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Measurability

Recall.
A probability space (Ω,Σ,P) consists of

· a domain Ω,
· a ω–algebra Σ ⊆ P(Ω),
· and a probability measure P : Σ → [0, 1]
(also called distribution).

Given a probability space (Ω,Σ,P), a map g : Ω → R is called
Σ–measurable if g−1(B) ∈ Σ for any Borel set B ⊆ R.
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Binary Classification
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Learning Framework

Ingredients of a Learning Problem.

· ∅ ̸= X — instance space
· Z = X × {0, 1} — sample space
· ∅ ̸= H ⊆ {0, 1}X — hypothesis space
· ΣZ — ω–algebra on Z with Pfin(Z) ⊆ ΣZ

· D — set of distributions on (Z,ΣZ)

Assumption.
For any hypothesis h ∈ H we have

Γ(h) := {(x, y) ∈ Z | h(x) = y} ∈ ΣZ .
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Learning from Examples: Mathematically

A learning function is a map of the form A :
⋃

m∈N
Zm → H.

The input for A is generated according to an arbitrary
distribution D ∈ D:

z = ((x1, y1), . . . , (xm, ym))︸ ︷︷ ︸
iid samples ∼Dm

∈ Zm.

A then predicts a generalization hypothesis h = A(z) ∈ H
based on the multi-sample z.

S. BEN-DAVID and S. SHALEV-SHWARTZ, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).
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Learning from Examples – Goal

The goal is to minimize the (true) error of h given by

erD(h) := D({(x, y) ∈ Z | h(x) ̸= y}) = D(Z \ Γ(h)︸ ︷︷ ︸
∈ΣZ

).

More precisely, we want to achieve an error that is close to

optD(H) := inf
h∈H

erD(h).

S. BEN-DAVID and S. SHALEV-SHWARTZ, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).
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PAC Learning

Definition.
A learning function

A :
⋃

m∈N
Zm → H

for H is said to be probably approximately correct (PAC) (with respect
to D) if it satisfies the following condition:

∀ε, δ ∈ (0, 1) ∃m0 ∈ N ∀m ≥ m0 ∀D ∈ D :

Dm({z ∈ Zm | erD(A(z))− optD(H) ≤ ε}) ≥ 1− δ.

L. G. VALIANT, ‘A Theory of the Learnable’, Comm. ACM 27 (1984) 1134–1142.
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PAC Learning

Definition.
A learning function

A :
⋃

m∈N
Zm → H

for H is said to be probably approximately correct (PAC) (with respect
to D) if it satisfies the following condition:

∀ε, δ ∈ (0, 1) ∃m0 ∈ N ∀m ≥ m0 ∀D ∈ D :

Dm({z ∈ Zm | erD(A(z))− optD(H) ≤ ε}) ≥ 1− δ.

The hypothesis space H is said to be PAC learnable if there exists a
learning function for H that is PAC.
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PAC Learning – refined

Definition.
A learning function

A :
⋃

m∈N
Zm → H

for H is said to be probably approximately correct (PAC) (with respect
to D) if it satisfies the following condition:

∀ε, δ ∈ (0, 1) ∃m0 ∈ N ∀m ≥ m0 ∀D ∈ D ∃C ∈ Σm
Z :

C ⊆ {z ∈ Zm | erD(A(z))− optD(H) ≤ ε}
and Dm(C) ≥ 1− δ.

The hypothesis space H is said to be PAC learnable if there exists a
learning function for H that is PAC.
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Sample Error

The sample error of h on a multi-sample z = (z1, . . . , zm) ∈ Zm,
given by

êrz(h) :=
1
m

m∑

i=1

1Z\Γ(h)(zi),

provides a useful estimate for the true error.

Remark.
The map

Zm →
{ k

m
∣∣ k ∈ {0, 1, . . . ,m}

}
, z ,→ êrz(h)

is Σm
Z–measurable.

S. BEN-DAVID and S. SHALEV-SHWARTZ, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).
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A Simple Learning Principle

The sample error of h on a multi-sample z = (z1, . . . , zm) ∈ Zm,
given by

êrz(h) :=
1
m

m∑

i=1

1Z\Γ(h)(zi),

provides a useful estimate for the true error.

Sample Error Minimization (SEM).
Choose a learning function A such that

êrz(A(z)) = min
h∈H

êrz(h)

for any multi-sample z.
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Fundamental Theorem of Statistical Learning

In modern textbooks one finds formulations such as:

Theorem.
H is PAC learnable if and only if H has finite VC dimension.

