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0 Preface: How to use this manuscript. How it

originated and what its didactic principles are.

At the university of Konstanz, as in most German universities, an intensive course
(‘Kompaktkurs’) in mathematics is offered to physics, chemistry and biology stu-
dents. It is optional and in Konstanz it is held the week before the first term. The
intention of this preparatory course is to refresh school mathematics, to com-
pensate for deficits in the mathematical education in special types of high schools
and to deliver some additional important topics necessary immediately for the be-
ginning lectures in physics, even before the regular mathematical lectures, hampered
by their necessity to give a systematic treatment, are able to provide them.

Unfortunately, these aims are unattainable, at least in one week, and only a fraction
of the present manuscript can be worked through in our ‘Kompaktkurs’. But it is
hoped that some students will use the manuscript in subsequent weeks to acquire
some more topics by self-education.

The author of this manuscript is of opinion that in mathematics memorizing also
plays an important role. Nothing goes into our long-time memory without rep-
etition and without motivation. Since the ‘Kompaktkurs’ is also intended for
students not particulary interested in mathematics itself, their motivation may be
very low, which they should compensate by even more repetitions.

Therefore, the manuscript is organized as a Question/Answer game. In the first
reading the Q-units bring a minimum of the material in compact form, which should
simply be learnt by heart. You should work through these Q-units several times
at appropriate intervals, corresponding to your memory abilities, until the material
sits in your long-time memory (or until you have passed your examinations).

A real understanding of the Q-units will hopefully be achieved in the following
exercises (Ex-units). An attempt was made to choose exercises that were as simple
as possible, while still exemplifying a certain point as clearly as possible.

To enhance motivation, an attempt was made to try and find exercises which have
real meaning or appeal to the students, so they are confident that they learn for
themselves and not for their teachers. However, realistic and important examples
have a tendency to be very long and complicated and will therefore distract from
the essential point. A student who is very motivated will be better off with so called
nonsense examples, which as such, have no real application but will present a
certain point with utmost clarity and not at the expense of unnecessary complication
by irrelevances.

Most examples are taken from geometry, elementary physics or every day life.

In our brain we have several different memory systems. One type of memory system
is called ‘procedural memory’, which, for example, controls our ability to ride a
bicycle. Corresponding mathematical abilities are contained in the Qx-units of this

xiv
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manuscript. These very simple exercises should be done repeatedly along with the
Q-units.

Besides genetic factors, training, motivation and the number of repetitions, our
memory also depends on the amount of related material we already know. Those
who know the results of all football games of all preceding years will have an easier
time learning the results of the current year, as would be the case for myself. This
means that a systematic treatment is the death of all education.

We can only learn piecewise. When one piece is assimilated, it is only at a later
time that we are able to digest the next bite. Because of that reason, the student
should also go through a subject several times, preferably using different books. In
the first run one simply hears all the terminology and thus creates ‘empty boxes’ in
the brain with labels with these terms. In later runs the boxes are filled successively
and interrelations between them are established.

Therefore, systematology was not of high priority in the present manuscript. In-
stead we would like to lead the student through several valleys of the mathematical
landscape as fast as possible.

We even offer the reader two speeds. Some material is marked by a blacksmiley -
and those who want the slower speed can omit it in the first run. (-- in a category,
e.g. in c) -- means to omit all successive units of the same category, i.e. d) e) f)
... of that exercise.)

The most basic or important exercises are marked by a whitesmiley ,.

A further important condition for long-time memory, perhaps belonging to the cat-
egory of motivation, is genuine self activity, in contrast to a boring systematic
two-hour lecture given as a monologue as is still practised far too often at univer-
sities. The Italian physician Maria Montessori (1870-1952) was the first to have
recognized this: her disabled children made more progress than a corresponding
normal primary school class which was educated conventionally. She simply gave all
kinds of material to her children and enhanced their motivation to do something
with it.

As much in accordance with the Montessori pedagogy as is possible for a manuscript,
we present all material in the form of questions. The Q-units are the material and
the Ex-units should be your own activity. We have deferred to the Ex-units as much
as was possible. This was achieved by a lot of Hints presented before the Results
and the extensive Solutions, and by bisecting the exercises into a large number of
small subunits a) b) c) ..., ensuring that the reader keeps on the right track.

Thus, important material is presented in the Ex-units and their results are summa-
rized in bold boxes. They should be memorized together with the Q-units.

Working through all the exercises is much more demanding than simply reading a
text. But it is rewarding and it is definitely recommended to the reader, although
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you will proceed much slower. If he, nevertheless, simply wants to read through the
manuscript, he can do so by immediately turning to the solutions. However, in the
long term he will be less successful than his more active fellow student.

Some Hints ask you to consult a formulary. Even more important than knowing
many things by heart is knowing where they can be found in a book or formulary.
Working with a formulary of your choice should be practiced extensively and is
encouraged from the beginning.

Other Hints about previous material contained in this manuscript is not given in
the form of page or formula numbers, but instead verbally, e.g. ‘Pythagoras’, and
you should consult the index to find the corresponding item in the manuscript. This
practice enhances the probability that you will develop a corresponding box in your
brain, since lexical long-time memory is intimately related to language abilities in
the temporal lobe of our brain.

Considerable effort has been made to keep the Q-units as small and as effective
as possible so that the student learns by heart only what is absolutely necessary or
economic. Q-units are supplemented by Qx-units in order to make these as beneficial
as possible to the student. It is common practise among students, especially those
with difficulties, to manage mathematics by the memorization method, and they
have discredited the learning of anything at all by heart in mathematics. We hope
with our Q-units we have given a better choice of what to learn by heart, than that
made by those students.

Interspersed you will find a lot of comments or remarks (Rem). You should read
them, but some of them you will understand only at a later time.

Some text is presented in T-units (theory-units), because it seemed impractical to
cast them in the Q/A-scheme and/or because they do not contain material which
should be learnt by heart or could possibly be remembered by a single reading.

In an attempt to be globally competitive it is now welcomed at our university to give
lectures and manuscripts in the English language. For the convenience of the German

readers, difficult English words are immediately translated into German (
G
=). These

words are also included in the index, which could thus serve as a vocabulary.

Needless to say, we did not attempt to give rigorous mathematics. Instead we tried
to present the subject as intuitively as possible, giving it in the form of cooking-
recipes and explaining it with the help of examples. Thereby, unfortunately, the
beautiful logical edifice of mathematics does not become apparent.

Only in some exercises do we cast a glance at the logical interrelation of mathemat-
ical truth. But this is more a type of surfing in mathematics than of learning
what mathematical deduction and proving really means.

Therefore, this manuscript should not be your last book in mathematics, but it could
be your first.



1 The trigonometric functions and radian mea-

sure of angles

(Recommendations for lecturing: 1-10, for basic exercises: 11, 12, 13.)

1.Q 1: Circumference of a circle

Give the formula for the length of the circumference[
G
= Umfang] c of a (full)

circle of radius r, of a half circle and of the quarter of a circle.
| (Solution:)

c = 2πr circumference of a circle (1)

Fig1.1. 1: Circumference c of a full circle, and l = circumference of half (quarter) of a circle

Rem 1: c = circumference = perimeter = length of the periphery

d = 2r=diameter[
G
= Durchmesser]

(1) is also the definition of π. That c is proportional to r is a theorem expressed by
(1).

Rem 2: The number π occurs at many places in mathematics, e.g. for the area
A = πr2 of a circle. So it is a matter of taste which formula is considered a definition
and which one is considered a theorem.

Rem 3: The divison of the full angle into 360◦ has Babylonean origin.
An attempt to make popular the division of the right angle into 100 so called new
grades has failed.

1
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1.Q 2: The irrational number π

Give the value of π approximately[
G
= angenähert] as a decimal number.

| (Solution:)

π = 3.1415926 . . . (1)

Rem: π is irrational, i.e. its decimal number never becomes periodic.
The word ‘irrational’ was coined because in former times people believed that such
numbers cannot be understood rationally.

1.Q 3: Radian measure

Fig1.3. 1: s = arc’s length, α = angle in radians, ϕ = angle in degrees

1.3. a) Give the length s of the arc[
G
= Bogen] with radius r and centriangle[

G
=

Zentriwinkel] ϕ.
| (Solution:)

s =
π

180◦
ϕ︸ ︷︷ ︸

α

r = rα s = length of arc, ϕ in degrees (1)

s = rα s = length of arc, α in radians (2)

Rem 1: s is proportional to (also called linear in) both ϕ and r.

1.3. b) Say in words, what is the radian measure[
G
= Bogenmaß] for angles.

| (Solution:)
The division of the right angle into 90 degrees (90◦) seemed unnatural in mathe-
matics. Therefore the length of arc divided by r (or alternatively: the length of arc
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of the unit circle) was used to measure angles. We call it the radian measure for
angles.

The important formula (1) thus gets simplified and takes the form (2).

1.3. c) Give in degrees ϕ and in radians α: right angle, full angle, half of the full
angle.
| (Solution:)

Fig1.3. 2: Some important angles in degrees and in radians

Rem 2: rad is an abbreviation[
G
= Abkürzung] for radian.

Rem 3: rad is simply 1 and it could be omitted, as was done in all cases where π
is involved. When an angle is given as a decimal number, it is usual to give the
unit radian to make clear that the number is an angle in radians, and not, e.g. the
number of cows on a meadow.

1.3. d) For a general angle give the correspondence between its measure in radians
(α) and in degrees (ϕ).
| (Solution:)

α =
π

180◦
ϕ ϕ in degrees, α in radians (3)

Rem 1:
To devise (3): α and ϕ must be proportional. Test (3) for ϕ = 180◦.

Rem 2:

1 rad = 1 radian = 1 =
180◦

π
≈ 57.3◦ (4)

Rem 3: As lengths can be expressed in different units, e.g. l = 5 cm = 0.05 m,
angles can be expressed in different units. The radian unit ist 57.3 times larger than
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the degree unit. That the degree unit (1◦) is written with a superscripted circle is
an irrelevant typographical detail.

Rem 4: (3) is consistent with α = ϕ, as can be seen from (4).

Rem 5: Corresponding to (3) we have

L =
1m

100 cm
l l in cm, L in m (5)

consistent with L = l

1.Q 4: Mathematically positive sense of rotation

1.4. a) What is a mathematically positive rotation?
| (Solution:)

Rotation counter-clockwise[
G
= gegen den Uhrzeiger] is called mathematically

positive.

Fig1.4. 1: A rotation α from an initial direction (i) to a final direction (f) is called positive if it
is counter-clockwise. An arbitrary direction is given by angles (e.g. αf , αi) which are viewed as
rotations from a fixed reference line.

1.4. b) Why the word mathematically?
| (Solution:)
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In every day life one would rather be inclined to choose the clockwise rotation. For
historical reasons, mathematicians have chosen the counter-clockwise direction as
positive. Very often the adjective ‘mathematically’ is omitted.

1.4. c)-- What are the restrictions (or assumptions) for that definition?
| (Solution:)

Fig1.4. 2: A positive rotation seems to be negative when viewed from the opposite side of the
paper.

In the above figure you see a positive rotation. Regard the sheet from the opposite
side and you will observe the rotation is negative.

An ideal geometrical plane (approximated by a decent sheet of paper) is completely

smooth[
G
= glatt] (homogeneous) and has no inherent[

G
= innewohnend] ori-

entation. By writing down the above figure, we have promoted[
G
= befördert] the

plane to an oriented plane (also called: a plane with an orientation). You must
look unto it from the correct side, so that its orientation is positive.

A real plane (e.g. a sheet of paper) has two sides: it makes a difference if you drop a

blob[
G
= Tropfen] of ink on the one side or on the other side. That is not the case

for a mathematical plane, when you denote a point P on it. By sitting always on
one side of the plane and observing it from there and writing only unto that side,
we give an orientation to that plane.

Thus, ‘mathematically positive’ is meaningless for an arbitrary plane immersed[
G
=

eingebettet] in 3-dimensional space.

1.4. d) What is the sign[
G
= Vorzeichen] of an angle?

| (Solution:)
An angle as the space between two (equivalent) straight lines has no orientation or
sign (even if the plane itself has an orientation).
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However, there are two conventions for giving signs to the angles. Convention I is
explained in fig. 3, convention II in fig. 4.

Fig1.4. 3: In sign-convention I (limited to a plane situation and when viewing at the plane always
from the same side, thus rarely used in physics) an angle with an arc-arrow[

G= Winkelböglein]

in the clock-wise direction is counted negative.

Fig1.4. 4: In sign-convention II (standard in physics) one draws a typical situation, as in this
figure for a wheel rolling on a horizontal plane.
In the typical situation all variables (α, β, x), by definition, are positive.
The arc-arrows are optional[G= freiwillig] and do not have any significance.
The wheel has a mark M, permanently burnt in, defining a rotating straight line g. α and β are
the angles of g relative to the vertical and horizontal directions, respectively.
S is the starting point, when we had S = M.
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Rem: When it is not possible (or convenient) to draw a typical situation1 where all
variables (for angles or distances) are positive, e.g. γ is negative, then write −γ into

the angle, or introduce the auxiliary variable[
G
= Hilfvariable] γ′ = −γ and

write γ′ into the angle.

1.4. e) The wheel of fig. 4 is rolling on a plane without slipping[
G
= rutschen].

Therefore the bold[
G
= fett] lines are equal.

Calculate:
i) the relation between x and α,
ii) the relation between the angles α and β,
iii) measure the value of α and β (including signs) for the case of fig. 4,
iv) calculate x (including sign) if the wheel has radius R = 1.5m.
| (Solution:)
i)

x = Rα (1)

since the bold lines are equal.
ii)

α + β =
π

2
(2)

as can be seen from the figure. Note that α, β, π, x and R are positive, since fig. 4 is
a typical situation, where all variables are positive.
iii) α ≈ 60◦, β ≈ 30◦.
iv)

x = Rα = 1.5m · 60◦ = 1.5m
60◦

180◦
π = 1.57m (3)

1.4. f)

1A typical situation should not be special situation, where an angle is zero or right, etc.
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Fig1.4. 5: Particular[G= spezielle] situation (i.e. variant of the typical situation of fig. 4):
The wheel has rolled by the same distance, but to the left of the starting point S = M. In this
particular situation, α, β and x are negative, as can most easily be seen by inserting the analogous
arc-arrows, which are opposite to those of fig. 4.

Fig. 5 is a particular situation of the same wheel as in the typical situation of fig.4.
Answer the same questions as in the previous exercise e).

Hints: draw into fig. 5 the analogous arc-arrows as in fig. 4, i.e. where the arc-arrow
for α for α goes from v to g.
| (Solution:)
i) ii) The same as (1)(2), since relations derived generally in a typical situation
remain unchanged and have not to be rederived.
iii) α ≈ −60◦, β ≈ −30◦, because the arc-arrows, introduced into fig.5, are now
opposite to the corresponding arc-arrows of the typical situation of fig.4.
iv) x = −1.57m.

Rem: In convention II, fig. 4, (arc-)arrows are optional, and in fact superfluous for
the definition of the signs of the variables, always positive in the typical situation.
However, intuitively, arc-arrows are chosen from a fixed element (S, h, v) to a
variable element (foot point F, g and again g). The arc-arrows are useful, since the
signs in a special situation can then easily be decided: the sign is negative if the
arrow in the special situation is opposite to the corresponding arrow in the typical
situation.

1.Q 5: Cartesian coordinates and its quadrants
Draw a cartesian system of coordinates and denote its quadrants.
| (Solution:)
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Fig1.5. 1: An arbitrary point Po on the plane is given by its Cartesian coordinates (xo, yo). The
plane is divided into four quadrants, counted in the mathematically positive sense. When a point
is given a name, e.g. Po, its Cartesian coordinates are given as a 2-tuple, e.g. (xo, yo), written
after its name.
Cartesian coordinates are defined only after a unit of length (e.g. cm or inches) are chosen or,
alternatively, points with coordinates (0,1) and (1,0), both denoted by 1, are chosen.
René Descartes = Renatus Cartesius (1596-1650): Cogito ergo sum = je pense, donc je suis.

Rem : Cartesian coordinates are named after the French mathematician Descartes
(lat: Cartesius).

1.Q 6: Sine and cosine as projections
Give the (geometrical) definition of sine (sin) and cosine (cos) as the projection

p and side-projection s in a right triangle[
G
= rechtwinkliges Dreieck].

| (Solution:)
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Fig1.6. 1: The projection p of a line l is obtained by cos, the side projection s by sin. The sun is
very far away, therefore its beams are nearly parallel.

p = l cos α (1)

s = l sin α (2)

Mnemonic:

Projection is cosine
Side-projection is sine

(3)

Caution: one must use an orthogonal projection (also called a normal projection),
i.e. a projection under a right angle.

Rem 1:A function y = f(x) e.g.

y = f(x) = 2 + 3x + x2 (4)

is a recipe of calculation: starting from the independent variable x (e.g. x = 4)
we get the dependent variable y (in this case: y = 30).
We have defined f = sin and f = cos by recipes of geometrical constructions. The
independent variable was denoted by α, and the dependent variable by s and p,
respectively.
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Fig1.6. 2: In the range α between 90◦ and 270◦ the projection p is counted negative.
In the range α between 180◦ and 360◦ the side-projection s is counted negative.

Rem 2: As seen in (1) and (2), it is usual to omit argument brackets, when the
argument consists of a single symbol only, e.g. cos α = cos(α).
In other words: functional binding, i.e. applying the function to its argument has
higher priority than multiplication. Thus we have the following interpretation when
brackets are omitted:

cos αβ = cos(α)β = β cos(α) = β cos α 6= cos(αβ) (5)

Contrary to this strict rule, it is usual in physics (in a sloppy notation) to interpret:

cos ωt = cos ωt = cos(ωt) (6)

because from the context in physics, it is clear it should be understood like that.
If exceptionally, it is meant otherwise one writes: t cos ω. To ameliorate the sloppy
notation slightly, one writes a bit of free space after cos as was done in the middle
expression of (6).

1.Q 7: Sine and cosine in a right triangle
Give the geometrical definition of sin and cos in a right triangle using

the hypotenuse, the base[
G
= An-Kathete] and the perpendicular[

G
=

Gegen-Kathete]. (perpendicular[
G
= senkrecht])

| (Solution:)
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Fig1.7. 1: Definition of the trigonometric functions in a right triangle

sin α =
perpendicular[

G
= Gegen-Kathete]

hypotenuse
(1)

cos α =
base[

G
= An-Kathete]

hypotenuse
(2)

Rem 1: Observe that according to the definition (1)(2) sin α and cos α are indepen-
dent of the size of the triangle, but depend only on α.

Rem 2: In the English language there is no common word for base and perpendicular.

Sometimes the word leg[
G
= Schenkel] or side are used. However, these terms are

also used in case of an equilateral[
G
= gleichschenklig] triangle.

Rem 3:‘Hypothenuse’ is unique. ‘Perpendicular’ and ‘base’ are relative to the
chosen angle (α). Taking the other angle (β = π/2 − α), perpendicular and base
get interchanged.

1.Q 8: Graph, zeroes, domain, range, period

1.8. a) Draw the graph of the function y = sin x.
| (Solution:)
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Fig1.8. 1: Graph of y = sinx

Rem 1: When an angle is interpreted as a rotation, negative angles and angles
greater than 2π are meaningful. However, purely geometric angles have to been

taken modulo 2π. Then only the bold[
G
= fett] part of the sin curve in fig. 1 is

meaningful.

Rem 2: The symbol y is used in 3 different meanings:

• as a name for an axis of the coordinate system (the ordinate[
G
= Ordinate])

• as the dependent variable; x is the independent variable

• as the value[
G
= Wert] of the function (e.g of the function sin) for a special

value of the argument x

1.8. b) Give its zeroes[
G
= Nullstellen].

| (Solution:)

sin x = 0 ⇒ x = nπ, n ∈ Z (1)

Rem: Z denotes the set[
G
= Menge] of integers[

G
= ganze Zahlen].

Z = {· · · − 2,−1, 0, 1, 2, . . . } (2)

1.8. c) What is the domain[
G
= Definitionsbereich] D of that function?

| (Solution:)

D = (−∞,∞) (3)

Rem: An interval is denoted by the pair of its end-point. If an end-point does not
belong to the interval (open interval) round brackets ( ) are used. When an
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end-point does belong to the interval (closed interval) then square brackets [ ]
are used.

1.8. d) What is its range[
G
= Wertebereich]?

| (Solution:)
sinD = [−1, 1] (end-points of interval inclusive)

1.8. e) Is it a unique function?
| (Solution:)
yes, the function is unique.

Rem: In mathematical language a function is always unique. In physics the word
function is also used to denote multiple valued functions. E.g.

√
4 = ±2, i.e

√
x

is a double valued function.

1.8. f) What is its (primitive) period T?
| (Solution:)

T = 2π (4)

Rem 1: When for a function y = f(t), it holds

f(t + T ) = f(t) for all t ∈ D (5)

with T 6= 0 T is called a period of that function.

(We must exclude T = 0 because otherwise (5) is always valid, and every function is periodic.)

When T is a period, then nT (n ∈ Z, when we include T = 0 as a the trivial period) is also a
period.

There is the following theorem for periodic functions: There exists a so called primitive period
T (T > 0) so that every period is a multiple of T .

Rem 2: In Rem 1 we have used t (instead of x) for the independent variable, since
the every-day meaning of the word ‘period’ refers to time t.

Rem 3: In (5), as is usual, a general, i.e. unspecified, function is denoted by f. In
our case we have f = sin.

1.Q 9: Inverse function

What is the inverse function[
G
= Umkehrfunktion] of y = sin x ? Draw its graph

and give its name.
| (Solution:)

y = sin x ⇒ x = arcsin y (1)

Rem 1: ‘arcsin x’ means ‘arcus (= angle) whose sin is x.
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Fig1.9. 1: Graph of the arc sin function, which is the inverse function to the sine function.
Restriction to the fat branch of the graph makes the arcsin function a unique function.

Rem 2: y = arcsin x is not a unique function, but it is multivalued[
G
=

vieldeutig], in fact infinitely multivalued[
G
= unendlich vieldeutig]. It can

be made a unique function by restricting the graph to one branch[
G
= Ast], e.g. by

requiring for the domain D = [−π
2
, π

2
].

Rem 3: In mathematical terminology a function is by definition a unique function.
So arcsin without a restriction to a branch is not a function in the mathematical
sense of the word. In physical terminology a function may also be multivalued.

Rem 4: The inverse function is in essence[
G
= im Wesentlichen] the same function

as the original one, except that the role of independent (x) and dependent (y)

variables are interchanged, since the pairwise allocation[
G
= Zuordnung] of an x to

an y is the same for the function and the inverse function. Only what is considered

to be given at first (i.e. arbitrarily[
G
= willkürlich]) (= independent variable)

and what then is fixed (possibly multivalued) by the function is different in the case
of the original and the inverse function.
Corresponding to these new roles of x and y, the names are interchanged (x ↔ y)
so x and y have again their usual roles: x= independent variable, y = dependent
variable.

Rem 5: The graph of the inverse function is obtained from the graph of the origi-



16 1. The trigonometric functions and radian measure of angles

nal function by a mirror symmetry[
G
= Spiegelsymmetrie] at the bisection of

angles[
G
= Winkelhalbierende] of the x− and y−axes.

Rem 6: The inverse function of the inverse function is the original function.
————————————————————————————-

1.Q 10: Cosine
Draw the graph of y = cos x.
| (Solution:)

Fig1.10. 1: Graph of y = cos x. It is identical to the graph of the sine function, but shifted by π
2 .

Rem: sin x and cos x are identical, but only shifted along the x-axis.

1.Ex 11: , Rope around the earth

A rope[
G
= Seil] is laid around the equator[

G
= Äquator] of the earth. Now, the

rope is extended by l = 1m and stretched again to a circle (dotted[
G
= punktiert]

circle in figure).
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Fig1.11. 1: A rope around the earth is l =1 m too long, so it will have a hight h above the earth.

What is the hight h of the rope above the earth?
Hint: Let R be the radius of the earth. Calculate the length of the equator and
then the length of the dotted circle.
Result: h = 15.9 cm
| (Solution:)
Original length of the rope L = 2πR,R = radius of the earth. Length of extended
rope is:

L + l = 2π(R + h) ( = length of rope) (1)

l = 2πh, h =
l

2π
= 15.9 cm (2)

(Astonishingly, the radius of the earth cancels[
G
= herausfallen] itself out.)

1.Ex 12: , Transforming radians into degrees (and vice versa)

1.12. a) Give the following angles in radians:

α1 = 13◦, α2 = 12′, α3 = 1′′ (1)

Hint: One degree (1◦) is divided into 60′, 1′ is divided into 60′′

Results:

α1 = 0.2269, α2 = 0.0035, α3 = 4.85 · 10−6 (2)

| (Solution:)

α1 = 13◦ = 13◦
π

180◦
=

13π

180
= 0.2269 (3)
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α2 = 12′ =
12◦

60
=

12◦

60

π

180◦
=

12π

60 · 180
= 0.0035 (4)

α3 = 1′′ =
1◦

3600
=

π

3600 · 180
= 4.85 · 10−6 (5)

1.12. b) Give the following angles in degrees:

α4 =
π

4
, α5 = 3 (6)

Results:

α4 = 45◦, α5 = 171.89◦ (7)

| (Solution:)

α4 =
π

4
= 45◦ (8)

α5 = 3 = 3 · 180◦

π
= 171.89◦ (9)

1.Ex 13: , Folding wire into a sector

A child has a piece of wire[
G
= Draht] of length l and folds it into a sector (shaded

area of the figure) after selecting the length b for the periphery in the middle of the
wire.

Fig1.13. 1: A fixed length is folded into a sector
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Calculate α. In particular calculate α in degrees for l = 3b, b = 10 cm.
Results:

α =
2b

l − b
= 57.30◦ (1)

| (Solution:)

b = αr (2)

b + 2r = l ⇒ r =
l − b

2
(3)

α =
b

r
=

2b

l − b
=

20

20
= 1 =

180◦

π
= 57.30◦ (4)

1.Ex 14: Folding to a cylinder

1.14. a) A sheet of paper (l = length, b = breadth) is folded into a cylinder.

Fig1.14. 1: Length l is folded to a circle of radius r

What is the radius r of the resulting cylinder?
Result:

r =
l

2π
(1)

| (Solution:)

l = 2πr (2)
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r =
l

2π
(3)

1.14. b) Look up the formula for the volume of a cylinder and calculate the volume if
a DIN A4 sheet is used.
Result:

V =
bl2

4π
= 1474.08 cm3 (4)

| (Solution:)

V = πr2b = πb
l2

4π2
=

bl2

4π
(5)

For DIN A4:

l = 29.7 cm, b = 21 cm (6)

V = 1474.08 cm3 (7)

1.Ex 15: Application of trigonometric functions in a triangle

1.15. a)

Fig1.15. 1: d is the diagonal in a rectangle with side length a.

The diagonal in the above rectangle is d = 13 cm and φ = 72◦. Calculate a.
Result:

a = 12.36 cm (1)
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| (Solution:)

a = d sin φ = 13 cm · sin 72◦ = 12.36 cm (2)

1.15. b) The same situation as above, except d = 14 cm and a = 12 cm. Calculate α
in degrees.
Result:

α = 31◦ (3)

| (Solution:)

a = d cos α (4)

cos α =
a

d
=

12

14
(5)

α = arccos
a

d
= arccos

12

14
= 31◦ (6)

1.Ex 16: Addition of rotations
The time is 1:07. However, a clock which is slightly too fast shows that it is 1:09.

By what angle ϕ does the clock’s big hand[
G
= großer Zeiger] have to rotate to

set the clock to the correct time? Give your answer in radians and pay attention to
the sign of ϕ.
Result:

ϕ =
π

15
(1)

| (Solution:)
One minute corresponds to the angle 2π

60
; since we have to correct 2 minutes we have

to rotate by the angle

ϕ =
2 · 2π

60
=

π

15
(2)

Since our clock is too fast we have to rotate its big hand counterclockwise. Thus, ϕ
is positive.

1.Ex 17: Sign of rotations. Angles greater than 2π
Since Monday 1:00 the big hand of an (exact) clock has rotated by the angle

ϕ = −170.1696 (1)
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What time is it now and what day of the week is it?
Hint: Since the hands of a clock rotate clockwise, ϕ is negative. ϕ = −2π would
mean that one hour had passed. First calculate the number of complete hours
which have passed.
Result: Tuesday 4:05
| (Solution:)

−ϕ

2π
= 27.0833 (2)

i.e. 27 complete hours (i.e. one day and three hours) have passed, so it is shortly
after 1+3 = 4 o’clock. We are left with the clockwise angle

−ϕ− 27 · 2π = 0.5236 (3)

Clockwise, one minute corresponds to the angle 2π
60

. Thus we have an additional

0.5236 · 60

2π
= 5 minutes (4)

1.Ex 18: Graphical construction of trigonometric functions

Fig1.18. 1: Projecting the unit radius onto the x-axis gives cos α

Draw a circle with radius r = 1 (e.g. r = 10 cm, i.e. unity = 10 cm) and insert a ra-

dius (bold[
G
= fett] line in the above figure) for α = 0◦, 10◦, 20◦, . . . 360◦. Measure

the corresponding values for sin α and sketch the graph of y = sin α. Check some val-

ues (e.g. for α = 0◦, α = 50◦, α = 120◦) with your calculator[
G
= Taschenrechner].
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1.Ex 19: - Photon flux density on the earth

Fig1.19. 1: Photons from the sun hit the earth at angle α.
Vineyards are built to the south so that α is optimal.

Let the sun have an angular height α above the surface of earth. 1020 photons (=
energy quants) from the sun hit the area A = 1 m2 per second.

1.19. a) Calculate the area A1 onto which the same photons fall if A were removed.
Take the special value α = 30◦.
Result:

A1 =
A

sin α
= 2 m2 (1)

| (Solution:)
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Fig1.19. 2: Angle α can also be found inside the triangle

A = A1 sin α, sin 30◦ =
1

2
, A1 = 2A = 2 m2 (2)

1.19. b) What is the photon number flux density[
G
= Photonenzahlflussdichte]

n (= number of photons per square meter and per second) hitting the (e.g.horizontal)
surface of the earth? Compare it with the original flux density n⊥ = 1020 m−2s−1

for perpendicular incidence.
Result:

n = 0.5 · 1020 photons per square meter and per second, n = 0.5n⊥ (3)

| (Solution:)
1020 photons fall at A1 = 2 m2 per second, i.e

n = 0.5 · 1020 m−2s−1 (4)



2 Harmonic oscillator, tangent, Pythagoras

(Recommendations for lecturing: 1-7, for basic exercises: 8, 9.)

2.Q 1: Harmonic oscillator
Consider the following function

y = y0 sin(ωt + α0) (1)

which is a generalization of

y = sin x (2)

with constants y0, ω, α0.

Rem 1: An index 0 is often used to qualify[
G
= näher bestimmen] a symbol as a

constant.

Rem 2: Physically (1) gives the motion of a so called harmonic oscillator[
G
=

Schwinger], e.g. a mass-point with a spring[
G
= Feder] attached[

G
= befestigt]

to the earth.

Rem 3: ‘harmonic’ means sine or cosine with a fixed frequency ω. In acoustics tones
with ω’s being simple multiples of a ground tone give the impression of a harmonic
sound.

Fig2.1. 1: Simple physical realization of a harmonic oscillator with a spring. (The elongation y

of the harmonic oscillator is counted from its rest-position.)

25
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For the function (1) answer the following questions:

2.1. a) What symbol represents the value of the function[
G
= Funktionswert]?

(What is its physical significance ?)
| (Solution:)

y elongation[
G
= Auslenkung] from the rest-position[

G
= Ruhelage] of the har-

monic oscillator

2.1. b) What is the amplitude (significance)?
| (Solution:)
y0 (maximum value of y, maximum elongation)

2.1. c) What is the independent variable[
G
= unabhängige Variable] (physical

significance)?
| (Solution:)
t (= time)

2.1. d) What is the phase (significance)?
| (Solution:)
α = ωt + α0

Rem: The word ‘phase’ is used in many meanings in mathematics and physics. Here,
‘phase’ means argument of a sine (or of a cosine).
(Significance: The phase gives the best information about the momentary situation
of the oscillator: E.g. when the phase is a multiple of π the oscillator crosses its rest

position line (zero-passage[
G
= Nulldurchgang]).

2.1. e) phase-shift[
G
= Phasenverschiebung]

| (Solution:)
α0

Rem: Sometimes −α0 is called the phase-shift.
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Fig2.1. 2: These two harmonic oscillators are identical (same ω, and y0) but they have a relative
phase-shift (time-lag[G= Zeitverschiebung]).

(Two oscillators with different α0 move identically, but they have a relative time-
shift.)

2.1. f) angular-frequency[
G
= Kreisfrequenz]

| (Solution:)
ω

Rem: ω is called the ‘angular frequency’ because it says how often the phase
increments by a full angle (2π) (or: how often the oscillator performs a full period,
i.e. a full cycle) per unit time.

In every-day language frequency[
G
= Häufigkeit], denoted by ν, is the number of

events[
G
= Ereignisse] per second.

2.1. g) (primitive) period
| (Solution:)
T = 2π/ω

ν =
1

T
(frequency ν is 1 over period T ) (3)

ω = 2πν (angular frequency ω is 2π times ordinary frequency ν) (4)

2.1. h) dependent-variable[
G
= abhängige Variable]

| (Solution:)
y (the same as a))

2.Q 2: Tangent

2.2. a) Give the definition of tan analytically (i.e. with the help of other functions)
and geometrically i.e. in a right triangle.).
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| (Solution:)

y = tan x =
sin x

cos x
=

perpendicular[
G
= Gegen-Kathete]

base[
G
= An-Kathete]

(1)

Rem 1: In mathematical terminology for cos x = 0 (i.e. for x = π/2 + nπ, n =
. . .−2,−1, 0, 1, 2, . . .) tan x is undefined. In physical terminology one says that tan x
is there double-valued having two improper values ±∞.

Fig2.2. 1: The tangent can be defined in a right triangle as the quotient of the perpendicular to
the base

Rem 2: Instead of tan the older notation tg is also used.

2.2. b) Draw its graph.
| (Solution:)

Fig2.2. 2: Graph of y = tan x
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2.2. c) (Primitive) period
| (Solution:)

T = π

2.Q 3: Cotangent
The same for y = cot x
| (Solution:)

y = cot x =
1

tan x
=

cos x

sin x
=

base[
G
= An-Kathete]

perpendicular[
G
= Gegen-Kathete]

(1)

Rem 1: For sin x = 0, see Rem 1 for tan.

Rem 2: Instead of cot the older notation ctg is also used.

2.Q 4: Pythagoras

Formulate the Pythagorean theorem[
G
= Satz des Pythagoras].

| (Solution:)

Fig2.4. 1: Pythagoras: In a right triangle, the square of the hypotenuse (c) is the sum of the
squares of the adjacent legs a and b.
Pythagoras of Samos (569 BC - about 475 BC).

a2 + b2 = c2 (Pythagoras) (1)
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2.Qx 5: Special values of sine and cosine
Calculate with the help of a right triangle (i.e. without a calculator)

Hint: Choose a hypotenuse of length 1.
2.5. a) sin 0
| (Solution:)

Fig2.5. 1: In a right triangle with hypotenuse c = 1 the projection (a) is cosine and the
side-projection (b) is sine.

α = 0 ⇒ b = sin 0 = 0

2.5. b) sin π
2

(π
2

= 90◦)
| (Solution:)
α→ π

2
⇒ b→ c = 1 = sin π

2
(a→ 0)

2.5. c) sin π
4

(π
4

= 45◦) (Hint: Use Pythagoras. We have a unilateral[
G
=

gleichschenklig] right triangle. )
| (Solution:)
a = b⇒ a2 + b2 = 2b2 = c2 = 1⇒

b2 = 1
2

⇒ b = 1√
2

=
√

2
2

= sin(π
4
)

2.5. d) sin π
6

(π
6

= 180◦

6
= 30◦)

Hint: Draw a unilateral triangle with side length unity, and a height[
G
= Höhe] to

obtain 30◦. Use symmetries and Pythagoras.
| (Solution:)
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Fig2.5. 2: Half of a unilateral triangle yields 30◦ to calculate sin 30◦.

sin 30◦ = 1/2
1

= 1
2

sin 30◦ =
1

2
(1)

2.Qx 6: Parametric representation of a circle

2.6. a) Give and derive the parametric representation of a circle[
G
=

Parameterdarstellung eines Kreises] of radius r.
| (Solution:)
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Fig2.6. 1: Parametric representation of circle with radius r gives (x, y) in terms of the angle α

which rotates with angular velocity ω. Either α or t can be called the parameter.

x = r cos(ωt)
y = r sin(ωt)

(parametric representation of a circle) (1)

(α = ωt)

ω = 2π
T

= angular frequency =

angular velocity[
G
= Winkelgeschwindigkeit]

T = period

(2)

Rem 1: Though not a completely correct notation[
G
= Bezeichnungsweise], in

physics it is usual to omit the brackets around ωt in (1).

Rem 2: Parameter is just another word for variable. It is used when that variable is
of less importance. Here (x, y) are the essential variables for the points of the circle.

t or ω are auxiliary[
G
= Hilfs-] variables not belonging to the circle proper[

G
=

eigentlich].

