Tutorials for 'Real Closed Fields and Integer Parts' Exercise Sheet 9: Well-Orderings, Ordinals and Hahn Series

General Note: All statements must always be proven. Exercises with references to the lecture notes may only be solved by using results that have been established in the lecture notes *prior* to the respective exercise in order to avoid circular arguments. The bonus exercise is voluntary and will be awarded extra points.

Exercise 9.1 (Well-Orderings)

- (a) Let $(I, <) \models T_{\text{lo}}$ and let $J \subseteq I$. Show that J is well-ordered if and only if it contains no infinite strictly decreasing sequence, i.e. for any sequence $(a_i)_{i \in \omega}$ in J it is not possible that $a_0 > a_1 > a_2 > \ldots$ (cf. [Lecture Notes, Exercise 6.1.3]).
- (b) Let (I, <) be a well-ordering and let $f: (I, <) \rightarrow (I, <)$. Prove the statements of [Lecture Notes, Exercise 6.1.4]:
 - (i) Show that for any $i \in I$ we have $f(i) \ge i$.
 - (ii) Suppose that $f: (I, <) \cong (I, <)$. Show that $f = id_I$.
 - (iii) Let (J, <) be an $\mathcal{L}_{<}$ -structure with $(I, <) \cong (J, <)$. Show that there is a unique $\mathcal{L}_{<}$ -isomorphism from I to J.

Exercise 9.2 (Successor Ordinals and Limit Ordinals)

Let $\alpha \in \mathbf{On}$.

- (a) Show that $\alpha + 1 = \alpha \cup \{\alpha\}$ is the smallest ordinal greater than α . (Therefore, $\alpha + 1$ is referred to as *successor* of α .)
- (b) Show that α is a successor ordinal if and only if α has a greatest element.
- (c) Suppose that $\alpha > 0$. Show that there exist a limit ordinal γ and an ordinal $n \in \omega$ such that $\alpha = \gamma + n$.

Definition E.9.1. Given $\alpha \in \mathbf{On}$ and $n \in \omega$, we define $\alpha + n$ recursively by $\alpha + 0 := \alpha$ and $\alpha + (n+1) := (\alpha + n) + 1$ for any $n \in \omega$.¹

¹By Exercise 9.2 (a), $\alpha + n$ is again an ordinal.

Exercise 9.3 (Laurent Series)

(a) Consider the ordered abelian group \mathbb{Z} and let $S \subseteq \mathbb{Z}$ be non-empty. Show that S is well-ordered if and only if S has a least element.

(Hence, given a field k, for any $s \in k(\mathbb{Z})$) there exists $z \in \mathbb{Z}$ such that

$$\operatorname{supp}(s) \subseteq [z, \infty)_{\mathbb{Z}} = \{ n \in \mathbb{Z} \mid z \le n \},\$$

and therefore we denote s by

$$s = \sum_{n=z}^{\infty} s_n t^n.$$

Usually, $k((\mathbb{Z}))$ is denoted by k((t)) and its elements are referred to as **Laurent series**.)

- (b) Let k be a field and consider the Laurent series $s = 1 + 3t^2 \in k((t))$.
 - (i) Show that any Laurent series $r \in k(t)$ with $s \cdot r = 1$ fulfills $\operatorname{supp}(r) \subseteq \mathbb{Z}^{\geq 0}$.
 - (ii) Find a Laurent series $r \in k(\mathbb{Z})$ such that $s \cdot r = 1$ and express it both in the standard notation and in the order type notation.

Bonus Exercise

- (a) Let (x, <) be an ordinal number. Show that the binary relation < on x coincides with the binary relation \in on x (cf. [Lecture Notes, Exercise 6.1.12]).
- (b) Let $\alpha, \beta \in \mathbf{On}$. Show that $\alpha \in \beta$ if and only if $\alpha \subsetneq \beta$ (cf. [Lecture Notes, Exercise 6.1.15]).
- (c) Show that (On, <) is a well-ordering (cf. [Lecture Notes, Exercise 6.1.17]). (Hint: You may apply the statement of [Lecture Notes, Exercise 6.1.16] without proving it.)

Please hand in your solutions by Thursday, 23 June 2022, 11:45 (postbox 18 in F4).