Originally, this equivalence result is due to Blumer, Ehrenfeucht,
Haussler and Warmuth 1989.

A. BLUMER, A. EHRENFEUCHT, D. HAUSSLER and M. K. WARMUTH, ‘Learnability and the
Vapnik-Chervonenkis dimension’, J. Assoc. Comput. Mach. 36 (1989) 929–965.
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Fundamental Theorem of Statistical Learning

Theorem.
H is PAC learnable if and only if H has finite VC dimension.

Proof Remarks.

· Technical Heart: ⇐

· Measurability requirements must be taken into account.
→→ Available literature lacks measure-theoretic analysis

for agnostic PAC learning.

Takeaway.
The theorem only applies to well-behaved hypothesis spaces!

V. N. VAPNIK and A. YA. CHERVONENKIS, ‘On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities‘, Teor. Veroyatn. Primen. 16 (1971) 264–279
(Russian), Theory Probab. Appl. 16 (1971) 264–280 (English).
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Well-Behaved Hypothesis Spaces

Definition.
A hypothesis space H is called well-behaved (with respect to D) if it
satisfies the following conditions:

· Γ(h) ∈ ΣZ for any h ∈ H.
· There exists mH ∈ N such that:
The map

U : Zm → [0, 1], z ,→ sup
h∈H

∣∣erD(h)− êrz(h)
∣∣

is Σm
Z–measurable for any m ≥ mH and any D ∈ D,

and the map

V : Z2m → [0, 1], (z, z′) ,→ sup
h∈H

∣∣êrz′(h)− êrz(h)
∣∣

is Σ2m
Z –measurable for any m ≥ mH.
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Sufficient Conditions for Well-Behavedness

Remark.
Sufficient conditions for the measurability of the maps U and V :

· X resp. Z is countable.
· H is countable.
· H is universally separable.

Definition.
The hypothesis space H is called universally separable if there exists
a countable subset H0 ⊆ H such that for any h ∈ H there exists a
sequence {hn}n∈N ⊆ H0 converging pointwise to h.
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Fundamental Theorem of Statistical Learning: Agnostic Version

Based on Blumer, Ehrenfeucht, Haussler and Warmuth 1989,
we could prove the following:

Theorem.
Let D contain all discrete uniform distributions and let H be
well-behaved with respect to D. Then H is PAC learnable with
respect to D if and only if H has finite VC dimension.

L. S. KRAPP and L. WIRTH, ’Measurability in the Fundamental Theorem of Statistical
Learning’, Preprint, 2024, arXiv:2410.10243.
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Definable Hypothesis Spaces

Definiton.
Let L be a language, let M be an L–structure and let
ϕ(x1, . . . , xn;p1, . . . ,pω) be an L–formula. For any w ∈ Mω, set

ϕ(M,w) = {a ∈ Mn | M |= ϕ(a;w)}.

Then the hypothesis space Hϕ ⊆ {0, 1}Mn is given by

Hϕ :=
{
1ϕ(M;w)

∣∣w ∈ Mω
}
.

Further, given a non-empty set X ⊆ Mn that is definable over M, the
hypothesis space Hϕ

X ⊆ {0, 1}X is given by

Hϕ
X := {h!X | h ∈ Hϕ}.
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Example

Set Lor := {+, ·,−, 0, 1, <}, Ror := (R,+, ·,−, 0, 1, <) and consider the
L–formula ϕ(x1, x2;p1,q1,p2,q2) given by

p1 ≤ x1 ≤ q1 ∧ p2 ≤ x2 ≤ q2.

For w = (p1,q1,p2,q2) ∈ R4, the set ϕ(Ror;w) is an axis-aligned
rectangle in R2 of the form:
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Example

Set Lor := {+, ·,−, 0, 1, <}, Ror := (R,+, ·,−, 0, 1, <) and consider the
L–formula ϕ(x1, x2;p1,q1,p2,q2) given by

p1 ≤ x1 ≤ q1 ∧ p2 ≤ x2 ≤ q2.

For w = (p1,q1,p2,q2) ∈ R4, the set ϕ(Ror;w) is an axis-aligned
rectangle in R2 of the form:

The hypothesis h = 1ϕ(Ror;w) ∈ Hϕ sends all points inside this
rectangle to 1 and all points outside to 0.
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Example

Set Lor := {+, ·,−, 0, 1, <}, Ror := (R,+, ·,−, 0, 1, <) and consider the
L–formula ϕ(x1, x2;p1,q1,p2,q2) given by

p1 ≤ x1 ≤ q1 ∧ p2 ≤ x2 ≤ q2.