2.6. b) Give and derive the important formula by which (cos α)2 and (sin α)2 can be
transformed into one another.
| (Solution:)
Put r = 1 and use Pythagoras:

(sin α)2 + (cos α)2 = 1 (Basic trigonometric identity) (3)



2. Qx 7: Zeros of sine with phase shift 33

mostly written as:

sin2 α + cos2 α = 1 (Basic trigonometric identity) (3′)

Rem 1: Strictly speaking (3′) is not a correct notation for (3), since (3′) means
literally sin(sin α) + cos(cos α) = 1 which is wrong.

2.Qx 7: Zeros of sine with phase shift
Calculate the zeros of y = sin(x− α0)
| (Solution:)
x− α0 = nπ, n ∈ Z
x = xn = α0 + nπ
(α0 = phase shift)

Rem: Since our problem has several (infinite many) solutions, we have distinguished
them by the index n.

2.Ex 8: , Slope of a street

Fig2.8. 1: slope of a street defined by inclination[G= Neigung] angle α or by the ratio[G=
Verhältnis] height h divided by base length b

The slope[
G
= Steigung] s of a street is defined as the increase in height h divided

by the base length b of the street, mostly given in percent:

s =
h

b
=

h

b
100% (1)

2.8. a) Calculate s for α = 22◦.
Result:

s = 40.4% (2)
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| (Solution:)

s = tan α = tan 22◦ = 40.4% (3)

2.8. b) Conversely, for s = 10%, calculate α.
Result:

α = 5.7◦ (4)

| (Solution:)

α = arctan 0.1 = 5.7◦ (5)

2.8. c) For the length l = 1 km, α = 15◦, calculate b, h.
Result:

b = 965.9 m, h = 258.8 m (6)

| (Solution:)

b = l cos α, h = l sin α (7)

b = 965.9 m, h = 258.8 m (8)

2.Ex 9: , Trigonometric functions used for calculations of triangles
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Fig2.9. 1: Triangle with side lengths a, b, c and opposite angles α, β, γ at corners A,B,C. One
height h = hc is also shown.

An arbitrary triangle has angle (α), the opposite side (a) and a neighboring side (b).
Calculate the remaining pieces of the triangle, i.e c, β and γ.
Hint 1: First calculate c1 and h.
Hint 2: The sum of the angles in a triangle is π.
Result:

c = b cos α +
√

a2 − b2 sin2 α (1)

β = arcsin
b sin α

a
(2)

γ = π − α− β (3)

| (Solution:)

c1 = b cos α (4)

h = b sin α (5)

c2 =
√

a2 − h2 (6)

c = c1 + c2 = b cos α +
√

a2 − b2 sin2 α (7)

sin β =
h

a
, β = arcsin

h

a
= arcsin

b sin α

a
(8)

γ = π − α− β (9)

2.Ex 10: Approximate calculation of π
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Fig2.10. 1: Area of inscribed square and circumscribed square for approximating area of circle

In the above figure we see a circle of radius 1, with a circumscribed[
G
=

umschrieben] larger square[
G
= Quadrat] (length b) and an inscribed[

G
=

eingeschrieben] smaller square[
G
= Quadrat] (side lengths a).

2.10. a) Calculate b.
| (Solution:)

b = 2 (1)

2.10. b) Calculate a.

Hint: use Pythagoras for the shaded[
G
= schattiert] rectangle.

Result:

a =
√

2 (2)

| (Solution:)

The shaded rectangle has hypothenuse = 2 and two identical adjacent[
G
=

anliegend] legs[
G
= Schenkel] a and a.

Pythagoras:

22 = a2 + a2 (3)

4 = 2a2 (4)

2 = a2, a =
√

2 (5)

2.10. c) Look up the formula for the area[
G
= Fläche] A of a circle[

G
= Kreis]. Since

A is between a2 and b2, you can give an approximate value for π.
Result:

2 ≤ π ≤ 4 (6)
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Rem: By using regular polygons[
G
= Vieleck] with n corners instead of squares,

π can be calculated to arbitrary[
G
= beliebig] precision[

G
= Genauigkeit].

| (Solution:)

A = πr2 = π (7)

a2 ≤ π ≤ b2 (8)

2 ≤ π ≤ 4 (9)

2.Ex 11: Any trigonometric function expressed by any other one
When one trigonometric function is known (e.g. tan α) every other one (e.g. cos α)

can be calculated from it. Elaborate[
G
= ausarbeiten] that example, i.e. express

cos α with the help of tan α.

Hint: express tan α by sin α and cos α. Express sin α by cos α and a square root[
G
=

Quadratwurzel]. Remove the square root by squaring[
G
= quadrieren]. Solve for

cos α.
Result:

cos α =
1√

1 + tan2 α
(1)

Look up that formula (and ones for similar cases) in a formulary[
G
=

Formelsammlung].
| (Solution:)

tan α =
sin α

cos α
=

√
1− cos2 α

cos α
(2)

cos α tan α =
√

1− cos2 α (3)

cos2 α tan2 α = 1− cos2 α (4)

cos2 α (1 + tan2 α) = 1 (5)

cos α =
1√

1 + tan2 α
(6)

2.Ex 12: -- Inverse function
Consider the function f given by

y = f(x) =
1

2
x− 2 (1)

2.12. a) Draw the graph of that function.
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2.12. b) Calculate the inverse function g, i.e. solve (1) for x and interchange[
G
=

vertauschen] x↔ y.

Rem: The inverse function is also denoted by g = f−1

Result:

y = g(x) = 2x + 4 (2)

| (Solution:)

1

2
x = y + 2 (3)

x = 2y + 4 (4)

interchanging x↔ y yields

y = 2x + 4 = g(x) (5)

2.12. c) Draw the graph of g and check that both graphs have a mirror

symmetry[
G
= Spiegelsymmetrie], where the mirror is the bisectrix of the

angle[
G
= Winkelhalbierende] of the x and y-axis.

2.12. d) Using a lot of pressure draw the graph of f and the symbols x and y of these
axes. Look at the sheet of paper from the opposite side (with the graph shining
through the sheet) with the x-axis upwards. Check that you can see the graph of
g when x is interchanged with y. (In other words: the inverse function gives the
same relation between x and y but the independent and dependent variables are
interchanged.)

2.12. e) Check

f−1 ◦ f = id and f ◦ f−1 = id (6)

i.e.

g(f(x)) = x and f(g(x)) = x (7)

(In other words: applying the function and the inverse function (in both orders) in
succession gives the identity, i.e. both applications cancel each other out.)

Rem: Explanation of the notation[
G
= Bezeichnungsweise] in (6): The inverse

function is denoted by g = f−1. ◦ denotes composition of functions[
G
=

Zusammensetzung von Funktionen], i.e. applying one after the other, where the
right most is the innermost building site. E.g. h = g ◦ f denotes the function
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y = h(x) = g(f(x)).
id denotes the identical function (= identity): y = id(x) = x. Here, we have the

peculiarity[
G
= Besonderheit] that the function name (usually f, g, h, etc.) is a

two-letter string id.

| (Solution:)

g(f(x)) = 2f(x) + 4 = 2[
1

2
x− 2] + 4 = x− 4 + 4 = x (8)

f(g(x)) =
1

2
g(x)− 2 =

1

2
[2x + 4]− 2 = x + 2− 2 = x (9)

2.Ex 13: Phase shifts of two harmonic oscillators
In the following figure you see the motion of two harmonic oscillators. y1 (solid line)
is the elongation of oscillator O1, and y2 (dotted line) is the elongation of oscillator
O2.
[One square of the sheet is 1 cm for y and 1 sec for t, t = time.]
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Fig2.13. 1: Phase shifts of two identical harmonic oscillators having elongation y1 = y1(t) and
y2 = y2(t).

2.13. a) At what time t1i (i = initial) did O1 start oscillating, and at what time t1f (f
= final) did O1 stop oscillating?
Results: t1i = 6 sec, t1f = 18 sec

2.13. b) How many periods did O1 oscillate?
Result: 1.5 periods

2.13. c) What was the approximate elongation of O1 at time t = 7 sec?
Result: y = 2 cm

2.13. d) When was the the first zero crossing[
G
= Nulldurchgang] (i.e. y1 = 0) of

oscillator O1 after its start?
Result: t = 10 sec
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2.13. e) What are the amplitudes yo1 and yo2 of both oscillators?
Results: yo1 = 3 cm, yo2 = 2 cm

2.13. f) What are their (primitive) periods, T1 and T2?
Result: T1 = T2 = 8 sec

2.13. g) Consider the onset[
G
= Beginn] of oscillation of O1 as phase ϕ = 0; what is

the phase of O1 at time t = 10 sec?
Result: ϕ = π

2.13. h) At what phase did it stop?
Results: ϕ = 3π

2.13. i) Taking the same convention[
G
= Verabredung] (for the origin[

G
=

Nullpunkt] of the phase, i.e. for ϕ = 0 as in g): at what phase did O2 start?
Result: ϕ = −1

4
π

2.13. j) What is the phase shift of O2 relative to O1?
Result: also ϕ = −1

4
π

2.13. k) Using ω = 2π
T

, what are the angular frequencies of O1 and O2?
Result:

ω1 = ω2 =
2π

8 sec
= 0.785 s−1 = 0.785 Hz (1)

Rem: Hz is an abbreviation of Hertz and means s−1.

2.13. l) Give the analytical[
G
= formelmäßig] expressions for y1 and y2.

Results:

y1 =

{
3 cm sin[ 2π

8 sec
(t− 6 sec)] for 6 sec ≤ t ≤ 18 sec

0 otherwise
(2)

y2 =

{
2 cm sin[ 2π

8 sec
(t− 5 sec)] for 5 sec ≤ t ≤ 25 sec

0 otherwise
(3)

2.13. m) Check for the above result that at time t = 10 sec the phase of sin of y1 is π.



3 Formulae for trigonometric functions.

Absolute value

(Recommendations for lecturing: 1-7, for basic exercises: 8, 9, 14.)

3.Q 1: Fundamental formulae for sin and cos

3.1. a) for complementary angles.

Fig3.1. 1: Two angles whose sum is π
2 = 90◦ are called complementary to each other: π

2 − α is
the complementary angle of α and, vice versa, α is the complementary angle of π

2 − α.

| (Solution:)

sin(π
2
−α) = cos α (1)

cos(π
2
−α) = sin α (2)

Rem: π
2

= 90◦, π
2
− α is called the complementary angle[

G
=

Komplementärwinkel] to α

sin is cos of complementary angle, and vice versa

3.1. b) for negative arguments ( even[
G
= gerade] or odd[

G
= ungerade] function?)

| (Solution:)

sin(−α) = − sin α sin is an odd function[
G
= ungerade Funktion] (3)

cos(−α) = cos α cos is an even function[
G
= gerade Funktion] (4)

42
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3.1. c) period
| (Solution:)

sin(α± 2π) = sin α (period 2π) (5)

cos(α± 2π) = cos α (period 2π) (6)

3.1. d) ‘half-period’
| (Solution:)

sin(α± π) = − sin α (‘half-period’ is π) (7)

cos(α± π) = − cos α (‘half-period’ is π) (8)

Rem: We have coined[
G
= geprägt] here the term ‘half-period’. It is the period up

to a sign.

3.Q 2: Absolute value

3.2. a) Say in words what is the absolute value[
G
= absoluter Betrag] and how it

is denoted.
| (Solution:)
The absolute value of a (real) number x, denoted by | x |, is that number without
its sign. So, the absolute value is always a positive number.

3.2. b) Give the fundamental calculation rule for the absolute value.
| (Solution:)

| ab |=| a | | b | (1)

3.2. c) | 5 |= ?
| (Solution:)
| 5 |= 5

3.2. d) | −5 |= ?
| (Solution:)
| −5 |= 5

3.2. e) Let be a < 0 (e.g. a = −5) Calculate | a |= ?
| (Solution:)
| a |= −a (for −a is positive)
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3.2. f) Give the solution of the equation | a |= 5
| (Solution:)
| a |= 5⇒ a = ±5

3.2. g) Prove | −a |=| a |
| (Solution:)

| −a | = | (−1) a | (1)
= | −1 | | a | = 1 | a | = | a |

3.Q 3: Zeros and poles of tan

Rem: sin x and cos x are not simultaneously[
G
= gleichzeitig] (i.e. for the same

x) zero.
3.3. a) Give the solution of the equation tan x = 0 (zeros of tan)
| (Solution:)
tan x = sin x

cos x
= 0⇒ sin x = 0⇒ x = nπ, n ∈ Z

3.3. b) Give the solution of the equation tan x = ±∞ poles[
G
= Polstellen] of

tan.
| (Solution:)
tan x = sin x

cos x
= ±∞⇒ cos x = 0⇒ x = π

2
+ nπ, n ∈ Z

3.Qx 4: Tangens and cotangens are odd functions
Prove that tan and cot are odd functions.
| (Solution:)

1) tan(−x) = sin(−x)
cos(−x)

= − sin x
cos x

= − tan x

2) cot(−x) = 1
tan(−x)

= − 1
tan x

= − cot x

3.Qx 5: Period of tangens and cotangens is π
Prove that tan and cot both have the period π
| (Solution:)

1) tan(x + π) = sin(x+π)
cos(x+π)

= − sin x
− cos x

= sin x
cos x

= tan x

2) cot(x + π) = 1
tan(x+π)

= 1
tan x

= cot x

3.Qx 6: Tangens and cotangens for complementary angles
Calculate tan and cot of the complementary angle.
| (Solution:)

1) tan(π
2
− α) =

sin(π
2
−α)

cos(π
2
−α)

= cos α
sin α

= cot α

2) cot(π
2
− α) = 1

tan(π
2
−α)

= 1
cot α

= tan α



3. Ex 8: , Graphical significance of absolute value 45

3.Qx 7: Addition theorem for trigonometric functions

3.7. a) Give or look up the formula for sin and cos of a sum.
| (Solution:)

sin(α + β) = sin α cos β + sin β cos α (1)

cos(α + β) = cos α cos β − sin α sin β (2)

3.7. b) Derive from them the double angle formulae.
| (Solution:)
From (1) putting α = β:

sin(2α) = 2 sin α cos α (3)

From (2) putting α = β:

cos(2α) = cos2 α− sin2 α = cos2 α− (1− cos2 α) = −1 + 2 cos2 α (4)

cos(2α) = −1 + 2 cos2 α (5)

Rem: This result can be generalized and is quite important:

Powers of trigonometric functions, e.g.
sinn α, cosn α, sinn α cosm α

can be reduced to sums of trigonometric functions of multiple angles:
sin(kα) and cos(kα) (k = 0, · · ·n)

(5’)

3.7. c) Derive the formula for the cos of a difference.
| (Solution:)
In (2) replace β 7→ −β:

cos(α− β) = cos α cos(−β)− sin α sin(−β) = cos α cos β + sin α sin β (6)

cos(α− β) = cos α cos β + sin α sin β (7)

3.Ex 8: , Graphical significance of absolute value

3.8. a) For a point P (x, y) we have the information

|x| = 5, |y − 2| = 3 (1)
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In a cartesian coordinate system draw all possibilities for P .
Result:

P1(5, 5), P2(−5, 5), P3(−5,−1), P4(5,−1) (2)

| (Solution:)

x = ±5, y − 2 = ±3, y = ±3 + 2, y = 5 or y = −1 (3)

Fig3.8. 1: Points P1, P2, P3, P4 defined by equations for their x- and y-coordinates.

3.8. b) If we have the additional information that P lies in the second quadrant, what
is P?
Result:

P = P2(−5, 5) (4)

3.Ex 9: , Simplification of trigonometric functions

Without using a calculator[
G
= Taschenrechner], express everything by ε =

sin 13◦ ≈ 0.2250.

Rem: To save space we have introduced the abbreviation ε. All results should be
expressed in terms of ε.



3. Ex 9: , Simplification of trigonometric functions 47

3.9. a) sin 373◦

Result: ε
| (Solution:)

sin 373◦ = sin(360◦ + 13◦) = sin 13◦ = ε (1)

3.9. b) sin 347◦

Result: −ε
| (Solution:)

sin 347◦ = sin(360◦ − 13◦) = sin(−13◦) = − sin 13◦ = −ε (2)

3.9. c) cos 13◦

Hint: cos2 + sin2 = 1
Result: cos 13◦ =

√
1− ε2

| (Solution:)

cos 13◦ =
√

1− sin2 13◦ =
√

1− ε2 (3)

3.9. d) cot 13◦

Result:
√

1−ε2

ε

| (Solution:)

cot 13◦ =
cos 13◦

sin 13◦
=

√
1− ε2

ε
(4)

3.9. e) sin 77◦

Result:
√

1− ε2

| (Solution:)

sin 77◦ = sin(90◦ − 13◦) = cos(13◦) = cos 13◦ =
√

1− ε2 (5)

3.9. f) cos 77◦

Result: ε
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| (Solution:)

cos 77◦ = cos(90◦ − 13◦) = sin 13◦ = ε (6)

3.9. g) cos 103◦

Result: −ε
| (Solution:)

cos 103◦ = cos(90◦ + 13◦) = sin(−13◦) = − sin 13◦ = −ε (7)

3.9. h) sin 26◦

Hint: Use the double angle formula.
Result: sin 26◦ = 2ε

√
1− ε2

| (Solution:)

sin 26◦ = sin(2 · 13◦) = 2 sin 13◦ cos 13◦ = 2ε
√

1− ε2 (8)

3.9. i) sin(−103◦)
Result: −

√
1− ε2

| (Solution:)

sin(−103◦) = − sin(103◦) = − sin(90◦ + 13◦) = − cos(−13◦) = − cos 13◦ =
(9)

= −
√

1− ε2

3.9. j) cos(−26◦)
Result: 1− 2ε2

| (Solution:)

cos(−26◦) = cos(26◦) = cos(2 · 13◦) = −1 + 2 cos2 13◦ (10)

= −1 + 2(1− ε2) = 1− 2ε2 (11)

3.9. k) sin(193◦)
Result: −ε
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| (Solution:)

sin 193◦ = sin(180◦ + 13◦) = − sin 13◦ = −ε (12)

3.9. l) cos(−167◦)
Result: −

√
1− ε2

| (Solution:)

cos(−167)◦ = cos 167◦ = cos(180◦ − 13◦) = − cos(−13◦) = − cos 13◦ = (13)

= −
√

1− ε2

3.9. m) sin 43◦

Hint: Use sin 30◦ = 1
2
, cos 30◦ =

√
3/2 and the addition theorem for sin.

Result: sin 43◦ = 1
2

√
1− ε2 +

√
3ε
2

| (Solution:)

sin 43◦ = sin(30◦+13◦) = sin 30◦ cos 13◦+cos 30◦ sin 13◦ =
1

2

√
1− ε2 +

√
3ε

2
(14)

3.9. n) cos(1001.5π + 13◦)
Result: ε
| (Solution:)

cos(1001.5π + 13◦) = cos(500 · 2π + π +
1

2
π + 13◦) (15)

= cos(π +
1

2
π + 13◦) = − cos(

1

2
π + 13◦) = − sin(−13◦) (16)

= sin(13◦) = ε (17)

3.Ex 10: - Multiple values of the arcus function

A calculator yields

sin 13◦ = 0.2250 (1)

and conversely

arcsin 0.2250 = 13◦ (2)



50 3. Formulae for trigonometric functions. Absolute value

However 13◦ is only one possible value for

arcsin 0.2250 (3)

(since arcsin is a multiple valued function).
3.10. a) In the graph for

y = sin x (4)

indicate all possible values of

arcsin 0.2250 (5)

In other words: give all solutions of

sin x = 0.2250 (6)

| (Solution:)

Fig3.10. 1: sin(13◦) = sin(167◦) = 0.2250.

Thus, arcsin 0.2250 = 13◦ or = 167◦ or = 373◦, . . .

sin(167◦) = sin(180◦ − 13◦) = − sin(−13◦) = sin 13◦ = 0.2250 and all multiples of
2π = 180◦ can be added (or subtracted) from these solutions x = 13◦ and x = 167◦

i.e. all solutions are given by

x = 13◦ + n · 360◦ n ∈ Z (7)

and

x = 167◦ + n · 360◦ n ∈ Z (8)
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3.10. b) Give the value of arcsin 0.2250, when it is known that it must be in the interval

[
π

2
, π] (9)

Result:

arcsin 0.2250 = 167◦ (10)

3.10. c) Give all solutions to the equations

 | sin x| = 1
2

|x| < π
2

(11)

Result:

x = ±30◦ = ±π

6
(12)

| (Solution:)

sin 30◦ =
1

2
(13)

sin(−30◦) = −1

2
(14)

| sin(−30◦)| = 1

2
(15)

3.Ex 11: - Ellipses



52 3. Formulae for trigonometric functions. Absolute value

Fig3.11. 1: Ellipse with half axis a and b and focal distance 2c

 x = a cos ϕ (parametric representation of
y = b sin ϕ an ellipse)

(1)

is the equation of an ellipse. (a = great diameter[
G
= große Halbachse], b =

small diameter[
G
= kleine Halbachse].)

3.11. a) Draw an ellipse for

a = 5 cm, b = 3 cm (2)

by constructing the points P (x, y) for

ϕ = 0, ϕ = 30◦, ϕ = 45◦, ϕ = 60◦, ϕ = 90◦ (3)

according to the above parametric representation.
| (Solution:)

ϕ cos ϕ sin ϕ x y
0 1 0 5 cm 0

30◦ 0.866 0.5 4.33 cm 1.5 cm
45◦ 0.7071 0.7071 3.5 cm 2.12 cm
60◦ 0.5 0.866 2.5 cm 2.6 cm
90◦ 0 1 0 3 cm

(4)

3.11. b) Show that the x-axis is an axis of mirror symmetry[
G
=

Spiegelsymmetrieachse].
Hint: If a point P with ϕ is at P (x, y), the point P ′ with −ϕ is at

P ′(x,−y) (5)
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i.e., they arise from each other by mirror symmetry with the x-axis as the mirror.

| (Solution:) x = a cos ϕ P (x, y)is the point for ϕ
y = b sin ϕ

(6) x′ = a cos(−ϕ) = a cos ϕ = x
y′ = b sin(−ϕ) = −b sin ϕ = −y

(7)

P ′(x′, y′) is the point for ϕ′ = −ϕ (8)

3.11. c) The same for the y-axis.
Hint: Consider

ϕ and π − ϕ (9)

| (Solution:)

x′ = a cos(π − ϕ) = −a cos(−ϕ) = −a cos ϕ = −x (10)

y′ = b sin(π − ϕ) = −b sin(−ϕ) = +b sin ϕ = y (11)

3.11. d) An ellipse has the following geometric property: there are two focal points[
G
=

Brennpunkte] F1 and F2 so that an arbitrary point P of the the ellipse has a constant
sum of distances to F1 and F2:

|F1P |+ |F2P | = const. (12)

Draw an ellipse by using the tips of a compass[
G
= Zirkel] as the fixed focal



54 3. Formulae for trigonometric functions. Absolute value

Fig3.11. 2: An ellipse is the set of all points (pencil) having the same sum of distance from two
fixed focal points F1 and F2.

points F1, F2. Use a closed string[
G
= Faden] for the constant length.

3.11. e) In fig. 1 the focal points F1, F2 lie on the x-axis and have the distance

c =
√

a2 − b2 (13)

from the center of the ellipse and const = 2a. Check[
G
= überprüfen] that

statement[
G
= Behauptung] for the vertices[

G
= Scheitel] of an ellipse, i.e. for

the points S1(a, 0) and S2(0, b).
| (Solution:)
For S1:

const. = (c + a) + (a− c) = 2a (14)

For S2 (using Pythagoras):

const. = 2
√

b2 + c2 = 2
√

b2 + a2 − b2 = 2
√

a2 = 2a (15)

Rem 1: In (12)(14)(15) we have assumed that ‘const.’ denotes the same constant. Such usage
of ‘const.’ is objectionable, since at least according to one view, ‘const.’ should not be used as a
constant variable, as done here, but only as a predicate (= property). I.e. ‘const.’ in (12) simply
says that the left hand side is constant with respect to some variable (the point P, in our case),
and ‘const.’ in different formulae cannot be identified as the same constant.
According to that view we should write instead of (12)

|F1P |+ |F2P | = l = const. (12’)

(l = string length) and ‘const.’ in (14)(15) and in ‘const = 2a’ should be replaced by l.
However, our usage of ‘const.’, i.e. at the same time as a predicate and as a constant, is widely
used in physics, and when a second, different constant variable is required, e.g. ‘konst.’ instead of
‘const.’ is used.
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Rem 2: We can distinguish between absolute constants like 2, 3.1, π and constant
variables, e.g. l in (12’), which is constant for a fixed ellipse, but may differ from
ellipse to ellipse.

3.Ex 12: - Addition theorem for tangens

3.12. a) Derive the addition theorem for the tangens

tan(α + β) =
tan α + tan β

1− tan α · tan β
(addition theorem for tangens) (1)

Rem: As is usual in physics in this and similar cases, we do not mention explicitly
that (1) should not be applied when a denominator is zero (e.g. when α+β = π/2),
or if a function (e.g. tan) is undefined (e.g. when α = π/2).
Sometimes, even in these exceptional cases, (1) is valid in the sense that both sides
are ±∞.

Hint: tan = sin
cos

, and use the addition theorem for sin and cos
| (Solution:)

tan(α + β) =
sin(α + β)

cos(α + β)
=

sin α cos β + cos α sin β

cos α cos β − sin α sin β
(2)

Division by cos α cos β yields

tan(α + β) =
tan α + tan β

1− tan α tan β
(3)

3.12. b) Look up an analogous formula for cot.

3.Ex 13: - Addition of sines expressed as a product

3.13. a) Derive the following formula

sin α + sin β = 2 sin
α + β

2
cos

α− β

2
(1)

Hints: Use the addition theorem for sin and cos by writing

α± β

2
= (

α

2
± β

2
) (2)

Use the formula for (sin 2α),

sin2 + cos2 = 1 (3)
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| (Solution:)

sin(
α

2
+

β

2
) = sin

α

2
cos

β

2
+ cos

α

2
sin

β

2
(4)

cos(
α

2
− β

2
) = cos

α

2
cos

β

2
+ sin

α

2
sin

β

2
(5)

2 sin α+β
2

cos α−β
2

= 2 sin α
2

cos α
2

cos2 β
2

+ 2 sin2 α
2

sin β
2

cos β
2
+

+2 cos2 α
2

sin β
2

cos β
2

+ 2 sin α
2

cos α
2

sin2 β
2

=

= sin α(cos2 β
2

+ sin2 β
2
) + sin β(sin2 α

2
+ cos2 α

2
) =

= sin α + sin β

(6)

3.13. b) Look up similar formulas for cos, tan, and cot.

3.Ex 14: , Frequency ν, angular frequency ω and period T

Fig3.14. 1: A sound wave, represented by a sine, hitting the ear

Let the sound pressure

p = p(t) (1)

at the ear be

p = p0 sin(ωt) [ω = angular frequency] (2)

3.14. a) Calculate the period T .
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Hint: For what t = T does the phase of sin(ωt) have the value 2π?
Result:

T =
2π

ω
, ω =

2π

T
(relation between angular frequency and period.) (3)

| (Solution:)

ωT = 2π ⇒ T =
2π

ω
or ω =

2π

T
(4)

3.14. b) The following table gives the number n of periods T which fit[
G
= passen]

into a given time interval T0.

n T0

3 3T (L1)
1 1T (L2)
1
2

1
2
T (L3)

? 1 (L4)

(5)

Check each line of the table. E.g. for line (L1) (see figure): n = 3 periods T fit into
the time interval T0 = 3T . Any line can be found from a given one by multiplying
by a factor, e.g. if we multiply line (L2) by the factor 3, we get line (L1).

3.14. c) The frequency ν is the number of periods (T ) which fit into unit time (T0 = 1).
[ Or in slightly different words: the frequency is the number of periods per unit time.]
By completing line (L4) calculate the frequency ν expressed by the period T and
give all remaining relations between ω, ν, T .
Results:

ν =
1

T
T =

1

ν
(Relation between period T and frequency ν) (6)

ω = 2πν ν =
ω

2π
(Relation between angular frequency ω and freq. ν)

(7)

3.Ex 15: - Superposition of waves
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Fig3.15. 1: Microphone M hears the superposition[G= Überlagerung] of the sound waves[G=
Schallwellen] produced by generators G1 and G2.

If there are two generators of waves the elongations are added together.

Fig3.15. 2: At the microphone M its membrane is shifted[G= verschieben] by y = y(t) because
of the sound pressure.

So, when the shift y of microphone M ’s membrane is

y1 = y10 sin(ω1t + α1) from generator G1 (1)

y2 = y20 sin(ω2t + α2) from generator G2 (2)

the total signal at the microphone (i.e. when both generators are operating) is

y = y1 + y2 (3)
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3.15. a) Take the special case

y10 = y20 = 0.1 mm, α1 = α2 = 0 (4)

ω1 = 10 002 Hertz , ω2 = 10 000 Hertz (5)

[ Hz = Hertz =
1

sec
] (6)

and calculate the signal at the microphone using the previous[
G
= vorhergehend]

exercise.
Result:

y = 0.2 mm cos(1 Hz · t) sin(10 001 Hz · t) (7)

3.15. b) Sketch[
G
= skizzieren] this function qualitatively [using suitable[

G
=

geeignet] units].
Hint: Consider ±0.2 mm cos (1 Hz·t) as the amplitude of sin(10 001 Hz·t). That
amplitude is approximately constant during one period of the fast sin(10 001 Hz·t)
oscillation.
| (Solution:)

Fig3.15. 3: Superposition of two sound waves with nearly equal frequencies (beating)
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Answer the following questions about the above qualitative sketch.

3.15. c) What is the value of y0?
Result:

y0 = 0.2 mm (8)

3.15. d) What is y(0)?
Result:

y0 = 0 (9)

3.15. e) What is the time t1?
Result:

t1 =
π

2
sec ≈ 1.57 sec (10)

| (Solution:)

1 Hz · t1 =
π

2
⇒ t1 =

π

2
sec (11)

3.15. f) What is y(t1)?
Result:

y(t1) = 0 , because cos = 0 (12)

3.15. g) Calculate y(2t1).
Result:

y(2t1) = 0 (13)

| (Solution:)

y(2t1) = 0.2 mm cos(1 Hz · 2t1) sin(10 001 Hz · 2t1)
= 0.2 mm cos(π)︸ ︷︷ ︸

−1

sin(10 001 · π)︸ ︷︷ ︸
(−1)10 001 sin 0

= 0

(14)

3.15. h) In the best case the human ear can hear (depending on age) in the frequency
interval 16 Hz . . . 20 000 Hz. Let an older person be able to hear in the interval 20
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Hz . . . 5 000 Hz, what is the frequency ν1 of generator G1? Can it be heard by that
person?
Hint: ω1 is an angular frequency
Result:

ν1 = 1 591 Hz ; yes (15)

| (Solution:)

ω = 2πν, ν1 =
ω1

2π
=

10 000

2π
Hz = 1 591 Hz (16)

3.15. i) The slow oscillation cos(1 Hz · t) is called a beating (of oscillations)[
G
=

Schwebung] which can be heard. What is the beating-frequency νb, and can it be
heard in our case?
Result:

νb = 0.16 Hz ; no (17)

| (Solution:)

ωb = 1 Hz, νb =
ωb

2π
=

1

2π
Hz = 0.16 Hz (18)

3.15. j) Calculate the zeros of y(t) in the interval [0, t1). What is the number N of
zeros in that interval?
Hints: t1 does not belong to the interval. A product is zero only if one of its factors
is zero.
Results:

t =
nπ

10 001
sec, n = 0, 1, . . . 5000 (19)

N = 5001 (20)

| (Solution:)
In the interval [0, t1) cos(1 Hz·t) is not zero. At t = t1 both sin and cos are zero.
So in that interval the zeros of y(t) are the zeros of

sin(10 001 Hz · t). (21)

sin(10 001 Hz · t) = 0 ⇒ 10 001 Hz · t = nπ (n ∈ Z) (22)

t =
nπ

10 001
sec, n = 0, 1, . . . 5000 (23)

(The range for n was chosen so that t ∈ [0, t1)) N = 5001
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3.15. k) Describe what will be observed in our case.
| (Solution:)
One hears the tone ν ≈ ν1 ≈ ν2 ≈ 1 591 Hz with an intensity varying with the
frequency νb = 2 ·0.16 Hz = 3.2 Hz. [The intensity corresponds to the absolute value
of cos(1 Hz ·t) having twice its frequency.]



4 Powers, roots and exponential functions

(Recommendations for lecturing: 1-8, for basic exercises: 9, 10, 11, 13.)

4.Q 1: Powers

What’s the meaning of powers[
G
= Potenzen] such as an for n = 5, 1, 0,−5 ?

| (Solution:)

a5 = a · a · a · a · a (1)

a1 = a (2)

a0 = 1 ( if a 6= 0) (3)

00 is undefined (4)

a−5 =
1

a5
=

1

a · a · a · a · a
(5)

Rem: (3) and (5) are very reasonable definitions, since they will lead to beautiful

theorems. On the other hand it is impossible to devise[
G
= ausdenken] a reasonable

definition for 00.

4.Q 2: Square roots

4.2. a) What is a square root[
G
= Quadratwurzel], and in particular

√
2

| (Solution:)
The square root of a number x (x is called the radicand) is a number when multi-
plied by itself gives the radicand:

√
2
√

2 = 2 (1)

4.2. b) Give
√

2 as an approximate decimal number.
| (Solution:)

√
2 ≈ ±1.41421356 · · · (2)

Rem: The square root is a double valued[
G
= doppeldeutig] symbol:

(−
√

2)(−
√

2) =
√

2
√

2 = 2 (3)

4.2. c) What is the meaning of +

√
2

63
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| (Solution:)
The subscripted + denotes the positive square root, e.g.

+

√
2 ≈ 1.41421356 · · · (4)

+

√
x =|

√
x | (5)

−

√
x = − |

√
x | (6)

√
x = ±+

√
x (7)

Rem: Sometimes the symbol
√

is understood to mean +

√
, i.e. the positive square

root is implied[
G
= impliziert, unterstellt, angenommen]. E.g.

√
2 ≈ 1.4142136 (8)

4.Q 3: General roots
What is the meaning of the n-th root, e.g. n

√
5 for (n = 2, 3, 4)

| (Solution:)

2
√

5 =
√

5 the square root is the same as the second root (1)
3
√

5
3
√

5
3
√

5 = 5 (2)

Rem 1: The third root (in general: the n-th root, with n = odd[
G
= ungerade]) is

a unique symbol (in the domain of real numbers).

4
√

5
4
√

5
4
√

5
4
√

5 = 5 (3)

Rem 2: Since it also holds:

(− 4
√

5)(− 4
√

5)(− 4
√

5)(− 4
√

5) = 5 (4)

the fourth root (in general: the n-th root with n = even[
G
= gerade]) is again a

double valued symbol.

4.Q 4: General powers
What is the meaning of ab

4.4. a) for b = 1
n

(n = 1, 2, 3...)
| (Solution:)

a
1
n = n
√

a (1)

4.4. b) for b = n
m

(n,m = 1, 2, 3, ...)
| (Solution:)

a
n
m = m

√
an = ( m

√
a)n (2)
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4.4. c) What is the meaning of ab for arbitrary real numbers a, b (a > 0)
| (Solution:)
Since every real number b can be approximated by a rational number: b ≈ n

m

the general power ab can be approximated by a
n
m , which is defined by the above

formula.

4.4. d) What are the names for a, b, ab

| (Solution:)

ab = power[
G
= Potenz] = b-th power of a, a = basis, b = exponent (from

lat. exponent = the outstanding)

4.Q 5: Calculation rules for powers
(a, b, n, m ∈ R)

4.5. a) a−n = ?
| (Solution:)

a−n =
1

an
(1)

4.5. b) anam = ? (Proof for n = 2, m = 3)
| (Solution:)

anam = an+m (2)

Proof (for n = 2, m = 3):

a2a3 = aa · aaa = a5 (3)

4.5. c) (an)m = ? (Proof for n = 2, m = 3)
| (Solution:)

(an)m = anm (4)

Rem about operator priority:
Because of the outstanding position of the exponent, it is clear that it represents

the inner-most building site[
G
= Baustelle], i.e.

anm := a(nm) [and not := (an)m] (5)

Proof of (4) for n = 2, m = 3:

(a2)3 = aa aa aa = a6 = a2·3 (6)
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4.5. d) Prove

an−m =
an

am
(7)

| (Solution:)

an−m = an+(−m) = ana−m = an 1

am
=

an

am
(8)

4.5. e) (ab)n = ? (Proof for n = 3)
| (Solution:)

(ab)n = anbn (9)

Proof of (9) for n = 3:

(ab)3 = ab ab ab = aaabbb = a3b3 (10)

4.Q 6: - Operator priority

Write with superfluous brackets[
G
= Klammern] and formulate the applied priority

rule.
4.6. a) a + bc
| (Solution:)

a + bc := a + (bc) [and not :=(a + b)c] (1)

(multiplication or division) have higher priority than

(addition or subtraction)

4.6. b) a− b/c
| (Solution:)

a− b/c := a− (b/c) [and not :=
a− b

c
] (2)

same rule as in a)

4.6. c) a/bc
| (Solution:)
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a/bc := (a/b)c [and not := a/(bc)] (3)

Multiplication and division have the same priority.

