Prof. Dr. Salma Kuhlmann,
Dr. Lothar Sebastian Krapp, Laura Wirth, Moritz Schick

Universität Konstanz
Fachbereich Mathematik und Statistik
Sommersemester 2022

Tutorials for 'Real Closed Fields and Integer Parts'
 Exercise Sheet 10: Hahn Fields and Rayner Fields

General Note: All statements must always be proven. Exercises with references to the lecture notes may only be solved by using results that have been established in the lecture notes prior to the respective exercise in order to avoid circular arguments. The bonus exercise is voluntary and will be awarded extra points.

Exercise 10.1 (Sum of Well-Ordered Sets)

Let k be a field, let G be an ordered abelian group and let $A, B \subseteq G$ be non-empty and well-ordered subsets. Show that the subset

$$
A+B:=\{a+b \mid a \in A, b \in B\}
$$

is again well-ordered.

Exercise 10.2 (Hahn Fields)

Let k be a field, let G be an ordered abelian group and recall that

$$
k[G]=\{s \in k((G)) \mid \operatorname{supp}(s) \text { is finite }\}
$$

is an integral domain (cf. [Lecture Notes, Exercise 6.2 .8 (i)]).
(a) Show that $k(G)=\mathrm{ff}(k[G])$ is the smallest subfield of $k((G))$ containing all monomials, i.e. the set

$$
\left\{a t^{g} \mid a \in k, g \in G\right\} \subseteq k((G))
$$

(cf. [Lecture Notes, Exercise 6.2.8 (ii)]).
(b) Show that every Rayner field is a Hahn field, i.e. show that for any field k, any ordered abelian group G and any $\mathcal{F} \subseteq$ wo (G), if $k((\mathcal{F}))$ is a Rayner field, then

$$
k(G) \subseteq k((\mathcal{F})) \subseteq k((G))
$$

(cf. [Lecture Notes, Exercise 6.2.10]).

Exercise 10.3 (Puiseux Series)

Let k be a field. Consider the ordered abelian group \mathbb{Q} and the set

$$
\mathcal{F}=\left\{\left.\left\{\left.\frac{m}{n} \right\rvert\, m \in A\right\} \right\rvert\, A \in \mathrm{wo}(\mathbb{Z}), n \in \mathbb{N}\right\} \subseteq \mathrm{wo}(\mathbb{Q})
$$

Show that $k((\mathcal{F}))$ is a Rayner field.
(By Exercise $9.3(\mathrm{a})$, for any series $a \in k((\mathcal{F}))$ there exist $n \in \mathbb{N}$ and $z \in \mathbb{Z}$ such that

$$
\operatorname{supp}(a) \subseteq\left\{\left.\frac{m}{n} \right\rvert\, m \in[z, \infty)_{\mathbb{Z}}\right\}
$$

and therefore we write

$$
a=\sum_{m=z}^{\infty} a_{m} t^{\frac{m}{n}},
$$

where $a_{m}=a\left(\frac{m}{n}\right)$. Usually, $k((\mathcal{F}))$ is denoted by $k\langle\langle t\rangle\rangle$ and its elements are referred to as Puiseux series.)

Bonus Exercise

Let k be a field and let G be an ordered abelian group. Show that $k((G))$ is a Rayner field (cf. [Lecture Notes, Exercise 6.2.6]).
(Hint: You may apply Neumann's Lemma.)

Please hand in your solutions by Thursday, 30 June 2022, 11:45 (postbox 18 in F4).

