Subfields of \mathbb{R} : NIP, VC Dimension and PAC Learning

Laura Wirth
University of Konstanz

Young Women in Model Theory and Applications
Hausdorff Center for Mathematics in Bonn, March 2024

Rheinbrücke, Konstanz

Overview

Model Theory of Subfields of \mathbb{R}

NIP

Definition.

Let \mathcal{L} be any language and let T be a complete \mathcal{L}-theory. A partitioned \mathcal{L}-formula $\varphi(x ; y)$ has the independence property (IP) in T, if for any $n \in \mathbb{N}$, writing $[n]=\{1, \ldots, n\}$, we have

$$
T \models \exists a_{1}, \ldots, a_{n} \exists b_{\emptyset}, \ldots, b_{[n]}: \underbrace{}_{\substack{ \\
\begin{subarray}{c}{i \in[n] \\
\in[n]} }}\end{subarray}} \varphi\left(a_{i} ; a_{j}\right) \wedge b_{j}) \text { is true iff } i \in J .
$$

[^0]
NIP

Definition.

Let \mathcal{L} be any language and let T be a complete \mathcal{L}-theory.
A partitioned \mathcal{L}-formula $\varphi(x ; y)$ has the independence property (IP) in T, if for any $n \in \mathbb{N}$, writing $[n]=\{1, \ldots, n\}$, we have

$$
T \vDash \exists a_{1}, \ldots, a_{n} \exists b_{\emptyset}, \ldots, b_{[n]}: \underbrace{\bigwedge_{\varphi\left(a_{i} ; b_{\jmath}\right)} \varphi\left(a_{i} ; b_{\jmath}\right) \wedge \bigwedge_{\substack{i \in[n] \\ j \subseteq[n] \\ i \notin J}} \neg \varphi\left(a_{i} ; b_{\jmath}\right)}_{\substack{i \in[n] \\ j \subseteq[n] \\ i \in J}} .
$$

An \mathcal{L}-structure \mathcal{M} has the independence property (IP) if there exists a partitioned \mathcal{L}-formula $\varphi(x ; y)$ that has IP in the theory $\operatorname{Th}_{\mathcal{L}}(\mathcal{M})$.

[^1]
NIP

Definition.

Let \mathcal{L} be any language and let T be a complete \mathcal{L}-theory.
A partitioned \mathcal{L}-formula $\varphi(x ; y)$ has the independence property (IP)
in T, if for any $n \in \mathbb{N}$, writing $[n]=\{1, \ldots, n\}$, we have

$$
T \models \exists a_{1}, \ldots, a_{n} \exists b_{\emptyset}, \ldots, b_{[n]}: \underbrace{}_{\substack{i \in[n] \\ j \subseteq[n] \\ i \in J}} \varphi\left(a_{i} ; b_{\jmath}\right) \wedge \bigwedge_{\substack{i \in[n] \\ j \subseteq[n] \\ i \notin J}} \neg \varphi\left(a_{i} ; b_{j}\right) \text { is true iff } i \in J) .
$$

An \mathcal{L}-structure \mathcal{M} has the independence property (IP) if there exists a partitioned \mathcal{L}-formula $\varphi(x ; y)$ that has IP in the theory $\operatorname{Th}_{\mathcal{L}}(\mathcal{M})$.

NIP - not IP

Subfields of \mathbb{R}

Definition.

An ordered field K is called archimedean if \mathbb{N} is cofinal in K.
Definition.
$\mathcal{L}_{\mathrm{r}}:=\{+,-, \cdot, 0,1\}-$ language of rings
$\mathcal{L}_{\text {or }}:=\{+,-, \cdot, 0,1,<\}-$ language of ordered rings
By Hölder's Theorem any archimedean ordered field is
$\mathcal{L}_{\text {or }}$-isomorphic to a unique subfield of \mathbb{R}.

Theorem.

A subfield of \mathbb{R} has NIP if it is real closed.
S. Shelah, 'Strongly dependent theories', Isr. J. Math. 204 (2014) 1-83.

Subfields of \mathbb{R}

Definition.

An ordered field K is called archimedean if \mathbb{N} is cofinal in K.
Definition.
$\mathcal{L}_{\mathrm{r}}:=\{+,-, \cdot, 0,1\}-$ language of rings
$\mathcal{L}_{\text {or }}:=\{+,-, \cdot, 0,1,<\}-$ language of ordered rings
By Hölder's Theorem any archimedean ordered field is
$\mathcal{L}_{\text {or }}$-isomorphic to a unique subfield of \mathbb{R}.
Conjecture.
A subfield of \mathbb{R} has NIP only if it is real closed.
S. Shelah, 'Strongly dependent theories', Isr. J. Math. 204 (2014) 1-83.