With equal priority the order decides: left comes before right.

4.6. d) a− b + c
| (Solution:)

a− b + c := (a− b) + c [and not := a− (b + c)] (4)

addition and subtraction have the same priority and rule c)

4.6. e) a+b
c+d

| (Solution:)

a + b

c + d
:=

(a + b)

(c + d)
[and not :=

a

(c + d)
+ b] (5)

line of the fraction[
G
= Bruchstrich] involves brackets

4.6. f) abc

| (Solution:)

abc := a(bc) [and not := (ab)c] (6)

Exponentiation (powers) have higher priority than
multiplication (or division)

4.6. g) a/bc

| (Solution:)

a/bc :=
a

bc
= a/(bc) [and not := (

a

b
)c] (7)

same as f)

4.Q 7: The (natural) exponential function y = ex

4.7. a) Give its representation as a power series[
G
= Potenzreihenentwicklung]
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and give an alternative notation for ex.

y = ex = exp x = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑
k=0

xk

k!
(1)

Rem 1: n! are the factorials[
G
= Fakultäten]:

n! = 1 · 2 · · ·n (2)

1! = 1 (3)

0! = 1 (4)

Rem 2: Again later on, it will turn out that (4) is a reasonable definition because
it will lead to simple theorems.
In particular it allows the elegant notation in (1) as an infinite sum.

4.7. b) Give its graph (qualitatively).
| (Solution:)
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Fig4.7. 1: Graph of the (natural) exponential function.
Leonhard Euler (1707-1783).

4.7. c) Ex: From a) calculate Euler’s number e to within some decimals.
| (Solution:)
Set x = 1
e1 = e = 1 + 1 + 1

2
+ 1

1·2·3 + 1
1·2·3·4 + · · · = 2.71828 · · ·

e = 2.71828 · · · e ≈ 2.7 (5)

Rem 1: Like π there are a lot of occasions in mathematics where the Eulerian
number e occurs naturally. Therefore, we call ex the natural exponential function.
Here, we can motivate the number e only by the simple form of the power series (1).
Later, we will also see that only with the basis e, the exponential function has the
property that it is identical with its derivative, i.e. it satisfies the differential equation
y′ = y.

Rem 2: exp x is defined by its power series. That it is e to the power of x is a
non-trivial theorem, not proved here.

4.Q 8: General exponential function
Give the formula for the general exponential function and give the names for the
constants occurring in it.
| (Solution:)

y = y(x) = abcx (1)

a = prefactor[
G
= Vorfaktor]

b = Basis
c = growth-constant[

G
= Wachstumskonstante] (−c = decay-constant[

G
=

Zerfallskonstante]
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4.Ex 9: , General powers on a calculator
With a calculator calculate:
4.9. a) 23 (Result: 8)

4.9. b) 2−3 (Result: 0.1250)

4.9. c) (−2)3 (Result: -8)

4.9. d) 3.547.28 (Result: 9 925.3024)

4.9. e) πsin 13◦ (Result: 1.2937)

4.Ex 10: , Simplification of general powers

Calculate the following without using a calculator:
(Here, square roots are always understood to be positive.)

4.10. a) (0.351)0 (Result: 1)

4.10. b) (π
1
7 )0 (Result: 1)

4.10. c) (0.5)3 · (0.5)−4 · (0.5)0 (Result: 2)
| (Solution:)

(0.5)3 · (0.5)−4 · (0.5)0 = 0.53−4+0 = 0.5−1 =
1

0.5
= 2 (1)

4.10. d) 4
3
2

Hint: Write as (4
1
2 )3.

Result: 8

4.10. e) (22)1.5

Hint: Multiply the exponents.
Result: 8
| (Solution:)

(22)1.5 = 22·1.5 = 23 = 8 (2)

4.10. f) 32
1
5

Hint: Try an integer
Result: 2

4.10. g)
√

18
√

2
Hint: Multiply bases.
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Result: 6
| (Solution:)

√
18
√

2 = 18
1
2 2

1
2 = 36

1
2 =
√

36 = 6 (3)

4.10. h) Write
√

32 in a form with a radicand as small as possible.
Hint: Break down 32 into its factors.
Result: 4

√
2

| (Solution:)

√
32 =

√
16 · 2 =

√
16
√

2 = 4
√

2 (4)

4.10. i) 4−
1
2 (Result: 1

2
)

| (Solution:)

4−
1
2 = (4

1
2 )−1 = (

√
4)−1 = 2−1 =

1

2
(5)

4.Ex 11: , Space diagonal in a cube

4.11. a) Calculate the length d of a (space-) diagonal[
G
= Raumdiagonale] of a

cube[
G
= Würfel] with side lengths a. In particular for a = 2 m.

Fig4.11. 1: Length d of space diagonal in a cube with sides lengths a.

Hint: Determine all sides with length a and all right angles. Use Pythagoras twice,

first use it to calculate the dotted[
G
= punktiert] surface diagonal.

Result:

d =
√

3a = 3.4641 m (1)



72 4. Powers, roots and exponential functions

| (Solution:)

d1 = surface diagonal (2)

d2
1 = a2 + a2 = 2a2 (3)

d2 = d2
1 + a2 = 3a2 ⇒ d =

√
3a = 3.4641 m (4)

4.11. b) The volume V of the cube is given. Calculate the area of its surface[
G
=

Oberfläche]. In particular for V = 5 cm3.
Result:

A = 6V
2
3 = 17.54 cm2 (5)

| (Solution:)

V = a3 a = V
1
3 , A = 6a2 = 6(V

1
3 )2 = 6V

2
3 = 17.54 cm2 (6)

4.Ex 12: Mathematical properties of the square root function

Consider the function y =
√

x
(Here, a square root is understood to be a double valued symbol.)

4.12. a) Draw the graph of that function by constructing points for

x = 0, x = 1, x = 4, x = 9, x = 16. (1)

4.12. b) Try x = −1 with your calculator.

4.12. c) What is the domain of that function?
Result:

D = [0,∞) (2)

4.12. d) What is the range of that function?
Result:

(−∞,∞) (3)

4.12. e) Is it a unique function?
Result: no, it is double valued:

y = ±+

√
x (4)
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4.12. f) Calculate its zeros.
Hint: Remove the square root by squaring.
Result: x = 0
| (Solution:)

0 =
√

x ⇒ 0 = |x| ⇒ 0 = x (5)

4.12. g) Show that it is not a periodic function.
Hint: Assume that it has period T . Remove square roots by squaring. Assume

x ≥ 0, T ≥ 0. (6)

Show that T = 0.
| (Solution:)

√
x + T =

√
x ⇒ |x + T | = |x| ⇒ x + T = x ⇒ T = 0 (7)

4.Ex 13: , Calculation rules for powers
Simplify.

Rem: In general there is a matter of taste what is the simplest form, since there is

no unambiguous[
G
= unzweideutig] definition of simplicity.

4.13. a) (t4)3 Result: t12

4.13. b) (
√

a e
bx
2 )2 Result: a ebx

4.13. c) x3+tx−t Result: x3

4.13. d) x2.5x3.5 Result: x6

4.13. e) (x2t6)
1
2 Result: xt3

4.13. f) (c 3
√

a)9 Result: c9a3

4.Ex 14: Power series to calculate function values (trivial case)
Using the power series calculate exp 0.
Result: e0 = 1

4.Ex 15: Power series to calculate function values (numeric example)
In a formulary look up the power series for sin ϕ and calculate

y = sin 1 = sin 57.3◦ (1)



74 4. Powers, roots and exponential functions

within a few decimal places.
Result:

sin 1 ≈ 0.8417 (2)

| (Solution:)

y = sin x = x− x3

3!
+

x5

5!
−+ . . . (3)

sin 1 ≈ 1− 1

6
+

1

120
= 0.8417 (4)

4.Ex 16: -- Reflecting the graph of a function
Using the graph of y = ex derive the graph of y = e−x

| (Solution:)

It is obtained by a mirror-symmetry[
G
= Spiegelung] at the y-axis.

Fig4.16. 1: Graph of y = e−x

4.Ex 17: Evaluating a symbolic infinite sum

The following power series is valid:

cos x =
∞∑

n=0

(−1)n x2n

(2n)!
(1)
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Write out explicitly the first four (non-vanishing) terms of that infinite sum (i.e.
for n = 0, 1, 2, 3).
| (Solution:)

cos x = (−1)0 x0

0!
+ (−1)1 x2

2!
+ (−1)2 x4

4!
+ (−1)3 x6

6!
−+ · · ·

= 1− x2

2
+ x4

24
− x6

720
+ · · ·

(2)

4.Ex 18: Power series used to prove an inequality
Using the power series prove e5 > e−5.
| (Solution:)

e5 = 1 + 5 +
52

2!
+

53

3!
+ · · · (1)

e−5 = 1− 5 +
52

2!
− 53

3!
+ · · · (2)

5 > −5,
53

3!
> −53

3!
thus e5 > e−5 (3)

4.Ex 19: Permutations

4.19. a) Let A, B, and C be three people, and we have three rooms for them.

Fig4.19. 1: Three rooms in a hotel waiting for three guests A,B,C.

Give all possible arrangements for them. What is the number N of these arrange-
ments? In other words, give all permutations of the three elements A, B, C and
what is the number N of permutations of the 3 elements.
Hint: First find all permutations of the elements, A, B, then find all possible places
for C.
Result:
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Fig4.19. 2: All possibilities of distributing[G= verteilen] the three guests A,B and C into the
three rooms.

N = N3 = 6 (2)

| (Solution:)

All possible arrangements[
G
= Anordnungen] for two people

Fig4.19. 3: For two people in two rooms, we have two cases: AB (upper line) and BA (lower line).
C can be to the left, in the middle or to the right of them.

N3 = N2 · 3 = 2 · 3 = 3! = 6 (4)

4.19. b) Using the same hint, find the number N of permutations of 4 elements (N =
N4) and generally for n elements (N = Nn).
Result:

N4 = 4!, Nn = n! (5)
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| (Solution:)
When

Nn−1 = (n− 1)! (6)

we can arrange, for each case, the last (= nth) element at n places, i.e.

Nn = Nn−1n (7)

In particular

N1 = 1! = 1 (8)

N2 = 2! = 1! 2 = 2! = 2 (9)

N3 = 3! = 2! 3 = 3! = 6 (10)

N4 = 3! 4 = 4! = 24 (11)

N5 = 5! (12)

. . . . . .

Nn = n! (13)

4.Ex 20: Indexed quantities arranged as matrices
With

Aij = 2i + j; i = 1, 2, 3; j = 1, 2, 3 (1)

we have defined quantities Aij.
4.20. a) Calculate A23

Result: A23 = 7
| (Solution:)

A23 = 2 · 2 + 3 = 7 (2)

4.20. b) Calculate all quantities Aij and write them in matrix form.

A = (Aij) =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 (3)

The first index (i) of the matrix distinguishes the rows[
G
= Zeilen] and the second

(j) the columns[
G
= Spalten], i.e.

A = (Aij) =
?

i

-
j A11 A12 A13

A21 A22 A23

A31 A32 A33

 (3′)
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Result:

A =

 3 4 5
5 6 7
7 8 9

 (4)

4.20. c) How many quantities Aij do we have?
Result:

N = 32 = 9 (5)

4.20. d) How many quantities does Bijk have?

i, j, k = 1, 2, 3; i, j, and k run independently from 1 to 3. (6)

Result: N = 27
| (Solution:)

N = 3 · 3 · 3 = 33 = 27 (7)

4.20. e) The same question for

Cijkl ; i, j, k, l = 1, . . . ,m (8)

Result:

N = m4 (9)

| (Solution:)

N = m ·m ·m ·m = m4 (10)

4.20. f) The same question for

Di1 , . . .in ; i1, . . . in = 1, · · · , p (11)

Result: pn

| (Solution:)

N = p · p · · · p︸ ︷︷ ︸
n−times

= pn (12)
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(Recommendations for lecturing: 1-7,12, for basic exercises: 8, 9, 11.)

Only very few problems can be treated exactly. Therefore, approximative methods
are a very important branch in physics.

5.Q 1: Approximation of numbers
π = 3.14159 26535 · · ·
5.1. a) Give π approximately[

G
= näherungsweise] where all decimals are

truncated[
G
= abgeschnitten] except the first four.

| (Solution:)
π ≈ 3.1415 (truncation)

5.1. b) Give the best decimal approximation of π to four decimal digits.
| (Solution:)
π = 3.1416 (rounding)

5.1. c) What is the absolute error[
G
= absoluter Fehler] and what is the relative

error[
G
= relativer Fehler] when π is approximated by π0 = 3?

Rem 1: In a) b) c) we have used 3 different notations to denote an approximation:

a) ≈ instead of =

b) = because it is known from the context, that = is only an approximative
equality.

c) Using a new symbol (e.g. π0) for the approximative value.

Rem 2: As usual in physics, errors itself are calculated only approximatively.

| (Solution:)
absolute error: ∆ = π − π0 = 0.14159 · · ·
relative error: ε = ∆

π
100% = 14.159

π
% = 4.5%

5.1. d) Write π in the form

π = 3 · ( 1

10
)0 + 1 · ( 1

10
)1 + 4 · ( 1

10
)2 + 1 · ( 1

10
)3 + 5 · ( 1

10
)4 + · · ·

and consider x = 1
10

= 0.1 as a small quantity of first order.
What is π in second order of approximation (inclusive)?
| (Solution:)
π = 3.14

79
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5.1. e) The same in linear approximation (≡ first order approximation, inclusive).

| (Solution:)
π = 3.1

5.1. f) The same in zeroth order approximation (inclusive).
| (Solution:)
π = 3

5.Q 2: Approximation of functions
Let f(x) = 3 + 2x + x3

5.2. a) Calculate f(0.1)
| (Solution:)
3 + 0.2 + 0.001 = 3.201

5.2. b) Calculate f(0.01)
| (Solution:)
3 + 0.02 + 0.000 001 = 3.020 001

5.2. c) Consider x to be a small quantity of first order (which symbolically is
written as x� 1).
Calculate f(x) in linear approximation (i.e. in first order, inclusive).
Rem: For large x, (x� 1) x3 is dominant.
For small x, (x� 1) x3 can be neglected.
| (Solution:)
f(x) = 3 + 2x

5.2. d) What is the relative error in case of x = 0.1 if the linear approximation of
f(x) is used?
| (Solution:)

ε =
f(0.1)− fapprox(0.1)

f(0.1)
=

3.201− 3.20

3.201
≈ 0.001

3
≈ 0.0003 = 0.3h

5.2. e) Give f(x) in second order (inclusive).
| (Solution:)
f(x) = 3 + 2x, i.e. the same as linear approximation since second order contribu-

tions vanish[
G
= verschwinden], i.e. are absent.

5.2. f) Give the zeroth order of approximation.
| (Solution:)
f(x) = 3

5.2. g) Give the lowest (non-vanishing) approximation for f(x).
| (Solution:)
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f(x) = 3

5.2. h) For g(x) = 2x + x3 give the lowest (non-vanishing) order of approximation.
What order is that?
| (Solution:)
g(x) = 2x; it is the first order of approximation.

5.2. i) For h(x) = x2 + 2x3 what is h(x) in linear approximation?
| (Solution:)
h(x) = 0

5.2. j) Why is the first order approximation also called a linear approximation?
| (Solution:)
The graph of the linear approximation is a straight line. In old fashioned terminol-
ogy ‘line’ was a straight line, whereas ‘curve’ was arbitrary.

5.Q 3: For sufficiently small x the linear approximation is always valid.
Let f(x) = 1 + 1000x2. The linear approximation is f1(x) = 1, i.e. we write

f(x) ≈ 1 for x� 1

What is the meaning of x� 1 when we want an accuracy within 1h?
(For reasons of simplicity, we restrict ourselves to the domain D = [0,∞).)
Hint: First determine the x for which the relative error is 1h.
| (Solution:)

0.001 = ε =
f(x)− f1(x)

f(x)
=

1000x2

1 + 1000x2

0.001 + x2 = 1000x2

0.001 = 999x2

x2 =
0.001

999
≈ 0.001

1000
= (0.001)2

Thus in our case x� 1 means 0 ≤ x < 0.001.

Rem: In calculating errors, the lowest (non-vanishing) approximation is used, e.g.
999 is replaced by 1000.

Result: x� 1 means ‘sufficiently small’. What this means concretely depends on
the particular case.

5.Q 4: Approximations can save calculation time
Let f(x) = (3x + 1)3 with x being a small quantity (of first order, x� 1).
5.4. a) Calculate f(x) exactly.
| (Solution:)

f(x) = (3x + 1)(9x2 + 6x + 1) = 27x3 + 18x2 + 3x + 9x2 + 6x + 1
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f(x) = 27x3 + 27x2 + 9x + 1

Terminology: 1 is called the zeroth order term (or contribution). 9x is called
the first order term (or contribution), . . . , 27x3 is called the third order term (or
contribution).

5.4. b) Calculate f(x) directly in linear approximation.
| (Solution:)
After having calculated

f(x) = (3x + 1)(9x2 + 6x + 1)

we can omit the second order term 9x2 since it will give second order or third order
contributions in the result for f(x), i.e.

f(x) ≈ (3x + 1)(6x + 1) = 6x + 1 + 3x

where we have immediately omitted the second order contribution 3x · 6x.
Result: f(x) ≈ f1(x) = 1 + 9x

5.Q 5: Several small quantities
Let

f(x, y) = (3x + 1)(2y + 1)2 (1)

be a function of two variables x and y.

A function f of two (independent) variables x and y is a prescription which when x and y are given
uniquely specifies a function value f(x, y), e.g. that one given by (1).

For sufficiently small x and y (i.e. x� 1, y � 1) we would like to calculate f(x, y)
in linear approximation.
Rem: Both x and y are small quantities of the first order, i.e. xy is already a
contribution of second order.
| (Solution:)

f(x, y) = (3x + 1)(4y2 + 4y + 1) (The underlined term can be neglected.)

f(x, y) ≈ (3x + 1)(4y + 1) = 3x + 4y + 1 (neglecting 3x · 4y).

5.Ex 6: Power series for some important cases
Look up the following cases in a formulary.

sin x = x− 1

6
x3 + · · · (1)

cos x = 1− 1

2
x2 + · · · (2)
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tan x = x +
1

3
x3 + · · · (|x| < π

2
) (3)

ln(1 + x) = x− x2

2
+

x3

3
− · · · (−1 < x ≤ 1) (4)

√
1 + x = 1 +

1

2
x− 1

8
x2 + · · · (|x| < 1) (5)

1

1 + x
= 1− x + x2 − · · · (|x| < 1) (6)

1

1− x
= 1 + x + x2 + · · · (|x| < 1, geometrical series) (7)

(1 + x)α = 1 + αx +
α(α− 1)

2
x2 + · · · (|x| < 1) (8)

5.Ex 7: Fast calculations using approximations
Calculate

f(x) = (3x + 1)3 (1)

in zeroth order of approximation of the small quantity x (i.e. x is by definition a
quantity of first order small).
Result: f(x) ≈ 1
| (Solution:)

f(x) = (3x + 1)(3x + 1)(3x + 1) (2)

In each factor (3x + 1) we can omit the first order contribution[
G
= Beitrag] 3x

since, in the result, it would lead to a first order contribution (or higher). Thus,

f(x) ≈
(0)

f (x) = 1 · 1 · 1 = 1 (3)

Rem: The superscript (0) indicates that we have the zeroth-order contribution of
the quantity.

5.Ex 8: , Linear approximation in a simple case
Calculate f(x) = (1 + x)100 in a linear approximation for x� 1.
Hint: First solve the problem (1 + x)n for n = 2, 3, · · · . Check that for n = 3 the
result for n = 2 in linear approximation was sufficient.
Result: f(x) = 1 + 100x



84 5. Approximations

| (Solution:)

f(x) = (1 + x)(1 + x)︸ ︷︷ ︸
1+2x

(1 + x)

︸ ︷︷ ︸
1+3x

· · · (1 + x) (1)

Where in each intermediate step we have omitted quadratic (i.e. second order) con-
tributions. Thus

f(x) ≈ f1(x) = 1 + 100x (2)

5.Ex 9: , Linear approximation of transcendental functions

5.9. a) For x� 1 calculate f(x) = sin x ex in first order approximation.
Hint: Use the power series

sin x = x− 1

6
x3 + · · · , (1)

ex = 1 + x +
1

2
x2 + · · · . (2)

Result:

f(x) ≈ x (3)

| (Solution:)

f(x) = (x− 1

6
x3 + · · · )(1 + x +

1

2
x2 + · · ·) (4)

The third order contribution −1
6
x3 gives, in the result, third order contributions or

higher, i.e. they can be omitted. The underlined terms x and 1
2
x2 both give second

order terms or higher, i.e. they can be omitted. Thus

f(x) ≈
(1)

f (x) = x (5)

5.9. b) The same in second order approximation.
Result:

f(x) ≈ x + x2 (6)

| (Solution:)

f(x) ≈ (x) · (1 + x) = x + x2 (7)
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5.Ex 10: - Different meanings of ‘very small’
In the following table you will see

ϕ, sin ϕ,
ϕ

sin ϕ
(1)

for some small values of ϕ.
(For reasons of simplicity, we assume ϕ to be a non-negative quantity: ϕ ≥ 0.)
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ϕ sin ϕ ϕ
sin ϕ

0◦ = 0 0 ?
1◦ = 0.0175 0.0175 1
2◦ = 0.0349 0.0349 1
3◦ = 0.0524 0.0523 1
4◦ = 0.0698 0.0698 1
5◦ = 0.0873 0.0872 1.0011
6◦ = 0.1047 0.1045 1.0019
7◦ = 0.1222 0.1219 1.0025
8◦ = 0.1396 0.1392 1.0029
9◦ = 0.1571 0.1564 1.0045
10◦ = 0.1745 0.1736 1.0052
11◦ = 0.1920 0.1908 1.0063
12◦ = 0.2094 0.2079 1.0072
13◦ = 0.2269 0.2250 1.0084
14◦ = 0.2443 0.2419 1.0099
15◦ = 0.2618 0.2588 1.0116
16◦ = 0.2793 0.2756 1.0134
17◦ = 0.2967 0.2924 1.0147
18◦ = 0.3142 0.3090 1.0168
19◦ = 0.3316 0.3256 1.0184
20◦ = 0.3491 0.3420 1.0208
21◦ = 0.3665 0.3584 1.0226
22◦ = 0.3840 0.3746 1.0251
23◦ = 0.4014 0.3907 1.0274
24◦ = 0.4189 0.4067 1.0300
25◦ = 0.4363 0.4226 1.0324
26◦ = 0.4538 0.4384 1.0351
27◦ = 0.4712 0.4540 1.0379
28◦ = 0.4887 0.4695 1.0409
29◦ = 0.5061 0.4848 1.0439
30◦ = 0.5236 0.5 1.0472
31◦ = 0.5411 0.5150 1.0507
32◦ = 0.5585 0.5299 1.0540
33◦ = 0.5760 0.5446 1.0577
34◦ = 0.5934 0.5592 1.0612
35◦ = 0.6109 0.5736 1.0650
36◦ = 0.6283 0.5878 1.0689
37◦ = 0.6458 0.6018 1.0731
38◦ = 0.6632 0.6157 1.0771
39◦ = 0.6807 0.6293 1.0817
40◦ = 0.6981 0.6428 1.0860

In the literature, for small values of ϕ the following approximation is recommended:

sin ϕ ≈ ϕ for ϕ� 1 (2)
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5.10. a) If you want an accuracy within 1% what is the meaning of ‘small ϕ’ (i.e. what
is the meaning of ‘ϕ� 1’)?

Hint: A relative error less than ε (e.g. ε = 1% = 0.01) means ϕ−sin ϕ
sin ϕ

= ϕ
sin ϕ
− 1 < ε

i.e. ϕ
sin ϕ

< 1 + ε.
Consult the previous table.

Result:

ϕ� 1 means ϕ ≤ 14◦ (3)

5.10. b) The same for 5%.
Result:

ϕ� 1 means ϕ ≤ 30◦ (4)

5.Ex 11: , Area of a ring in linear approximation of width

Fig5.11. 1: Area of ring with radii R1 and R2

Calculate the area A of the shaded ring with inner radius R1 = R and outer radius
R2 = R + h in linear approximation in the small quantity h.

Hint: Calculate the area of the circles, e.g. A1 = πR2
1.

Result:

A = 2πRh (1)
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| (Solution:)

A = πR2
2 − πR2

1 = π[(R + h)2 −R2] = π[R2 + 2Rh + h2 −R2] (2)

Neglecting h2 yields:

A = π2Rh (3)

5.Ex 12: Propagation of error

(propagation of errors[
G
= Fehler-Fortpflanzung]) In a laboratory there is a

rectangle and a student is asked to measure the area of the rectangle. He/she mea-
sures length (a) and width (b) and calculates the area using the formula

A = ab (1)

The exact values (unknown to the student) are

a0 = 1 m, b0 = 1 m (2)

Instead he/she measures

a0 = 1.001 m, b0 = 1.002 m (3)

What are the absolute errors ∆a, ∆b, and the relative errors εa, εb? What is the
absolute error ∆A and the relative error εA in the result (∆A and εA should be
calculated in lowest order (non-vanishing) approximation (in the small quantities
∆a, ∆b)).
Result:

∆a = 1 mm, ∆b = 2 mm, εa =
1 mm

1 m
= 1h εb = 2h, (4)

∆A = 30 cm2, εA = 3h (5)

| (Solution:)
The student calculates

A = (1 m + 0.001 m︸ ︷︷ ︸
∆a

)(1 m + 0.002 m︸ ︷︷ ︸
∆b

) (6)

In linear approximation (in the small quantities ∆a, ∆b):

A = 1 m2 + 0.001 m2 + 0.002 m2︸ ︷︷ ︸
∆A

(7)

∆A = 0.003 m2 = 30 cm2 (8)

εA =
∆A

A
=

0.003 m2

1 m2
100% = 0.3% = 3h (9)
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Result:

When a quantity (A) is the product of two quantities (a
and b) the relative errors are additive:

εA = εa + εb

(10)

Rem: This is the worst case. In particular cases errors can cancel each other out

and, by coincidence[
G
= Zufall], lead to a better result.

5.Ex 13: -- Properties of the exponential function proved approximately
Using its power series representation, calculate y = ex in several orders of approxi-
mation (inclusive) for x� 1.
5.13. a) 4th order
Result:

y = 1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 (1)

5.13. b) Linear approximation (i.e. first order)
Result:

y = 1 + x (2)

5.13. c) 0th order
Result:

y = 1 (3)

5.13. d) Lowest (non-vanishing) order
Result:

y = 1 (4)

5.13. e) Prove

e2x = (ex)2 (5)

in second order approximation.
| (Solution:)

e2x = 1 + 2x +
(2x)2

2
(6)
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On the other hand

(ex)2 = (1 + x +
1

2
x2 + ? x3 + · · · )(1 + x +

1

2
x2 + ? x3 + · · · ) = (7)

( ? means these values are irrelevant.)

= 1 + x +
1

2
x2︸ ︷︷ ︸+ x + x2︸ ︷︷ ︸+

1

2
x2 (8)

This is the same as (6). q.e.d.

5.13. f) Let x and y both be small quantities of first order small. Prove

exey = ex+y (9)

in second order approximation.

Rem: (5) and (9) are valid exactly. However, we did prove them only in certain
approximations.
| (Solution:)

exey = (1 + x +
1

2
x2 + ? x3 + · · · )(1 + y +

1

2
y2 + ? y3 + · · · ) = (10)

= 1 + y +
1

2
y2︸ ︷︷ ︸+ x + xy︸ ︷︷ ︸+

1

2
x2 (+) (11)

On the other hand

ex+y = 1 + (x + y) +
1

2
(x + y)2 = 1 + x + y +

1

2
x2 + xy +

1

2
y2 (12)

Which is the same as (11) q.e.d.

5.Ex 14: Pseudo probability in the decimal expansion of π

(probability[
G
= Wahrscheinlichkeit])

π = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 · · · (1)

For each decimal digit (0, 1, 2, . . . ) (after the decimal point) determine the

frequency[
G
= Häufigkeit] in which it occurs within the first 50 decimals of π.

Give the answer in the form of a table and as a histogram. For each decimal digit
also calculate the probability for its occurrence within the first 50 decimals.

Rem 1: These are pseudo-probabilities since they are mathematically fixed i.e. fore-
seeable. An example of a true probability is roulette.

Rem 2: Another term for ‘pseudo-probability’ is ‘deterministic chaos’.

Rem 3: In the irrational number π each decimal occurs with the same probabil-

ity, i.e. 10%. Our deviations from 10% are the natural variations (variance[
G
=
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Streuung]) since we have only considered a finite sample[
G
= Stichprobe].

| (Solution:)

digit frequ. probability
0 2 2/50=4%

1 5 5/50=10%

2 5 5/50=10%

3 8 8/50=16%

4 4 4/50=8%

5 5 5/50=10%

6 4 4/50=8%

7 4 4/50=8%

8 5 5/50=10%

9 8 8/50=16%

total 50 100%

Fig5.14. 1: Histogram for the frequency of occurrence of decimal digits in the first 50 decimals of π

5.Ex 15: A power series defined by the digits of π
Consider a function f(x) given by the following power series:

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · · =
∞∑

n=0

anx
n (1)

where an are the decimal digits of

π = 3.14159 · · · , (2)
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e.g. a0 = 3, a1 = 1, a2 = 4, a3 = 1, a5 = 5, a6 = 9, · · · (3)

Calculate f(0.1).
Result:

f(0.1) = π (4)



6 Logarithms

(Recommendations for lecturing: 1-5, for basic exercises: 6, 7, 8.)

6.Q 1: Examples for logarithms
Give the solution of the following equations and give the mathemati-

cal notations[
G
= Bezeichnungsweisen] (in each case in 5 versions) for the

obtained[
G
= erhalten] quantity.

6.1. a) 1000 = 10n

| (Solution:)
n = 3 = log10 1000 = lg 1000 =

= decimal logarithm[
G
= Zehner-Logarithmus] of 1000 =

= decadic logarithm[
G
= dekadischer Logarithmus] of 1000 =

= logarithm to the base 10 of 1000 =
= logarithmus decimalis of 1000

6.1. b) 16 = 2n

| (Solution:)
n = 4 = log2 16 = ld 16 =

= dual logarithm[
G
= Zweier-Logarithmus] of 16 =

= logarithm to the base 2 of 16 =
= logarithmus dualis of 16

6.1. c) 1 = en

| (Solution:)
n = 0 = loge 1 = ln 1 =
= natural logarithm of 1 =
= logarithm to the base e of 1 =
= logarithmus naturalis of 1

Rem: The notation log x, though widely used, is ambiguous[
G
= zweideutig]. In

mathematical texts it means ln x, in technical texts it can also mean lg x.

6.Q 2: General logarithms

6.2. a) What is the meaning of logb x (in words and in formulae)

We restrict ourselves to the case that
the base b is positive: b > 0

| (Solution:)
logb x (the logarithm to base b of x) is that number when taken as the exponent to

93



94 6. Logarithms

the base b gives the numerus x, in formulae: see (3).

6.2. b) Draw its graph for b = e
| (Solution:)

Fig6.2. 1: Graph of the (natural) logarithm.
For negative arguments x, logarithms cannot be defined.
The decimal logarithms are also called Napier’s logarithms. John Napier (1550-1617).

6.2. c) Give the limits for x→ 0+ and for x→∞.
Rem: 0+ means means that x goes to 0 with the restriction x > 0 (approximation
from the right hand side).
| (Solution:)

lim
x→0+

logb x = −∞ (1)

lim
x→∞

logb x =∞ (2)

6.2. d) Write down the formula which says that taking the logarithm is the inverse

of raising to a power[
G
= potenzieren].

| (Solution:)

blogb x = x logb(b
x) = x (3)
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6.2. e) Show logb 1 = 0

| (Solution:)
b0 = 1 (b 6= 0)

6.2. f) Show logb b = 1

| (Solution:)
b1 = b

6.Q 3: Calculation rules for logarithms

Let log x be the logarithm to an arbitrary (but within a particular[
G
= festgelegt]

formula fixed) basis b:

log x := logb x (1)

Give the the formulae for:

6.3. a) log(xy) = ?
| (Solution:)

log(xy) = log x + log y (2)

The logarithm of a product is
the sum of the logarithms of the factors

6.3. b) log(xy) = ?
| (Solution:)

log xy = y log x (3)

6.3. c) Derive the formula for log x
y

| (Solution:)

log
x

y
= log(xy−1) = log x + log y−1 = (4)

log
x

y
= log x− log y (5)

The logarithm of a quotient is the difference
of the logarithms of nominator and denominator
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6.3. d) Derive the formula for log y
√

x
| (Solution:)

log y
√

x = log x
1
y =

1

y
log x (6)

log y
√

x =
1

y
log x (7)

Hist 1: The rules (2)(3)(5)(7) have been important at former times to reduce mul-
tiplication, division and exponentiation to the much simpler process of addition and
subtraction. To calculate xy in (2) with the help of a so called logarithmic table,
one had to look up log x and log y and to add them. Then one had to use the table
inversely (which is simple because log is a monotonic function) to look up the result
xy.

Hist 2: The word ‘logarithm’ comes from the Greek ‘logos’ and ‘arithmos’ = num-
ber. Among the different meanings of ‘logos’ the translation ‘λoγoς’ = ‘intrinsic
meaning’ seems most appropriate here. Therefore, the logarithm is a second, intrin-
sic number living inside the original number (= numerus).

6.Q 4: Decay laws

N(t) = N0 e−λt (1)

is the law for radioactive decay[
G
= radioaktiver Zerfall], with

N(t) = number of radioactive atoms at time t,

λ = decay[
G
= Zerfall] constant (decay rate[

G
= Rate])

6.4. a) What’s the number of radioactive atoms at the initial[
G
= Anfangs-] time

t = 0 ?
| (Solution:)
t = 0 : N(0) = N0

6.4. b) What’s the meaning of the half life time[
G
= Halbwertszeit], and express

it by λ
| (Solution:)
half decay time T = T 1

2
=

= time lapse[
G
= Zeit-Spanne] until the number of radioactive atoms is only half

its initial number:

N(t + T ) =
1

2
N(t) (2)
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N0 e−λ(t+T ) = N0 e−λt e−λT =
1

2
N0 e−λt (3)

e−λT =
1

2
(4)

Taking ln on both sides of that equation:

ln e−λT = ln
1

2
= ln 2−1 (5)

−λT = − ln 2 (6)

T = T 1
2

=
ln 2

λ
(7)

Rem: This half decay time T at a later time t is the same, i.e. it is independent of
the time t which was chosen as the initial time in (2).

6.Q 5: - Transforming logarithms to a different base
Express loga x by logb x, and express the result in words.
| (Solution:)

loga x = loga(b
logb x) = logb x loga b (1)

loga x = logb x loga b (2)

Logarithms of different bases differ only by a factor (k = loga b)

6.Ex 6: , Logarithms calculated with a calculator
With a calculator calculate:
Hint: On most calculators lg is the key ‘log’.
6.6. a) lg 100 Result: 2

6.6. b) lg 110 Result: 2.0414

6.6. c) e Hint: Calculate e1 = exp(1) Result: 2.7183

6.6. d) ln π Result: 1.1447

6.6. e) 10lg 13 Result: 13

6.6. f) lg 1013 Result: 13

6.Ex 7: , Simplification of logarithms (numeric arguments)
Calculate without using a calculator:
6.7. a) lg 10 000 Result: 4
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6.7. b) lg 1
10 000

Result: -4

6.7. c) lg 1 Result: 0

6.7. d) log2 16 Result: 4

6.7. e) ln e
5
2
−2 Result: 0.5

6.7. f) (lg 1000)
ln e3 Result: 3

3
= 1

6.Ex 8: , Simplification of logarithms (algebraic arguments)
Simplify.
6.8. a) eln π Result: π

6.8. b) ln e
√

π Result:
√

π

6.8. c) ln ( a
b2

)4 − 4 ln a + ln b8 Result: 0
| (Solution:)

ln ( a
b2

)4 − 4 ln a + ln b8 = 4 ln ( a
b2

)− 4 ln a + 8 ln b =
= 4 ln a− 4 ln b2︸︷︷︸

2 ln b

−4 ln a + 8 ln b = 0

6.8. d) 2 ln
√

π
ln π

Result: 1
| (Solution:)

2 · 1
2
ln π

ln π
= 1

6.Ex 9: Equations involving logarithms
Solve the following equations for x.
6.9. a)

lg x− 3 = 0 (1)

What does that equation mean:

(lg x)− 3 = 0 (2)

or,

lg(x− 3) = 0 (3)

Why?
Hint: Put lg x on one side of the equation then raise 10 to the power of each side:
10left hand side = 10right hand side
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Result: x = 1000
| (Solution:)
Functional arguments bind higher than addition or multiplication. Thus the equation
means

(lg x)− 3 = 0 (4)

From that

lg x = 3, 10lg x = 103, x = 1000 (5)

6.9. b)

ln(x− 1) = ln 3 (6)

Hint: remove ln by applying exp to both sides.
Result:

x = 4 (7)

| (Solution:)

eln(x−1) = eln 3, x− 1 = 3, x = 4 (8)

6.9. c)

I = I0e
−λx (9)

Hint: Isolate x on one side of the equation. Remove e by applying ln to both sides.

| (Solution:)

I

I0

= e−λx, ln
I

I0

= −λx, x = −1

λ
ln

I

I0

(10)



7 Sets, number systems, dimensional quantities

(Recommendations for lecturing: 1-3, for basic exercises: 4, 7, 6abc.)

