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NIP

Definition.
Let L be any language and let T be a complete L–theory.
A partitioned L–formula ϕ(x; y) has the independence property (IP)
in T, if for any n ∈ N, writing [n] = {1, . . . ,n}, we have

T |= ∃a1, . . . , an ∃b∅, . . . ,b[n] :
∧

i∈[n]
J⊆[n]
i∈J

ϕ(ai;bJ) ∧
∧

i∈[n]
J⊆[n]
i/∈J

¬ϕ(ai;bJ)

︸ ︷︷ ︸
ϕ(ai;bJ) is true iff i∈J

.

An L–structure M has the independence property (IP) if there exists
a partitioned L–formula ϕ(x; y) that has IP in the theory ThL(M).

S. SHELAH, ‘Stability, the f.c.p., and superstability; model theoretic properties of
formulas in first order theory’, Ann. Math. Logic 3 (1971) 271–362.

4



NIP

Definition.
Let L be any language and let T be a complete L–theory.
A partitioned L–formula ϕ(x; y) has the independence property (IP)
in T, if for any n ∈ N, writing [n] = {1, . . . ,n}, we have

T |= ∃a1, . . . , an ∃b∅, . . . ,b[n] :
∧

i∈[n]
J⊆[n]
i∈J

ϕ(ai;bJ) ∧
∧

i∈[n]
J⊆[n]
i/∈J

¬ϕ(ai;bJ)

︸ ︷︷ ︸
ϕ(ai;bJ) is true iff i∈J

.

An L–structure M has the independence property (IP) if there exists
a partitioned L–formula ϕ(x; y) that has IP in the theory ThL(M).

S. SHELAH, ‘Stability, the f.c.p., and superstability; model theoretic properties of
formulas in first order theory’, Ann. Math. Logic 3 (1971) 271–362.

4



NIP

Definition.
Let L be any language and let T be a complete L–theory.
A partitioned L–formula ϕ(x; y) has the independence property (IP)
in T, if for any n ∈ N, writing [n] = {1, . . . ,n}, we have

T |= ∃a1, . . . , an ∃b∅, . . . ,b[n] :
∧

i∈[n]
J⊆[n]
i∈J

ϕ(ai;bJ) ∧
∧

i∈[n]
J⊆[n]
i/∈J

¬ϕ(ai;bJ)

︸ ︷︷ ︸
ϕ(ai;bJ) is true iff i∈J

.

An L–structure M has the independence property (IP) if there exists
a partitioned L–formula ϕ(x; y) that has IP in the theory ThL(M).

NIP — not IP

4



Subfields of R

Definition.
An ordered field K is called archimedean if N is cofinal in K.

Definition.
Lr := {+,−, ·, 0, 1} — language of rings
Lor := {+,−, ·, 0, 1, <} — language of ordered rings

By Hölder’s Theorem any archimedean ordered field is
Lor–isomorphic to a unique subfield of R.

Theorem.
A subfield of R has NIP if it is real closed.

S. SHELAH, ‘Strongly dependent theories’, Isr. J. Math. 204 (2014) 1–83.
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Definition.
Lr := {+,−, ·, 0, 1} — language of rings
Lor := {+,−, ·, 0, 1, <} — language of ordered rings

By Hölder’s Theorem any archimedean ordered field is
Lor–isomorphic to a unique subfield of R.

Conjecture.
A subfield of R has NIP only if it is real closed.

S. SHELAH, ‘Strongly dependent theories’, Isr. J. Math. 204 (2014) 1–83.
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Subfields of R with (N)IP

Color Guide:

IP

NIP

?

Q — Robinson 1949: Z is Lr–definable

number fields Q(α)

for α ∈ R algebraic over Q — Robinson 1959: Z is Lr–definable

finitely generated extensions Q(r1, . . . , rk)
for r1, . . . , rk ∈ R — Poonen 2007: Z is Lr–definable

purely transcendental extensions Q(T)
for T ⊆ R algebraically independent

over Q

algebraic extensions Q(A)
for A ⊆ R algebraic over Q

Qtr Qec

Qrc

Q(T)(A)
for A ⊆ R algebraic over Q(T) real closed fields R ⊆ R

R
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1The fact that any purely transcendental extension of Q has IP is a consequence of
an unpublished result that Lasse Vogel proved. At least, I am not aware of a published
result that can be used to verify IP for purely transcendental extensions of Q.
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NIP and VC Dimension

Given an L–structure M and a partitioned L–formula ϕ(x; y) with
|x| = n and |y| = #, we set

ϕ(M;b) := {a ∈ Mn | M |= ϕ(a;b)}

for any b ∈ M", and

Hϕ := {1ϕ(M;b) | b ∈ M"}.

Proposition (Laskowski 1992).
The class Hϕ has finite VC dimension if and only if the L–formula
ϕ(x; y) has NIP in M.

M. C. LASKOWSKI, ‘Vapnik–Chervonenkis classes of definable sets’, J. Lond. Math. Soc.
45 (1992) 377–384.
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The Setting

Ingredients of a Learning Problem.

· X — input space
· {0, 1} — output space
· Z = X × {0, 1} — sample space
· H ⊆ {0, 1}X — hypothesis space

10



Learning – Basic Procedure

Using an arbitrary distribution D on Z = X × {0, 1}, we choose a
sequence of iid samples from Z :

z = ((x1, y1), . . . , (xm, ym)).

