \subseteq (Z_M, +, \cdot, 0, 1, <)$,
 - $M = Z_M^{\geq 0} = \{ z \in Z_M \mid z \geq 0 \}.$
- (b) Let $\mathcal{Z} \models T_{dor}$. Define an \mathcal{L}_{PA} -structure $\mathcal{M}_Z = (M_Z, +, \cdot, 0, 1, <)$ fulfilling the following conditions:
 - $\mathcal{M}_Z \models \mathrm{PA}^-$,
 - $\mathcal{M}_Z \subseteq Z_{\mathrm{PA}}$,
 - for any $z \in Z$ there exists $m \in M_Z$ such that m = z or -m = z.
- (c) Show that the maps

$$\Phi\colon \operatorname{Mod}(\operatorname{PA}^{-}) \to \operatorname{Mod}(T_{\operatorname{dor}}), \ \mathcal{M} \mapsto \mathcal{Z}_{M}, \\ \Psi\colon \operatorname{Mod}(T_{\operatorname{dor}}) \to \operatorname{Mod}(\operatorname{PA}^{-}), \ \mathcal{Z} \mapsto \mathcal{M}_{Z}$$

are inverses of each other.¹ This correspondence justifies calling PA^- the theory of nonnegative parts of discretely ordered rings.

Definition E.4.1. The \mathcal{L}_{or} -theory T_{dor} of **discretely ordered rings** is axiomatised by the extension of T_{or} by the following axiom:

 $\forall (x > 0) \ 1 \le x.$

Bonus Exercise (Primes and Irreducibles)

- (a) Show that $PA \models \forall (x > 1) \exists y (irr(y) \land y \mid x)$, i.e. PA implies that every x > 1 has an irreducible divisor. Deduce the statement of [Lecture Notes, Exercise 3.1.17].
- (b) Consider the ring $R = \mathbb{Z}[X, Y, Z]/\langle XZ Y^2 \rangle$, and for any $p \in \mathbb{Z}[X, Y, Z]$ denote by \overline{p} the element $p + \langle XZ Y^2 \rangle$ of R.
 - (i) Show that the ring R can be discretely ordered with $\overline{0} < \overline{X} < \overline{Y} < \overline{Z}$.
 - (ii) Deduce that the formulas pr(x) and irr(x) are not equivalent over PA⁻, i.e. show that $PA^- \not\models \forall x \ (pr(x) \leftrightarrow irr(x))$.

Please hand in your solutions by Thursday, 12 May 2022, 11:45 (postbox 18 in F4).

¹Recall that, given a language \mathcal{L} and a set Σ of \mathcal{L} -sentences, $Mod(\Sigma)$ denotes the class of \mathcal{L} -structures axiomatised by Σ .