7.Q 1: Number Systems and Set Theory

(set theory[
G
= Mengenlehre])

7.1. a) Give the notation for the following set of numbers, give some examples (i.e.
elements of the set) and distinguish the case the number zero is excluded:

natural numbers[
G
= natürliche Zahlen].

| (Solution:)

No = {0,1, 2, 3, · · · } (1)

N∗ = { 1, 2, 3, · · · } (2)

N = {0,1, 2, 3, · · · } (3)

Rem: Nowadays, 0 is counted as a natural number, therefore the simpler notation
N can be used. But this convention is not uniquely obeyed, and especially in older
literature 0 is not counted as a natural number. Thus, the more explicit notations
No and N∗ are useful.

Hist: Kronecker: Die natürlichen Zahlen hat der liebe Gott gemacht. Alles andere
ist Menschenwerk.
(At Kronecker’s time 0 was not counted as a natural number.)

7.1. b) Give the relations between No and N∗ and vice-versa (i.e. one in terms of the
other) in set-theoretic notation.
| (Solution:)

No = N∗ ∪ {0} (4)

N∗ = No − {0} = No\{0} (5)

Here, we see the set brackets {· · · } denoting a set, e.g. {0} denotes the set consisting

of a single element, namely the number 0. {} is the empty set[
G
= leere Menge].

∪ denotes the union of sets[
G
= Vereinigungsmenge].

− denotes subtraction of sets (also denoted by \).
Rem: Subtraction of sets is different from subtraction in arithmetics, since there is
nothing like a negative set. In the worst case, subtraction of sets leads to the empty
set {}.

100
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Fig7.1. 1: Sets of points. Intersection: A ∩ B, Union: A ∪ B, Set difference: C − D. The naive
set theory, developed by Georg Cantor (1845-1918), has become the basic language for most
of mathematics. It leads to contradictions if we do not choose from the beginning a basic
set[G= Grundmenge], also called universe U , and we allow only set-theoretic constructions with
(sub-)sets of U .

7.1. c) The same question as a) but for: integers[
G
= ganze Zahlen].

| (Solution:)

Z = {· · · − 3,−2,−1, 0, 1, 2, 3, · · · } (6)

Z∗ excludes zero: Z∗ = Z− {0}

Rem: The invention of negative numbers (i.e. enlarging N to Z) was a great step
in mathematics, because now the equation a + x = b has always a solution (i.e.
the operation a − b is always defined) which is true in Z but not in N. Therefore
arithmetics in Z is a much more beautiful theory than arithmetics in N, the latter
being plagued by ugly exceptions.
Economically it was also a great step forward, because a person with good ideas,
kills and diligence but without money could receive a credit (having then negative
fortune) from a person with money only.

7.1. d) What is an equivalence relation[
G
= Äquivalenzrelation] denoted by a ∼

b, meaning the two elements a and b of a set G are equivalent (a ∈ G, b ∈ G).
Check the following relations, whether they are equivalence relations:

• G = set of all people in a country. We define: two persons are equivalent, if
their name begins with the same alphabetic letter.

• The greater-than-relation: a > b for integers (G = Z).

• ≥
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| (Solution:)
An equivalence relation is a relation fulfilling the following axioms (i.e. defining
properties):

a) a ∼ a (Reflexivity, i.e. each element is equivalent to itself)

b) a ∼ b ⇒ b ∼ a (Symmetry, i.e. when a is equivalent to b, then also b is
equivalent to a.)

c) a ∼ b ∧ b ∼ c =⇒ a ∼ c (Transitivity, i.e. when a ∼ b and b ∼ c
are both true, it follows that a ∼ c is true.)

(We see the symbol ∧ for the logical AND, and the symbol ⇒ for ’it follows’ (=

logical implication[
G
= logische Schlussfolgerung])

The first relation (same beginning letter) is an equivalence relation, while the rela-
tion ≥ violates the symmetry axiom, since 7 ≥ 5 is true, while 5 ≥ 7 is not true.
The relation > violates also the the reflexivity axiom: The statement 5 > 5 is not
true.

7.1. e) What are equivalence classes[
G
= Äquivalenzklassen], and exemplify them

for the set G = {Mary, Ann, Max, Rob, Adam, Alice}.
| (Solution:)
An equivalence relation subdivides the set into equivalence classes, i.e

exhaustive[
G
= erschöpfende] but mutually exclusive subsets of equivalent ele-

ments, i.e. two elements in the same class are equivalent, two elements in different
classes are not equivalent. G is the union (∪) of all classes and the intersection (∩)
of two (different) classes is the empty set {}.
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Fig7.1. 2: Set of 6 persons. In a set each element (person in this case) is different from
each other element, but there is no ordering of the elements. So the (sub-)sets {Max, Rob}
and {Rob, Max} are identical. This figure shows the equivalence classes (indicated by the dot-
ted subsets) of the equivalence relation of having the same initial letter in the name of the element.

7.1. f) What is a representative[
G
= Repräsentant]of an equivalence class?

| (Solution:)
Any element of the class, e.g. Ann is a representative of her class {Alice, Adam,
Ann}.

7.1. g) What is the axiom of choice[
G
= Auswahlaxiom] of set theory?

| (Solution:)
Given a set of non-empty sets, e.g.

{{Ann, Adam, Alice}, {5, 7, Rob}, {A}, {♠, +, Adam}} (7)

it is possible to choose exactly one element out of each of the non-empty sets. E.g.
there exists a choice function, let’s call it cf which maps, to have a specific example,
the subsets of (7) in this order unto the 4-tuple

(Adam, 7, A, Adam) (8)

Rem 1: In a set, in contrast to tuples, the order of the elements are irrelevant and
the same element cannot occur twice. (8) is simply a shorthand for

cf({Ann, Adam, Alice}) = Adam, cf({5, 7, Rob}) = 7, · · · (8′)

For equivalence classes one can form a complete set of inequivalent representatives,
e.g.

{Alice, Max, Rob} (9)

Rem 2: For infinite sets the axiom of choice is non-trivial.

7.1. h) What is the basic equivalence relation in set theory?
| (Solution:)
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∼ = equipotent[
G
= gleichmächtig]: Two sets are equipotent, if there is a 1-1-

mapping[
G
= 1-1-Abbildung] between them.

Fig7.1. 3: Two sets G and H are equipotent (G∼ H in the sense of set theory) because there is
a 1-1-mapping, indicated by bidirectional arrows, between them, i.e. between their elements. The
downward arrows define a mapping f (function f) of the set G unto the set H, i.e.

f : G→ H, e.g. � 7→F i.e. f(�) = F (10)

f is a mapping because to each element x ∈ G we have a unique element f(x) ∈ H. The mapping
f is called surjective because each element of H occurs as an image, i.e. for each element y ∈ H
there exists an element x ∈ G so that f(x) = y, symbolically

∀y ∈ H ∃x ∈ G | f(x) = y (11)

(∀ = for all, ∃ = there exists, | = with the property)
The surjective property could also be written as

f(G) = H i.e. not f(G) ⊂ H (12)

where ⊂ is the (true) subset relation[G= Untermengenbeziehung] between sets.
The mapping f is called injective because different x′s are mapped into different y′s, symbolically:

∀x1, x2 ∈ G | x1 6= x2 =⇒ f(x1) 6= f(x2) (13)

A mapping which is injective and surjective is called bijective.
In physics instead of bijective mapping it is more usual to use the synonymous expression
1-1-mapping, which just means that the inverse mapping[G= Umkehrabbildung] f−1 exists.
In the above set G, it does not matter if Alice is the living person Alice or simply the text (string)
Alice. In naive set theory, a set is simply a collection of well-distinguishable objects. The nature
of the objects are irrelevant, if they are atoms (in the sense of set theory), i.e. are not composed
by set-theoretic constructions such as ∪,∩,×, etc.
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Injective means the mapping does not overlap, i.e the set G is neatly inserted (in-
jected) into the set H.
As a counter-example the mapping

g : G→ H, ∀x ∈ G g(x) = F (14)

is extremely overlapping i.e. non-injective.
Further examples: Consider the mapping

h : (0, 1)→ [0, 7], x 7→ h(x) = 1
2
· x (15)

where (0, 1) is the open interval of the real axis between 0 and 1, excluding the
endpoints, and [0, 7] is a closed interval, i.e. including the end-points.
The mapping h is injective (non-overlapping), however it is not surjective. Taking
(0, 1

2
) instead of [0, 7] makes h surjective, and so bijective.

When a doctor injects a serum with a syringe[G= Spritze]into a body, the serum might get
compressed, but no molecule of the serum gets lost.

When the mapping f is injective and surjective (i.e. bijective) it is an injective
mapping in both directions, i.e. the inverse mapping f−1 exists. Enlarging H, i.e.

adding additional elements to H, i.e. forming a superset[
G
= Obermenge] H′ (i.e. H

⊂ H′), the injective property of f would be preserved, but the surjective property
is lost, and f−1 no longer exists, because the additional elements do not have
attributed an image in G by f−1.
Rem 1: For finite sets, equipotent just means having the same number of elements.
Rem 2: To prove the symmetry property of the equipotency relation, just consider
the mapping id : G→ G, where each element of G is mapped unto itself.

7.1. i) Prove
1) N∗ ∼ No and
2) Z ∼ N.

What means denumerably infinite[
G
= abzählbar unendlich]? (Synonyms:

countably infinite or simply countable)
| (Solution:)
1) Consider the 1-1-mapping, indicated by:

1,2,3,4,5,6,... (16)

0,1,2,3,4,5,...

where numbers above each other correspond.

2)Consider the ordering (counting):

Z = {0, +1,−1, +2,−2, +3,−3, ...} (17)
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and n ∈ N is mapped to the n-th element of Z in this ordering.
A set is called denumerably infinite (= countably infinite = countable) if it
is equipotent to N.
So we have just proved that Z is countable.

7.1. j) The same question as a) but for: rational numbers[
G
= rationale Zahlen].

| (Solution:)

Q: All fractions[
G
= Brüche], i.e. all numbers of the form

n

d
with n ∈ Z, d ∈ N∗ (18)

(n = numerator[
G
= Nenner], d = denominator[

G
= Zähler])

Rem 1: Q reminds of quotient.

Examples:

−5/7, 5.8541731731731 · · · = 5.8541731 (19)

Indeed every decimal number which at a certain place becomes periodic, can be
brought into the form n/d, i.e. is rational.
(Of course, a finite decimal number can be viewed as an infinite decimal number which becomes
periodic.)

Q∗ excludes zero.

Rem 2: The invention of rational numbers (i.e. enlarging Z to Q was a great step
forward in mathematics, because now the equation ax = b has always a unique so-
lution except when a = 0 which is true in Q but not in Z, the latter having much
more exceptions.
Arithmetics in Q has important application in physics because it opens the possi-
bility of calculating with measurements of arbitrary precision.

7.1. k) What is the Cartesian product (also called Kronecker product) of two
or more sets G, H, I, ...?
| (Solution:)
It is the set of all pairs (x,y), all triples (x,y,z) and generally of all n-tuples
(x1, x2, · · ·xn), where x ∈ G, y ∈ H, z ∈ I, x1 ∈ G1, xn ∈ Gn.
The Cartesian product is denoted by ×, e.g.

(x, y) ∈ G×H ⇐⇒ x ∈ G ∧ y ∈ H (20)

(5, 7,−5) ∈ N× N× Z (21)

(5, 7, +5) ∈ N× N× N = N3 (22)

(⇐⇒ is the symbol for logical equivalence, i.e. when the statement on the right
hand side is true then it follows that the statement on the left hand side is true, and
the same in the opposite direction.)
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7.1. l) Express rational numbers n
d

with the help of a Kronecker product, i.e. as pairs
(n, d) and with an equivalence relation meaning

(n, d) ∼ (n′, d′) ⇐⇒ n

d
=

n′

d′
(23)

and show that rational numbers are countable.
Rem: It is only a typographical detail, that instead of pairs of numbers we write a
fraction, and the equivalence relation is denoted by an equality sign (=) instead of
∼.
Note that thus we are able to formulate arithmetics in Q with the help of arithmetics
in Z only, using the Cartesian product (pairs of numbers) and an equivalence
relation.
| (Solution:)
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Fig7.1. 4: The elements (n, d) ∈ Z × N∗ of the Kronecker product (Cartesian product) of
Z with N∗ are represented as grid points in a plane, and are interpreted as the rational number
x = n/d, (n= numerator, d=denominator). In particular we see the rational numbers ±5/6 =
(±5, 6).
Two elements (grid points) are equivalent (in the sense of rational numbers):

(n, d) ∼ (n′, d′) ⇐⇒ nd′ = n′d (24)

Traditionally that equivalence relation is written as n
d = n′

d′ and called equality of rational numbers.
More exactly: a rational number is an equivalence class and the grid points (n, d) or n

d are
representatives of a rational number. 2

3 = 4
6 says that both 2

3 and 4
6 are representatives of the same

rational number.
In the above figure, grid points belonging to the same rational number have the same colour and
are connected by dotted lines. E.g all black grid points on the vertical axis are representatives of
the rational number 0. All white grid points are inequivalent to each other, i.e. are representatives
of different rational numbers.
Rational numbers can be ’counted’ (i.e. are countably infinite = denumerably infinite, i.e. can be
brought to 1-1 correspondence with the natural numbers). Such a counting could start at (0,1)
and follows the arrows. At each step (grid point) it must be decided if one of the finitely many
grid points already passed is equivalent to the actual one. If yes the rational number was already
counted, i.e. the grid point is skipped. Thus we have

N ∼ Q (25)

where ∼ is the equivalence relation of equipotency. So in a sense, there are as many rational
numbers as natural numbers, though on the other hand we have N ⊂ Q. Such a situation is
possible for infinite sets only.
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7.1. m) What is a prime number[
G
= Primzahl], and give the first 10 prime

numbers.
| (Solution:)
A natural number n ∈ N− {0, 1} which has no divisors except 1 and itself.
The first prime numbers are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 31.

7.1. n) What is the Fundamental Theorem of Arithmetics (of natural numbers)?
Give an example.
| (Solution:)
A natural number n ∈ N∗ can be represented as a product of primes. Such a
representation is unique up to the order of prime factors. In other words: Each n
has a unique prime number decomposition. E.g.: 360 = 23 · 32 · 5

7.1. o) Why by definition, 1 is not a prime number?
| (Solution:)
When we would allow 1 as a prime number, the Fundamental Theorem of Arith-
metics is no longer true, since we could include any number of 1 factors in the
prime number decomposition. E.g.: 360 = 17 · 23 · 32 · 5

7.1. p) Prove that
√

2 is not a rational number.

Hint: Use a proof by contradiction, i.e. assume
√

2 were a rational number and
lead this assertion to a contradiction (reductio ad absurdum, tertium non
datur, i.e. any statement is either true or false).
By the Fundamental Theorem of Arithmetics, p2 has an even number of prime
factors.
| (Solution:)
Suppose

√
2 =

n

d
=⇒ 2d2 = n2 (26)

but the left hand side has an odd, the right hand side has an even number of prime
factors. Contradiction!

Rem: This result shows the necessity to enlarge Q. Otherwise the hypotenuse of a
right triangle with two sides 1 had no length.

7.1. q) The same question as a) but for: real numbers[
G
= reelle Zahlen].

| (Solution:)
R: All (infinite) decimal numbers (including the periodic and finite ones).

R∗ excludes zero.

Rem: The distinction R∗ from R is important, because division by zero is forbidden,
i.e. not defined.
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7.1. r) The same question as a) but for: irrational numbers[
G
= irrationale

Zahlen].
| (Solution:)
R − Q i.e. all real numbers which are not rational, namely all decimal numbers,
which never become periodic.
Examples: π, e,

√
2

Rem 1: We have the following subset relations[
G
= Untermengenbeziehungen]:

N ⊂ Z ⊂ Q ⊂ R (27)

Rem 2: The real numbers can be represented geometrically on a straight line, the

so called real axis[
G
= Zahlengerade].

Rem 3: The rationals are everywhere dense[
G
= dicht] on the real axis, i.e. there

is no interval (of length arbitrarily small, but greater than zero) which does not
contain a rational number.
In other words: Every real number can be approximated to arbitrarily high precision
by a rational number.
So, from the point of view of measuring science (e.g. physics) each measurement,
which is valid within an error interval only, could be represented by a rational
number, i.e. one could do it without the irrational numbers. However from a
theoretical point of view, the theory of R is much more beautiful as the theory of
Q, the latter being plagued by much more exceptions, e.g. x2 = 2 has no solution,
the sides of some triangles have no length, the unit circle has no area, etc.

7.1. s) Show that R is not countable.
Hint: On the contrary, suppose someone has put the reals in the interval [0, 1] into
1-1-correspondence with N, i.e. has indicated a numbering, e.g.

0.1578369 · · · (28)

0.5688860 · · ·
0.4200000 · · ·
0.8696333 · · ·
0.3369321 · · ·
0.5932111 · · ·
0.7444398 · · ·
· · ·

Take a real differing in the underlined digit and show it is not in the list, i.e. is not
counted.

| (Solution:)
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A real not counted is e.g.

0.2785400 · · · (29)

because it is not counted in the first line because differing in the first digit, not
counted in the second line differing in the second digit, ...
Contradiction! q.e.d.
Rem: Note that we have implicitly used the axiom of choice, because in an infinite
number of cases we have to choose a digit in a set which is {0,1,2,3,4,5,6,7,8,9}-{the
underlined digit}.

Rem 1: The proof needs some corrections.:
First, each rational must be written with infinite decimal digits, possibly 0, e.g. 0.5 should be
written as 0.500000 · · · .
Second, while identifying R with the set of decimal numbers, we have to introduce an equivalence
relation (=), e.g.

0.199999999 · · · = 0.20000000 · · · (30)

or more simply, we could just banish numbers like 0.199999999 . . . , allowing only 0.20000000 · · · .
Then we must make sure, the constructed number like 0.2785400 · · · above is not of the banished
form. But that can easily be achieved, because at each digit we have the freedom of choosing
between 9 different digits, so we can make sure there is no end segment with 9’s only.

Rem 2: We have found two infinite potencies[
G
= Mächtigkeiten], denoted by the

cardinal numbers[
G
= Kardinalzahlen] ℵ0 (pronounced: aleph 0; aleph is the first

letter in the Hebrew alphabet. The Greek letter α originated as a variant of ℵ.) and
C = potency of the continuum. A cardinal number is an equivalence class of sets,
with equipotency as the equivalence relation. In set theory potency (cardinality) of
a set is denoted by the same symbol as the absolute value in arithmetics. Therefore
we have:

|{}| = 0 (31)

|{a}| = 1 (32)

|{♠,♣}| = 2 (33)

|{7,♥, x}| = 3 (34)

|{♠, {}, {{}}, F}| = 4 (35)

· · ·
|R| = |R−Q| = |R2| = |Rn| = C (36)

The cardinal numbers of finite sets are the ordinary natural numbers.
{{}} is a set containing one element only, i.e.

|{{}}| = 1 (37)

namely the empty set.
(36)is not proved here, but it states that the points of the Rn, e.g. of the plane (n=2)
can be brought into 1-1-correspondence with the real axis.
(36) also says there are much, much more irrational numbers than rational numbers.
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7.1. t) What is the power set[
G
= Potenzmenge] P(G) of a set G?

Write down explicitly the power set for G = {a, b, c} and for G = {}.
It can be shown

|P(G)| = 2|G| (38)

Verify this for the above two finite sets.
| (Solution:)
The power set is the set of all subsets, including the improper subset (which is the
whole set), in formula:

P(G) = {x| x ⊆ G} (39)

which says P(G) is a set (symbolized by {· · · }) consisting of all those elements
(symbolized by an arbitrary letter, in this case x) having the property (symbolized
by |) that x is a subset of G (symbolized by the improper subset relation ⊆).
In particular we have:

P(a, b, c) = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}, 23 = 8, (40)

and

P({}) = {{}} 20 = 1. (41)

Rem 1: Since Q ⊂ R and their cardinalities are different, we have as a definition of
< in set theory

ℵ0 < C (42)

Is there a cardinality between the natural numbers and the continuum, i.e. does
there exist a set G so that

ℵ0 < |G| < C (43)

Naive set theory[
G
= Naive Mengenlehre] starts from our every-day experience

with finite sets, and assumes some (but not all) facts about them to be valid also for
infinite sets. These assumptions are exactly formulated in axiomatic set theory.
The question (43) cannot be answered by naive set theory (or its axioms). It was
proved in mathematics that the continuum hypothesis, stating that there is no
cardinality between ℵ0 and C (so called standard set theory), can be added to the
previous axioms, but also its negation (existence of the set G, non-standard set
theory), and both theories are either (as all mathematicians hope) free of logical
contradictions or both are contradictory. We say that the continuum hypothesis (or
its negation) is an independent axiom, thus not provable by the previous axioms.

Rem 2: The power set can be generalized to the concept of exponentiation of
sets: Y X is the set of all function from X into Y :

Y X = {f |f : X → Y } (44)
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When Y is a set of two elements, e.g.

Y = {0, 1} (45)

essentially we have

{0, 1}X = P(X) (46)

because there is a 1-1-mapping between these functions f and the subsets of X:

f ←→ {x ∈ X|f(x) = 0} ∈ P(X) (47)

Rem 3: Cantor made the following definitions

A ∩B = {} =⇒ |A ∪B| = |A|+ |B| (48)

|A×B| = |A| · |B| (49)

|P(G)| = 2|G| (50)

|Y X | = |Y ||X| (51)

ℵ1 = 2ℵ0 , ℵ2 = 2ℵ1 , · · · (52)

So we have arithmetics (+, ·, =, <)on cardinals, including the transfinite numbers
ℵ0,ℵ1, · · · .
Cantor could prove (n ∈ N)

|P(G)| < |G| (53)

0 < 1 < 2 < · · · < |ℵ0| < |ℵ1| < |ℵ2| · · · (54)

P(N) = C = ℵ1 (55)

So C is just an abbreviation for ℵ1 (56)

n + ℵ0 = ℵ0 (57)

ℵ0 + ℵ0 = ℵ0 (58)

n · ℵ0 = ℵ0 (59)

ℵn
0 = ℵ0 (n > 0) (60)

nℵ0 = C (n > 1) (61)

ℵℵ0
0 = C (62)

n + C = C (63)

ℵ0 + C = C (64)

C + C = C (65)

n · C = C (n > 0) (66)

ℵ0 · C = C (67)

C · C = C (68)

Cn = C (n > 0) (69)

Cℵ0 = C (70)

2C = ℵ2 > C = ℵ1 (71)
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In this strange arithmetics on cardinals the associative and commutative laws of
addition and multiplication and the distributive law hold. But there is no zero, no
unity, no negatives, no reciprocals, i.e. subtraction and division cannot reasonably
be defined.

Rem 4: So, Cantor’s set theory brings a fine-structure into ∞, distinguishing
ℵ0, C = ℵ1,ℵ2, · · · .

7.1. u) Express the interval [5, 7) of the real axis in set-theoretical notation.
| (Solution:)

[5, 7) = {x ∈ R | x ≥ 5 ∧ x < 7} (72)

7.1. v) Assuming a Cartesian system of coordinates (x, y, z), express the set of all

points of the solid unit sphere[
G
= Einheitskugel] centered at the origin in

set-theoretic notation.
| (Solution:)

{(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 1} (73)

7.1. w) Express the set of the (real) solutions of the quadratic equation

ax2 + bx + c = 0, a, b, c ∈ R (74)

in set-theoretic notation.
| (Solution:)

{x ∈ R | ax2 + bx + c = 0} (75)

Rem: This set has cardinality 0, 1 or 2.

7.1. x) Express intersection, union and set-difference of two sets X and Y in
set-theoretic notation.
| (Solution:)

X ∩ Y = {x| x ∈ X ∧ x ∈ Y } intersection (76)

X ∪ Y = {x| x ∈ X ∨ x ∈ Y } union (77)

X − Y = {x| x ∈ X ∧ x /∈ Y } set difference (78)

(∨ = logical OR)

7.1. y) A relation R (let’s symbolize it by ./) between the elements x of a set X and
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the elements y of the set Y :

x ./ y, x ∈ X, y ∈ Y (79)

can be considered as a subset of X × Y (i.e. R ⊆ X × Y ) with the property

x ./ y ⇔ (x, y) (80)

i.e. the relation is fulfilled (x ./ y) if and only if (x, y) is an element of R.
For the equivalence relation (not all relations are equivalence relations)

./ = ∼ (81)

X = Y = G = {Mary, Ann, Max, Rob, Adam, Alice}

considered in e), write down the corresponding set R.
| (Solution:)

R = {(Mary,Mary),(Mary,Max),(Ann,Ann),(Ann,Adam),(Ann,Alice), (82)

(Max,Mary),(Max,Max),(Rob,Rob),(Adam,Ann),(Adam,Adam),

(Adam,Alice),(Alice,Ann),(Alice,Adam),(Alice,Alice)}

7.1. z) What is a paradox and in particular what is the Banach-Tarski paradox?

| (Solution:)
A paradox is a result which seems impossible, but under closer investigation does
not lead to a contradiction in the theory.

Example: Galileo Galilei was upset while observing there are ’as many’ natural
numbers n (1, 2, 3, ...) as squares of natural numbers n2 (1, 4, 9, ...), though the
latter are a true subset (⊂) of the former. (Today, instead of ’as many’, we say there
is a 1-1-mapping between them.)
Especially the axiom of choice leads to a number of paradoxical results, e.g. the
Banach-Tarski-paradox:

Two sets in R3, e.g. two cuboids[
G
= Quader], are called congruent (in the

sense of Euclidean geometry) if they can be brought into coincidence by an Eu-
clidean transformation = congruence transformation (translation, rotation and

reflection[
G
= Spiegelung]).

Banach and Tarski have shown: A solid sphere S1 (e.g. of the size of a

pea[
G
= Erbse]) can be decomposed into a finite number of disjoint subsets, e.g.

A1, A2, · · ·Ak, i.e.

S1 = A1 ∪ A2 ∪ · · · ∪ Ak and Ai ∩ Aj = {} for all i, j = 1, 2, · · · k, i 6= j
(83)

and can be rearranged by Euclidean motions (= congruence transformations)

Ai 7→ A′
i (84)
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so they close up to a larger sphere S2, e.g. of the size of the sun, i.e.

S2 = A′
1 ∪ A′

2 ∪ · · · ∪ A′
k and A′

i ∩ A′
j = {} for all i, j = 1, 2, · · · k, i 6= j

(85)

There is a collection of similar paradoxical results derivable from standard set theory.
When these results are formalized (in a formal language underlying all of mathe-
matics) they do not form a contradiction, thus they are only paradoxes, not contra-
dictions.

For better understanding the Banach-Tarski-paradox, we make the following two

provisos[
G
= Vorbehalte]:

Rem 1: The sets Ai are non-measurable, i.e. they cannot be attributed a volume. So

the paradoxical result cannot be refuted[
G
= widerlegt]by a volume argument. (A

congruence transformation does not change the volume and the volume of S1 would
be the sum of the volumes of the Ai if the latter were measurable.)

Rem 2: The existence of the Ai and their transformations is axiomatic existence,
namely existence logically derived from axioms, e.g. the axiom of choice, which itself

only states, stipulates[
G
= behauptet] the existence of a set. This is in contrast to

constructive existence, which is by giving a recipe.
When someone tells you you are a very rich person because some treasure is buried somewhere in
the Universe, that is axiomatic existence. On the other hand, when you are given a recipe, where
to find the treasure, and you can go there, dig it out, verify that it is there and consume it, that
is constructive existence.

A few mathematicians (the constructivists) cannot accept the Banach-Tarski
and similar results and thus work without the axiom of choice and similar non-
constructive elements in mathematics. However, their results are very scanty[

G
=

spärlich]. Therefore, most mathematicians take standard set theory as the basis
of their research, leading to a much more beautiful theory.

David Hilbert: Aus dem Paradies, das uns Georg Cantor geschaffen hat, lassen
wir uns nicht mehr vertreiben.



7. Q 2: dimensioned quantities in physics 117

Fig7.1. 5: Galileo Galilei (1564-1642) and David Hilbert (1862-1943) at the age of 24 and in later
years

7.Q 2: dimensioned quantities in physics

The length of a rod[
G
= Stab] is not a pure number but is a dimensioned

quantity[
G
= dimensionsbehaftete Größe], e.g.

l = 3 m = 300 cm (1)

7.2. a) What is the general name for m or cm?
| (Solution:)

Unit[
G
= Einheit, Maßeinheit] of the physical quantity. In the present example

it is a unit of length.

7.2. b) What is the general name for 3 or 300?
| (Solution:)

Measure number[
G
= Maßzahl] of the physical quantities (length of the rod) in a

particular system of units.

7.2. c) What is the dimension of a volume?
| (Solution:)
In mathematics the answer would be 3, because a volume is a 3-dimensional object.

In physics the answer would be: The dimension of a volume is m3 (or: third power
of a length).
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7.T 3: - Systems of units in physics
In physics there are several systems to measure physical quantities, among others:

• The SI-units (= standard international units). At former times that system
was called the MKS-system, because lengths are measured in meters (m),
masses are measured in kilogramms (kg) and times are measured in seconds
(s).

• The cgs-system, so called because the units are centimeters (cm), grams (g)
and seconds (s). It is still widely used in theoretical physics.

• To simplify complicated calculations in theoretical physics (e.g. in Einstein’s
theory of relativity) a system is used where the velocity of light is put to unity:

c = 1 (2)

That means that the second is discarded[
G
= fallenlassen] as a separate

unit and the unit of time is the time light needs to travel 1 cm, which is
approximately 30 ps = 30 picoseconds = 30 · 10−12s. Such an approach is
possible since according to Einstein’s relativity the velocity of light is unique
(in vacuum), i.e. it is always the same, regardless of the colour of the light, its
history, i.e. where it does come from or how it was generated.
The velocity of light can be different from its (unique) vacuum velocity, if it travels in a
medium (e.g. in glass) or when it travels in vacuum but if a medium is very nearby, i.e. light
travelling in an empty, but small cavity[G= Hohlraum].

• Atomic units. According to the principle of uniqueness of quantum sys-

tems atomic systems are unique (like the speed of light). E.g. a hydrogen[
G
=

Wasserstoff] atom (in its ground state[
G
= Grundzustand]) always has the

same mass, the same size, and its electron needs the same time orbiting[
G
=

umkreisen] one cycle[
G
= Umlauf]. Therefore, the hydrogen atom can be used

to measure masses, lengths and times. Taking these units, we adopt atomic
units in physics.
(For technical reasons other atoms than hydrogen are used.)
With atomic units all physical quantities are pure numbers, i.e. are

dimensionless[
G
= dimensionslos]

The unit of a physical quantity, i.e. m, can be viewed as a pure number depending
on the chosen system, so that

l = 3 m = 300 cm (1)

always gives the correct measure number of the rod.

E.g. when we use SI-units, we will have:

m = 1, cm = 0.01 (2)



7. Ex 4: , Large dimensioned quantities with a calculator 119

then l in (1) gives the correct measure number l = 3.

If, on the other hand, we use cgs-units, instead of (2) we will have

m = 100, cm=1 (2′)

and again (1) will give the correct measure number in the chosen system, namely
l = 300:

cm means: m means:

We use cm as units: 1 100
We use m as units: 0.01 1

Money is a natural number, but when considering several systems to count money,
it becomes a dimensioned quantity. E.g. your account M of money could be

M = 300 euro = 30′000 cent (3)

When using euro as units we have: euro=1, cent=0.01, and (3) gives correctly M =
300. When on the other hand we use cents to measure money, we will have: euro=100,
cent=1, and (3) will again give the correct answer: M = 30’000.

The same is true for measuring angles, e.g.

α =
3.14159

2
rad = 90◦ (4)

When using rad (radians) to measure angles, we have:

rad = 1, ◦ = π
180

When using degrees as the unit, we have:

rad = 180
π

, ◦ = 1;

rad means: ◦ means:

We use rad as units: 1 π/180
We use ◦ as units: 180/π 1

7.Ex 4: , Large dimensioned quantities with a calculator

The size of an H-atom (hydrogen atom[
G
= Wasserstoffatom]) can be estimated

by the Bohr radius rB given by

rB =
~2

me2
(1)

where 2π~ is Planck’s constant,

~ = 1.054 · 10−27 g cm2 sec−1 (g = gram) (2)
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m is the mass of an electron

m = 9.108 · 10−28 g (3)

and e is the electric charge of the electron (in gaussian electrostatic units)

e = 4.803 · 10−10 g
1
2 cm

3
2 sec−1 (4)

Using these values calculate rB and give the result in angstroms.

1Å = 10−10 m (5)

Hint: Manipulate dimensions and powers by hand and use a calculator for man-
tissa’s (e.g. for 0.4803) only.
Result:

rB = 0.5287 Å (6)

| (Solution:)

rB =
(1.054)2 10−54 g2 cm4 sec−2

9.108 · (4.803)2 10−20 10−28 g g cm3 sec−2 (7)(
1.054

4.803

)2
1

9.108
= 0.005287 (8)

10−54

10−2010−28
=

1048

1054
=

1

106
= 10−6 (9)

rB = 0.5287 · 10−2 · 10−6 · 10−2 m (10)

rB = 0.5287 Å (11)

7.Ex 5: Constant velocity
A tractor starts at time t = 3 sec on a straight line at position x = 2 m and stops

at t = 11.2 sec at position x = 82 m. It is also observed at two intermediate[
G
=

dazwischenliegend] points P1, P2 (see the following table).

Point t[sec] x[m]
P0 3 2
P1 6.2 35
P2 9.6 64
P 11.2 82

(1)

7.5. a) Take a sheet of millimeter squared paper and plot the positions of the tractor
according to the above table by choosing the following units (t = 1 sec =̂ 1 cm
on the horizontal axis, x = 1 m =̂1 mm on the vertical axis, left lower corner =̂
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origin i.e. (t = 0, x = 0)). Number the axes for seconds and meters and indicate the

chosen units in square brackets[
G
= eckige Klammern], e.g. [sec], as was done in

the table.
| (Solution:)
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Fig7.5. 1: Diagram showing position of tractor moving with constant velocity
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7.5. b) From the table calculate the distance travelled ∆x, the time travelled ∆t and

the corresponding average[
G
= Durchschnitt] velocity[

G
= Geschwindigkeit]

v̄ =
∆x

∆t
(2)

Give v̄ in the units cm sec−1, m sec−1 and mph (= miles per hour, 1 mile = 1609.34
m).
| (Solution:)

∆t = 11.2 sec - 3 sec = 8.2 sec (3)

∆x = 82 m - 2 m = 80 m (4)

v̄ =
∆x

∆t
=

80 m

8.2 sec
= 9.7561 m sec−1 = 976 cm sec

−1
(5)

1 hour = 1 h = 3600 sec (6)

1 sec =
1

3600
h (7)

1 mile = 1609.34 m (8)

1m =
1

1609.34
mile (9)

v̄ =
80 · 3600

1609.34 · 8.2
mph = 21.82 mph (10)

7.5. c) The tractor’s engineer asserts that the engine has moved with a constant ve-
locity v0. Decide graphically if the points P1, P2 support that assertion. Give two

possible explanations for the discrepancies[
G
= Abweichungen].

| (Solution:)
If the engineer’s assertion was correct P1 and P2 would lie on the straight line
through P0 and P ; this is not the case. Possible explanations are: 1) The tractor has
a constant velocity only approximately. 2) The points P0, P1, P2, P have only been
approximately measured.

7.5. d) Assuming that only the time measurement of P1 (and P2) are to blame, de-
termine graphically what the absolute error (∆t1) and the relative error (ε1) are in
the measurement of the time t1 of P1.
Result: ∆t1 = 0.2 sec, ε1 = 3%
| (Solution:)
From the above figure:

∆t1=̂ 2 mm, ∆t1=̂ 0.2 sec (11)

ε1 =
∆t1
t1

100% =
0.2 sec

6.4 sec
100% ≈ 3% (12)
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6.4 sec is the exact value for t1.

Rem: In most cases, errors (e.g. ε1) can be estimated only approximately
since the exact value (e.g. 6.4 sec) is not known. Therefore, it is also correct to
write 6.2 sec in the denominator of (12).

