Prof. Dr. Salma Kuhlmann,
Dr. Lothar Sebastian Krapp, Laura Wirth, Moritz Schick

Tutorials for 'Real Closed Fields and Integer Parts'

Exercise Sheet 12: Embeddings and Integer Parts of Hahn Fields

General Note: All statements must always be proven. Exercises with references to the lecture notes may only be solved by using results that have been established in the lecture notes prior to the respective exercise in order to avoid circular arguments. The bonus exercise is voluntary and will be awarded extra points.

Exercise 12.1 (Embedding the Value Group, cf. [Lecture Notes, Exercise 7.1.9 (ii)])
Let K be a real closed field and let $G=v K$. Consider both G and $K^{>0}$ as \mathbb{Q}-vector spaces as in [Lecture Notes, Exercise 7.1.8]. Deduce from [Lecture Notes, Exercise 7.1.9 (i)] that there exists an embedding

$$
\varphi:(G,+, 0) \hookrightarrow\left(K^{>0}, \cdot, 1\right)
$$

with $v(\varphi(g))=g$ for any $g \in G$ and $\varphi(g)>\varphi(h)$ for any $g, h \in G$ with $g<h$.
Exercise 12.2 (cf. [Lecture Notes, Hint for Exercise 7.1.10])
Let K be a real closed field. Set $k=\bar{K}$ and $G=v K$. Show that there exists an $\mathcal{L}_{\text {or }}$-embedding

$$
\psi:(k[G],<) \hookrightarrow(K,<) .
$$

(One then obtains an $\mathcal{L}_{\text {or }}$-embedding $\Psi:(k(G),<) \hookrightarrow(K,<)$ by setting

$$
\Psi\left(\frac{p}{q}\right)=\frac{\psi(p)}{\psi(q)}
$$

for any $p, q \in k[G]$ with $q \neq 0$.)

Exercise 12.3 (Integer Parts of Hahn Fields)

(a) Let $(k,<)$ be an archimedean ordered field and let G be an ordered abelian group. Consider a truncation closed Hahn field K over k and G and its subring

$$
Z=\left\{s \in K \mid \operatorname{supp}(s) \subseteq G^{\leq 0} \text { and } s_{0} \in \mathbb{Z}\right\}
$$

Show that Z is an integer part of K.
(b) Show that IOpen $\not \vDash \neg \exists(x \neq 0) \exists(y \neq 0) \exists(z \neq 0) x^{n}+y^{n}=z^{n}$ for any $n \in \mathbb{N}$. (Note: You may apply [Lecture Notes, Theorem 7.1.11].)

Bonus Exercise (cf. [Lecture Notes, Exercise 7.1 .8 (ii)])
Let K be a real closed field. Show that $\left(K^{>0}, \boxplus, \square\right)$ is a \mathbb{Q}-vector space where the addition operation on $K^{>0}$ is given by $a \boxplus b=a b$ for any $a, b \in K^{>0}$ (i.e. the standard multiplication) and the scalar multiplication is given by

$$
\frac{m}{n} \boxtimes a=\sqrt[n]{a^{m}}
$$

for any $m \in \mathbb{Z}, n \in \mathbb{N}$ and $a \in K^{>0}$. Here, for any $b \in K^{>0}$, we denote by $\sqrt[n]{b}$ the unique positive element c of K with $c^{n}=b$.

Please hand in your solutions by Thursday, 14 July 2022, 11:45 (postbox 18 in F4).

