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Abstract
We specialize a conjecture on the classification of fields without the
independence property to archimedean ordered fields. Specifically, we
conjecture that any archimedean ordered field without the independence
property is real closed. Therefore, we undertake a systematic study of
the archimedean ordered fields and examine them for the independence
property. We exhibit an approach for verifying the independence property
and present several examples that we are considering.

Preliminaries
Lr = {+,−, ·, 0, 1} — language of rings
Lor = {+,−, ·, 0, 1, <} — language of ordered rings

Definition. An ordered field K is called archimedean if N is cofinal in K.

By Hölder’s Theorem any archimedean ordered field is Lor–isomorphic to a
unique subfield of R.

Definition. Let L be any language. An L–structureM has the independence
property (in L) if there exists a partitioned L–formula φ(x ; y) such that for
any n ∈ N, writing [n] = {1, . . . , n}, we have

M |= ∃a1, . . . , an ∃b∅, . . . , b[n] :
∧
i∈[n]
J⊆[n]
i∈J

φ(ai ; bJ) ∧
∧
i∈[n]
J⊆[n]
i /∈J

¬φ(ai ; bJ).

Note that the independence property is preserved under elementary equivalence.

Classifying Fields without the Independence Property
The following conjecture goes back to Shelah.

Conjecture 1 [1, Introduction]. Any infinite field K that does not have the
independence property in Lr is real closed, separably closed, or admits a non-
trivial henselian valuation.

Remark. Due to o-minimality a real closed field does not have the independence
property in L ∈ {Lr,Lor}.

Conjecture 2. Let L ∈ {Lr,Lor}. Any (countable) subfield of R that does not
have the independence property in L is real closed.

Remark. Due to the Löwenheim–Skolem Theorem we can restrict our investi-
gations to countable subfields of R.

We established the following:

Proposition 1. Conjecture 1 ⇒ Conjecture 2. ■

Our Approach for Verifying the Independence Property
Lemma 1. Let L ∈ {Lr,Lor} and let K be an (ordered) field containing an
L–definable subring R that has infinitely many non-associated prime elements.
Then K has the independence property in L. ■

In [2, Proposition 2] Poonen shows that Z is Lr–definable in any finitely gener-
ated field extension of Q. We exploit this to establish the following:

Proposition 2. Let n ∈ N and let r1, . . . , rn ∈ R. Then the field Q(r1, . . . , rn)
has the independence property in Lr. In particular, Q and any number field in R
have the independence property in Lr. ■
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Diagram and Examples of Archimedean Ordered Fields
We denote by
– Qrc the real closure of Q, i.e. its relative algebraic closure in R,
– Qec the euclidean closure of Q,
– Qtr the field {α ∈ Qrc | all Q–conjugates of α are real} of totally real

numbers.

Color Guide:

IP

NIP

?

Q

number fields Q(α)
for α ∈ R algebaric over Q

finitely generated extensions Q(r1, . . . , rk)
for r1, . . . , rk ∈ R

purely transcendental extensions Q(T )
for T ⊆ R algebraically independent

over Q
algebraic extensions Q(A)
for A ⊆ R algebraic over Q

Qtr Qec

Qrc

Q(T )(A)
for A ⊆ R algebraic over Q(T )

real closed fields R ⊆ R

R(t) for any real closed field R ⊆ R
and any t ∈ R transcendental over R

Qrc(e) Qrc(π)

R

The result stating that any purely transcendental extensions of Q in R has
the independence property in Lr is indicated on the poster of Lasse Vogel
(Universität Konstanz).

Questions
1. What are prominent classes of (countable) subrings of R that have infinitely

many non-associated prime elements?
2. Given a (countable) field K ⊆ R, when does K contain a subring with

infinitely many non-associated prime elements that is definable in K?
3. Let K be a proper subfield of Qrc. Does K have the independence property?
4. Does Qec have the independence property?
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