7.5. e) Assuming that points P0, P were correctly measured and that the velocity was
constant, find the equation for the function x(t).
Hint: Because of the constant velocity, x(t) has to be a linear function

x(t) = α + βt (13)

with constants α, β. Determine the constants α, β with help from the table. Subtract
the resulting equation to determine β.
Result:

α = −27.268 m, β = 9.7561 m sec−1 (14)

| (Solution:)
According to the table

P0 : x(3 sec) = α + β · 3 sec = 2 m (15)

P : x(11.2 sec) = α + β · 11.2 sec = 82 m (16)

Subtracting

β(11.2− 3) sec = 82 m− 2 m (17)

β =
80

8.2
m sec−1 = 9.7561 m sec−1 = v̄ (18)

α = 2 m− β · 3 sec = 2 m− 80 · 3
8.2

m = −27.268 m (19)

7.5. f) Check to see that each term in equation (13), i.e. x(t), α, βt has the same
dimension.
| (Solution:)

dimension of x(t) = [x(t)] = m = meter
[α] = m, [β] = m sec−1, [t] = sec, [βt] = m q.e.d.

(20)

7.5. g) Check to see that equation (13) can also be written as

x(t) = x0 + v0(t− t0) (21)
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with

v0 = v̄, (x0, t0) = P0 (22)

Make equation (21) plausible, i.e., derive it directly without the calculation in e).
| (Solution:)

v0 = β = v̄,
x0 − v0t0 = 2 m− 80

8.2
m sec−1 3 sec = −27.268 m = α q.e.d.

(23)

Equation (21) can be directly obtained: it is a linear function. For t = t0, x(t0) = x0

i.e. it goes through P0 and it has the correct velocity v0 = v̄.

7.5. h) Still assuming that the velocity v is constant but giving all points P0, P1, P2, P

equal credibility[
G
= Glaubwürdigkeit], draw a straight line by hand which best

fits all points, e.g. the dotted line in the above figure. Choose small increments

dx, dt and determine graphically the corresponding best guess[
G
= Vermutung] for

the velocity v = dx
dt

.
| (Solution:)

∆x =̂ 54.7 mm, ∆x = 54.7 m (24)

∆t =̂ 58 mm, ∆t = 5.8 sec (25)

v =
∆x

∆t
=

54.7

5.8
m sec−1 = 9.43 m sec−1 (26)

7.Ex 6: , Logarithmic scaling

7.6. a) Take a sheet of a half-logarithmic paper and let the center of the sheet be
the origin, i.e. the point t = 0, x = 1. The horizontal axis (for t) through the

origin should have linear scale[
G
= Skalierung = Maßstab], the vertical axis (for

x) through the origin should have logarithmic scale. On the t-axis attach the values

−8,−7, · · · ,−1, 0, 1, 2, · · · 7, 8 (1)

and on the x-axis attach the values

1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, (2)

1.5, 2.5, 15, 25, (3)

1

10
,

1

100
(4)

0.2, 0.3, 0.15 (5)

Hint: Use the numbering at the edge of the half-logarithmic paper.

7.6. b) For the function

x = x(t) = 10t (6)
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construct the points of its graph for

t = 0, 1, 2,−1,−2 (7)

and observe that you obtain a straight line.
| (Solution:)
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Fig7.6. 1: Position x of rocket 1 and rocket 2 (dotted line) at time t in a logarithmic scale for x

Note that this figure is scaled down by the factor 6/8, compared to a real half-logarithmic paper,
where the horizontal units are mm and cm, respectively; 8 units measure only 6 cm on the figure.
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7.6. c) Graphically and numerically (i.e. by using a calculator) determine x(0.5)
| (Solution:)
Graphically: see the dotted lines parallel to the axes of the figure: x(0.5) ≈ 3.0.
Numerically:

x(0.5) = 100.5 =
√

10 ≈ 3.1623 (8)

7.6. d) A rocket[
G
= Rakete] is at the position

x = x(t) = α10βt (α, β = const.) (9)

What are the dimensions of x, α and β?
Result:

[x] = m, [α] = m, [β] = sec−1 (10)

| (Solution:)
An exponent like βt (like any argument of a mathematical function) must be a pure
number. Since

[t] = sec ⇒ [β] = sec−1 (11)

Since 10βt is a pure number α must have the same dimension as x, i.e.

[x] = [α] = m (12)

7.6. e) For the special case α = 1 m, β = 1 sec−1 give the position of the rocket at
time t = 0 sec, 1 sec, 2 sec, -1 sec, -2 sec in the form of a table.
Result:

t[sec] x[m]
-2 0.01
-1 0.1
0 1
1 10
2 100

(13)

7.6. f) Insert the information from the table onto the half-logarithmic paper by chang-

ing the denotations[
G
= Bezeichnungen] of the axes to

t[sec] and x[m] (14)
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i.e. the numbering refers now to the units sec (for t) and m (for x).
Result: The same as the old graph for x = 10t.

7.6. g) Denote by ξ the (real geometrical) distance on the sheet along the x-axis and
by τ the (real geometrical) distance along the t-axis, the numbering on the sheet
corresponds to

ξ = 6.22 cm lg(1 m−1x) (15)

τ = 1 cm sec−1t (16)

Check this for t = 0, 1 sec, x = 1 m, 10 m.

Hint: We have here the additional problem, that the above figure is not a real
half-logarithmic sheet, but to make the latter fit as a figure onto a page of this
manuscript we have had it scaled down by a factor 6/8: On a real half-logarithmic
paper the larger horizontal units are 1 cm, but in the figure 8 such units measure
only 6 cm. So, what we measure on the figure must be multiplied by 8/6 to have a
result which would be measured on a real half-logarithmic paper.

Rem: Since only one axis has logarithmic scale, the sheet is called half-logarithmic.

7.6. h) A second rocket with the same law of motion (9) but with different values for

α and β is plotted[
G
= aufgemalt] as a dotted line in the above figure. Give the

motion of the rocket in terms of ξ and τ .

Hint: Use (1), (2), (9) and eliminate x and t, i.e. use only ξ and τ . Use the rule for
log of a product.
Result:

ξ = ξ(τ) = 6.22 cm lg(1 m−1α) + 6.22 sec βτ (17)

| (Solution:)

ξ = 6.22 cm lg(1 m−1α10βt) = (18)

= 6.22 cm lg(1 m−1α) + 6.22 cm lg 10βt (19)

First we calculate

lg 10βt = βt lg 10︸︷︷︸
1

= βt (20)

According to (2)

t = cm−1 sec τ (21)

Thus

lg 10βt = cm−1 sec βτ (22)
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and we obtain

ξ = 6.22 cm lg(1 m−1α) + 6.22 sec βτ (23)

This is what really is plotted on the half-logarithmic paper. The slope of the graph
of the rocket corresponds to

6.22 sec β =
∆ξ

∆τ
(24)

7.6. i) Graphically determine α and β for the dotted rocket.

Hint for α: Consider t = 0.
Hint for β: Use (24).
Results:

α = 0.13 m, β = 0.33 sec−1 (25)

| (Solution:)

t = 0 : x(0) = α10β·0 = α (26)

The dotted line intersects the x-axis at the value x(0) = α = 0.13 m.
The increments in the above figure on the dotted line are

dξ = 7.8 cm, dτ = 3.8 cm (27)

From (24) we obtain

β =
dξ

dτ

1

6.22
sec−1 =

7.8

3.8

1

6.22
sec−1 = 0.33 sec−1 (28)

7.Ex 7: , Periodic decimal as a quotient
Every decimal number which becomes periodic is a rational number, i.e. equal to

n

m
with n ∈ Z, m ∈ Z (1)

Prove that this is true for

x = 15.37181 · · · (2)

Hint 1: The above notation means x = 15.371818181 · · · .
Hint 2: Take 100x and subtract x from it.
Intermediate Result:

99x = 1521.81 (3)
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Result:

x =
152181

9900
(4)

| (Solution:)

100x = 1537.18181 · · ·
− x = −15.37181 · · ·

99x = 1521.810
(5)



8 Infinite sequences and infinite series

(Recommendations for lecturing: 1-8, for basic exercises: 9, 10, 11.)

8.T 1: Motivation for infinite sequences

The ancient[
G
= alt] Greeks had already known that

√
2 and π were irrational, i.e.

cannot be represented as a ratio n
m

of two integers.

Fig8.1. 1: The irrational
√

2 is important because it is the hypotenuse of the triangle (a). π is
important because it is the ratio of the area of a circle to its radius squared (b).

Since
√

2 and π are obviously important numbers (see Fig 1) one was forced to

consider infinite sequences[
G
= Folgen].

a0 = 1 b0 = 3
a1 = 1.4 b1 = 3.1
a2 = 1.41 b2 = 3.14
a3 = 1.414 b3 = 3.141
a4 = 1.4142 b4 = 3.1415
· · · · · ·

(1)

And eventually to write

lim
n→∞

an =
√

2 lim
n→∞

bn = π (2)

pronounced: ‘the limit[
G
= Grenzwert] of an [as n goes to ∞] is

√
2 ’.

We remind ourselves of how the members of a sequence, e.g. an, are constructed: a0 = 1
is obviously too small for

√
2, since 12 = 1 < 2, but a0 = 2 is too large, since 22 = 4 > 2. So we

take a0 = 1 since it is the largest integer which is still too small. For a1 we test 1.1, 1.2, 1.3, · · ·
1.9 and have to take a1 = 1.4 since (1.4)2 < 2 but (1.5)2 > 2, etc.

132
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Since their discovery by the ancient Greeks mankind[
G
= Menschheit] has had to

wait almost two millenniums[
G
= Jahrtausende] until infinite sequences and their

limits, including the irrational numbers, could be based on a solid mathematical
foundation. We cannot attempt to reproduce that theory here but will merely give
some examples so the reader will get some intuitive understanding of it.

In dealing with limits it is necessary (or convenient[
G
= bequem]) to introduce two

pseudo-numbers: ∞ and −∞ (infinity[
G
= unendlich] and minus infinity). They

are not ordinary[
G
= gewöhnlich] numbers since

a + x = a ⇒ x = 0 (3)

holds for an ordinary number, while for a =∞ we have

∞+ 1 =∞ (4)

However, many properties of ordinary numbers still hold for ±∞, such as the pos-
sibility of adding an ordinary number to it as we did in (4). However,

∞−∞ = ? (5)

has no (definite) meaning.

8.Q 2: Different notations for limits
What is the difference between

lim
n→∞

an =
√

2 (1)

lim an =
√

2 (2)

an −−−→
n→∞

√
2 (3)

an →
√

2 (4)

| (Solution:)
They are all synonymous. In (2) and (4) the n → ∞ is implied. The notation lim
has the advantage that it can occur in equations as an ordinary number.

8.Q 3: Definition of a limit
What does

lim
n→∞

an = a (1)

mean:
8.3. a) intuitively (i.e. in simple words)
| (Solution:)
The larger the n, the closer the member an comes to a.
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Rem: Thus, there can be at most one a fulfilling (1) for a given sequence an.

8.3. b) mathematically precise
| (Solution:)
For any number ε > 0 (typically you choose a very small ε but one which is still
positive) you can find an n0, depending on ε, i.e.

n0 = n0(ε) (2)

so that for all

n > n0 (3)

you have

|an − a| < ε (4)

Rem 1: This can be expressed in simpler language: For any ε > 0 only a finite

number of the an are outside the ε-environment[
G
= ε-Umgebung] (4) of a.

Rem 2: In mathematics the expression ‘almost all[
G
= fast alle]’ means ‘all ex-

cept a finite number of them’.
Using this terminology we can say:

limn→∞ an = a means:
For any ε > 0 almost all an are inside the

ε− environment of a.
(definition of a limit) (5)
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Fig8.3. 1: Convergence can best be visualized in the analogous case of convergence of an infinite
sequence of points an → a. For any ε > 0 (you can choose it as small as you want, but still
positive) the infinite rest of the tail of the snake is within the ε-environment around a, i.e. only
finitely many points are outside. For the larger ε = ε1 all points later than a32 are within, i.e.
no = 32. For the smaller ε = ε2 all points later than a48 are within, i.e. no = 48. Changing finitely
many points of the snake does not change its convergence to a. The snake cannot converge to two
different points a and b, as can be seen by choosing ε < |a− b|. When a subset of infinitely many
points converges to a (e.g. are at a) and the rest is an infinite subset converging to b 6= a (e.g. are
at b) then the snake does not converge, but has two accumulation points[G= Häufungspunkte].
Convergence is synonymous with having a single accumulation point.

8.3. c) For the decimal expansion of
√

2 (an →
√

2, see T1(1)) if you let ε = 1
100

what can n0 be?
| (Solution:)
n0 = 2
Since a3 = 1.414 it will differ at most by 0.001 < ε = 0.01 from

√
2; the same is true

for subsequent n’s.

8.Ex 4: Simple examples of limits
Find the limit of the following sequences.
8.4. a)

an =
1

n
(1)

| (Solution:)

lim an = lim
n→∞

1

n
= 0 (convergent) (2)

Rem: This sequence is monotone decreasing[
G
= monoton fallend].



136 8. Infinite sequences and infinite series

8.4. b)

an = (−1)n 1

n
, i.e. a1 = −1, a2 =

1

2
, a3 = −1

3
, · · · (3)

Rem 1: This sequence is alternating[
G
= alternierend].

Rem 2: A sequence with limit 0 is also called a null sequence[
G
= Nullfolge].

| (Solution:)

lim
n→∞

[
(−1)n 1

n

]
= 0 (convergent) (4)

8.4. c)

an = n (5)

| (Solution:)

lim
n→∞

n =∞ (definitely divergent) (6)

Rem: Definitely divergent, e.g.

lim
n→∞

an = +∞

(i.e. definitely divergent to +∞, not to −∞ in this case) means:
For any M , as large as we wish, we can find an no = no(M),
(i.e. no may and will depend on M) so that an > M for all n > no.

In a picturesque[
G
= bildlich] way, we can say: an comes closer and closer to

+∞.

8.4. d)

an = −n (7)

| (Solution:)

lim
n→∞

(−n) = −∞ (definitely divergent) (8)

8.4. e)

an = 10n (9)
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| (Solution:)

lim
n→∞

10n =∞ (definitely divergent) (10)

8.4. f)

an = (−1)n, i.e., a0 = 1, a1 = −1, a2 = +1, · · · (11)

| (Solution:)
limn→∞(−1)n does not exist, i.e. limn→∞(−1)n is a meaningless expression. Any
equation in which it occurs is wrong. (divergent)
Rem: The sequence has two accumulation points ±1.

8.4. g)

an = 7 ( for all n) (12)

| (Solution:)

lim
n→∞

an = 7 (convergent) (13)

8.Q 5: Convergence and divergence
In a sequence an what does convergent, divergent or definitely divergent mean?
| (Solution:)
1) divergent: the limit limn→∞ an does not exist, i.e. limn→∞ an is a meaningless
expression (including the case ±∞).
2) definitely divergent: limn→∞ an = ±∞
3) convergent: there exists a number a such that an

n→∞−→ a, i.e. limn→∞ an = a and
a 6= ±∞.

8.Ex 6: Insignificant changes in sequences

8.6. a) When you change a finite number of the members in an infinite sequence how

does this affect[
G
= beeinflussen] its limit? E.g. define

c0 = 0
c1 = 1
c2 = 2
c3 = 3
c4 = 4
c5 = 5
c6 = a6 = 1.414213
c7 = a7 = 1.4142136

...

(1)
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where an is the decimal expansion of
√

2 (an →
√

2) is it still true that

cn →
√

2 (2)

(though, from looking at its first members c0, c1, c2, c3, c4, c5, which tend away from√
2, it would appear that cn does not approach

√
2).

| (Solution:)
Yes.
Changing a finite number of its members does not change its limit since the wording
‘an comes closer to the number a’ does not imply that this must be monotonous.
When you change a finite number of its members, from a definite index N on (N = 5
in our example, i.e. for all n > N) the sequence is unchanged. Only the behaviour
of the sequence for n → ∞ is important for the limit and this means that only
sufficiently large n’s matter.
( In the precise definition always choose n0 > N .)

8.6. b) Interchanging[
G
= austauschen] the members of a sequence by pairs, e.g.

c0 = a1 = 1.4
c1 = a0 = 1
c2 = a3 = 1.414
c3 = a2 = 1.41
c4 = a5 = 1.41421
· · · · · ·

(3)

do we still have

cn →
√

2 (4)

| (Solution:)

Yes. The approach[
G
= Annäherung] of cn → c =

√
2 is not monotonic, so it is

probably slower than with an, but for sufficiently large n, cn is as near to c as we
want.

8.Ex 7: Infinite sums as infinite sequences of its partial sums
We have defined the exponential function by the infinite sum

ex =
∞∑

n=0

1

n!
xn (1)

Re-express the infinite sum with an infinite sequence and re-express (1) with the
limit of an infinite sequence.

Rem: Instead of infinite sum, the term infinite series[
G
= Reihe] is used.

| (Solution:)

An infinite sum is the infinite sequence of its partial sums

an =
n∑

m=0

1

m!
xm (2)
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[In (1) it does not matter which letter is denoted in the summation index. So (1)
can also be written as

ex =
∞∑

m=0

1

m!
xm (1′)

as we have done in (2) since the letter n is already used for the general member of
the sequence.]

ex = lim
n→∞

an = lim
n→∞

n∑
m=0

1

m!
xm (3)

8.Q 8: Composite infinite sequences
What are the rules for the limits of sequences obtained by termwise addition,
multiplication and division of sequences?
| (Solution:)

lim
n→∞

an = a, lim
n→∞

bn = b ⇒ (1)

lim
n→∞

(an + bn) = a + b (2)

lim
n→∞

(an bn) = a · b (3)

lim
n→∞

an

bn

=
a

b
( if bn 6= 0, b 6= 0) (4)

8.Ex 9: , Limits of infinite sequences
Calculate the limits of the following infinite sequences.
8.9. a)

an = 1 +
1

n2
, n = 1, 2, · · · (1)

| (Solution:)

lim
n→∞

(1 +
1

n2
) = lim

n→∞
1 + lim

n→∞

1

n2
= 1 + 0 = 1 (2)

8.9. b)

an =
n + 1

n
(3)

| (Solution:)

an =
n + 1

n
= 1 +

1

n
, lim

n→∞
(
n + 1

n
) = 1 (4)
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8.9. c)

an = 2n (5)

| (Solution:)

lim
n→∞

2n =∞ (6)

8.9. d)

an =
1

2
(1 + (−1)n), i.e (7)

(an) = (1, 0, 1, 0, · · · ) (8)

| (Solution:)
The sequence is divergent, i.e. limn→∞ an does not exist.

8.9. e)

(an) = (2, 2.1, 2.01, 2.001, 2.0001, 2.00001, · · · ) (9)

| (Solution:)

lim
n→∞

an = 2 (10)

8.9. f)

(an) = (1.9, 1.99, 1.999, 1.9999, 1.99999, · · · ) (11)

| (Solution:)

lim
n→∞

an = 2 (12)

8.9. g)

(an) = (0.3, 0.33, 0.333, 0.3333, 0.33333, · · · ) (13)

Hint: Consider the sequence

bn = 3an (14)
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| (Solution:)

(bn) = (0.9, 0.99, 0.999, 0.9999, 0.99999, · · · ) (15)

lim bn = 1 = 3 · lim an (16)

Thus,

lim an =
1

3
(17)

8.Ex 10: , Limits of infinite sums
Calculate the following infinite sums
8.10. a)

∞∑
n=0

1

n!
(1)

Hint: What is the series for e1 = e?
| (Solution:)

e = e1 =
∞∑

n=0

1

n!
1n =

∞∑
n=0

1

n!
(1)

8.10. b)

∞∑
n=0

an10−n (3)

where an are the decimal digits of π, i.e.

(an) = (3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, · · · ) (4)

Result: π

8.10. c)

∞∑
k=0

xk = 1 + x + x2 + x3 + · · · (5)

Hint: Consider the sequence an of its partial sums and also consider the sequence
bn = xan and cn = an − bn = (1− x)an
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Result:∑∞
n=0 xn = 1 + x + x2 + x3 + · · · = 1

1−x
(geometric series)

(convergent for |x| < 1)
(6)

Rem: It will not be proved here, however, the restriction |x| < 1 in (6) is necessary
since otherwise the geometric series is not convergent, i.e. the infinite sum on the
left-hand side is meaningless.
| (Solution:)

a0 = 1
b0 = x
c0 = 1− x

a1 = 1 + x
b1 = x + x2

c1 = 1− x2

a2 = 1 + x + x2

b2 = x + x2 + x3

c2 = 1− x3

a3 = 1 + x + x2 + x3

b3 = x + x2 + x3 + x4

c3 = 1− x4

· · ·

(7)

cn = 1− xn+1 (8)

lim cn = 1 = (1− x) lim an (9)

lim an =
1

1− x
(10)

8.10. d)

∞∑
n=0

n (11)

Result: ∞, definitely divergent

8.10. e)

∞∑
n=0

1 (12)



8. Ex 11: , Limits of composite sequences and series 143

Result: ∞, definitely divergent

8.10. f)

∞∑
n=0

an with an = (−1)n (13)

Result: divergent
| (Solution:)
The partial sums are

1, 1− 1 = 0, 1− 1 + 1 = 1, 0, 1, 0, 1 · · · (14)

i.e. they are divergent since the members approach neither 0 nor 1.

8.Ex 11: , Limits of composite sequences and series

8.11. a) In a formulary the following limit can be found

lim
n→∞

(1 +
1

n
)n = e (1)

Calculate the limit of

an =
n

n + 2
(1 +

1

n
)n (2)

Hint: Write

an =
(1 + 1

n
)n

n+2
n

(3)

and apply the rules for the limit of a composite sequence.
Result:

lim
n→∞

an = e (4)

| (Solution:)

(1 +
1

n
)n → e (5)

n + 2

n
= 1 +

2

n
→ 1 (6)

Thus,

an → 1 · e = e (7)
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8.11. b) In a formulary the following can be found

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · · =

∞∑
n=1

1

n2
=

π2

6
(8)

Calculate

lim
n→∞

[
(1 +

1

n
)n

n∑
m=1

1

m2

]
(9)

Result:

eπ2

6
(10)

| (Solution:)

an = (1 +
1

n
)n → e (11)

bn =
n∑

m=1

1

m2
→ π2

6
(12)

since these are the partial sums of (8). Thus by the rule for the limit of a composite
sequence

anbn → e · π
2

6
(13)



9 Continuity and limits of functions

(Recommendations for lecturing: 1-3, for basic exercises: 4, 5, 6.)

9.Q 1: Continuous functions

9.1. a) What does it mean that a function f(x) is continuous[
G
= stetig] at x = x0?

Give your answer intuitively (i.e. in simple words) together with the graph of two
functions, one which is continuous at x = x0 and one which is not.
| (Solution:)
Continuous means that the function does not make a jump at x = x0.

Fig9.1. 1: Example of a continuous function (a) and of a discontinuous function (b) at x = x0.

9.1. b) What does it mean that f(x) is continuous, or is continuous in an interval
(a, b)? Give examples in terms of fig 1.
| (Solution:)
It means that f(x) is continuous for all x = x0 ∈ (a, b). The function f(x) is
‘continuous’ means that it is continuous everywhere for all x = x0 ∈ D, where
D is the domain (i.e. the range of definition) of the function. f(x) of fig. 1b is

discontinuous[
G
= unstetig] at x = x0 but continuous at all other points, e.g. in

the interval (a, b).

9.1. c) Give the definition of ‘continuous at x = x0’ in a precise mathematical form
and explain it with the help of fig. 2. Is it possible for (b), with a suitable re-definition
of f(x0), to make f(x) continuous at x = x0?

145
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Fig9.1. 2: f(x) in (a) is continuous at x = xo, since each series an → x0 implies f(an)→ f(x0).
f(x) in (b) is discontinuous at x = xo, since an → x0 and bn → x0 but lim f(an) 6= lim f(bn).

| (Solution:)
Mathematical definition of continuity:

The function f(x) is continuous at x = x0 (x0 ∈ D) iff for each series
an → x0 (an ∈ D) =⇒ f(an)→ f(x0)

(1)

We have used the abbreviation iff = if and only if[
G
= dann und nur dann =

genau dann] also symbolized as ⇐⇒.

(1) can be expressed in words like that:
In whatever way you approach to x0 (i.e. by selecting a series an → x0) the corre-
sponding function values (i.e. the f(an)) will approach the function value (i.e. f(x0))
which was already defined there (i.e. f(an)→ f(x0)).

(1) is obvious for fig. 2(a). From fig. 2(b) it is not clear what f(x0) is. However, since

lim f(an) = y1 6= lim f(bn) = y2 (2)

(1) cannot be valid for whatever definition of the function f(x) at x = x0.

Rem 1: For the series cn, mixing infinitely many members of an and infinitely
many members of bn, we have cn → x0 but lim f(cn) does not exist, so (1) cannot
be valid.

Rem 2:For x0 6∈ D the concept of continuity is meaningless, i.e. the function is
there neither continuous nor discontinuous.
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9.1. d) What is the θ-function (switching-function[
G
= Einschaltfunktion]).

Give your answer in terms of a graph and formulas.
| (Solution:)

θ(x) =

{
0 for x < 0
1 for x > 0

(3)

Fig9.1. 3: The θ-function is discontinuous at x = 0. For x = t = time it is the prototype of a
switching-on process. It is continuous everywhere except at x = 0.

Rem 1: θ(x) is discontinuous for whatever definition we choose for θ(0). There are
at least three versions for the definition of θ(x):

θ(0) = 0, θ(0) = 1, θ(0) =
1

2
(4)

Rem 2: However, we have a further option, namely to consider θ(0) undefined.
Then the domain of definition of the θ-function is D = R − {0}. In this case a
pure mathematician would say, the θ-function were continuous everywhere, because
‘everywhere’ means ‘everywhere in its domain of definition’. However, that way of
speaking is counter-intuitive.

To be undefined is an even more serious blemish[
G
= Makel]than being discontin-

uous. Most functions in physics, being given by physical experiments, are defined
everywhere.

Rem 3: A similar situation holds for the tangent-function. In pure mathematical
terminology, the tangent function is continuous everywhere, because tan(π/2) is un-
defined, so the question of continuity does not arise there. A physicist, however,
would say the tangent-function is discontinuous at x = π/2, because whatever def-
inition he adopts for tan(π/2) [ finite, +∞ or −∞ ] the function is discontinuous
there.
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Rem 4: Almost all discontinuous functions used in physics can be built with the
help of θ(x) as the only discontinuous function.

Rem 5: All discontinuous functions discussed so far are of a trivial type, called

piecewise continuous[
G
= stückweise stetig], i.e. they are discontinuous only

at a finite number of points but continuous in the intervals in between.

Rem 6: The following function is more seriously discontinuous, namely discontinuous
everywhere:

f(x) =

{
0 for x = rational
1 for x = irrational

9.1. e) Classify your known functions according to continuity or discontinuity. Give
only a rough answer.
| (Solution:)
Almost all well-known functions given analytically, i.e. as formulas or as (convergent)
power series, e.g. xn, sin x, cos x, ex, ln x and their composite functions e.g.

f(x) = ex sin x + x3 cos x (5)

are continuous everywhere, except where a denominator becomes zero. To ob-

tain other discontinuous functions one has to formulate an explicit distinction[
G
=

Fallunterscheidung] as was done in (3).

9.Q 2: Limit of a function

9.2. a) What is the meaning of

lim
x→x0

f(x) (1)

lim
x→x0+

f(x) (also called limit from the right[
G
= rechtsseitiger Limes])

(2)

lim
x→x0−

f(x) (also called limit from the left[
G
= linksseitiger Limes]) (3)

| (Solution:)
1) (1) means that for each2sequence an → x0 limn→∞ f(an) exists and is the
same, i.e. is independent of the particular choice of an an which goes to x0.

E.g. if we have a different sequence bn → x0 we will have also limn→∞ f(bn) =
limn→∞ f(an).

2an ∈ D
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limx→x0 f(x) is this common limit (common for all possible an → x0).

2) (2) is the same but only for series an → x0 with the additional condition

an > x0 (4)

3) (3) is the same with the additional condition

an < x0 (5)

9.Q 3: Continuity expressed by limits of functions

9.3. a) Re-express continuity with limx→x0 f(x)
| (Solution:)

f(x) continuous at x = x0 ⇐⇒ lim
x→x0

f(x) = f(x0) (1)

In words: the functionf(x) is continuous at x = x0 iff its limit for x→ x0 exists and
is equal to the functional value f(x0).

Rem:Take a function continuous at x0 and change its definition f(x0), then

lim
x→x0

f(x)

exists, but the function is discontinuous at x0.

9.3. b) Re-express continuity with limx→x0±0
.

| (Solution:)

f(x) continuous at x = x0 ⇐⇒ lim
x→x0+

f(x) = lim
x→x0−

f(x) = f(x0) (2)

In words: a function f(x) is continuous iff the left side limit and the right side limit
both exist and are equal to the functional value.

9.3. c) Calculate

lim
x→0±

θ(x) (3)

| (Solution:)

lim
x→0+

θ(x) = 1 (4)

lim
x→0−

θ(x) = 0 (5)
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9.Ex 4: , Limits of series built from continuous functions
Calculate the limits of the following series (n→∞).
9.4. a)

an = sin

(
1

n

)
(1)

Hint: sin is a continuous function.
Result: an → 0
| (Solution:)
1
n
→ 0, since sin is continuous

sin

(
1

n

)
→ sin 0 = 0 (2)

9.4. b)

an = esin( 1
n

) (3)

Hint:

f(x) = esin(x) is a continuous function (4)

Result:

an → 1 (5)

| (Solution:)

an → esin 0 = e0 = 1 (6)

9.4. c)

an = ln
n∑

m=0

xm for |x| < 1 (7)

Hint: ln is a continuous function. Its argument is a partial sum of the geometric
series.
Result:

an → ln
1

1− x
(8)
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| (Solution:)

n∑
m=0

xm n→∞−→ 1

1− x
(sum of the geometric series) (9)

Since ln is continuous

lim
n→∞

ln
n∑

m=0

xm = ln
∞∑

m=0

xm = ln
1

1− x
(10)

9.Ex 5: Removable singularities
Consider the function

y = f(x) =
x

x
(1)

9.5. a) What is its domain D?
| (Solution:)
Domain D means its range of definition. Since division by zero is undefined, we have

D = R− {0} = R∗, i.e. all x 6= 0. (2)

9.5. b) Is this function continuous at x = 0?
Result: no.
| (Solution:)
Since the function is not defined at x = x0 = 0 it cannot be continuous at x = x0.

9.5. c) Extending the domain of f by the definition

f(0) = 5 (3)

is f continuous now? Why or why not?
| (Solution:)
For the series an = 1

n
6= 0, an → 0, we have

f(an) =
an

an

= 1→ 1 6= 5 (4)

Therefore f is still discontinuous.

9.5. d) Redefine f at x = 0 so that f becomes continuous at x = x0 = 0
Result:

f(0) = 1 (5)
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Rem: We say that x = 0 was a removable singularity[
G
= hebbare

Singularität]3, of the function (1) at x = 0. The discontinuity could be

remedied[
G
= geheilt] by the additional definition (5).

9.Ex 6: , Limits of functions
Calculate the following limits of functions.
9.6. a)

lim
x→π

2

sin x (1)

Hint: sin x is continuous.
Result: = 1
| (Solution:)
Because of continuity

lim
x→π

2

sin x = sin
π

2
= 1 (2)

9.6. b)

lim
x→π

2 +

sin x (3)

Result: = 1
| (Solution:)
Since the limit exists, the left sided and right sided limits also exist and are equal.

9.6. e)

lim
x→0

x

x
(4)

Result: 1
| (Solution:)
In the limit of a function x→ x0 it is implied that x ∈ D, i.e. x 6= 0. We can then
divide by x and obtain

lim
x→0

x

x
= lim

x→0
1 = 1 (5)

9.6. f)

lim
x→0+

1

x
(6)

3A discontinuity is an example of a singularity[G= Singularität].
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Result: =∞

9.6. g)

lim
x→0−

1

x
(7)

Result: = −∞

9.6. h)

lim
x→0

1

x
(8)

Result: The limit does not exist, i.e. (8) is a meaningless expression.
| (Solution:)
Since the left and right side limits are not equal, the limit per se cannot exist.

9.6. i)

lim
x→0

x2 + x

3x2 + 2x
(9)

Hint: cancel[
G
= Bruch kürzen] the x’s.

Result: 1
2

| (Solution:)
The domain D of x2+x

3x2+2x
contains all x different from the zeroes of the denominator

(x 6= 0, x 6= −2/3).
Thus x→ 0 implies x 6= 0 and we can divide the function by x. Thus,

lim
x→0

x2 + x

3x2 + 2x
= lim

x→0

x + 1

3x + 2
♣
=

1

2
(10)

♣ Since f(x) = x+1
3x+2

is continuous at x = 0, the limit is f(0) = 1
2
.

9.6. j)

lim
∆x→0

(∆x)2 +4x

3(∆x)2 + 24 x
(11)

Hint: 4x is just another name for a variable, such as x, ϕ, α, etc. So this exercise
is the same as (9).
Result: 1

2



10 Differential and differentiation

(Recommendations for lecturing: 1-4, 10, 11, 14-15, for basic exercises: 5, 8, 9, 12.)

10.Q 1: Tangent, derivative, differential

Fig10.1. 1: In the case of the parabola (y = x2) we see the increment ∆y of the function value y

while x increments from x0 to x0 + ∆x.
Isaac Newton (1643-1727) .

10.1. a) Give the coordinates of P0. (In the following we consider P0 as constant.)
| (Solution:)

P0 = (x0, y0) y0 = x2
0 (1)

10.1. b) The variable point P is imagined to have arisen from P0 by a displacement[
G
=

Verschiebung, Verrückung] along the parabola, whereby its coordinates have re-

ceived the increments[
G
= Zuwächse] ∆x, ∆y.

Rem: It is usual to denote increments of a variable by prefixing it with ∆.

Give the coordinates of P expressed by ∆x, ∆y.
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| (Solution:)

P = (x0 + ∆x, y0 + ∆y) (2)

10.1. c) We call ∆x the independent increment, because x is the independent
variable, and because both x and ∆x can be chosen freely. ∆y is then fixed, because
the point P must move along the parabola. Therefore, we call ∆y the dependent
increment.

Calculate the dependent increment ∆y, expressed by the independent increment
∆x.
| (Solution:)

y0 + ∆y = y = x2 = (x0 + ∆x)2 = x2
0 + 2x0(∆x) + (∆x)2 (3)

Because of y0 = x2
0

∆y = 2x0(∆x) + (∆x)2 (4)

10.1. d) Calculate the difference quotient[
G
= Differenzenquotient]

∆y

∆x
(5)

Rem: Here ‘difference’ is synonymous with ‘increment’. Thus instead of ‘difference
quotient’ the term ‘increment quotient’, though rarely used, would be more appro-
priate.

The straight line[
G
= Gerade] through P0, P is called a secant. What is the

geometrical meaning of the difference quotient for the secant?
Give a formula for α.
| (Solution:)

∆y

∆x
= 2x0 + ∆x = tan α (6)

Hint: Note that both angles α in fig 1 are equal.

The difference quotient of a straight line (i.e. tan α) is called the gradient[
G
=

Steigung] or slope[
G
= Steigung] of the straight line.

10.1. e) In the limit ∆x → 0 the secant becomes the tangent[
G
= Tangente] (lat.

tangere = to touch) to the point P0. Give the slope of the tangent.

Rem 1: The English word ‘tangent’ has two different meanings:
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• tangent[
G
= Tangente] = limit of a secant

• tangent[
G
= Tangens] = tan = sin / cos

Rem 2: Since the tangent is the limit of a secant, intersecting the curve in two

points coming closer and closer together, one can express in a picturesque[
G
=

bildlich] way: ‘the tangent intersects the curve in two infinitely neighbouring
points’.
However, such a phrasing is mathematically incorrect, because there is not such a
thing as ‘two infinitely neighbouring points’: Two points either coincide (i.e. are
identical) or they have a finite distance.
| (Solution:)

∆x→ 0 ⇒ ∆y

∆x
→ 2x0 = tan α (7)

10.1. f) The slope of the tangent is called the derivative and is denoted by y′. Give
the derivative of the function y = x2.
| (Solution:)
x0 7→ x (re-denoting x0 by x)

y′ = 2x (8)

10.1. g) The increment ∆y = 2x0(∆x) + (∆x)2 is a sum of two terms (= summands).
The first term is of first order in ∆x because it contains ∆x as a factor only once.
The second term is of second order because it containes the factor ∆x twice.

A differential (denoted by d instead of ∆) is an increment calculated approximately
keeping only terms of lowest order. Calculate dx and dy and show that the derivative
is the differential quotient

y′ =
dy

dx
derivative = differential quotient (9)

| (Solution:)
dx = ∆x, dy = 2x0∆x (neglecting (∆x)2 in (4))
(re-denoting x0 by x)

dy

dx
= 2x0 = y′ (10)

10.1. h) What’s the geometrical meaning of the differential dy?
| (Solution:)



10. Ex 2: - A second example 157

The differential dy is the dependent increment ∆y, when the curve is replaced (ap-
proximated) by its tangent.

Rem 1: The differential is the tangential mapping[
G
= Tangentialabbildung],

i.e. the equation for the tangent. Short: The differential is the tangent (instead of
the function).