For w = (p1,q1,p2,q2) ∈ R4, the set ϕ(Ror;w) is an axis-aligned
rectangle in R2.

Restricting to the Lor–definable set X = R≥0 × R≥0 ⊆ R2 means
considering only rectangles in the first quadrant.
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O-Minimality

The following notion is due to Pillay and Steinhorn 1986.

Recall.
Given a language L = {<, . . . } and an L–structure M = (M, <, . . . )

for which (M, <) is a linear order, M is called o-minimal if any set
A ⊆ M that is definable over M can be expressed as a finite union of
points and open intervals.

They further related it to the notion NIP, which was introduced by
Shelah 1971.

Proposition.
If M = (M, <, . . . ) is o-minimal, then M has NIP.

A. PILLAY and C. STEINHORN, ‘Definable sets in ordered structures‘, I, Trans. Amer.
Math. Soc. 295 (1986) 565–592.
S. SHELAH, ‘Stability, the f.c.p., and superstability; model theoretic properties of

formulas in first order theory’, Ann. Math. Logic 3 (1971) 271–362.
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NIP and VC Dimension

The following result is due to Laskowski 1992.

Proposition.
Let L be a language and let M be an L–structure. Then the following
conditions are equivalent:

(1) M has NIP.
(2) The hypothesis space Hϕ has finite VC dimension for any

L–formula ϕ(x;p).
(3) The hypothesis space Hϕ

X has finite VC dimension for any
L–formula ϕ(x;p) and any non-empty set X definable over M.

M. C. LASKOWSKI, ‘Vapnik–Chervonenkis classes of definable sets’, J. Lond. Math. Soc.
45 (1992) 377–384.
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Jumping to Conclusions
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Jumping to Conclusions – Be aware of the measurability!
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Borel σ–Algebra

Recall.
Given k ∈ N, the Borel ω–algebra B(Rk) of Rk is the smallest
ω–algebra containing all open sets in Rk.
For Y ⊆ Rk, we consider the trace ω–algebra given by

B(Y) := {B ∩ Y | B ∈ B(Rk)}.
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o-Minimal Expansions of the Reals: Measurability

Set Lor := {+, ·,−, 0, 1, <} and Ror := (R,+, ·,−, 0, 1, <).

Lemma.
Let L be a language expanding Lor, let R be an o-minimal
L–expansion of Ror, let ϕ(x1, . . . , xn;p1, . . . ,pω) be an L–formula and
let w ∈ Rω. Then ϕ(R;w) ∈ B(Rn).

M. KARPINSKI and A. MACINTYRE, ‘Approximating Volumes and Integrals in o-Minimal
and p-Minimal Theories’, Connections between model theory and algebraic and
analytic geometry (ed. Macintyre), Quad. Mat. 6 (2000) 149–177.
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Learning over o-Minimal Expansions of Ror

Guided by the work of Karpinski and Macintyre 2000 we proved the
following learnability result:

Theorem. Let

· L be a language expanding Lor,
· R be an o-minimal L–expansion of Ror,
· X ⊆ Rn be a non-empty set that is definable over R,
· ϕ(x1, . . . , xn;p1, . . . ,pω) be an L–formula,
· ΣZ be a ω–algebra on Z = X × {0, 1} with B(Z) ⊆ ΣZ , and
· D be a set of distributions on (Z,ΣZ) such that (Zm,Σm

Z ,Dm) is
a complete probability space for any D ∈ D and any m ∈ N.

Then Hϕ
X is PAC learnable with respect to D.

L. S. KRAPP and L. WIRTH, ’Measurability in the Fundamental Theorem of Statistical
Learning’, Preprint, 2024, arXiv:2410.10243.
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Learning over o-Minimal Expansions of Ror

Proof Sketch.

· o-Minimality implies NIP.
· Thus, Hϕ

X has finite VC dimension.
· Aim: Apply Fundamental Theorem.
· To this end: Verify well-behavedness.
· Γ(h) ∈ ΣZ for any h ∈ Hϕ

X .
· Technical analysis and application of Pollard’s arguments
regarding measurability of suprema establish measurability of
the maps U and V.

"
Exkurs.