Subfields of \mathbb{R} with (N)IP

References

- B. Poonen, 'Uniform first-order definitions in finitely generated fields', Duke Math. J. 138 (2007) 1-22.
围 J. Robinson, 'Definability and decision problems in arithmetic', J. Symb. Log. 14 (1949) 98-114.

庫 J. Robinson, ‘The undecidability of algebraic rings and fields', Proc. Amer. Math. Soc. 10 (1959) 950-957.

- ... Work in Progress ${ }^{1}$...

[^2]
Relation of NIP to Statistical Learning Theory

NIP and VC Dimension

Given an \mathcal{L}-structure \mathcal{M} and a partitioned \mathcal{L}-formula $\varphi(x ; y)$ with $|x|=n$ and $|y|=\ell$, we set

$$
\varphi(\mathcal{M} ; b):=\left\{a \in M^{n} \mid \mathcal{M} \models \varphi(a ; b)\right\}
$$

for any $b \in M^{\ell}$, and

$$
\mathcal{H}_{\varphi}:=\left\{\mathbb{1}_{\varphi(\mathcal{M} ; b)} \mid b \in M^{\ell}\right\} .
$$

M. C. LASKOwSKI, 'Vapnik-Chervonenkis classes of definable sets', J. Lond. Math. Soc. 45 (1992) 377-384.

NIP and VC Dimension

Given an \mathcal{L}-structure \mathcal{M} and a partitioned \mathcal{L}-formula $\varphi(x ; y)$ with $|x|=n$ and $|y|=\ell$, we set

$$
\varphi(\mathcal{M} ; b):=\left\{a \in M^{n} \mid \mathcal{M} \models \varphi(a ; b)\right\}
$$

for any $b \in M^{\ell}$, and

$$
\mathcal{H}_{\varphi}:=\left\{\mathbb{1}_{\varphi(\mathcal{M} ; b)} \mid b \in M^{\ell}\right\} .
$$

Proposition (Laskowski 1992).
The class \mathcal{H}_{φ} has finite VC dimension if and only if the \mathcal{L}-formula $\varphi(x ; y)$ has NIP in \mathcal{M}.
M. C. LASKOwSKI, 'Vapnik-Chervonenkis classes of definable sets', J. Lond. Math. Soc. 45 (1992) 377-384.

The Setting

Ingredients of a Learning Problem.

- \mathcal{X} - input space
- $\{0,1\}$ - output space
- $\mathcal{Z}=\mathcal{X} \times\{0,1\}$ - sample space
- $\mathcal{H} \subseteq\{0,1\}^{\mathcal{X}}$ - hypothesis space

Learning - Basic Procedure

Using an arbitrary distribution \mathbb{D} on $\mathcal{Z}=\mathcal{X} \times\{0,1\}$, we choose a sequence of iid samples from \mathcal{Z} :

$$
z=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right) .
$$

These samples provide the input data for a learning algorithm \mathcal{A} that determines a hypothesis $h=\mathcal{A}(z)$ in \mathcal{H}.

[^3]
Learning - Goal

The goal is to minimize the error of h given by

$$
\operatorname{er}_{\mathbb{D}}(h):=\mathbb{D}(\{(x, y) \in \mathcal{Z} \mid h(x) \neq y\})
$$

More precisely, we want to achieve an error that is close to

$$
\operatorname{opt}_{\mathbb{D}}(\mathcal{H}):=\inf _{h \in \mathcal{H}} \operatorname{er}_{\mathbb{D}}(h) .
$$

S. Ben-David and S. Shalev-Shwartz, Understanding Machine Learning: From Theory to Algorithms, (Cambridge University Press, Cambridge, 2014).

PAC Learning

Definition.

A learning algorithm

$$
\mathcal{A}: \bigcup_{m \in \mathbb{N}} \mathcal{Z}^{m} \rightarrow \mathcal{H}
$$

for \mathcal{H} is said to be probably approximately correct (PAC) if it satisfies the following condition:

$$
\begin{aligned}
& \forall \varepsilon, \delta \in(0,1) \exists m_{0}=m_{0}(\varepsilon, \delta) \forall m \geq m_{0} \forall \mathbb{D}: \\
& \mathbb{D}^{m}\left(\left\{\boldsymbol{z} \in \mathcal{Z}^{m} \mid \operatorname{er}_{\mathbb{D}}(\mathcal{A}(z))-\operatorname{opt}_{\mathbb{D}}(\mathcal{H}) \leq \varepsilon\right\}\right)>1-\delta .
\end{aligned}
$$

L. G. VALIANT, 'A Theory of the Learnable', Comm. ACM 27 (1984) 1134-1142.

PAC Learning

Definition.