Rem 2: Though we have introduced the differential as an approximation of the
increment, this should not lead to the erroneous conclusion that the differential itself
is an inexact quantity or that differential calculus is an approximative method only.
The differential is the exact equation for the tangent, but it is only an approximation
for the secant.

10.Ex 2: - A second example
Given the function

y = x3 (Graph: cubic parabola) (1)

10.2. a) Starting from an arbitrary point (x, y) consider a displaced point
(x + ∆x, y + ∆y) on the curve. Calculate the increment ∆y and the differ-
ence quotient ∆y/∆x.
| (Solution:)

y + ∆y = x3 + ∆y = (2)

= (x + ∆x)3 = (x + ∆x)(x2 + 2x(∆x) + (∆x)2) =

= x3 + 2x2∆x + x(∆x)2 + x2∆x + 2x(∆x)2 + (∆x)3

∆y = 3x2∆x + 3x(∆x)2 + (∆x)3 (3)

∆y

∆x
= 3x2 + 3x∆x + (∆x)2 (4)

10.2. b) Calculate the differential dx, dy, the differential quotient dy
dx

and the derivative
y′.
| (Solution:)

dx = ∆x, dy = 3x2∆x = 3x2dx (5)

y′ =
dy

dx
= 3x2 (6)

10.2. c) Show that the limit of the difference quotient (∆x → 0) is the differential
quotient.
| (Solution:)

(4) ⇒ lim
∆x→0

∆y

∆x
= 3x2 = y′ (7)



158 10. Differential and differentiation

Rem: When the independent variable x is time t and the dependent variable y = f(t)
is the position of a particle at time t, then the difference quotient

∆y

∆t
= υ (8)

is the average velocity υ of the particle in the time interval t . . . t + ∆t.
The differential quotient

ẏ =
dy

dt
= υ(t) (9)

is the instantaneous velocity[
G
= Momentangeschwindigkeit] at time t.

Note that in physics derivatives with respect to time t are denoted by a dot ( ˙ )
instead of a prime ( ′ ).

10.Q 3: Derivatives of elementary functions
Give the derivatives of the following functions

10.3. a) y = a (a = const)
| (Solution:)

a′ = 0 The derivative of a constant is zero (1)

10.3. b) y = xa (a = const)
| (Solution:)

(xa)′ = axa−1 (a = const) (power rule[
G
= Potenzregel]) (2)

Rem 1: For a = 2 the power rule was derived in Q1.

10.3. c) y = sin x
| (Solution:)

(sin x)′ = cos x (3)

10.3. d) y = cos x
| (Solution:)

(cos x)′ = − sin x (4)
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10.3. e) y = ex

| (Solution:)

(ex)′ = ex (5)

The (natural) exponential function is its own derivative.
Rem 2: This fact is the main reason why the exponential function with Euler’s
number e as the base is called natural.

10.3. f) y = ln x
| (Solution:)

(ln x)′ =
1

x
(6)

10.Q 4: Derivatives of composite functions
Given two functions f(x), g(x) and the constant a. Give the derivative of

10.4. a) y(x) = f(x)± g(x)
| (Solution:)

(f ± g)′ = f ′ ± g′

The derivative of a sum is the sum of the derivatives
(1)

10.4. b) y(x) = af(x) (a = const)
| (Solution:)

(af)′ = af ′ (a = const) (2)

A constant a can be pulled before the derivative.

10.4. c) y(x) = f(x)g(x)
| (Solution:)

(fg)′ = fg′ + f ′g (Leibniz’s product rule) (3)



160 10. Differential and differentiation

Fig10.4. 1: We apply Leibniz’s product rule for A = f(x)g(x) with f(x) = g(x) = id(x) = x and
obtain dA

dx = xdx
dx + dx

dxx = 2x (also according to the power rule), i.e. dA = 2xdx which is the gray
area. (dx)2 ≡ dx2 (occurring in the exact increment ∆A) can be neglected as a second order term,
since dA is a (first order) differential.
(In chapter 18, we will deal will double integrals and second order differentials, e.g. area elements
d2A = dx dy, very often also denoted by dA = dx dy. They look like the black rectangle and must
not be neglected, because in second order differentials only third order contributions or higher
could be neglected.)
Gottfried von Leibniz (1646-1716)

10.4. d) y(x) = f(x)
g(x)

| (Solution:)

(
f

g

)′
=

gf ′ − fg′

g2
(quotient rule) (4)

Rem: The quotient rule (4) should not be learnt by hard in a lexical way, but
instead procedurally, e.g. by doing the derivative of y = tan x, see Ex. 9b.

10.4. e) y(x) = f(g(x)) (or y = f ◦ g in a shorthand mathematical notation.)
| (Solution:)

y′(x) = f ′(g(x)) g′(x) (chain rule) (5)

or short:

y′ = f ′ g′ (chain rule) (6)
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The derivative of a composite function
is the product of the derivatives

of the composing functions

10.4. f) Apply e) for f(x) = ex, g(x) = ax, a =const.
| (Solution:)
The composite function is

y(x) = eax (7)

y′ =
dy

dx
= eaxa (8)

10.Ex 5: , Derivative for a very simple case
Calculate the derivative y′(x) of the function y(x) = 3 + 2x using the rules for
derivatives.
Result:

y′(x) = 2 (1)

| (Solution:)
We use the following rules:
derivative of a sum = sum of derivatives
derivative of a constant (3) is zero
a constant factor (2) can be pulled before the derivative.
Derivative of x = x1 is

1x1−1 = x0 = 1, i.e. x′ = 1 (2)

Therefore:

y′(x) = (3 + 2x)′ = 3′ + (2x)′ = 0 + 2x′ = 2 · 1 = 2 (3)

10.Ex 6: Differential quotient for a linear function
Consider the function

y = −6 + 2x (1)

10.6. a) Sketch it and describe its graph geometrically.
| (Solution:)
See the following figure.
The graph is a straight line.
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10.6. b) Why is y(x) called a linear function?
| (Solution:)
In old fashioned terminology ‘line’ means straight line.

10.6. c) At x = 7 on the x-axis draw the increment ∆x = 2, and on the y-axis the
corresponding dependent increment ∆y.

10.6. d) For an arbitrary independent increment (starting at x) and having length4

∆x, calculate analytically5 beginning with y and ending with y + ∆y and ∆y itself
of the corresponding dependent increment ∆y.
Partial result:

∆y = 2∆x (2)

| (Solution:)

y = −6 + 2x (3)

y + ∆y = −6 + 2(x + ∆x) = −6 + 2x + 2∆x = y + 2∆x (4)

∆y = 2∆x (5)

4In c) we had x = 7,∆x = 2
5i.e. with the formula y = −6 + 2x and without the figure.
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Fig10.6. 1: Graphical representation of the linear function y = −6 + 2x

and its differential quotient ∆y/∆x.

10.6. e) In fig.1 prove α = β.
Hint: Use the following theorem of plane geometry: a straight line intersects two
parallel lines at the same angle.
| (Solution:)
The graph of y = −6 + 2x is the straight line, the x-axis is one of the parallel lines.

10.6. f) Calculate the slope of the line.
Hint: The slope is tan α.
Result:

∆y/∆x = 2 (6)

| (Solution:)

tan α = tan β =
∆y

∆x
= 2 (7)

10.6. g) With a calculator calculate α (i.e. the angle between the x-axis and the line).
Result:

α = 63.43◦ (8)
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| (Solution:)

tan α = 2, α = 63.43◦ (9)

10.6. h) The variable ∆x is a small quantity of first order (∆x � 1), calculate the
increments ∆y and ∆x in first order approximation. (For emphasis we have a formula
in first order approximation, use dy and dx instead of ∆y and ∆x and call the
increments differentials.)
Result:

dy = 2dx (10)

| (Solution:)
Both ∆x and ∆y have only first order contributions in ∆x, therefore the first ap-
proximation is identical to the exact result (5). ∆x = dx, ∆y = dy. Thus (5) reads

dy = 2dx (11)

10.6. i) Calculate the differential quotient dy
dx

and verify that it is equal to the slope
and to the derivative of the function y = −6 + 2x.
| (Solution:)

dy

dx
=

2dx

dx
= 2 (12)

10.Ex 7: Derivative of the exponential function
Consider

y(x) = ex (natural exponential function) (1)

10.7. a) Calculate the increment ∆y.
Hint:

∆y = y(x + ∆x)− y(x) (2)

Result:

∆y = ex(e∆x − 1) (3)

| (Solution:)

∆y = ex+∆x − ex = exe∆x − ex = ex(e∆x − 1) (4)
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10.7. b) Calculate the corresponding differential.
Hint: dy is ∆y in linear approximation in ∆x. Use the power series for e∆x.
Result:

dy = exdx (5)

| (Solution:)

∆y = ex(1 + ∆x +
1

2
(∆x)2 + · · · − 1) = ex(∆x +

1

2
(∆x)2 + · · · ) (6)

In linear approximation (∆x ≡ dx)

dy = exdx (7)

10.7. c) Calculate the differential quotient and verify that the derivative of the natural
exponential function is identical to itself: (ex)′ = ex.
| (Solution:)

y′
def
=

dy

dx
= ex q.e.d. (8)

10.7. d) Prove (ex)′ = ex again by using the power series of ex and by assuming the
derivative of the infinite sum is the infinite sum of the derivatives of the individual
terms.
| (Solution:)

(ex)′ = (1 + x + 1
2!
x2 + 1

3!
x3 + 1

4!
x4 + · · · )′

= x′ + 1
2!
(x2)′ + 1

3!
(x3)′ + 1

4!
(x4)′ + · · ·

= 1 + 1
2!
2x + 1

3!
3x2 + 1

4!
4x3 + · · ·

= 1 + x + 1
2!
x2 + 1

3!
x3 + · · ·

= ex

(9)

10.Ex 8: , The product rule
Calculate the derivative of

y(x) = x2 sin x (1)

Hint: Use Leibniz’s product rule.
Result:

y′(x) = x2 cos x + 2x sin x (2)
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| (Solution:)

y′(x) = x2(sin x)′ + (x2)′ sin x = x2 cos x + 2x sin x (3)

10.Ex 9: , The quotient rule

10.9. a) Look up (tan x)′ in a formulary.

10.9. b) Check the result with the help of the definition

tan x =
sin x

cos x
(1)

Hint: Use sin2 x + cos2 x = 1. (Remember: sin2 x is an abbreviation for (sin x)2.)
| (Solution:)

(tan x)′ =
cos x(sin x)′ − sin x(cos x)′

(cos x)2
=

cos x cos x + sin x sin x

(cos x)2
=

1

cos2 x
(2)

10.T 10: Different notations for functions and their derivatives

Consider a function

y = f(x) (1)

Here f is the name of a function, x is the independent variable (also called
the argument of the function), y is the dependent variable: To each x there
corresponds a (unique) y given by (1), i.e. by the prescription f .

To save letters, sometimes the same letter is used for the function and the dependent
variable, so (1) reads:

y = f(x) = y(x) (2)

No confusion is possible: it is clear the first y is the dependent variable, the second
y is the name of a function (e.g. f = y = sin).

As a special case take f = n-th power, so (2) reads:

y = f(x) = y(x) = xn (3)

For the derivative then (at least) the following variety of notations exists:

y′ = f ′ =
dy

dx
=

d

dx
y =

d(xn)

dx
=

d

dx
xn = y′ (x) = (xn)′ (4)
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A composite function

y(x) = f(g(x)) (5)

is written in pure mathematical texts as

y = f ◦ g (6)

which has the advantage that the irrelevant argument x does not appear.

In physics, on the other hand, very often one does not distinguish between the
composite (y) and the outermost composing (f) function, since they often represent
the same physical quantity only expressed in different coordinates, so (5) is written
as

y = y(x) = y(g) = y(g(x)) with g = g(x) (7)

It is clear that the first y is the dependent variable, the second y is the composite
function, and the third and fourth y is the outermost composing function.

As an example (y 7→ T, g 7→ i) let T be the temperature of a rod (measured in ◦C = ◦Celsius) at
position i measured in inches, e.g.

T = T (i) = i2 (8)

(At position i = 0 the temperature is zero, two inches apart (i = 2) the temperature is 4 ◦C
(T = 4)).

Now we want to express the temperature while position x is measured in meters (1 inch = 2.54
cm), so we have (approximately):

i = i(x) = 40x (9)

meaning the following:
To x there corresponds i, e.g. to x = 1 (1m) there corresponds i = 40.
‘To correspond’ means that we consider an identical (the same) position.

Therefore we write:

T = T (i) = T (i(x)) = T (40x) = T (x) (10)

= i2 = [i(x)]2 = 1600x2

The first T is the dependent variable (measured temperature at a certain position), the second T

is the temperature as a function of position expressed in inches. The same for the third and fourth
T (outmost composing function). The last T is the composite function, namely the temperature
as a function of position expressed in meters.
The second line of (10) inserts the special form (8) of our assumed temperature distribution.

With these notations the chain rule looks like that:

For y(x) = y(z) with z = z(x)

we have

dy

dx
=

dy

dz

dz

dx

(11)
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(chain rule formulated with differentials)

In the first differential quotient ( dy
dx

) the symbol y is considered as a function
of x, i.e. y is the composite function.

In the second differential quotient (dy
dz

) the symbol y is considered a function
of z, i.e. is the left composing function.

10.Ex 11: The chain rule, 1. example
Calculate again the derivative of

y(x) = e

z︷︸︸︷
ax (1)

using the above chain rule formulated with differentials.
| (Solution:)
We consider y as a composite function:

y(x) = y(z) = ez with z = z(x) = ax (2)

According to the chain rule:

dy

dx
=

dy

dz︸︷︷︸
ez

dz

dx︸︷︷︸
a

= aez = aeax (3)

10.Ex 12: , The chain rule, 2. example
Calculate the derivatives of the following functions.
10.12. a)

y(x) = a sin(kx), a, k = constants (1)

Hint: write the chain rule as

dy

dx
=

dy

dz

dz

dx
with z = kx (2)

Result:

y′(x) = ak cos(kx) (3)

| (Solution:)
With

y = a sin z (4)

we have

y′(x) =
dy

dx
=

dy

dz

dz

dx
= a cos z · k = ak cos(kx) (5)
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10.12. b) y = eex

Result:

y′ = exp(x + ex) (6)

| (Solution:)
With y = ez, z = ex we have

dy

dx
=

dy

dz

dz

dx
= ezex = eex

ex = ex+ex

= exp(x + ex) (7)

10.Ex 13: Velocity as the derivative with respect to time t.
In a harmonic oscillator the mass-point is at position

x(t) = a sin(ωt + χ) (1)

a = amplitude, ω = angular frequency,
χ = phase-shift, a, ω, χ = constants

(2)

Calculate the velocity

υ = ẋ(t) =
dx

dt
(3)

as a function of t (υ = υ(t) = momentary velocity).
Rem: when the independent variable is time t, it is usual in physics to use a dot (·)
instead of a prime ( ′ ) to denote the derivative.
Result:

υ(t) = aω cos(ωt + χ) (4)

| (Solution:)
With

z = ωt + χ, x(z) = a sin z (5)

we have

υ(t) =
dx

dt
=

dx

dz

dz

dt
= a cos z · ω = aω cos(ωt + χ) (6)

10.Ex 14: -- Velocity of a damped harmonic oscillator

In a damped[
G
= gedämpft] harmonic oscillator the mass-point is at position

x(t) = ae−σt sin(ωt) (1)
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a, σ, ω = const.
Calculate the velocity.

Fig10.14. 1: The damped harmonic oscillator behaves like a harmonic oscillator with exponentially
decaying[G= zerfallende, abnehmende] amplitude. So, strictly speaking, it is harmonic only
approximately in a short time interval in which the amplitude can be considered constant.

| (Solution:)

v = ẋ(t) = a[e−σtω(cos ωt)− σe−σt sin(ωt)] (2)

10.Ex 15: Derivative of xx and other exotic examples

10.15. a) Calculate the derivative of

y(x) = xx (1)

Hint: first prove

y(x) = ex ln x (2)

Result:

y′ = xx(1 + ln x) (3)

| (Solution:)

y(x) = xx = eln xx

= ex ln x (4)

With

z = x ln x, y = ez (5)
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the chain rule yields

y′ =
dy

dx
=

dy

dz

dz

dx
= ez(x ln x)′

♣
= ez(x · (ln x)′ + 1 ln x) = (6)

= ez(x · 1
x

+ ln x) = xx(1 + ln x) (7)

♣ product rule

10.15. b) Calculate the derivative of

y = sin(cos x) (8)

Result:

y′ = − sin(x) cos(cos x) (9)

| (Solution:)

y = sin(cos x) = sin z with z = cos x (10)

y′ =
dy

dx
=

dy

dz
· dz

dx
= cos z · (− sin x) = − sin x · cos(cos x) (11)

10.15. c) Calculate the derivative of

y = 2cos x (12)

Result:

y′ = − sin x · ln 2 · 2cos x (13)

| (Solution:)

y = 2cos x = 2z with z = cos x (14)

y =
(
eln 2
)z

= ez ln 2 = ew with w = z ln 2 (15)

y′ =
dy

dx
=

dy

dz
· dz

dx
= ez ln 2 · ln 2 · (− sin x) = ecos x ln 2 ln 2(− sin x) = (16)

=
(
eln 2
)cos x · ln 2 · (− sin x) = − sin x · ln 2 · 2cos x (17)

10.15. d) Calculate the derivative of

y = cos x3 (18)
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Result:

y′ = −3 sin x cos x2 (19)

| (Solution:)

y = cos x3 = z3, z = cos x (20)

y′ =
dy

dx
=

dy

dz
· dz

dx
= −3z2 · sin x = −3(cos x)2 · sin x (21)

10.15. e) Calculate the derivative of

y = ln
1

x2
(22)

Result:

y′ = −2

x
(23)

| (Solution:)
1. method:

y = ln
1

x2
= ln x−2 = −2 ln x (24)

y′ = −2

x
(25)

2. method:

y = ln z, z = x−2 (26)

y′ =
dy

dx
=

dy

dz
· dz

dx
=

1

z
(−2)x−3 = −2x2x−3 = −2

x
(27)

10.15. f) Calculate the derivative of

y = ln sin x2 (28)

Result:

y′ = 2x cot x2 (29)

| (Solution:)

y = ln sin x2 = ln z, z = sin(x2) = sin w, w = x2 (30)

y′ =
dy

dx
=

dy

dz
· dz

dw
· dw

dx
=

1

z
· cos w · 2x = (31)

=
1

sin x2
· cos x2 · 2x = 2x cot x2 (32)
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(Recommendations for lecturing: 1, 5, for basic exercises: 2, 6.)

11.Q 1: Minimax problems

Fig11.1. 1: A function defined in the interval [a,∞) with stationary points at x = b, c, d, e; local
extrema at x = c, d, e and saddle point at x = b.

Fig. 1 shows the graph of a function y = f(x) defined in the interval [a,∞).
11.1. a) How do we calculate the minimum of y = f(x)?
| (Solution:)
We determine all points x for which

f ′(x) = 0 (stationary points) (1)

holds. In our case this yields6

x = b, c, d, e. (2)

Now we calculate f at these stationary points and also at the boundaries of the
domain (at x = a and x =∞ in our case):

f(a), f(b), f(c), f(d), f(e), f(∞) =∞ (3)

We choose f(c) since this is the lowest value. Thus:
The function has a minimum at x = c and the minimum is (i.e. has the value) f(c).

6e is not Euler’s number e.
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11.1. b) Does the function have a maximum? (Give both a precise and a sloppy an-
swer.)
| (Solution:)
Precise answer: No, since for larger and larger x’s (x > e) we obtain even larger
values for y = f(x).
Sloppy answer: The function’s maximum is at x = ∞ and is (has the value)
f(∞) =∞.

11.1. c) What is at x = e and what is a precise definition for that term?
| (Solution:)
At x = e the function has a local minimum, i.e. when the domain is restricted to
a sufficiently small interval

[e− ε, e + ε] (ε > 0) (5)

around e, the function has an (absolute, also called a global) minimum at x = e.

Rem: x = a and x = d are local maxima.

11.1. d) Why is (1) called a stationary point?
| (Solution:)
f ′(x) = 0 can also be written as

dy = 0 stationary point (1′)

or in full

dy = f ′(x) dx = 0 (1′′)

i.e. the tangent is horizontal. So (1′) says that the function does not change, i.e. in
an old fashioned language, it is stationary in linear approximation.
Rem: The exact increment ∆y is not zero, but in linear approximation in

dx ≡ ∆x = x− c it is ∆y ≈ dy = 0 (6)

11.1. e) Find the minimum of the parabola

y = 5x2 + 3x + 2 (7)

| (Solution:)

y′ = 10x + 3
!
= 0 (8)

xmin = −3/10 (9)

Since y(x) is continuous, y(±∞) =∞ and (9) is the only stationary point, it must
be a minimum.
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11.Ex 2: , Shape of maximum volume with given surface

We would like to construct a cup[
G
= Becher] out of gold in the shape[

G
= Form] of

a cylinder with radius R and height h (see fig.1) containing maximum volume V .

Fig11.2. 1: Calculation of cylindrical cup (height h, radius R) with given surface having maximum
volume.

Since the available[
G
= zur Verfügung stehend] amount[

G
= Menge] of gold is

limited, the area[
G
= Fläche] of the cup is given as A0 (the top of the cup is open).

11.2. a) Calculate V and area A0 as a function of R and h.
Result:

V = hπR2, A0 = 2πRh + πR2 = fixed (1)

11.2. b) Eliminate h and express V = V (R) for the given A0.
Result:

V = V (R) =
1

2
A0R−

1

2
πR3 (2)

| (Solution:)

h =
A0 − πR2

2πR
, V =

1

2
R(A0 − πR2) (3)

11.2. c) Calculate R for the optimal cup.
Result:

R =

√
A0

3π
(4)
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| (Solution:)

Extremum: 0
!
=

dV

dR
=

1

2
A0 −

3

2
πR2 (5)

11.Ex 3: Gold necessary for a gold ball
We would like to construct a ball with inner radius R and wall thickness h. Calculate
the amount necessary (i.e. volume v).

Fig11.3. 1: Volume v of the rind of a ball with inner radius R and thickness h.

11.3. a) In a formulary look up the volume V = V (r) of a sphere of radius r.
Result:

V =
4

3
πr3 (V = volume of sphere with radius r) (6)

11.3. b) The answer to our problem is therefore

v =
4

3
π(R + h)3 − 4

3
πR3 (7)

However, we want the answer only in linear approximation in the small quantity h

(h� R), and to save[
G
= sparen] computation we apply differential calculus:

v = dV, h = dr (8)

(indeed: v is the increment of V (r) while incrementing r from R to r = R + dr.)
Calculate v by differentiating (6).
Result:

v = 4πr2h (9)
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| (Solution:)

V ′(r) =
dV

dr
=

4

3
π3r2 = 4πr2 (10)

v = dV = 4πr2dr = 4πr2h (11)

11.Ex 4: - The differential as the equation for the tangent

Fig11.4. 1: Graph of a quadratic function. The differential is the equation for the tangent (at any
point P0).

Consider the quadratic function

y = f(x) = 2x2 − 12x + 22 (1)

11.4. a) Show that it has an extremum at x = 3.
| (Solution:)

y′ = 4x− 12 = 0 ⇒ x = 3 q.e.d. (2)

11.4. b) Show that the extremum is a minimum.

Hint: As will be discussed more fully in the next chapter, the extremum is a min-
imum if the second derivative (i.e. the derivative of the derivative = (y′)′ = y′′) is
positive.
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| (Solution:)

y′′ = (4x− 12)′ = 4 > 0, i.e. minimum (3)

11.4. c) Find the equation of the tangent at the point P0(x0, y0) for y0 = f(x0), x0 = 4.
Hint: use the fact that the differential

dy = f ′(x0)dx (4)

is the tangential mapping (the tangential or linear approximation to the function)
i.e. the equation of the tangent. Write dx and dy in (4) in terms of (x, y) = running
point of the tangent and (x0, y0) = P0.
Result:

y = y0 + f ′(x0)(x− x0) (5)

| (Solution:)

dx = x− x0, dy = y − y0 (6)

Thus (4) reads

y − y0 = f ′(x0)(x− x0) (7)

11.4. d) Verify that (5) is the tangent by checking that it goes through P0 and that
at P0 it has the same slope as the curve.
| (Solution:)
1) For x = x0, y = y0 (5) is valid, i.e. the straight line (5) passes through P0.
2) The slope of the straight line (5) is y′ = f ′(x0) i.e. identical to the slope of the
curve.

11.Ex 5: Average as the best guess for a measured quantity

(average[
G
= Durchschnitt], guess[

G
= Voraussage])

A student measured the length l of a rod[
G
= Stab] several (n) times, obtaining the

results

li, i = 1, 2, · · ·n (1)

What should he report to his professor as the “true” value l for the length of the
rod? We assume that the true length of the rod was constant while it was being
measured and that the discrepancies in (1) are due to errors in the measurements.
According to Gauss, a single measuring error

∆li = li − l (2)

should get a penalty[
G
= Strafe] proportional to the square of ∆li ( principle of

least squares[
G
= Prinzip der kleinsten Fehlerquadrate])7 i.e the quantity l

7More exactly: principle of minimum sums of error squares.
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should be chosen so that the quantity (P = penalty = sum of error squares =
improbability for the occurrence of the error ∆li.)

P =
n∑

i=1

(∆li)
2 (3)

becomes minimal. Show that l is the average of li:

l = l̄ =
1

n

n∑
i=1

li (average) (4)

Fig11.5. 1: Carl Friedrich Gauß (1777-1855) at Göttingen G observed a star S and wants to find
out its angular position α relative to the vertical v. Because of atmospheric disturbances, the light
from the star follows the broken line and he observes α′ instead of α. Since the observational error
α′ − α is the sum of a large number of independent small errors (refraction of light at several
atmospheric layers), Gauss could show that the improbability P for such an error is proportional
to (α′ − α)2, i.e. large errors are significantly more improbable than small errors.

Hint 1: write down P (l) and differentiate it with respect to l with li = constant.
The derivative of a sum is the sum of the derivatives.
Intermediate result:

n∑
i=1

(l − li) = 0 (5)

Hint 2: Separate it into two sums. l is constant here, i.e. it can be pulled before
the sum.
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| (Solution:)

P = P (l) =
n∑

i=1

(li − l)2 (6)

P ′ =
dP

dl
=

n∑
i=1

d

dl
(li − l)2 (7)

with z = li − l, dz
dl

= −1, the chain rule yields

P ′ =
n∑

i=1

2z · (−1) = −2
n∑

i=1

(li − l)
!
= 0 (8)

According to hint 2 this reads

n∑
i=1

li =
n∑

i=1

l = l
n∑

i=1

1 = nl (9)

i.e. we have obtained (4). q.e.d.
Rem 1: As usual we have chosen a vertical bar in (4) to denote the average of a
quantity.
Rem 2: According to Gauss (3), a large error (i.e. ∆l = 10 mm) is punished very
severely [(∆l)2 = 100 mm2], whereas a small error (e.g. ∆l = 1 mm) gives only a
mild penalty ((∆l)2 = 1 mm2).

Rem 3: The principle of least squares is only valid for random errors[
G
=

zufällige Fehler] and when the error is composed of a large number of random

contributions with both signs[
G
= beiderlei Vorzeichen]. A typical example is

the observation of the position of a star. Light travelling through the atmosphere
suffers small derivations in all directions.8

The principle (4) is not valid for systematic errors, e.g. in case the ruler[
G
=

Maßstab] was calibrated incorrectly, or when the student only concentrated during
the first measurement i = 1.

11.Ex 6: , Error propagation

(Error propagation[
G
= Fehlerfortpflanzung])

In the laboratory a student has the task[
G
= Aufgabe] of determining the outer

radius R of a gold ball.

8Temperature gradients due to turbulence lead to a variable diffraction index[G=
Brechungsindex]) partially cancelling each other out.
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Fig11.6. 1: Archimedes was the first to determine the volume of a complicated figure (a king’s
crown in his case, a ball with radius R in our case) by the amount of overflowing water.
Archimedes (287 BC - 212 BC): ’Noli turbare circulos meos’ before he was killed by a Roman
soldier.
Archimedian principle: a body plunged in a fluid loses as much weight as is equal to the weight of
an equal volume of the fluid.

The ball is immersed[
G
= eintauchen] into a full bottle and the student measures

the volume V of the overflown water, which is identical to the volume

V =
4

3
πR3 (1)

of the gold ball. From that the student calculates

R =

(
3

4π
V

) 1
3

(2)

We assume the measurement of V has a relative error εV (e.g. εV = 0.1% = 0.001).

We would like to estimate[
G
= abschätzen] the relative error εR of R calculated

by (2).

11.6. a) We treat the relative errors εV , εR and the corresponding absolute errors as
differentials. Identify these differentials.

Hint: The absolute error of the volume is ∆V = Vm − V , where Vm is what the
student has measured and V is the exact (unknown) value of the volume. The
absolute error of the radius is ∆R = Rm−R, where R is the exact (unknown) value
of the radius and Rm is what the student will calculate (report) based upon his
inexact measurement Vm. The relative errors are εV = ∆V

V
, εR = ∆R

R
.

Result: Absolute error in the measurement of V is dV = εV V , absolute error in
the determination of R is

dR = εRR (3)
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11.6. b) Calculate the relative error εR of the R that the student should report.
Hint: Calculate the relationship between the differentials dR and dV by differenti-
ating (1) with respect to R.
Result:

εR = 1
3εV (4)

| (Solution:)

dV

dR
= 4πR2 (5)

dV = 4πR2 dR (6)

dV

V
=

4πR2 dR
4
3
πR3

= 3
dR

R
(7)

εV = 3εR (8)



12 Higher derivatives, Taylor’s formula

(Recommendations for lecturing: 1-3, 5, for basic exercises: 4, 6.)

12.Q 1: Higher derivatives
The second derivative is the derivative of the derivative

12.1. a) For y(x) = sin x calculate
y′, y′′, y′′′, y(4) and the n-th derivative y(n).
| (Solution:)

y =
d 0y

dx0
= sin x = y(0) (1)

y′ =
dy

dx
= cos x = y(1)

y′′ =
d 2y

dx2
= − sin x = y(2)

y′′′ =
d 3y

dx3
= − cos x = y(3)

y′′′′ =
d 4y

dx4
= sin x = y(4)

y(n) =
dny

dxn
=

{
(−1)k sin x for n = even : n = 2k
(−1)k cos x for n = odd : n = 2k + 1

(2)

with k ∈ No.

Rem: The function itself is sometimes called the zeroth derivative.

12.1. b) For y(x) = ex calculate y(n).
| (Solution:)

y(n) = ex (3)

12.1. c) For y(x) = x5 calculate y(n).
| (Solution:)

y′ = 5x4 (4)

y′′ = 20x3

y′′′ = 60x2

y′′′′ = 120x

y(5) = 120

y(n) = 0 for n ≥ 6

183
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12.Q 2: Taylor’s formula

12.2. a) Develop a function y = f(x) about the point x = 0.
| (Solution:)
Taylor’s formula:

f(x) = f(0) + f ′(0) x +
1

2
f ′′(0) x2 +

1

3!
f ′′′(0) x3 + · · · =

∞∑
n=0

1

n!
f (n)(0) xn (1)

Rem: When x is time, and 0 is now, Taylor’s formula can be used to forecast
weather: Truncate the formula including the first three terms only.
f(0) is the weather (e.g. temperature) now. f ′(0) is the change of weather now, and
f ′′(0) is the change of change (acceleration) of weather now. So (1) can be used to
forecast weather at time x, e.g. tomorrow.

12.2. b) Generalize to the development about an arbitrary point xo.
| (Solution:)

f(x) = f(xo + h) =
∞∑

n=0

1

n!
f (n)(x0)h

n with x = xo + h (2)

Rem: A slightly different notation for (2) is

∆y = y′(x) ∆x +
1

2!
y′′(x)(∆x)2 +

1

3!
y′′′(x)(∆x)3 + · · · (3)

Here we have written, see fig. 1, ∆y = f(xo + h) − f(xo), ∆x = h, y′ = f ′(xo),
etc.
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Fig12.2. 1: While x increments from xo to xo + h, the function value y increments from f(xo) to
f(xo) + ∆y. ∆y is given by Taylor’s formula in terms of the higher derivatives of y = f(x) at
x = xo.
Brook Taylor (1685-1731)

Rem: The gist[
G
= Knackpunkt] of Taylor’s formula is it gives the whole function

f(x) if we know all its higher derivatives at a single point x0. Of course, Taylor’s
formula is valid only if, among other assumptions not formulated here, the function
f(x) is differentiable an infinite number of times.
If we know only the first few higher derivatives at x0, we can still use Taylor’s

formula, truncated[
G
= abgeschnitten] after the first few terms, since it yields an

approximative value for f(x0 + h) for small values of h.
In zeroth order approximation the function f is replaced by a constant, in first order
by the tangent, in second order by an osculating parabola, etc.

12.Q 3: Distinguishing local minima from local maxima
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Fig12.3. 1: Local minima at x = c, e, local maximum at d, and saddle point at b can be
distinguished with the help of higher derivatives.

In the function y = f(x) shown in fig. 1, defined in the interval [a, f ], we see
stationary points at x = b, c, d, e (i.e. f ′(b) = 0, etc.)
12.3. a) How can we decide what is a minimum and what is a maximum?
| (Solution:)

f ′(x0) = 0, f ′′(x0) < 0 (local (or relative) maximum at x = x0) (1)

proof: left of d : f ′(x) > 0
right of d : f ′(x) < 0

(2)

i.e. f ′(x) is decreasing: f ′′(x0) < 0. Similarly:

f ′(x0) = 0, f ′′(x0) > 0 (local (or relative) minimum at x = x0) (3)

Rem: c is the absolute minimum, but of course, it is also a local (or relative)
minimum.

12.3. b) How can we recognize that x = b is a saddle point?
| (Solution:)

f ′(x0) = f ′′(x0) = 0, f ′′′(x0) 6= 0 (saddle point at x = x0) (4)

Rem: The last condition in (4) is necessary. As a concrete example for this situation
consider

y = x4 (5)

at x = x0 = 0
We have

f ′(x0) = f ′′(x0) = f ′′′(x0) = 0, f ′′′′(x0) > 0 (minimum) (6)
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In these rare cases the reader should consult a formulary.

12.Ex 4: , Taylor’s formula to construct power series
Use Taylor’s formula to derive the power series for ex and sin x.
Hint 1: develop around x0 = 0.
Hint 2 for sin x: use n = 2k + 1, k = 0, 1, · · ·∞ to select only odd n in the sum.
Result:

ex =
∞∑

n=0

1

n!
xn, sin x =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 (1)

| (Solution:)

f(x) =
∞∑

n=0

1

n!
f (n)(0)xn (2)

1) For

f(x) = ex, f (n)(x) = ex, f (n)(0) = 1 (3)

thus, ex =
∞∑

n=0

1

n!
xn (4)

2) For f(x) = sin x we have f ′(x) = cos x, f ′′(x) = − sin x, f ′′′(x) = − cos x, · · ·
which can be summarized as

f (n)(x) =

{
(−1)k sin x for n = 2k
(−1)k cos x for n = 2k + 1

(5)

f (n)(0) =

{
0 for n = 2k
(−1)k for n = 2k + 1

(6)

thus, sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 (7)

12.Ex 5: Taylor’s formula in linear approximations

Truncate[
G
= abschneiden] Taylor’s formula to linear approximation in h, identify

differentials and show that we obtain

dy = f ′(x) dx (1)

| (Solution:)
For y = f(x) the increments are ∆y = f(x + h)− f(x), ∆x = h. In linear approxi-
mation in h Taylor’s formula reads

f(x + h) = f(x) + f ′(x)h (2)
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i.e.

∆y = f ′(x)∆x (3)

To distinguish[
G
= kennzeichnen] it as a formula for linear approximation we write

d instead of of ∆.

dy = f ′(x)dx (4)

12.Ex 6: , Qualitative analysis of the Gaussian bell-shaped curve

The gaussian bell-shaped curve[
G
= Gauss’sche Glockenkurve] is given by

y = e−
x2

a2 , a = const., a > 0 (1)

Fig12.6. 1: The Gaussian has maximum at x = 0 and flex-points at x = ±x0 where a driver (small
arrow) has to change the sign of his direction: y′′(x0) = 0.

12.6. a) From the graph of ex show that the Gaussian (1) is always positive and
y(±∞) = 0.
| (Solution:)

The exponential function is positive everywhere (positive definite).
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For x→ ±∞

x2 → +∞,
x2

a2
→∞, −x2

a2
→ −∞ (2)

According to the graph of ex we have e−∞ = 0.

12.6. b) Show that the Gaussian is an even function[
G
= gerade Funktion], i.e.

that the graph is mirror-symmetric with respect to the y-axis.
| (Solution:)

y(−x) = e−
x2

a2 = y(x) q.e.d. (3)

12.6. c) Show that the only extremum is at x = 0.
| (Solution:)
With

z = −x2

a2
,

dz

dx
= −2x

a2
, y = y(z) = ez (4)

the chain rule yields

y′ =
dy

dx
=

dy

dz

dz

dx
= −2x

a2
ez !

= 0 (5)

Since − 2
a2 6= 0, ez 6= 0, we find x = 0 q.e.d.