D. POLLARD, Convergence of Stochastic Processes, Springer Ser. Stat. (Springer, New
York, 1984). 24
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Further Work

Question.
Are there a hypothesis space H with finite VC dimension and a set D
of distributions such that H is not PAC learnable with respect to D?

Special Case: Consider Z = R× {0, 1}.

Question.
Are there an Lor–formula ϕ(x;p) and a set D of distributions on
(Z,B(Z)) such that Hϕ = {1ϕ(Ror;w) | w ∈ R} is not PAC learnable
with respect to D?

Note: Such a hypothesis space would not be well-behaved, and the
distribution set would not fulfill the completeness condition.
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Thank you for your attention. Questions?
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Appendix



Learning over o-Minimal Expansions of Ror – Remarks

Definition.
A probability space (Ω,Σ,P) is called complete if

∀N ∈ Σ (P(N) = 0 ⇒ ∀A ⊆ N A ∈ Σ).

Remarks.

· Completeness condition is crucial for deducing measurability of
the maps U and V.

· Completeness condition is trivially satisfied if X resp. Z is
countable, since then ΣZ = B(Z) = P(Z).

· Potential Solution: Replace product spaces with their respective
completions at all relevant places.
→→ All impacted definitions and proofs need to be adjusted

accordingly!

Jump back.
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Learning over o-Minimal Expansions of Ror – Remarks

Further Remarks.

· The measurability of V can be established without imposing
further conditions (like e.g. the completeness condition), since it
can be shown to be definable.
→→ Unfortunately, this approach does not work for U.

· Further Work: Extend theorem to general o-minimal structures.

Jump back.
Jump to Summary.



VC Dimension

Definition.
Given A ⊆ X , we say that H shatters A if

{h!A | h ∈ H} = {0, 1}A.

If H cannot shatter sets of arbitrarily large size, then we say that H
has finite VC dimension. In this case:

vc(H) := max{d ∈ N | ∃A ⊆ X , |A| = d : H shatters A}.

Jump back.

V. N. VAPNIK and A. JA. ČERVONENKIS, ‘Uniform Convergence of Frequencies of
Occurrence of Events to Their Probabilities’, Dokl. Akad. Nauk SSSR 181 (1968) 781–783
(Russian), Sov. Math. Dokl. 9 (1968) 915–918 (English).



Example

Consider Ror and the hypothesis space Hϕ defined by the
Lor–formula ϕ(x1, x2;p1,q1,p2,q2) given by

p1 ≤ x1 ≤ q1 ∧ p2 ≤ x2 ≤ q2.

We compute vc(Hϕ) = 4:

Jump back.



Discrete Uniform Distributions

Definition
A discrete uniform distribution on a measurable space (Ω,Σ) with
Pfin(Ω) ⊆ Σ is a probability measure P : Σ → [0, 1] of the form

P =
ω∑

j=1

1
%
δωj ,

where % ∈ N and ω1, . . . ,ωω ∈ Ω.

Jump back.



NIP

Notation.
[m] := {1, . . . ,m} for m ∈ N.

Definition.
Let L be a language and let M be an L–structure.
A (partitioned) L–formula ϕ(x1, . . . , xn;p1, . . . ,pω) has NIP over M if
there is m ∈ N such that for any object set {a1, . . . , am} ⊆ Mn and any
parameter set {wI | I ⊆ [m]} ⊆ Mω, there is some J ⊆ [m] such that

M ̸|=
∧

i∈J

ϕ(ai;wJ) ∧
∧

i∈[m]\J

¬ϕ(ai;wJ)

︸ ︷︷ ︸
ϕ(ai;wJ) is true iff i∈J

.

The L–structure M has NIP if every L–formula has NIP over M.

S. SHELAH, ‘Stability, the f.c.p., and superstability; model theoretic properties of
formulas in first order theory’, Ann. Math. Logic 3 (1971) 271–362.



NIP

Definition.
Let L be a language and let M be an L–structure.
A (partitioned) L–formula ϕ(x1, . . . , xn;p1, . . . ,pω) has NIP over M if
there is m ∈ N such that for any object set {a1, . . . , am} ⊆ Mn and any
parameter set {wI | I ⊆ [m]} ⊆ Mω, there is some J ⊆ [m] such that

M ̸|=
∧

i∈J

ϕ(ai;wJ) ∧
∧

i∈[m]\J

¬ϕ(ai;wJ)

︸ ︷︷ ︸
ϕ(ai;wJ) is true iff i∈J

.

The L–structure M has NIP if every L–formula has NIP over M.

Jump back.
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