These samples provide the input data for a learning algorithm A that
determines a hypothesis h = A(z) in H.

S. BEN-DAVID and S. SHALEV-SHWARTZ, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).

11



Learning – Goal

The goal is to minimize the error of h given by

erD(h) := D({(x, y) ∈ Z | h(x) '= y}).

More precisely, we want to achieve an error that is close to

optD(H) := inf
h∈H

erD(h).

S. BEN-DAVID and S. SHALEV-SHWARTZ, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).
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PAC Learning

Definition.
A learning algorithm

A :
⋃

m∈N
Zm → H

for H is said to be probably approximately correct (PAC) if it satisfies
the following condition:

∀ε, δ ∈ (0, 1) ∃m0 = m0(ε, δ) ∀m ≥ m0 ∀D :

Dm({z ∈ Zm | erD(A(z))− optD(H) ≤ ε}) > 1− δ.

L. G. VALIANT, ‘A Theory of the Learnable’, Comm. ACM 27 (1984) 1134–1142.
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PAC Learning

Definition.
A learning algorithm

A :
⋃

m∈N
Zm → H

for H is said to be probably approximately correct (PAC) if it satisfies
the following condition:

∀ε, δ ∈ (0, 1) ∃m0 = m0(ε, δ) ∀m ≥ m0 ∀D :

Dm({z ∈ Zm | erD(A(z))− optD(H) ≤ ε}) > 1− δ.

The hypothesis class H is said to be probably approximately correct
(PAC) learnable if there exists a learning algorithm for H that is PAC.
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Fundamental Theorem of Statistical Learning Theory

The following result is due to Blumer, Ehrenfeucht, Haussler and
Warmuth 1989.

Theorem.
Under certain measurability conditions, a hypothesis class H is
PAC learnable if and only if its VC dimension is finite.

Corollary.
Given a subfield K ⊆ R with NIP, any definable hypothesis class
H ⊆ {0, 1}X with X ⊆ Kn has finite VC dimension and is thus PAC
learnable, provided certain measurability conditions are guaranteed.

A. BLUMER, A. EHRENFEUCHT, D. HAUSSLER and M. K. WARMUTH, ‘Learnability and the
Vapnik-Chervonenkis dimension’, J. Assoc. Comput. Mach. 36 (1989) 929–965.
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Creating a Learning Framework

Assembling the Ingredients.

· K ⊆ R — subfield of R
· L ∈ {Lr,Lor} — language for model-theoretic examination
· X ⊆ Kn — definable subset of Kn

· H ⊆ {0, 1}X — set of hypotheses h = 1A : X → {0, 1}
with definable support A ⊆ X

16



Measurability

Definition.
We denote by BX and BZ the Borel σ–algebras on X and Z ,
respectively.

Lemma.
BZ = BX ⊗ P({0, 1}).

The distributions D on Z that we consider are all defined on BZ .

17



Measurability Issues

Given a hypothesis h = 1A with definable support A ⊆ X and a
distribution D defined on BZ , the error

erD(h) = D({(x, y) ∈ Z | h(x) '= y})

is only well-defined if the support of h is Borel, i.e. A ∈ BX .

Question.
Given a subfield K ⊆ R, is any definable set A ⊆ Kn Borel measurable?

Partial Answers.
Yes, if

· A is quantifier-free definable (e.g. if K is real closed),
· A is countable (e.g. if K is countable).

18
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Summary and Future Work



Summary

Corollary.
If K ⊆ R has NIP, then any definable hypothesis class H has finite VC
dimension and is thus PAC learnable, provided certain measurability
conditions are guaranteed.

Task.
Identify and study the measurability requirements involved in the
Fundamental Theorem.
For instance: Does definability guarantee Borel measurability?
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Questions

Corollary.
If K ⊆ R has NIP, then any definable hypothesis class H is PAC
learnable.

Question.
Given K ⊆ R with IP, does there exist a definable hypothesis class
that is not PAC learnable?

Yes!

Refined Question.
Given K ⊆ R with IP, does there exist a definable hypothesis class H
generated by a neural network that is not PAC learnable?
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Neural Networks

x1input x1

...

xninput xn

f(2)1

f(1)1

f(3)1

f(1)2

f(1)2

f(1)3 output y ∈ {0, 1}output y ∈ {0, 1}
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Each neuron is equipped with an activation function f(i)" : K → K.
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f(3)1

f(1)2

f(1)2

f(1)3 output y ∈ {0, 1}output y ∈ {0, 1}

Each link comes with a parameter,
e.g. the link between f(1)1 and f(2)2 comes with parameter w(1,2)

2 ∈ K.
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Output of the first neuron in the first layer: f(1)1 (w1x1 + · · ·+ wnxn)
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The input of f(2)2 is the weighted sum of the outputs of layer 1.
Higher-order: polynomial combinations instead of linear ones



Neural Networks

x1input x1

...

xninput xn

f(2)1

f(1)1

f(3)1

f(1)2

f(1)2

f(1)3 output y ∈ {0, 1}output y ∈ {0, 1}

Fixing a parameter space Ω, each parameter configuration w ∈ Ω

provides a hypothesis hw : X → {0, 1}. Hence, the neural network
generates the hypothesis class

H = {hw | w ∈ Ω}.
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