12.6. d) Show that the extremum is a maximum.
| (Solution:)

y′′
♣
= − 2

a2
ez − 2x

a2
y′

(5)
= − 2

a2
ez +

(
2x

a2

)2

ez (6)

♣ product rule applied to (5)

y′′(0) = − 2

a2
< 0 ⇒ maximum (7)

12.6. e) At x = x0 (and at x = −x0) the Gaussian has a flex-point[
G
= Wendepunkt].

Look up the conditions for a flex-point in a formulary.
Result:

y′′(x0) = 0
y′′′(x0) 6= 0

(flex point) (8)

Rem: When you “drive” along the graph in the direction of the small arrow in

fig. 1, you must turn the steering wheel[
G
= Steuerrad] to the right before the

flex-point, i.e. y′ is decreasing, i.e. y′′ < 0. After the flex-point you must turn the
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steering wheel to the left, i.e. y′ is increasing, i.e. y′′ > 0. Therefore, at the flex-point
x0 you have y′′(x0) = 0 i.e. you drive straight ahead. The second condition in (8) is
necessary to ensure the curve really turns to the opposite side.

12.6. f) From (8) calculate the flex-point x0 for the Gaussian.
Result:

x0 = ± a√
2

(9)

| (Solution:)
According to (6) y′′ = 0 yields

2

a2
=

4

a4
x2, 1 =

2

a2
x2, x2 =

a2

2
, x = ± a√

2
(10)

12.Ex 7: Extrapolation with Taylor’s formula

An economist[
G
= Wirtschaftswissenschaftler] would like to predict the GNP

(= gross national product[
G
= Bruttosozialprodukt]9)

G(t) = GNP (1)

for the year 2013 (i.e. for t = 2013 years) using the following known data:

G(2003) = 1012 e (2)

G(2004) = 1.001 · 1012 e (3)

G(2005) = 1.004 · 1012 e (4)

12.7. a) He uses Taylor’s formula in linear approximation and (2) and (3) to determine
Ġ(2003).
Hint: ˙ is the derivative with respect to t.
Result:

Ġ(2003) = 109 e

year
(5)

| (Solution:)
Taylor’s formula in linear approximation is

∆G = Ġ(2003)∆t (6)

For ∆t = 1 year

∆G = 0.001 · 1012 e = 109 e (7)

9The price of all goods produced by a nation in one year
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12.7. b) Based on Taylor’s formula in second order approximation (relying on (4) and
(5)) he calculates G̈(2003).
Hint: apply Taylor’s formula for the time interval 2003 · · · 2005.
Result:

G̈(2003) = 109 e(year)−2 (8)

| (Solution:)
Taylor’s formula in second order is

∆G = Ġ(2003)∆t +
1

2
G̈(2003)(∆t)2 (9)

∆t = 2 years, ∆G = G(2005)−G(2003) = 4 · 109 e (10)

4 · 109 e− 109 e

year
2 years =

1

2
G̈(2003) 4(year)2 (11)

2 · 109 e = 2G̈(2003)(year)2 (12)

G̈(2003) = 109 e

(year)2 (13)

12.7. c) Now he applies Taylor’s formula again in second order to calculate G(2013).
Result:

1.06 · 1012 e (14)

| (Solution:)
With ∆t = 10 years we have

G(2013) = G(2003) + ∆t Ġ(2003) + 1
2
(∆t)2 G̈(2003)

= 1012 e+ 10 years · 109 e
(year)

+ 1
2
100 (years)2109 e year−2

= (1012 + 1010 + 50 · 109) e

= 1.06 · 1012 e

(15)

Rem: There are better extrapolations than the one just given, e.g. by choosing
t0 = 2005 as the base point for the development and using G(2004) for the calculation
of the first derivative, and G(2003) for the second. Alternatively, we could simply
draw a quadratic function (i.e. a parabola) in t through the three given points (2)
(3) and (4).



13 Integrals

(Recommendations for lecturing: 1-5, 6e-j, 12, for basic exercises: 6, 7, 10.)

13.Q 1: The integral as an area

Fig13.1. 1: The area A bounded by the graph of the function, the x-axis and two verticals at a

and b is the integral of the function from a to b

13.1. a) Give the mathematical notation for the value A of the shaded area,
| (Solution:)

A =

∫ b

a

f(x) dx (1)

13.1. b) and give the phrasing (i.e. in words) for that symbol.
| (Solution:)
‘A is the integral of f(x) from a to b’.

13.1. c) What is, in this connection, the name of a, of b, and of f(x) ?
| (Solution:)

a is the lower boundary[
G
= untere Grenze], b is the upper boundary, f(x) is

the integrand.

13.1. d) Give an intuitive explanation for the name ‘integral’, for the symbolism and
for the integral sign.

192
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| (Solution:)

Fig13.1. 2: The integration interval [a, b] is divided into n subintervals of length dx = b−a
n

(n = 7 in fig.2). So the integral (area A under the graph) can be approximated as the sum of the
shaded small rectangles.

A is approximately the sum (Leibniz has introduced the integral sign as a stylized
S from S = sum) of the shaded rectangle above. The whole area is integral, i.e. all
its pieces (rectangles) together. Each rectangle has the area

f(x) · dx (2)

where dx is the breadth of a rectangle and f(x) is its height, whereas x is the left
lower corner of the rectangle. dx is the increment of x during one rectangle.

Rem: The error of this approximation can be made as small as we like, if dx is
made sufficiently small, or the number n of subintervals is made sufficiently large,
see fig.3.
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Fig13.1. 3: The approximation in this figure is slightly too big, thus it is called an upper
sum[

G= Obersumme], since in each interval we have included the darkly shaded small rectangles.
The lightly shaded rectangles give the lower sum[

G= Untersumme] only. The error of either
approximation is less than the difference between the upper sum and the lower sum, given by the
dark rectangle on the right, i.e. less than dx (f(b) − f(a)) which can be made arbitrarily small,
when dx is made sufficiently small.

Integral = totality[
G
= Ganzes]

i.e. the sum of all its differentials.

13.Q 2: Indefinite integrals

13.2. a) What is an indefinite integral (in words) and in a precise and a sloppy[
G
=

schluderig] formula
| (Solution:)
The integral (area) is considered as a function of the upper boundary

I(x) =

∫ x

a

f(ξ)dξ (1)

Rem: Since x is used for the upper boundary, a new name ξ has been used for the
integration variable. Very often x′ is used instead of ξ.
I = integral, instead of A = area.

The sloppy form is

I(x) =

∫ x

a

f(x) dx (2)

Rem: This form is ambiguous if the integral itself depends on x as a parameter:

f(ξ) = f(x, ξ) (3)
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13.2. b) Prove∫ a

a

f(x) dx = 0 (4)

| (Solution:)
the area is zero, or: each dx = 0.

13.Q 3: Integration as the inverse of differentiation

13.3. a) Give the main theorem of calculus[
G
= Infinitesimalrechnung]10 in words

and in 2 formulae.
| (Solution:)

Integration is the inverse of differentiation

I(x) =

∫ x

a

f(ξ)dξ ⇒ I ′(x) = f(x) (1)

The derivative of an integral with respect to the upper boundary
is the integrand at the upper boundary

I(x) =

∫ x

a

f ′(ξ)dξ = f(x)− f(a) (2)

Rem 1: These formulae are valid only if the function f(ξ) does not depend upon
the parameter x, e.g. not in the case f(ξ) = sin(xξ), and only if the lower boundary
does not depend upon x.

Rem 2: Because of the importance of these formulae (1) and (2) we give them again in a more
concise and symbolic form:
Introduce the operator D of differentiation (= differential operator) acting on differentiable
functions f(x) as the operands:

Df(x) = f ′(x) (a)

(Note, that it is usual to write operators to the left of the operands (e.g. f(x)), i.e. the operators
are acting to the right.)
and introduce an operator of integration (= integral operator)

J f(x) = I(x) (b)

where I(x) is defined in (1),
and introduce the identical operator = trivial operator id

id f(x) = f(x) (c)

10‘calculus’ is a common word including both differential and integral calculus. Analysis =
calculus.
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and, finally, introduce the symbol ◦ for composition[G= Hintereinanderausführen] of opera-
tors (= operator product), then the main theorem of calculus about the interchangeability of
integration and differentiation can symbolically be written as:

D ◦ J = J ◦ D = id (1’)

i.e. first integrating (J ) and then (◦) differentiating (D) is the same (=) as doing nothing (id).
(Since operators are acting to the right, operator products, (◦) must be read from right to left, so
D ◦ J means:
apply first J to a possible operand, giving an intermediate result, and then apply the operator D
to that intermediate result.)
In the second part of (1’) we have ignored the constant of integration (−f(a)) occurring in (2).
So, (1’) is only valid if we collect (classify) the functions into equivalence classes, where two
functions are called equivalent (∼) if they differ only by a constant:

f(x) ∼ g(x) ⇐⇒ f(x) = g(x) + const. (d)

The operator relation (= operator equality) (1’) is valid when acting on such equivalence
classes as the operands.

13.3. b) Prove it intuitively with the integral as an area.
| (Solution:)
Proof of (1):

Fig13.3. 1: I(x) is the area from a to x. Its increment ∆I (darkly shaded) is (in linear approxima-
tion) what is under the integral sign. Thus the derivative of the integral with respect to its upper
boundary is the integrand.
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We write the derivative as a differential quotient:

I ′(x) =
dI

dx
(3)

∆I is the dark-shadowed area. dI is the corresponding differential, i.e. ∆I in lowest
order, i.e we can neglect the upper triangle (which is of order (dx)2), i.e. dI is the
darkly shadowed rectangle

dI = f(x)dx (4)

which proves (1).

Proof of (2):

I(x) =

∫ x

a

df

dξ
dξ =

∫ x

a

df (5)

Fig13.3. 2: The integral of all increments df (corresponding to the interval ξ . . . ξ + dξ) is just
f(x)− f(a).

which is the sum of all increments df , which just11 gives f(x)− f(a).

13.3. c) What is an antiderivative[
G
= Stammfunktion, Aufleitung] of f(x) and to

what extent is it ambiguous[
G
= vieldeutig]? What is an integration constant?

11f(x) − f(a) is the sum of all exact increments ∆f . For sufficiently large n (sufficiently small
dξ) this is also the sum of all df .
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| (Solution:)
The antiderivative is a function I(x) whose derivative is the given function f(x):

I ′(x) = f(x) (6)

The antiderivative is ambiguous for a constant C, i.e. when I(x) is a antiderivative
any other antiderivative of f(x) has the form

I(x) + C (7)

C is called the integration constant. (It is constant with respect to x.)

Rem: In the English literature the word ‘antiderivative’ is rarely used, instead it is
simply called an integral.

13.3. d) Describe in words what is the main method to calculate indefinite integrals
and definite integrals.
| (Solution:)
We try to guess a function I(x), called an antiderivative, whose derivative is the
given integrand f(x). According to the theorem c) we must have∫ x

a

f(ξ) dξ = I(x) + C = I(x)− I(a) =: [I(ξ)]xa (8)

Rem 1: A bracket with attached lower and upper boundaries (as in (8)) means the
difference of the bracketed expression at both boundaries.

Rem 2: In an older notation, but still widely in use, instead of the brackets, i.e.
instead of [I(ξ)]xa, only a right bar at the end is written, i.e I(ξ) |xa. However, in
some cases that could be ambiguous, e.g. in case of 5ξ + sin ξ |xa one does not know
if the 5ξ is included or not.

Rem 3: Even the notation [I(ξ)]xa is a shorthand only and can be ambiguous, because
one does not know what is the integration variable. A completely correct notation
reads: [I(ξ)]ξ=x

ξ=a.

Rem 4: That C = −I(a) can be checked by setting x = a, where the integral
vanishes.

For a definite integral simply take x definite, e.g. x = b.

13.3. e) In a formulary in the chapter ‘Indefinite integrals’ you can find an entry like∫
sin x dx = − cos x (9)

What’s the meaning of that information. (What are the antiderivatives? How, do
you calculate definite integrals from them? What are the boundaries in(9)?)
| (Solution:)
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(9) says that − cos x is an antiderivative of sin x
(i.e. the derivative of the right-hand side of (9) is the integrand: (− cos x)′ = sin x)
The general antiderivative is then obtained by adding a constant (namely an inte-
gration constant). So (9) could also be written as∫

sin x dx = − cos x + C (9′)

A definite integral is obtained by taking the antiderivative at the boundaries and
then subtracting:∫ b

a

sin x dx = [− cos x]ba = (− cos b)− (− cos a) (10)

For the calculation of definite integrals
the integration constant drops out

(11)

With boundaries (9) reads∫ x

a

sin ξ dξ = − cos x (9′′)

for suitable[
G
= geeignet] a.12

antiderivative ≡ indefinite integral ≡
≡ integral as a function of its upper boundary

(12)

13.Qx 4: Linear combination of integrals
Express in formulae and prove the following statements:
13.4. a) A constant can be pulled before the integral.
Hint: Use indefinite integrals and prove by differentiation.
| (Solution:)

∫
cf(x) dx = c

∫
f(x) dx (1)

A constant can be pulled before the integral

In a non-sloppy notation that reads∫ x

a

cf(ξ) dξ
?
= c

∫ x

a

f(ξ) dξ (1′)

12a must be chosen so that for x = a the right hand side of (9′′) vanishes: cos a = 0, as can
be seen from (10). ((9′′) is just (10) with x written instead of b and changing the name of the
integration variable from x to ξ.)
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Proof of (1′):
Differentiation of (1′) with respect to x yields

cf(x)
?
=

d

dx
c

∫ x

a

f(ξ) dξ
♠
= c

d

dx

∫ x

a

f(ξ) dξ = cf(x) (2)

♠ A constant can be pulled before the derivative

which is true, i.e. both sides of (1′) are antiderivatives of cf(x). Thus both
sides of (1′) can differ by an (integration) constant only. That constant is zero since
(1′) is true for x = a, when both sides are zero. q.e.d.

13.4. b) An integral of a sum is the sum of the integrals
| (Solution:)

∫
f(x) + g(x) dx =

∫
f(x) dx +

∫
g(x) dx (3)

An integral of a sum is the sum of the integrals

Rem: The integral sign and the corresponding differential serve as a left and right
bracket.

Again, differentiation with respect to the upper boundary yields (The derivative of
a sum is the sum of the derivatives):

f(x) + g(x) = f(x) + g(x) (4)

which is true. Thus, both sides of (3) can differ by an (integration) constant only,
which must be zero, because (3) is valid if upper boundary = lower boundary.

13.4. c) An integral of a linear combination is the linear combination of the
integrals.
| (Solution:)∫

λf(x) + µg(x) dx = λ

∫
f(x) dx + µ

∫
g(x) dx (λ, µ = const) (5)

Proof by combining (1)(3)

13.Q 5: Additivity of the integral in the integration range
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Fig13.5. 1: Since an integral gives the negative value of the area when it lies below the x-axis, the
shaded area must be calculated by the difference of two integrals: one up to x4 and one from x4

upwards.

13.5. a) Using the meaning of integrals as area, prove:
(Only for f(x) ≥ 0, for x1 < x < x3)∫ x3

x1

f(x) dx =

∫ x2

x1

f(x) dx +

∫ x3

x2

f(x) dx (1)

(additively of integrals with respect to the integration interval)
| (Solution:)
it is the sum of two partial areas

13.5. b) What ist the meaning of∫ x1

x2

f(x) dx (2)

where the upper boundary is lower than the lower boundary
| (Solution:)∫ x1

x2

f(x) dx = −
∫ x2

x1

f(x) dx (3)

i.e. minus the area since by going from x2 to x1 the increments dx must be negative.

13.5. c) What is the geometric meaning of∫ x6

x5

f(x) dx (4)
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| (Solution:)
Since each f(x) is negative, the integral gives −A, where A is the area.

Rem: Sometimes one says that the integral gives the oriented area, which can be
negative.

13.5. d) Give an expression for the shaded area A.
| (Solution:)

A =

∫ x4

x1

f(x) dx−
∫ x6

x4

f(x) dx (5)

where x4 is the zero of f(x) i.e. f(x4) = 0.

13.Ex 6: , Antiderivatives
Find (all) antiderivatives of the following functions (C = integration constant). In
each case test by differentiation.
13.6. a)

y′(x) = x Result: y(x) = 1
2
x2 + C

13.6. b)

y′(x) = x2 Result: y(x) = 1
3
x3 + C

13.6. c)

y′(x) = 1 Result: y(x) = x + C

13.6. d)

y′(x) = xn, (n 6= −1) Result: y(x) = 1
n+1

xn+1 + C

13.6. e)

y′(x) = 1
x

Result: y(x) = ln |x|+ C
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∫
1

x
dx = ln |x|

Test: For the region x ≥ 0, the proposed result is y(x) = lnx + C, which yields y′ = 1/x.
For the region x < 0, the proposed result is y(x) = ln(−x) + C. The chain rule with z = −x yields

y′(x) =
1
z
(−1) =

1
−x

(−1) =
1
x

13.6. f) Free fall on the earth

ẋ(t) = v0 + gt (vo, g = const.) Result: x(t) = v0t + 1
2
gt2 + x0

(x0 = C = integration constant)

Rem: This example corresponds to the free fall on earth with the (constant) grav-

itational acceleration on earth[
G
= Erdbeschleunigung] g.

ẋ(t) = v(t) is the instantaneous velocity (in the downward direction). v0 is the initial
velocity (at the initial time t0 = 0).
v0 6= 0 in case the body was given an initial push.

13.6. g)

y′(ϕ) = cos ϕ Result: y(ϕ) = sin ϕ + C

13.6. h)

ẏ(t) = cos(ωt) (ω = const.) Result: y(t) = 1
ω

sin(ωt) + C

| (Solution:)
Test: (

1

ω
sin(ωt) + c

)′
=

1

ω
· ω cos(ωt) q.e.d. (1)

where we have applied the chain rule with

z = ωt,
dz

dt
= ω (2)
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13.6. i) y′(x) = eαx Result: y(x) = 1
α
eαx + C

13.6. j) y′(x) = 1√
x

Hint: write as a power. Use d).
| (Solution:)

y′(x) = x−
1
2 , n = −1

2
in d) (3)

y(x) =
1

−1
2

+ 1
x−

1
2
+1 + C = 2x

1
2 + C = 2

√
x + C (4)

Test:

(2
√

x)′ = 2(x
1
2 )′ = 2 · 1

2
x−

1
2 =

1√
x

(5)

13.Ex 7: , Definite integrals
Calculate the following definite integrals.
Hint: use the antiderivatives from the previous exercise.
13.7. a)∫ a

0

x2dx (1)

Result: = 1
3
a3

| (Solution:)∫ a

0

x2dx
♠
=

[
1

3
x3

]a

0

=
1

3
a3 (2)

♠ an antiderivative of x2 is 1
3
x3

13.7. b)∫ 2π

0

cos ϕ dϕ (3)

Result: = 0
| (Solution:)∫ 2π

0

cos ϕ dϕ = [sin ϕ]2π
0 = sin(2π)︸ ︷︷ ︸

0

− sin 0︸︷︷︸
0

(4)

13.7. c)∫ b

a

dx (5)
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Hint: the integrand is 1.
Result: = b− a
| (Solution:)∫ b

a

dx =

∫ b

a

1 dx
♠
= [x]ba = b− a (7)

♠ x is an antiderivative of 1

13.7. d)∫ t0

0

a cos(ωt) + b eαt dt (8)

Result:

=
a

ω
sin(ωt0) +

b

α
(eαt0 − 1) (9)

| (Solution:)∫ t0

0

a cos(ωt) + beαt dt
♠
= a

∫ t0

0

cos(ωt)dt + b

∫ t0

0

eαtdt = (10)

= a

[
1

ω
sin(ωt)

]t0

0

+ b

[
1

α
eαt

]t0

0

=
a

ω
sin(ωt0) +

b

α
(eαt0 − 1) (11)

♠ Integral of a sum = sum of integrals
Constants like a and b can be pulled in front of the integral

13.Ex 8: Indefinite integrals
Calculate the following indefinite integrals.
Hint: this is the same type of exercise as the last one, differing only in notation:

antiderivative ≡ indefinite integral

13.8. a)∫
x dx (1)

Result:∫
x dx =

1

2
x2 (2)

| (Solution:)
Test: (

1

2
x2

)′
=

1

2
· 2x = x
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i.e. the integrand of the integral (1) is obtained.

13.8. b)∫
x2 dx (3)

Result:∫
x2 dx =

1

3
x3 (4)

13.8. c)∫
dx (5)

Result:∫
dx = x (6)

13.8. d)∫
1

x
dx (7)

Result:∫
1

x
dx = ln |x| (8)

(The integral of 1/x is the absolute value of the natural logarithm.)

Rem: The logarithm is defined only for positive arguments.
If x is positive the absolute sign in (8) is irrelevant and can be omitted: |x| = x.
If x is negative, we have |x| = −x. Using the chain rule with the substitution z = −x
we can check (8) like this:

d

dx
ln |x| = d

dx
ln(−x) =

[
d

dz
ln z

]
dz

dx
= −1

z
=

1

x
(1)

q.e.d.

13.8. e)∫
cos ϕ dϕ (9)



13. Ex 8: Indefinite integrals 207

Result:∫
cos ϕ dϕ = sin ϕ (10)

13.8. f) ∫
cos(ωt) dt (11)

Result:∫
cos(ωt) dt =

1

ω
sin ωt (12)

13.8. g) -- Write (2) in a mathematically correct form.
Result:∫ x

0

ξ dξ =
1

2
x2 (13)

| (Solution:)∫ x

0

ξ dξ
♠
=

[
1

2
ξ2

]x

0

=
1

2
x2 (14)

♠ The antiderivative of ξ is 1
2
ξ2

Test: d
dξ

1
2
ξ2 = 1

2
· 2 · ξ

The definite integral is the antiderivative taken at the boundaries
followed by taking their difference.

13.8. h) Why (2) is not a mathematically correct notation?
| (Solution:)
boundaries are not specified. It is implied that the upper boundary is x, but then it
is not correct to use the same symbol for the upper boundary as for the integration
variable.

13.8. i) ∫
sin(kx) dx (15)

Result:∫
sin(kx) dx = −1

k
cos(kx) (16)
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| (Solution:)
test: (

−1

k
cos(kx)

)′
= −1

k
(− sin(kx)) k = sin(kx) (17)

13.8. j) Write (16) in a mathematically correct form, i.e. as a definite integral.
Result:∫ x

π
2k

sin(kx) dx = −1

k
cos(kx) (18)

| (Solution:)∫ x

a

sin(kξ) dξ =

[
−1

k
cos(kξ)

]x

a

= −1

k
cos(kx) +

1

k
cos(ka) (19)

We must have cos(ka) = 0. Take e.g. ka = π
2
⇒ a = π

2k
.

13.8. k)∫ x

0

xξ dξ (20)

Hint: x is a constant.
Result:

=

∫ x

0

xξ dξ =
1

2
x3 (21)

| (Solution:)∫ x

0

xξ dξ = x

∫ x

0

ξ dξ =

[
x

1

2
ξ2

]x

0

=
1

2
xx2 =

1

2
x3 (22)

13.8. l) Write (21) in sloppy notation. Why is that obviously wrong?
| (Solution:)
In sloppy notation (21) would be∫ x

0

x2dx =
1

3
x3 (21)

Here the distinction between the integration variable ξ and the constant x (occurring
in(21) in the integrand and in the upper boundary) is lost. So, we see that sloppy
notation can be dangerous. However, it is safe in most cases.
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13.Ex 9: Integration as the inverse of differentiation

13.9. a) In a formulary look up the integral∫
x
√

x2 − a2 dx, a = const.

Result: 1
3

√
(x2 − a2)3

13.9. b) Check that result by differentiating.
Hint: first unify

√
and 3 to a unique exponent.

| (Solution:)(
1

3

√
(x2 − a2)3

)′
=

1

3

(
(x2 − a2)

3
2

)′ ♣
=

1

3
· 3
2
(x2 − a2)

3
2
−1 2x = x

√
x2 − a2

♣ chain rule with z = x2 − a2, d
dz

z
3
2 = 3

2
z

3
2
−1, dz

dx
= 2x

13.Ex 10: , Area under the sine curve

13.10. a) Calculate the shaded area A under one bosom of the sine curve.

Fig13.10. 1: Area A under one half period of a sine curve is calculated.

Hint: do not use a formulary, use the differentiation rules for sin and cos instead.
Result:

A = 2 (1)
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| (Solution:)

A =

∫ π

0

sin x dx
♠
= [− cos x]π0 = − cos π︸︷︷︸

−1

+ cos 0︸︷︷︸
1

= 2 (2)

♠ the antiderivative of sin x is − cos x

13.10. b) Calculate the shaded area A between the sine curve and the x-axis in the
interval [x1, x2] where

−π < x1 ≤ 0 ≤ x2 < π. (3)

Fig13.10. 2: To calculate an area (which by definition is always positive) we have to split the
integration interval into [x1, 0] and [0, x2].

Hint: The area of the integral is only positive in the interval [0, π], in the interval
[−π, 0] the integral is minus the area. Thus you have to calculate the partial areas
A1 and A2 separately.
Result:

A = 2− cos x1 − cos x2 (4)

| (Solution:)

A2 =

∫ x2

0

sin x dx = [− cos x]x2

0 = − cos x2 + cos 0︸︷︷︸
1

= 1− cos x2 (5)

A1 = −
∫ 0

x1

sin x dx = [cos x]0x1
= cos 0︸︷︷︸

1

− cos x1 = 1− cos x1 (6)

A = A1 + A2 = 2− cos x1 − cos x2 (7)
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13.10. c) What is the geometrical meaning of the integral∫ x2

x1

sin x dx (8)

Result: It is the difference of two areas

A2 − A1. (9)

13.10. d) Justify[
G
= begründe] geometrically the following equations.∫ 2π

0

sin ϕ dϕ = 0 (4)

∫ x+2π

x

sin ϕ dϕ = 0 (5)∫ x+2π

x

cos ϕ dϕ = 0 (6)

| (Solution:)
In each full period interval [x, x + 2π] the sine (and also the cosine) has the same

amount of area counted negatively as area counted positively, thus canceling[
G
=

sich aufheben] each other out to zero.

13.Ex 11: Area of a triangle calculated by an integral

Fig13.11. 1: The area of the right triangle is half the area of a rectangle with side lengths a and
b.
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13.11. a) Calculate the area A of the shaded triangle using the fact that it is half of a
rectangle.
Result:

A =
1

2
ab (1)

13.11. b) Give the equation of the dotted straight line.
Hint: Use the fact that y is proportional to x. Determine the constant of propor-
tionality at x = a.
Result:

y =
b

a
x (2)

| (Solution:)

y = αx, α = constant of proportionality (3)

(3) is true for x = 0. To make it true for x = a we must have b = αa ⇒ α = b
a
.

13.11. c) Express the area A of the triangle by an integral.
Result:

A =

∫ a

0

b

a
x dx (4)

13.11. d) A constant can be pulled in front of the integral. Why is b
a

a constant?
Result:

A =
b

a

∫ a

0

x dx (5)

| (Solution:)
A ‘constant’ means a constant with respect to the integration variable x, i.e. a and
b are independent of x. For a fixed triangle a and b do not change, while x ranges
from 0 to a.

13.11. e) What is the antiderivative of x?
Result:

1

2
x2 (6)

| (Solution:)
Test: (

1

2
x2

)′
=

1

2
(x2)′ =

1

2
· 2x = x q.e.d. (7)
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13.11. f) Calculate the integral (5).
Hint: To calculate an integral take the antiderivative at the upper and lower
boundaries of the integral and form its difference.
Result: See (1)
| (Solution:)

A =
b

a
·
[
1

2
x2

]a

0

=
b

a

(
1

2
a2 − 1

2
02

)
=

1

2
ab

13.Ex 12: -- Average of sin2 and cos2 is 1
2

Fig13.12. 1: Sine squared curve (b) is obtained from the sine curve by squaring the sine curve (a).
Since (−1)2 = 1, (b) is always positive. The average h = 1

2 is defined by the condition that the
bold area h · π

a is equal to the shaded area under one period of sine squared.

Rem 1: Because of squaring, the period of sin2(ax) is half the period of sin(ax).

Rem 2: Because of

sin2 x = 1
2
− 1

2
cos(2x) (1)

the curves (a) and (b) in fig.1 are essentially the same.
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In fig.1 you can see the graphs of y = f(x) = sin(ax) and y = f 2(x) = sin2(ax).
From the graphs check the following statements a) - f).
13.12. a) f and f 2 have the same zeros.

13.12. b) f 2 is non-negative [i.e. f 2 ≥ 0], in other words: f 2 is positive-semidefinite.

13.12. c) The range[
G
= Wertebereich] of f 2 is the interval [0, 1].

13.12. d) The maxima and minima of f become maxima of f 2.

13.12. e) The zeros of f are flex-points[
G
= Wendepunkte] of f which become minima

for f 2.

13.12. f) The period of f is 2π
a

, while f 2 has half that.

13.12. g) Calculate the shaded area under one half period of f 2.
Hint: Use a formulary for the antiderivative of f 2.
Result:

A =
π

2a
(2)

| (Solution:)

A =

∫ π
a

0

sin2(ax) dx =

[
x

2
− sin(2ax)

4a

]π
a

0

=
π

2a
−

sin(2aπ
a
)

4a
=

π

2a
(3)

13.12. h) Imagine that the graph of f 2 is a mountain range[
G
= Gebirge]. What is

its average height[
G
= durchschnittliche Höhe] h?

Hint: The average height h is defined so that the area of the solid rectangle[
G
=

Rechteck mit fetten Umrissen] is equal to A.
Result:

h =
1

2
(4)

| (Solution:)

A =
π

2a
!
= h · π

a
⇒ h =

1

2
(5)

13.12. i) The average of sin2 and cos2 occur very often in physics, so because of its
importance we restate our result as follows:

sin2 = cos2 =
1

2
(6)
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In words:
The average of sine squared (and cosine squared) [when taken over a full
period] is one half.

Rem: In (6), as usual, we have used an upper bar[
G
= Balken] to denote the

average[
G
= Durchschnitt].

Why does our result (6) also hold for cos2?
| (Solution:)
cos and sin differ only by a translation (= shift along the x-axis). Thus the same is
valid for cos2 and sin2. Areas are invariant under translations.

13.Ex 13: Derivative of an integral with respect to its lower boundary
Calculate the derivative with respect to the lower boundary of the integral, i.e.
calculate13

d

dx

∫ a

x

f(ξ) dξ (1)

Hint: What happens when you interchange boundaries?
Result: −f(x)
| (Solution:)

d

dx

∫ a

x

f(ξ) dξ =
d

dx

[
−
∫ x

a

f(ξ) dξ

]
= − d

dx

∫ x

a

f(ξ) dξ = −f(x) (2)

13It is assumed that both f and a do not depend upon x.



14 Application of integrals to geometry

(Recommendations for lecturing: 1, 2, 5, 6, for basic exercises: 3, 4.)

14.Ex 1: An amulet out of gold

Fig14.1. 1: The shaded area element a (inner side length x, width h) is calculated in linear
approximation, i.e. is treated as a differential: a = dA.

Calculate the shaded[
G
= schraffierte] area a of an amulet of quadratic shape,

see fig.1. x = inner side length, h = width of frame[
G
= Rahmen]. Calculate in linear

approximation of the small quantity h (h� x), i.e. treat a and h as differentials.
14.1. a) Calculate a by using its integral, i.e. the area of a square

A = A(x) = x2 (1)

Hint: the outer square has side length x + 2h.
Result:

a = 4x h (2)

| (Solution:)

a = A(x + 2h)− A(x) = dA (3)

dA

dx
= 2x, dx = 2h (4)

a = 2x dx = 4x h (5)

216
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Rem: A more elementary deduction is:

dA = (x + 2h)2 − x2 = x2 + 4xh + 4h2 − x2 = 4xh (3′)

since the quadratic term 4h2 can be neglected in a differential. However, this method
is computationally more complicated (and can be significantly more so in other
examples) since in (3′) we do not take into account early enough that dA and h
should be treated as differentials.

14.1. b) Normally however, in integral calculus we do not know the integral (e.g.
A = x2), but, on the contrary, we are in the process of calculating it.

Fig14.1. 2: The same area element dA is calculated directly. The darkly shaded area elements
are of second order and can be neglected. A new variable ξ is introduced going from ξ = 0 to ξ = x.

It is the tremendous[
G
= gewaltig] power of integral calculus to first determine

(e.g. intuitively, geometrically, etc) the differential and then by equation manipula-
tion to get the integral. Thus instead of using the integral (1), calculate geometrically
its differential dA, i.e. the shaded area in the above figure between the square with
side lengths ξ and the square with side lengths ξ + dξ.
Hint: because dA is a differential, calculate it only in linear approximation in dξ.
Result:

dA = 2ξ dξ (6)

| (Solution:)
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The width of a beam[
G
= Balken] of the frame[

G
= Rahmen] is 1

2
dξ. Thus the shaded

area is14

dA = 4 · dξ

2
· ξ (7)

Here we have neglected the four darkly shaded squares at the corners. However, that

area is of second order in dξ, namely 4
(

dξ
2

)2
, and can therefore be neglected in the

differential (7).

14.1. c) Calculate the area of the square (with side lengths x) by integrating (6).
Result:

A = x2 (8)

| (Solution:)

A =

∫ x

0

dA =

∫ x

0

2ξ dξ =

[
2 · 1

2
ξ2

]x

0

= x2 (9)

Rem: Strictly speaking the upper boundary in the integral (9) is not x but x− dξ.
However, this is the same in the limit dξ → 0.

14.Ex 2: Area of a circle
Similarly, calculate the shaded area dA of the gold ring d% (without using the formula

A = πr2 (1)

for the area of a circle, however, you may use the formula

c = 2πr (2)

for the circumference (perimeter) of a circle.)

14We need to have the formula for the area of a rectangle A = ab, of which (1) is a special case.
So our deduction is circular. However, this first, very simple example shows most clearly how we
get from the differential to the integral and what we can neglect in calculating the differential.



14. Ex 2: Area of a circle 219

Fig14.2. 1: To calculate the area of a circle we first calculate the shaded area element dA as a
rectangle with side lengths 2π% and d%.

Hint: the notation dA implies that it is a differential, i.e. is calculated in linear
approximation in d%.
14.2. a) Calculate the shaded area dA as if it were a rectangle with side lengths d%
and c, where c = circumference (perimeter) of a circle.
Result:

dA = 2π% d% (3)

14.2. b) Integrate dA to get the formula for the area of a circle with radius r.
Result:

A = A(r) = πr2 (4)

| (Solution:)

A =

∫ r

0

dA =

∫ r

0

2π% d% =

[
2π

1

2
%2

]r

0

= πr2 (5)

Rem: It is not so easy, as it was in our previous rectangular example, to prove that
(3) is correct, i.e. we have only made second order errors in d% while replacing the
shaded area by a rectangle of side lengths d% and 2π%.
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Fig14.2. 2: Our result (3), based on the rectangle (a), is slightly too small since, intuitively,
stretching the rectangle (a) to the ring (b) would tear out one side of the rectangle. However, that
error is of second order in d%.

In non-rigorous[
G
= nicht-strenge] mathematics, which most physicists use, one

develops an intuitive feeling for the correctness e.g. of (3). In the following we give

some additional intuitive arguments to corroborate[
G
= bekräftigen] that feeling.

First we have the feeling that dA is slightly (hopefully only of second order in
d%) smaller than the shaded area: when you take the rectangle (a) in fig.2 and

try to bend[
G
= biegen] it onto a circle (b) the outer periphery will tear out[

G
=

ausreißen] because it must be stretched from the length 2π% to the larger length
2π(% + d%).
On the other hand, bending a larger rectangle

dA = d% · 2π(% + d%) (6)

would result in a compression of the inner periphery. Thus (3) is too small and (6)
is too large. Since (3) and (6) differ only by the second order quantity 2π(d%)2, both
are equivalent in linear approximation, i.e. (3) is correct.

14.Ex 3: , Area of a circle calculated in polar coordinates
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Fig14.3. 1: The area of a circle (radius R) is calculated again using the shaded triangles as area
elements.

We calculate the area of a circle again using the shaded differential dA.
14.3. a) Calculate dA.
Hint: calculate dA in first order approximation as a rectangular triangle with base
R and the arc length of the angle dϕ as its perpendicular.
Result:

dA =
1

2
R2 dϕ (1)

| (Solution:)
The area of a rectangular triangle is

dA =
1

2
ab (2)

where a = base = R, b = perpendicular = arc length = R · dϕ.

14.3. b) Integrate (1) to obtain the area of a circle.
| (Solution:)

A =

∫
dA =

1

2
R2

∫ 2π

0

dϕ (3)

The integrand here is 1, its antiderivative is x (or ϕ since the integration variable is
ϕ). Thus,

A =
1

2
R2 [ϕ]2π

0 =
1

2
R2(2π − 0) = πR2 (4)
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14.Ex 4: , Volume of a cone
(cone[

G
= Kegel])

Fig14.4. 1: The volume of a cone (height h, base is a circle of radius R) is calculated by integrating
the shaded volume element dV . dV is estimated by taking r and r1 as the radius. Thickness is dz,
where the axis of the cylinder is the z-axis.

