Tutorials for 'Real Closed Fields and Integer Parts' Exercise Sheet 12: Embeddings and Integer Parts of Hahn Fields

General Note: All statements must always be proven. Exercises with references to the lecture notes may only be solved by using results that have been established in the lecture notes *prior* to the respective exercise in order to avoid circular arguments. The bonus exercise is voluntary and will be awarded extra points.

Exercise 12.1 (Embedding the Value Group, cf. [Lecture Notes, Exercise 7.1.9 (ii)])

Let K be a real closed field and let G = vK. Consider both G and $K^{>0}$ as \mathbb{Q} -vector spaces as in [Lecture Notes, Exercise 7.1.8]. Deduce from [Lecture Notes, Exercise 7.1.9(i)] that there exists an embedding

$$\varphi \colon (G, +, 0) \hookrightarrow (K^{>0}, \cdot, 1)$$

with $v(\varphi(g)) = g$ for any $g \in G$ and $\varphi(g) > \varphi(h)$ for any $g, h \in G$ with g < h.

Exercise 12.2 (cf. [Lecture Notes, Hint for Exercise 7.1.10])

Let K be a real closed field. Set $k = \overline{K}$ and G = vK. Show that there exists an \mathcal{L}_{or} -embedding

$$\psi \colon (k[G], <) \hookrightarrow (K, <).$$

(One then obtains an \mathcal{L}_{or} -embedding $\Psi \colon (k(G), <) \hookrightarrow (K, <)$ by setting

$$\Psi\left(\frac{p}{q}\right) = \frac{\psi(p)}{\psi(q)}$$

for any $p, q \in k[G]$ with $q \neq 0$.)

Exercise 12.3 (Integer Parts of Hahn Fields)

(a) Let (k, <) be an archimedean ordered field and let G be an ordered abelian group. Consider a truncation closed Hahn field K over k and G and its subring

$$Z = \left\{ s \in K \mid \operatorname{supp}(s) \subseteq G^{\leq 0} \text{ and } s_0 \in \mathbb{Z} \right\}.$$

Show that Z is an integer part of K.

(b) Show that IOpen $\not\models \neg \exists (x \neq 0) \exists (y \neq 0) \exists (z \neq 0) \ x^n + y^n = z^n$ for any $n \in \mathbb{N}$. (Note: You may apply [Lecture Notes, Theorem 7.1.11].)

Bonus Exercise (cf. [Lecture Notes, Exercise 7.1.8 (ii)])

Let K be a real closed field. Show that $(K^{>0}, \boxplus, \boxdot)$ is a \mathbb{Q} -vector space where the addition operation on $K^{>0}$ is given by $a \boxplus b = ab$ for any $a, b \in K^{>0}$ (i.e. the standard multiplication) and the scalar multiplication is given by

$$\frac{m}{n} \boxdot a = \sqrt[n]{a^m}$$

for any $m \in \mathbb{Z}, n \in \mathbb{N}$ and $a \in K^{>0}$. Here, for any $b \in K^{>0}$, we denote by $\sqrt[n]{b}$ the unique positive element c of K with $c^n = b$.

YOU MADE IT!

Please hand in your solutions by Thursday, 14 July 2022, 11:45 (postbox 18 in F4).