Tutorials for 'Real Closed Fields and Integer Parts' Exercise Sheet 6: Real Closed Fields and Roots of Polynomials

General Note: All statements must always be proven. Exercises with references to the lecture notes may only be solved by using results that have been established in the lecture notes prior to the respective exercise in order to avoid circular arguments. The bonus exercise is voluntary and will be awarded extra points.

Exercise 6.1 (cf. [Lecture Notes, Exercise 4.1.11])
Let K be a real closed field and denote by $<$ the binary relation on K from Definition 4.1.10.
(a) Let $a \in K^{\times}$. Show that either $a \in K^{2}$ or $-a \in K^{2}$, where $K^{2}:=\left\{c^{2} \mid c \in K\right\} \subseteq K$, and deduce that $K^{2}=\sum K^{2}$.
(b) Show that $(K,<) \models T_{\text {of }}$, i.e. $(K,<)$ is an ordered field.
(c) Let \prec be a binary relation on K that does not coincide with $<$. Show that $(K, \prec) \not \vDash T_{\text {of }}$. (Hence, $<$ is the unique binary relation on K making ($K,<$) an ordered field.)

Exercise 6.2 (Bounding Roots \& Sign Determination)

Let $(K,<)$ be an ordered field and for some $n \in \mathbb{N}$ let

$$
p=\sum_{i=0}^{n} a_{i} X^{i} \in K[X]
$$

with $a_{n} \neq 0$.
(a) Prove the statement of [Lecture Notes, Exercise 4.1.20], i.e. show that for

$$
B(p):=\sum_{i=0}^{n}\left|\frac{a_{i}}{a_{n}}\right|+1
$$

no zero of p in K lies outside the interval $(-B(p), B(p))_{K}$.
(b) Assume that $(K,<)$ is a real closed field.
(i) Show that for any $c \in[B(p), \infty)_{K}$, we have

$$
\operatorname{sign}(p(c))=\operatorname{sign}(\operatorname{lm}(p)(1))=\operatorname{sign}\left(a_{n}\right) .
$$

(This identity justifies the definition of $\operatorname{Var}(\underline{f} ; \infty)$ in [Lecture Notes, Definition 4.1.31 (ii)].)
(ii) Show that for any $c \in(-\infty,-B(p)]_{K}$, we have

$$
\operatorname{sign}(p(c))=\operatorname{sign}(\operatorname{lm}(p)(-1))=(-1)^{n} \operatorname{sign}\left(a_{n}\right) .
$$

(This identity justifies the definition of $\operatorname{Var}(f ;-\infty)$ in [Lecture Notes, Definition 4.1.31 (ii)].)
(c) Assume that $(K,<)$ has the intermediate value property and that $\operatorname{deg}(p)=n$ is odd. Deduce that p has a root in the interval $(-B(p), B(p))_{K}$.

Exercise 6.3 (Cauchy Index, Tarski Query and Signed Remainder Sequence)

(a) Let $(R,<)$ be a real closed field and consider the polynomials

$$
\begin{aligned}
& q=\left(X^{2}+5 X+4\right)\left(X^{2}-4\right)\left(X^{2}-4 X-5\right) \in R[X] \text { and } \\
& p=\left(X^{2}-10 X+25\right)(X-1)^{3}\left(X^{2}-16\right)(X+3)(X+7)^{4} \in R[X] .
\end{aligned}
$$

Determine $\operatorname{CInd}\left(\frac{q}{p} ;-\infty, 0\right), \operatorname{CInd}\left(\frac{q}{p} ; 0, \infty\right)$ and $\operatorname{CInd}\left(\frac{q}{p}\right)$.
(b) Let $(R,<)$ be a real closed field and let $p, q \in R[X]$ with $p \neq 0$. Verify the following identities:
(i) $\mid\{c \in R \mid p(c)=0$ and $q(c)=0\} \mid=\operatorname{TaQ}(1, p)-\operatorname{TaQ}\left(q^{2}, p\right)$,
(ii) $\mid\{c \in R \mid p(c)=0$ and $q(c)>0\} \left\lvert\,=\frac{1}{2}\left(\operatorname{TaQ}\left(q^{2}, p\right)+\operatorname{TaQ}(q, p)\right)\right.$,
(iii) $\mid\{c \in R \mid p(c)=0$ and $q(c)<0\} \left\lvert\,=\frac{1}{2}\left(\operatorname{TaQ}\left(q^{2}, p\right)-\operatorname{TaQ}(q, p)\right)\right.$.
(c) Consider the ordered field $(K,<)$, where $K=\mathbb{Q}(\mathrm{e}, \pi) \subseteq \mathbb{R}$ and $<$ is the ordering induced by the standard ordering on \mathbb{R}, and consider the polynomials $p=\mathrm{e} X^{2}-1 \in K[X]$ and $q=(\pi+1) X+2 \in K[X]$. Compute $\operatorname{SRS}\left(p, p^{\prime} q\right)$.

Bonus Exercise (cf. [Lecture Notes, Exercise 4.1.22])
Let $\left(K,<_{K}\right)$ be an ordered field. Show that there exists a real closure R of K such that $\left(K,<_{K}\right) \subseteq(R,<)$, where $<$ denotes the unique binary relation on R making $(R,<)$ an ordered field (cf. Exercise 6.1).

Please hand in your solutions by Friday, 27 May 2022, 11:45 (postbox 18 in F4).