A learning algorithm

$$
\mathcal{A}: \bigcup_{m \in \mathbb{N}} \mathcal{Z}^{m} \rightarrow \mathcal{H}
$$

for \mathcal{H} is said to be probably approximately correct (PAC) if it satisfies the following condition:

$$
\begin{aligned}
& \forall \varepsilon, \delta \in(0,1) \exists m_{0}=m_{0}(\varepsilon, \delta) \forall m \geq m_{0} \forall \mathbb{D}: \\
& \mathbb{D}^{m}\left(\left\{\boldsymbol{z} \in \mathcal{Z}^{m} \mid \operatorname{er}\left(\mathbb{D}(\mathcal{A}(z))-\operatorname{opt}_{\mathbb{D}}(\mathcal{H}) \leq \varepsilon\right\}\right)>1-\delta .\right.
\end{aligned}
$$

The hypothesis class \mathcal{H} is said to be probably approximately correct (PAC) learnable if there exists a learning algorithm for \mathcal{H} that is PAC.

Fundamental Theorem of Statistical Learning Theory

The following result is due to Blumer, Ehrenfeucht, Haussler and Warmuth 1989.

Theorem.
Under certain measurability conditions, a hypothesis class \mathcal{H} is PAC learnable if and only if its VC dimension is finite.

[^4]
Fundamental Theorem of Statistical Learning Theory

The following result is due to Blumer, Ehrenfeucht, Haussler and Warmuth 1989.

Theorem.
Under certain measurability conditions, a hypothesis class \mathcal{H} is PAC learnable if and only if its VC dimension is finite.

Corollary.
Given a subfield $K \subseteq \mathbb{R}$ with NIP, any definable hypothesis class $\mathcal{H} \subseteq\{0,1\}^{\mathcal{X}}$ with $\mathcal{X} \subseteq K^{n}$ has finite VC dimension and is thus PAC learnable, provided certain measurability conditions are guaranteed.

Creating a Learning Framework

Creating a Learning Framework

Assembling the Ingredients.

- $K \subseteq \mathbb{R}$ - subfield of \mathbb{R}
- $\mathcal{L} \in\left\{\mathcal{L}_{\mathrm{r}}, \mathcal{L}_{\text {or }}\right\}$ - language for model-theoretic examination
- $\mathcal{X} \subseteq K^{n}$ - definable subset of K^{n}
- $\mathcal{H} \subseteq\{0,1\}^{\mathcal{X}}$ - set of hypotheses $h=\mathbb{1}_{A}: \mathcal{X} \rightarrow\{0,1\}$ with definable support $A \subseteq \mathcal{X}$

Measurability

Definition.
We denote by $\mathcal{B}_{\mathcal{X}}$ and $\mathcal{B}_{\mathcal{Z}}$ the Borel σ-algebras on \mathcal{X} and \mathcal{Z}, respectively.

Lemma.
$\mathcal{B}_{\mathcal{Z}}=\mathcal{B}_{\mathcal{X}} \otimes \mathcal{P}(\{0,1\})$.

The distributions \mathbb{D} on \mathcal{Z} that we consider are all defined on $\mathcal{B}_{\mathcal{Z}}$.

Measurability Issues

Given a hypothesis $h=\mathbb{1}_{A}$ with definable support $A \subseteq \mathcal{X}$ and a distribution \mathbb{D} defined on $\mathcal{B}_{\mathcal{Z}}$, the error

$$
\operatorname{er}_{\mathbb{D}}(h)=\mathbb{D}(\{(x, y) \in \mathcal{Z} \mid h(x) \neq y\})
$$

is only well-defined if the support of h is Borel, i.e. $A \in \mathcal{B}_{\mathcal{X}}$.

Measurability Issues

Given a hypothesis $h=\mathbb{1}_{A}$ with definable support $A \subseteq \mathcal{X}$ and a distribution \mathbb{D} defined on $\mathcal{B}_{\mathcal{Z}}$, the error

$$
\operatorname{er}_{\mathbb{D}}(h)=\mathbb{D}(\{(x, y) \in \mathcal{Z} \mid h(x) \neq y\})
$$

is only well-defined if the support of h is Borel, i.e. $A \in \mathcal{B}_{\mathcal{X}}$.

