Prof. Dr. Salma Kuhlmann,
Dr. Lothar Sebastian Krapp, Laura Wirth, Moritz Schick

Universität Konstanz
Fachbereich Mathematik und Statistik
Sommersemester 2022

Tutorials for 'Real Closed Fields and Integer Parts'

Exercise Sheet 8: Shepherdson's Theorem

General Note: All statements must always be proven. Exercises with references to the lecture notes may only be solved by using results that have been established in the lecture notes prior to the respective exercise in order to avoid circular arguments. The bonus exercise is voluntary and will be awarded extra points.

Exercise 8.1 (Properties of Integer Parts)

Let $(K,<)$ be an ordered field.
(a) Let Z be an integer part of $(K,<)$. Show that \mathbb{Z} is a convex subring of Z, i.e. show that for any $z_{1}, z_{2} \in \mathbb{Z}$ and any $z \in Z$ with $z_{1}<z<z_{2}$ we have $z \in \mathbb{Z}$.
(b) Let Z_{1} and Z_{2} be integer parts of $(K,<)$. Show that Z_{1} and Z_{2} are $\mathcal{L}_{<}$-isomorphic.

Exercise 8.2 (Integer Parts and Density)

Let $(K,<)$ be an ordered field and let L be a subfield of K.
(a) Show that if L is dense in $(K,<)$, then every integer part of $(L,<)$ is also an integer part of $(K,<)$.
(b) Show that if there exists an integer part of $(L,<)$ that is also an integer part of $(K,<)$, then L is dense in $(K,<)$.
Definition E.8.1. Let $(A,<) \models T_{\text {lo }}$. A subset $B \subseteq A$ is called dense in $(A,<)$ if for any $a, a^{\prime} \in A$ with $a<a^{\prime}$ there exists $b \in B$ such that $a<b<a^{\prime}$.

Exercise 8.3 (Integer Parts and IOpen')
Consider the ordered ring $(\mathbb{R}[X],<)$, where the ordering $<$ is defined by

$$
p<q: \Leftrightarrow \operatorname{lcf}(q-p)>0
$$

for any $p, q \in \mathbb{R}[X]$. Moreover, consider its subrings

$$
Z_{1}=\{p \in \mathbb{R}[X] \mid p(0) \in \mathbb{Z}\}
$$

and

$$
Z_{2}=\left\{p=\sum_{i=0}^{n} a_{i} X^{i} \in \mathbb{R}[X] \mid a_{0} \in \mathbb{Z}, a_{1}=0 \text { and } n \in \omega\right\},
$$

which are discretely ordered by $<$.
(a) Show that for any $n, m \in \mathbb{N}$ the polynomial $X^{n}-m$ has a root in $Q_{Z_{1}}$ and a root in $Q_{Z_{2}}$. (In particular, $\sqrt{2}$ is rational over Z_{1} and Z_{2}.)
(b) Prove that Z_{1} is not an integer part of the real closure of $Q_{Z_{1}} .{ }^{1}$
(c) Prove that Z_{2} is not an integer part of $Q_{Z_{2}} .{ }^{2}$
(d) Deduce that $Z_{1} \not \models$ IOpen $^{\prime}$ and $Z_{2} \not \vDash$ IOpen'.

Bonus Exercise (Least Number Principle for IOpen)
Show that for any $\mathcal{M} \models \mathrm{PA}^{-}$the following statements are equivalent:
(i) $\mathcal{M} \models$ IOpen, i.e. \mathcal{M} satisfies the induction axiom

$$
\forall \underline{y}((\varphi(0, \underline{y}) \wedge \forall n(\varphi(n, \underline{y}) \rightarrow \varphi(n+1, \underline{y}))) \rightarrow \forall n \varphi(n, \underline{y}))
$$

for any quantifier-free $\mathcal{L}_{\mathrm{PA}}$-formula $\varphi(x, \underline{y})$.
(ii) Given any quantifier-free $\mathcal{L}_{\mathrm{PA}}$-formula $\varphi(x, \underline{y})$ and any $\underline{a} \in M$ such that $\mathcal{M} \models \varphi(m, \underline{a})$ for some $m \in M$, the set $\varphi(\mathcal{M}, \underline{a})$ contains a least element. In other words, \mathcal{M} satisfies

$$
\forall \underline{y}\left(\exists m \varphi(m, \underline{y}) \rightarrow \exists n\left(\varphi(n, \underline{y}) \wedge \forall\left(n^{\prime}<n\right) \neg \varphi\left(n^{\prime}, \underline{y}\right)\right)\right)
$$

for any quantifier-free $\mathcal{L}_{\mathrm{PA}}$-formula $\varphi(x, \underline{y})$.

Please hand in your solutions by Thursday, 9 June 2022, 11:45 (postbox 18 in F4).

[^0]
[^0]: ${ }^{1}$ We endow the real closure of $Q_{Z_{1}}$ with the unique ordering $<$ making it an ordered field (cf. [Lecture Notes, Definition 4.1.10 and Exercise 4.1.11]), and thus obtain $\left(Z_{1},<\right) \subseteq\left(Q_{Z_{1}},<\right)$
 ${ }^{2}$ We endow the field $Q_{Z_{2}}$ with the ordering $<$ defined in [Lecture Notes, Remark 5.1.7] to obtain $\left(Z_{2},<\right) \subseteq\left(Q_{Z_{2}},<\right)$.

