Tutorials for 'Real Closed Fields and Integer Parts' Exercise Sheet 5: Peano Arithmetic, Open Induction and Real Algebra

General Note: All statements must always be proven. Exercises with references to the lecture notes may only be solved by using results that have been established in the lecture notes *prior* to the respective exercise in order to avoid circular arguments. The bonus exercise is voluntary and will be awarded extra points.

Exercise 5.1 (Irrationality of $\sqrt{2}$)

- (a) Show that $PA \models \neg \exists m \exists (n \neq 0) \ m^2 = 2n^2$ (cf. [Lecture Notes, Exercise 3.1.16]).
- (b) Consider the ring $R = \mathbb{Z}[X, Y]/\langle X^2 2Y^2 \rangle$. Show that R can be discretely ordered. Deduce that $PA^- \not\models \neg \exists m \exists (n \neq 0) \ m^2 = 2n^2$.

Exercise 5.2 (Non-Standard Models of PA⁻)

Consider the polynomial ring $\mathbb{Z}[X]$ and the binary relation < on $\mathbb{Z}[X]$ defined by

$$p < q :\Leftrightarrow \operatorname{lcf}(q-p) > 0$$

for any $p, q \in \mathbb{Z}[X]$.¹

- (a) Show that $(\mathbb{Z}[X], <) \models T_{lo}$.
- (b) Consider the \mathcal{L}_{PA} -structure $\mathbb{Z}[X]_{PA}$, equipped with the usual operations on polynomials and the ordering defined above, and its \mathcal{L}_{PA} -substructure \mathcal{M} with domain

$$\mathbb{Z}[X]^{\ge 0} := \{ p \in \mathbb{Z}[X] \mid p \ge 0 \}.$$

- (i) Show that $\mathcal{M} \models PA^{-}$.
- (ii) Show that $\mathcal{M} \not\models IOpen$.
- (iii) Deduce that \mathcal{M} is a non-standard model of PA^- .
- (iv) Show that the \mathcal{L}_{PA} -formula $\varphi(x)$ given by

$$\exists (y \le x) \ \neg (2 \mid y \lor 2 \mid y+1)$$

defines the non-standard part of \mathcal{M} in \mathcal{M} .

¹Given a polynomial $p \in \mathbb{Z}[X]$, its leading coefficient is denoted by lcf(p), and we set $lcf(0) = -\infty < 0$.

Exercise 5.3 (Real Fields)

- (a) Let K be an algebraically closed field. Show that K is not real.
- (b) Let (K, <) be an ordered field, i.e. $(K, <) \models T_{of}$. Show that K is real (cf. [Lecture Notes, Exercise 4.1.3]).
- (c) Use Zorn's Lemma to prove that any real field has a real closure (cf. [Lecture Notes, Exercise 4.1.14]).
- (d) Let K be a real field and let $a \in K$ with $-a \notin \sum K^2$. Show that there is a binary relation < on K such that $(K, <) \models T_{of}$ and a > 0 (cf. [Lecture Notes, Exercise 4.1.14]). (Hint/Note: You may use the statement of [Lecture Notes, Exercise 4.1.11] without proving it.)

Bonus Exercise (Ordered Fields and Positive Cones)

- (a) Let K be a field.
 - (i) Let < be a binary relation on K such that $(K, <) \models T_{of}$. Show that

$$P_{<} := \{ x \in K \mid x > 0 \}$$

is a positive cone of K.

(ii) Let P be a positive cone of K. Show that the binary relation $<_P$ on K, defined by

$$a <_P b :\Leftrightarrow b - a \in P$$

for any $a, b \in K$, fulfills $(K, <_P) \models T_{of}$.

- (iii) Deduce that there is a bijective correspondence between the set of positive cones of K and the set of binary relations < on K making (K, <) an ordered field.
- (b) Find a proper field extension of \mathbb{R} that is real (cf. [Lecture Notes, Exercise 4.1.9]).

Definition E.5.1. Let K be a field. A subset $P \subseteq K^{\times}$ is called a **positive cone** of K if it fulfills the following conditions:

- $P + P \subseteq P$, where $P + P = \{a + b \mid a, b \in P\}$,
- $P \cdot P \subseteq P$, where $P \cdot P = \{a \cdot b \mid a, b \in P\}$,
- $a^2 \in P$ for any $a \in K^{\times}$,
- $-1 \notin P$,
- $-P \cup P = K^{\times}$, where $-P = \{-a \mid a \in P\}$.

Please hand in your solutions by Thursday, 19 May 2022, 11:45 (postbox 18 in F4).