Question.

Given a subfield $K \subseteq \mathbb{R}$, is any definable set $A \subseteq K^{n}$ Borel measurable?
Partial Answers.
Yes, if

- A is quantifier-free definable (e.g. if K is real closed),
- A is countable (e.g. if K is countable).

Summary and Future Work

Summary

Corollary.

If $K \subseteq \mathbb{R}$ has NIP, then any definable hypothesis class \mathcal{H} has finite VC dimension and is thus PAC learnable, provided certain measurability conditions are guaranteed.

Task.
Identify and study the measurability requirements involved in the Fundamental Theorem.
For instance: Does definability guarantee Borel measurability?

Summary

Corollary.

If $K \subseteq \mathbb{R}$ has NIP, then any definable hypothesis class \mathcal{H} has finite VC dimension and is thus PAC learnable, provided certain measurability conditions are guaranteed.

Task.
Identify and study the measurability requirements involved in the Fundamental Theorem.
For instance: Does definability guarantee Borel measurability?

Questions

Corollary.

If $K \subseteq \mathbb{R}$ has NIP, then any definable hypothesis class \mathcal{H} is PAC learnable.

Question.

Given $K \subseteq \mathbb{R}$ with IP, does there exist a definable hypothesis class that is not PAC learnable?

Questions

Corollary.

If $K \subseteq \mathbb{R}$ has NIP, then any definable hypothesis class \mathcal{H} is PAC learnable.

Question.

Given $K \subseteq \mathbb{R}$ with IP, does there exist a definable hypothesis class that is not PAC learnable? Yes!

Questions

Corollary.

If $K \subseteq \mathbb{R}$ has NIP, then any definable hypothesis class \mathcal{H} is PAC learnable.

Question.

Given $K \subseteq \mathbb{R}$ with IP, does there exist a definable hypothesis class that is not PAC learnable? Yes!

Refined Question.

Given $K \subseteq \mathbb{R}$ with IP, does there exist a definable hypothesis class \mathcal{H} generated by a neural network that is not PAC learnable?

Appendix

Neural Networks

Neural Networks

Each neuron is equipped with an activation function $f_{\ell}^{(i)}: K \rightarrow K$.

Neural Networks

Each link comes with a parameter, e.g. the link between $f_{1}^{(1)}$ and $f_{2}^{(2)}$ comes with parameter $w_{2}^{(1,2)} \in K$.

Neural Networks

Output of the first neuron in the first layer: $f_{1}^{(1)}\left(w_{1} x_{1}+\cdots+w_{n} x_{n}\right)$

Neural Networks

The input of $f_{2}^{(2)}$ is the weighted sum of the outputs of layer 1 . Higher-order: polynomial combinations instead of linear ones

Neural Networks

Fixing a parameter space Ω, each parameter configuration $w \in \Omega$ provides a hypothesis $h_{w}: \mathcal{X} \rightarrow\{0,1\}$. Hence, the neural network generates the hypothesis class

$$
\mathcal{H}=\left\{h_{w} \mid w \in \Omega\right\} .
$$

Book Recommendations

围
M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical Foundations, (Cambridge University Press, Cambridge, 1999).
圊 S. Ben-David and S. Shalev-Shwartz, Understanding Machine Learning: From Theory to Algorithms, (Cambridge University Press, Cambridge, 2014).
R M. VIDYASAGAR, Learning and Generalisation: With Applications to Neural Networks, Commun. Control Eng. (Springer, London, 2003).

[^0]: S. Shelah, 'Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory', Ann. Math. Logic 3 (1971) 271-362.

[^1]: S. Shelah, 'Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory', Ann. Math. Logic 3 (1971) 271-362.

[^2]: ${ }^{1}$ The fact that any purely transcendental extension of \mathbb{Q} has IP is a consequence of an unpublished result that Lasse Vogel proved. At least, I am not aware of a published result that can be used to verify IP for purely transcendental extensions of \mathbb{Q}.

[^3]: S. Ben-David and S. Shalev-Shwartz, Understanding Machine Learning: From Theory to Algorithms, (Cambridge University Press, Cambridge, 2014).

[^4]: A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth, 'Learnability and the Vapnik-Chervonenkis dimension', J. Assoc. Comput. Mach. 36 (1989) 929-965.