We would like to calculate the volume of a cone with a circle of radius R as the base
and with height h. We choose a z-axis in the axis of the cone, z = 0 being the top
of the cone and z = h being the base of the cone.

14.4. a) Calculate the radius r of the sphere which is a cross-section[
G
=

Querschnitt] of the cone at height z.
Hint: r is proportional to z. Determine the constant of proportionality for z = h.
Result:

r =
R

h
z (1)

| (Solution:)
r = αz, α = constant of proportionality. For the top in particular, we have z = r =
0. For z = h we must have

r = R = αh ⇒ α =
R

h
⇒ (1) (2)
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14.4. b) Approximate the shaded volume element dV by a disk (= cylinder) of radius
r and thickness dz.
Result:

dV = π
R2

h2
z2 dz (3)

| (Solution:)

dV = volume of the cylinder = height × area of a circle = dz · πr2 (1)
= πR2

h2 z2 dz

14.4. c) (3) will be slightly too small, so choose it too large by taking r1 instead of r,
and show that (3) is correct in linear approximation.
| (Solution:)
The larger volume is (in (3) replace z → z + dz)

dV ′ = π
R2

h2
(z + dz)2dz (3′)

Since (3) and (3′) differ only by second order quantities (πR2

h2 2z(dz)2 or higher) and
the correct value of the shaded volume element lies in-between, (3) is correct for the
differentials.

14.4. d) Integrate (3) to obtain the volume of the cone.
Result:

V =
1

3
πhR2 (4)

| (Solution:)

V =

∫ h

0

dV =

∫ h

0

πR2

h2
z2 dz =

[
πR2

h2

1

3
z3

]h

0

=
1

3

πR2

h2
h3 =

1

3
πhR2 (5)

14.Ex 5: Surface of a sphere
We will calculate the area A of the surface of a sphere with radius R, see fig.1.
First we will calculate the shaded surface element (≡ surface differential) dA. It is
bounded by two circles of radii r and r1.
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Fig14.5. 1: Surface of a sphere (radius R) is calculated by integrating the shaded surface elements
dA (defined by ϑ . . . ϑ + dϑ).
dA is estimated as a rectangle with side lengths ds and the circumference (perimeter) of a circle
with radius r (or r1).

14.5. a) Calculate r, r1 and the periphery element ds.
Hint: for sin(ϑ + dϑ) use Taylor’s formula.
Results:

r = R sin ϑ (1)

r1 = R sin ϑ + R cos ϑ dϑ (2)

ds = R dϑ (3)

| (Solution:)

1) Both sides[
G
= Schenkel] of the angle dϑ have length R. Because of the right

angle, we have r = R sin ϑ (side projection).
2) Similarly

r1 = R sin(ϑ + dϑ)
♣
= R(sin ϑ + (sin ϑ)′︸ ︷︷ ︸

cos ϑ

dϑ) = R sin ϑ + R cos ϑ dϑ (4)

♣ Taylor’s formula in first order (= linear) approximation as suitable for differentials

3)

ds = R dϑ (length of arc with centri-angle dϑ) (5)

14.5. b) Calculate dA (and make plausible that your expression is correct in linear ap-
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proximation) by cutting off[
G
= aufschneiden] our surface element at the periph-

ery element ds and unbending[
G
= abwickeln] it into a plane, which is not possible

without tearing[
G
= zerreißen] (see fig. 2a) or squashing[

G
= zerquetschen] it

(see fig. 2b).

Fig14.5. 2: (6) is too small since bending the rectangle (b) onto a sphere would tear one side open,
while (6′) is too large (see fig a) because then one side (2πr1) would be compressed to 2πr.

Rem: Observe that the periphery element ds is perpendicular[
G
= senkrecht] to

the tangent at P on the circle r. Therefore, ds becomes the height of the resulting
rectangle.

Result:

dA = 2πr ds (6)

| (Solution:)
(6) corresponds to the rectangle in fig.2b. The true dA is slightly larger, since the

dark-shaded[
G
= dunkel-schraffiert], overlapping, small triangles are lacking in

(6). Calculating the rectangle (fig.2a)

dA1 = 2πr1ds
(2)
= 2π R sin ϑ ds + 2πR cos ϑ dϑ ds (6′)

dA1 is slightly larger than the true dA since dA1 also contains the small white
open triangles in fig.2a. Since (6) and (6′) differ only by a second order term
2πR cos ϑ dϑ ds, (6) is correct in linear approximation, i.e. for a differential. We
prefer (6) instead of (6′) because it is simpler.
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14.5. c) Integrate (6) with (1) (3) from ϑ = 0 to ϑ = π to obtain the surface of the
sphere.
Result:

A = 4πR2 (A = surface of a sphere with radius R) (7)

| (Solution:)

A =
∫

dA =
∫ π

0
2πR sin ϑR dϑ

= 2πR2
∫ π

0
sin ϑ dϑ = 2πR2 [− cos ϑ]π0

= 2πR2(− cos π︸ ︷︷ ︸
1

+ cos 0︸︷︷︸
1

) = 4πR2 (8)

14.Ex 6: Volume of a sphere

Fig14.6. 1: The volume V of a sphere with radius R is the integral of the shaded volume elements
dV .

14.6. a) We treat the shaded volume element dV as a plate (cuboid[
G
= Quader])

with ground area as the surface of a sphere with radius r and height15 dr. Calculate

15Note that the radius element dr (see fig.1) is perpendicular to the tangential plane at a point
P on the sphere r, so after cutting, tearing and squashing to form a plane cuboid, dr remains
perpendicular to the ground plate of the cuboid.
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dV .
Result:16

dV = 4πr2 dr (1)

14.6. b) Calculate the volume of a sphere by integrating dV .
Result:

V =
4

3
πR3 (V = volume of a sphere with radius R) (2)

| (Solution:)

V =

∫
dV =

∫ R

0

4πr2dr =

[
4π

1

3
r3

]R

0

=
4

3
πR3 (3)

16If we had taken the surface of the sphere (r+dr) we would have obtained dV1 = 4π(r+dr)2dr =
4πr2dr + 4π2r(dr)2 + 4π(dr)3 which is slightly too large, whereas (1) was slightly too small. Since
dV and dV1 are identical in linear approximation, (1) is correct as a differential.



15 Substitution method and partial integration

(Recommendations for lecturing: 1-3,5a,5b together with chapters 16 and 20.
Recommendations for basic exercises: 4, 5c.)

15.Q 1: Substitution method

15.1. a) What is the substitution method for calculating integrals?
| (Solution:)
When we have to calculate an integral:∫ b

a

f(x) dx (1)

we choose a (suitable) new variable y connected to the old one (x) by, let’s say,

y = g(x) (2)

and express everything in (1), i.e. the integrand f(x), the differential dx and the
boundaries a and b in the new variable (coordinate) y.

Rem 1: In (2) we substitute[
G
= ersetzen] the integration variable x by the new

integration variable y. Therefore the name ‘substitution method’.

Rem 2: Intuitively this procedure is obvious[
G
= offensichtlich]: the integral is

just a sum. We express every summand in new variables without changing their
values. We make sure that we have corresponding (the same) boundaries.

15.1. b)- Perform this procedure explicitly in the general case (2).

Hint: Use the inverse function h = g−1, i.e.

x = h(y), y = h−1(x) = g(x) (3)

| (Solution:)
Transformation of the integrand:

f(x) = f(h(y)) (4)

Rem 1: As an example T = f(x) could be the temperature at position x expressed
in meters. x = h(y) = 1

40
y, y = position in inches. Then (4) reads: T = f( 1

40
y).

The temperature T at a definite physical point is the same, irrespective if position
is expressed in meters (x) or in inches (y); x = 1

40
y.

Transformation of the differential, using (3):

dx

dy
= h′(y) ⇒ dx = h′(y) dy (5)

228
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Transformation of the boundaries:
x = a, x = b by (3) correspond to

y = h−1(a), y = h−1(b) (6)

Thus we arrive at:∫ b

a

f(x) dx =

∫ h−1(b)

h−1(a)

f(h(y)) h′(y) dy (substitution method) (7)

Rem 2: By a suitable choice of h, the right hand side of (7) might be simpler than
its left hand side.

15.1. c) Perform the procedure of substitution of integrals to calculate

I =

∫ x=1

x=0

eax dx, a = const, a > 0 (8)

Unfortunately, we only know the indefinite integral∫ x

eydy = ex + const. (9)

Choose a suitable substitution of variables[
G
= Variablensubstitution], so

that the integral (8) acquires the form (9).

Rem: In (8) we have given the boundaries as x = 0 and x = 1. This ‘x = ’

is superfluous[
G
= überflüssig], since the differential dx indicates what is the

integration variable (namely x). Since in the substitution method the integration
variable will be changed, we make this additional designation to make clear that 0
and 1 are x-boundaries (i.e. boundaries expressed in the variable x).

Hint: Choose

y = g(x) = ax (10)

| (Solution:)
Transformation of the integral:

eax = ey (11)

Transformation of the differential:

dy

dx
= y′(x)

(10)
= a ⇒ dx = 1

a
dy (12)

Transformation of the boundaries:
x = 0, x = 1 corresponds to

y = 0, y = a (13)
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Thus we arrive at the final result

I =

∫ y=a

y=0

ey 1
a

dy = [ 1
a
ey]a0 = 1

a
(ea − 1) (14)

15.Q 2: Partial integration

15.2. a) Give the formula for partial integration.
| (Solution:)∫ x

a

u(t)v′(t) dt = [u(t)v(t)]xa −
∫ x

a

u′(t)v(t) dt (Partial integration) (1)

15.2. b) Express it in words.
| (Solution:)
If the integrand is a product of a function and of the derivative of another function,
the integral is minus a similar integral where the differentiation is shifted from the

one factor to the other one, with the addition of a boundary term[
G
= Randterm]

which is the difference of the product of both functions at the boundaries.

Rem: Short: The derivative can be shifted over from one factor to the other if we
accept the penalty of a minus sign and of a boundary term[

G
= Randterm] [· · · ]xa.

15.2. c) Prove it by differentiation.
| (Solution:)
Differentiating both sides of (1) leads to

u(x)v′(x) = u(x)v′(x) + u′(x)v(x)− u′(x)v(x) (2)

[For the differentiation of the integrals we have used the main theorem of calculus.
For the product uv we have used Leibniz’s product rule.]
(2) is true. So, since the derivative of both sides of (1) are equal, the sides itself can
only differ by a constant. But this constant must be zero, since (1) is true for x = a.
q.e.d.

15.Ex 3: The substitution method

15.3. a)∫ b

a

x3

2− 3x4
dx (1)

Hint: substitute

z = 2− 3x4 =⇒ 1

2− 3x4
=

1

z
(2)
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Result:

= − 1
12

ln

∣∣∣∣ 2− 3b4

2− 3a4

∣∣∣∣ (3)

| (Solution:)

dz

dx

(2)
= −12x3, dz = −12x3 dx ⇒ x3 dx = − 1

12
dz (4)

Thus ∫ b

a

x3

2− 3x4
dx

(2)(4)
= − 1

12

∫
dz

z
♠
= [− 1

12
ln |z|]z=2−3b4

z=2−3a4 (5)

= − 1
12

(
ln
∣∣2− 3b4

∣∣− ln
∣∣2− 3a4

∣∣) ♣
= − 1

12
ln

∣∣∣∣ 2− 3b4

2− 3a4

∣∣∣∣ (6)

♠ The antiderivative of 1
x

is ln |x|.
♣ ln x− ln y = ln x

y

15.3. b)- The last example is quite general if the integrand is a fraction with the

numerator[
G
= Zähler] being the derivative of the denominator[

G
= Nenner].

Thus calculate∫ b

a

f ′(x)

f(x)
dx (7)

with the substitution

z = f(x) (8)

Result:∫ b

a

f ′(x)

f(x)
dx = ln

∣∣∣∣ f(b)

f(a)

∣∣∣∣ (logarithmic integration) (9)

| (Solution:)

dz
(8)
= f ′(x) dx (10)∫ b

a

f ′(x)

f(x)
dx

(18)
=

∫ f(b)

f(a)

dz

z
= [ln |z|]f(b)

f(a) = ln |f(b)| − ln |f(a)| = ln

∣∣∣∣ f(b)

f(a)

∣∣∣∣ (11)

15.Ex 4: , Calculation of arc lengths (rectifications)
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Fig15.4. 1: The line element ds of the curve is calculated as the hypotenuse of a right triangle
with dx as the base and dy as the perpendicular.

We will calculate the length s of the curve

y = 1
2
x3/2 (1)

in the interval 0 ≤ x ≤ 1.
15.4. a) Calculate the line element ds (expressed by dx).
Hint 1: calculate dy by differentiating (1).
Hint 2: approximate ds as the hypotenuse of a right triangle with base dx and
perpendicular dy; use Pythagoras.
Result:

ds =
√

1 + 9
16

x dx (2)

| (Solution:)

y′ =
dy

dx
= ( 1

2
x3/2)′ = 1

2
· 3

2
x1/2, (3)

dy = 3
4
x1/2 dx (4)

Pythagoras

ds2 = dx2 + dy2 (5)

Convention:

ds2 means (ds)2, not d(s2);
dx2 means (dx)2, not d(x2) , etc.

(6)

ds =
√

dx2 + 9
16

x dx2 =
√

1 + 9
16

x dx (7)
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15.4. b) Express the length s as an integral.
Result:

s =

∫
ds =

∫ 1

0

√
1 + 9

16
x dx (8)

15.4. c) Evaluate integral (8) with the help of the substitution

u = 1 + 9
16

x (9)

Result:

s =
61

54
(10)

| (Solution:)

du
(9)
= 9

16
dx (11)

Thus by (8):

s = 16
9

∫ 25/16

1

√
u du = 16

9
·
[

2
3
u

3
2

]25/16

1
= 32

27

[
u

3
2

] 25
16

1
= (12)

=
32

27

((
25

16

)3/2

− 1

)
=

32

27

(
53

43
− 1

)
=

32

27

(
125

64
− 1

)
=

=
32

27
· 125− 64

64
=

32

27
· 61

64
=

61

54

(61 is a prime number.)

15.Ex 5: Examples for partial integration

15.5. a) Calculate the integral
∫

ln x dx
Hint: Write ln x = ln x · 1 = u · v′
Result:

ln x = x ln x− x + C (1)

| (Solution:)∫
ln x dx =

∫
ln x︸︷︷︸

u

· 1︸︷︷︸
v′

dx
(v=x)
= x ln x−

∫
1

x
· x dx︸ ︷︷ ︸∫

dx=x

(2)
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15.5. b) Calculate the integral I =
∫

eax cos(bx) dx
Hint: Choose u = eax. Perform two partial integrations in succession, and you will
find in that intermediate result again the looked for integral, denoted by I. So you
have obtained an equation for I, which can be solved for I.
Result:

I =

∫
eax cos(bx) dx =

eax

a2 + b2
[b sin(bx) + a cos(bx)] + C (3)

| (Solution:)

v′ = cos(bx) ⇒ v =
1

b
sin(bx) (4)

I =

∫
eax︸︷︷︸
u

cos(bx)︸ ︷︷ ︸
v′

dx = eax 1

b
sin(bx)− a

b

∫
eax sin(bx) dx (5)

The last integral will again be transformed by partial integration:

v′ = sin(bx) ⇒ v = −1

b
cos(bx) (6)

∫
eax︸︷︷︸
u

sin(bx)︸ ︷︷ ︸
v′

dx = −1

b
eax cos(bx) +

a

b

∫
eax cos(bx) dx︸ ︷︷ ︸

I

(7)

Thus we have obtained an equation for I:

I =
1

b
eax sin(bx) +

a

b2
eax cos(bx)− a2

b2
I (8)

I

(
1 +

a2

b2

)
=

1

b
eax sin(bx) +

a

b2
eax cos(bx) (9)

I =
b2

a2 + b2
eax

[
1

b
sin(bx) +

a

b2
cos(bx)

]
(10)

15.5. c) Calculate the integral I =
∫

sin2 x dx
Hint: Choose u = sin x. Perform two partial integrations in succession, and by
transforming cos2 into sin2, you will find in that intermediate result again the looked
for integral, denoted by I.
Result:

I =

∫
sin2 x dx = 1

2
x− 1

4
sin(2x) + C (11)
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| (Solution:)

I =

∫
sin2 x dx = (12)

=

∫
sin x︸︷︷︸

u

· sin x︸︷︷︸
v′

dx
(v=− cos x)

= − sin x cos x +

∫
cos x cos x︸ ︷︷ ︸

1−sin2 x

So we have found the equation:

I = − sin x cos x + x + I (13)

leading to

I = 1
2
x− 1

2
sin x cos x = 1

2
x− 1

4
sin(2x) (14)

15.Ex 6: - Any quantity is the integral of its differentials
Transform the general integral

I(x) =

∫ x

a

f(ξ) dξ (1)

with the substitution

I = I(ξ). (2)

Hint: observe that differentiation is the inverse of integration, i.e.

I ′ = f (3)

Result:

I =

∫
dI (4)

Rem: in words:

any quantity is the integral of its differentials
(or in other words: of its elements).

(5)

This is an exact justification (by the substitution method) of our procedure of first
calculating the differential dI of a desired quantity I and then integrating (i.e.
looking for the antiderivative).
| (Solution:)

dI = I ′(ξ) dξ
(3)
= f(ξ) dξ (6)

The substitution method applied to (1) yields

I(x) =

∫ ξ=x

ξ=a

f(ξ) dξ
(6)
=

∫ I=I(x)

I=I(a)

dI = [I]
I=I(x)
I=I(a) = I(x)− I(a)

(1)
= I(x) (7)

which, in shorter notation, is (4).



16 - Improper integrals

16.Q 1: Improper integrals

y = x−n, (n ∈ R) (1)

Fig16.1. 1: We calculate the dotted (Bn) and the shaded (An) areas for several n’s. Since a
function value or the range of the integrals is infinite, they are improper integrals, which are limits
of ordinary integrals.

16.1. a) For n > 1 calculate the shaded area An.
| (Solution:)

An =

∫ ∞

1

x−n dx =

[
1

1− n
x−n+1

]∞
1

=
1

1− n

(
1

∞

)n−1

− 1

1− n
(2)

Since n− 1 > 0 the first term involving ∞ vanishes, thus we get

An =
1

n− 1
(3)

236
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16.1. b) The same for n = 1. (The curve is then called a hyperbola[
G
= Hyperbel].)

| (Solution:)

A1 =

∫ ∞

1

1

x
dx = [ln |x|]∞1 = [ln x]∞1 = ln∞ =∞ (4)

i.e. the shaded area is infinite. (ln 1 = 0)

The area under the hyperbola is infinite

16.1. c) The dotted[
G
= punktierte] area Bn for n < 1.

| (Solution:)
Using a)

Bn =

∫ 1

0

x−n dx =

[
1

1− n
x−n+1

]1

0

=
1

1− n
− 1

1− n
01−n (5)

We have 1− n > 0, so the second term vanishes and we find

Bn =
1

1− n
(6)

16.1. d) The same for n = 1.
| (Solution:)
Using b)

B1 =

∫ 1

0

1

x
dx = [ln |x|]10 = ln 1− ln 0 = 0− (−∞) =∞ (7)

i.e. the area is infinite.

16.1. e) Why are the above improper integrals[
G
= uneigentliche Integrale]?

Reformulate the above results using limits of proper integrals
| (Solution:)
∞ occurs either as a boundary, or at a boundary the integrand is ∞. Since ∞ is

not a fully-fledged[
G
= vollwertig] number, something is meaningless. Hence, the

above integrals are called improper.
The above improper integrals can be written as limits of proper integrals:

An = lim
x→∞

∫ x

1

ξ−n dξ =
1

n− 1
(n > 1) (8)

A1 = lim
x→∞

∫ x

1

1

ξ
dξ =∞ (9)
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Bn = lim
ε→0+

∫ 1

ε

ξ−n dξ =
1

1− n
(n < 1) (10)

B1 = lim
ε→0+

∫ 1

ε

1

ξ
dξ =∞ (11)

Rem: ε→ 0+ means ε→ 0 whereby only limiting processes with ε > 0 are consid-
ered.
Also x→∞ implies x 6= 0, otherwise the integrand is not defined.



17 Partial derivatives and total differential. Im-

plicit functions

(Recommendations for lecturing: 1, 2, 5a, 7a-c
for basic exercises: 5b, 6, 7d.)

17.Q 1: Partial derivatives
Consider a function z = z(x, y) of two independent variables x, y, e.g. conceived as
the surface of a mountains.

Rem: To save letters we write z = z(x, y) instead of z = f(x, y) to denote an arbi-
trary function of two independent variables x and y. Thus z is both the dependent
variable and the name of a function. No confusion is possible.

Fig17.1. 1: A function z = z(x, y) can be viewed as the height z of a mountains above a base
point (x, y).

17.1. a) What is (in words) the partial derivative[
G
= partielle Ableitung]

∂z

∂x
(1)

| (Solution:)
∂z
∂x

is the derivative of z with respect to x, when the other variables, in our case y

239
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only, are held constant (i.e. while differentiating, they are treated as if they where
constants).

17.1. b) In case of

z = sin(xy) + y (2)

calculate all first order and second order partial derivatives.
| (Solution:)

∂z

∂x
= y cos(xy) (3)

∂z

∂y
= x cos(xy) + 1 (4)

∂2z

∂x2
= −y2 sin(xy) (5)

∂2z

∂y2
= −x2 sin(xy) (6)

∂2z

∂x∂y
=

∂2z

∂y∂x
= cos(xy)− xy sin(xy) (7)

17.1. c) Give alternative notations for (higher) partial derivatives.
| (Solution:)

∂z

∂x
=

∂

∂x
z = ∂x z = z,x = z|x (8)

∂2z

∂x∂y
=

∂2

∂x∂y
z =

∂

∂x

∂

∂y
z = ∂x∂yz = z,xy = z|xy (9)

17.1. d) Give relations between higher partial derivatives.
| (Solution:)
The order of the partial derivatives is irrelevant. One example is (7), a further one
is:

z|yyx = z|xyy = z|yxy (10)

17.Q 2: Taylor’s formula in 2 variables
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Fig17.2. 1: The increment ∆z of the functional value z depends upon two independent increments
dx = ∆x and dy = ∆y.

Starting from a point P = (x, y) with height z = z(x, y) we go to a displaced point
Q = (x + ∆x, y + ∆y) by two independent increments ∆x and ∆y.

17.2. a) Give the Taylor formula for the corresponding dependent increment

∆z = z(x + ∆x, y + ∆y)− z(x, y) (1)

up to the second order (inclusive) and give an example of a (neglected) third order
term.
| (Solution:)

∆z = ∂z
∂x

∆x + ∂z
∂y

∆y+

+ 1
2

∂2z
∂x2 (∆x)2 + ∂2z

∂x∂y
(∆x)(∆y) + 1

2
∂2z
∂y2 (∆y)2 + O(3)

(2)

(Taylor’s formula in 2 variables in second order approximation)
where O(3) includes all terms of third order or higher, including e.g. the term

1

3!

∂3z

(∂x)3
(∆x)3 or

∂3z

(∂x)2∂y
(∆x)2 (∆y) (3)

Rem: Again the gist[
G
= Knackpunkt] of Taylor’s formula (2) is that we know

the value of the function z(x + ∆x, y + ∆y) = z(x, y) + ∆z at the neighbour-
ing point Q = (x + ∆x, y + ∆y) if we know all its higher partial derivatives
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z(x, y), ∂z
∂x

, ∂z
∂y

, ∂2

∂x2 ,
∂2z

∂x∂y
· · · at the in-displaced point P = (x, y). Or, if we know only

the first few of them, we know the function value at least approximatively for small
values of ∆x and ∆y.

17.2. b) For the above function

z = sin(xy) + y (4)

calculate z in the neighbourhood of P0 = (0, 0) in second order approximation.
| (Solution:)
In our trivial example (x = y = 0) all partial derivatives up to the second order are
zero, except

∂z

∂y
= 1 and

∂2z

∂x∂y
= 1 (5)

Thus

∆z = ∆y + ∆x∆y (6)

Because of (1) we have

z(∆x, ∆y) = z(0, 0) + ∆z = ∆z (7)

Replacing ∆x 7→ x, ∆y 7→ y we obtain:

z = z(x, y) = y + xy (8)

Rem: The same result (8) could be obtained from (4) by developing sin in linear
approximation of its argument: sin ε ≈ ε.

17.2. c) Starting from the above Taylor formula derive the formula for the total
differential dz.

Rem: Instead of ‘total differential’ the synonymous term ‘complete differential’
is also used.

| (Solution:)
A differential (denoted by d) is an increment (denoted by ∆) in the lowest order
of approximation. For the independent increments there is no difference between
increment and differential:

∆x = dx, ∆y = dy (9)

and (2) reads in lowest (=first) order approximation:

dz =
∂z

∂x
dx +

∂z

∂y
dy total differential (10)
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Rem: Here, and in similar cases, it is implicitly assumed that ∆x, ∆y are both of
the same (i.e. first) order.

17.2. d) Explain the qualifier ‘total’.
| (Solution:)
Putting dy = 0 in (10) we obtain a partial differential

dzx =
∂z

∂x
dx (11)

It is a special case of dz when all other independent increments, besides dx, are zero.
(10) says that the total differential (i.e. when all independent differential are present)
is simply the sum of all partial differentials. This must be so, because differentials
are always calculated in the lowest (here: linear) approximation.

17.2. e) Give (in words) the geometric meaning of dz using the above figure.
| (Solution:)
dz is the increment ∆z when the real surface z(x, y) is replaced by its tangential

plane[
G
= Tangentialebene] above P .

17.2. f) Generalize to the formula for the total differential for a function

y = y(x1, x2, . . . , xn) (12)

of n independent variables x1, . . . , xn.
| (Solution:)

dy =
n∑

i=1

∂y

∂xi

dxi total differential in n variables (13)

Rem: From this important formula, we can immediately deduce that an extremal
point is given by

∂y

∂x1

=
∂y

∂x2

= · · · = ∂y

∂xn

= 0 stationary, e.g. extremum (14)

i.e. all partial derivatives are zero, since at an extremum (e.g. minimum or
maximum) dy = 0 (in first order approximation) for any values of the independent
increments dxi.
(In more detail: choose e.g. dx1 6= 0 but dxi = 0 for the remaining increments, to
deduce ∂y

∂x1
= 0.)

17.Q 3: - Implicit functions

17.3. a) Explain why by

f(x, y) = 0, (1)
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with a given function f(x, y), we define a function y = y(x) (called an implicit
function, more correctly: an implicitly defined function)
| (Solution:)
For each x (considered as a parameter) f(x, y) = 0 is an equation for y. The solution
of that equation y = y(x) is the implicit function.

Rem: When there are several solutions for a fixed x, then y(x) is a multi-valued
function.

17.3. b) Use the example

f(x, y) ≡ x2 + y2 − 1 = 0 (2)

and give in that case the function y(x) in explicit form. Give the geometric meaning
of that example.
| (Solution:)

Fig17.3. 1: The unit circle can be viewed as the graph of the double valued function
y = y(x) = ±

√
1− x2. y(x) is the implicit function given by the equation of the circle: x2+y2 = 1

(2) reads

x2 + y2 = 1 (3)

which, geometrically, is the unit circle[
G
= Einheitskreis]. Solving that equation

for y (with x as a parameter) we obtain the implicit function

y = y(x) = ±
√

1− x2 (4)
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Rem 1: Since, in our example, (3) does not have a unique solution, the implicit
function y = y(x) is not uniquely defined, but is a double-valued function (±).

Rem 2: The function (4) (as a real valued function) is only defined in the interval
[-1, 1].

Rem 3: ‘Explicit’ or ‘implicit’ is not an attribute of the function, but refers only to
a chosen way of defining it.

17.3. c) Is it possible to give the function y(x) implicitly defined by

y5x + y4(x2 − 2x) + yx + 3 = 0 (5)

in explicit form?
| (Solution:)
For given x, (5) is an algebraic equation of the fifth order, which cannot be solved
for y in the general case. Therefore y(x) cannot be given in explicit form.

Rem 1: The ordinary citizen can only solve linear equations and quadratic equations,
e.g. (in y)

xy2 + (x2 − 1)y + (x7 + 2) = 0 (6)

Mathematicians can also solve third and fourth order algebraic equations. Equations
of order higher than 4 cannot be solved using root symbols only, except in special
cases.

Rem 2: The equations (3)(6) are called ‘algebraic’, where the word ‘algebra’ is used
in an old fashioned meaning involving addition and multiplication (including natural
exponents) only.

17.3. d)

ey = x (7)

defines the function y(x) implicitly. Bring that implicit definition into the form (1)
and give y(x) in explicit form.
| (Solution:)

f(x, y) ≡ ey − x = 0 (8)

y = ln x (9)

Obviously, the implicitly defined function y = y(x) is just the inverse function[
G
=

Umkehrfunktion, inverse Funktion] of the function on the left hand side of (7).

17.3. e) The same for

sin y = x (10)
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Sketch the graph of that function.
| (Solution:)
(10) is the sine-function, except for the unusual choice of variables:

Fig17.3. 2: Function (y = sinx) and inverse function (y = arc sinx) have the same graph, but
x⇐⇒ y is interchanged.

By interchanging x⇐⇒ y (reflection of the graph at the dotted half angle line[
G
=

Winkelhalbierende]) we get the following graph:

Fig17.3. 3: Here, the labels at the axes (x, y) are as usual. So the graph of the inverse function is
obtained by a mirror symmetry at the angle line between these axes.

Again, the implicitly defined function y = y(x) is just the inverse function of sin
and thus is denoted by

y = arcsin x (11)
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Rem 1: Since y has the geometrical meaning of an angle (older terminology: an
arc), y is the arc (lat: arcus) whose sin is x, that’s why, the inverse function is called
arcsin.

Rem 2: y = arcsin x is an infinite valued function: To a definite value of x, the
corresponding function values y are depicted by small circles in the above graph.

Rem 3: To obtain a unique function, denoted by y = Arcsin x, i.e. with a capital A,

one takes arbitrarily the branch depicted by a bold line[
G
= fette Kurve] in the

above graph. It is called the principal branch[
G
= Hauptast] of the graph (or of

the function). Every restriction of the graph, so that the function becomes unique

is called a branch[
G
= Ast, Zweig] of the function. In an infinite-valued function,

the function has an infinite number of branches. The function value y defined by

y = Arcsin x is called the principal value[
G
= Hauptwert] of the multiple-valued

function y = arcsin x.

Rem 4: ‘ln’ and ‘arcsin’ are just newly defined mathematical symbols introduced
for the solution of the equations (7) and (10) of the implicit definitions. Therefore it
is a matter of taste if we say that an explicit form of the function is possible or not.

Rem 5: Since arcsin is the inverse function of sin, we have the equations

arcsin(sin x) = x (12)

(Since arcsin is a multiple valued function, (12) is true for a suitably chosen branch only

sin(arcsin x) = x (13)

(The multivaluedness of arcsin does not matter here because sin cancels it)

17.Q 4: - Implicit differentiation

17.4. a) Using the total differential of

z = f(x, y) (1)

derive the formula

y′(x) = −
∂f
∂x
∂f
∂y

(implicit differentiation) (2)

for the derivative y′(x) of the function y(x) implicitly defined by

f(x, y) = 0. (3)

| (Solution:)

dz =
∂f

∂x
dx +

∂f

∂y
dy = 0 (4)
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Rem Geometric interpretation:
We choose the dependent increments dx, dy so that always f(x, y) = 0, i.e. we follow

a contour line[
G
= Höhenlinie], i.e. a path without slope, remaining always on the

altitude f = 0. The x, y-values thus followed are connected by y = y(x) and dx, dy
are corresponding differentials of y = y(x).

Solving (4) for dy/dx leads to (2)

17.4. b) For the example

x2 + y2 = 1 (5)

calculate y′(x) by implicit differentiation.
| (Solution:)

f(x, y) = x2 + y2 − 1 = 0 (6)

∂f

∂x
= 2x,

∂f

∂y
= 2y (7)

leading to the result

y′ = −x

y
(8)

17.4. c) And, alternatively, by first calculating y(x) explicitly.
| (Solution:)

y(x) =
√

1− x2 (9)

y′(x) =
1

2
√

1− x2
(−2x) = − x√

1− x2
(10)

using (9) we see that this result is equivalent to (8)

Rem: So in general, the result of implicit differentiation does not give y′ in explicit
form, when y(x) is not known explicitly. However, as in this example, implicit dif-
ferentiation may be easier than differentiation of the explicit function. And in other
special examples (8) may have such a form that y drops out, etc.

17.Ex 5: Error propagation of multiple error sources

17.5. a) A student measures the side lengths a and b of a rectangle and calculates its
area using

A = ab (1)

What is the relative error εA if the relative errors of the measured side lengths are
assumed to be εa and εb.
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To have a concrete example:
exact values: a = b = 1m = 1000mm
absolute errors: ∆a = ∆b = 1mm
relative errors: εa = εb = ∆b

b = 1
1000 = 1h.

Hint 1: The area A is a function of two variables: A = A(a, b) = ab.

Hint 2: Treat εa, εb, εA and the corresponding absolute errors as differentials, i.e.
we use differential calculus as a method of approximation.
Use the complete differential of A.

Hint 3: If the measured value of a side is am and the exact (unknown) value is a,
then the absolute error is ∆a = am − a and the relative error is εa = ∆a/a.
Am = ambm is the proposed value for the area, whereas the exact (unknown) value
for the area is A = ab. The absolute error of the area is ∆A = ambm−ab, the relative
error is εA = ∆A/A. Treating as differentials means ∆ = dA, i.e. ∆A is calculated
in linear approximation in da and db only.

Result:

εA = εa + εb (for factors, relative errors are additive) (2)

| (Solution:)

da = a εa, db = b εb, dA = εA A (3)

Complete differential of A:

dA =
∂A

∂a
da +

∂A

∂b
db = b da + a db (4)

εA =
dA

A
=

b

A
da +

a

A
db =

da

a
+

db

b
= εa + εb (5)

Rem: Think about solving the same problem when εa, εb, εA are not treated as
differentials but as exact quantities. Regain (5) by a linear approximation.

17.5. b) A physical quantity A is given as

A = a7b5 (6)

i.e. by other physical quantities a and b. How do errors in the measurement of a and
b propagate into an error of A, when A is calculated with the help of (6)?
Result:

εA = 7εa + 5εb (7)

| (Solution:)

dA =
∂A

∂a
da +

∂A

∂b
db = 7a6b5 da + 5b4a7 db (8)
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εA =
dA

A
=

7a6b5

A
da +

5b4a7

A
db = 7

da

a
+ 5

db

b
= 7εa + 5εb (9)

17.Ex 6: , Container with maximum volume
We would like to construct a container of maximum volume V in the form of a
cuboid[

G
= Quader] with side lengths a, b, c, under the auxiliary condition[

G
=

Nebenbedingung] that the surface area[
G
= Oberfläche] is given (= fixed) as A0.

Calculate a, b, c.

Fig17.6. 1: What are the side lengths of a, b, c of a cuboid with maximum volume but given
surface area?

17.6. a) Express V = V (a, b, c) and the surface area A = A(a, b, c). Eliminate c with
the help of A = A0 = given, to calculate V = V (a, b).
Result:

V = V (a, b) =
ab

a + b

(
1

2
A0 − ab

)
(1)

| (Solution:)

V = abc, A = 2(ab + ac + bc) = A0 (2)

ab + c(a + b) =
1

2
A0, c =

1
2
A0 − ab

a + b
(3)

V = V (a, b) =
ab

a + b

(
1

2
A0 − ab

)
(4)

17.6. b) What is the condition for maximum V = V (a, b)?
Result:

∂V

∂a
=

∂V

∂b
= 0 (5)
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17.6. c) As a preliminary[
G
= Vorbereitung] for applying the product rule to V (a, b),

calculate

∂

∂a

ab

a + b
and

∂

∂a

(
1

2
A0 − ab

)
(6)

Results:

b2

(a + b)2
and − b (7)

| (Solution:)
The quotient rule yields (A0, b = const.)

∂

∂a

ab

a + b
=

(a + b)b− ab

(a + b)2
=

b2

(a + b)2
(8)

∂

∂a

(
1

2
A0 − ab

)
= −b (9)

17.6. d) Evaluate[
G
= auswerten, vereinfachen] the condition

∂V

∂a
= 0 (10)

Hint 1: use the product rule.
Hint 2: since we are looking for a maximum, we have a > 0, b > 0, a + b > 0,
so we can divide the resulting equation by b2

(a+b)2
(which is not equal to zero).

Result:

−a(a + b) +

(
1

2
A0 − ab

)
= 0 (11)

| (Solution:)
The product rule yields

∂V

∂a
=

ab

a + b
(−b) +

b2

(a + b)2

(
1

2
A0 − ab

)
= 0. (12)

Dividing by b2

(a+b)2
yields

−a(a + b) +

(
1

2
A0 − ab

)
= 0 (13)

17.6. e) Similarly, evaluate ∂V
∂b

= 0.
Hint: V = V (a, b) has a formal symmetry in a, b, i.e. V (a, b) goes into itself by
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the interchange a⇐⇒ b. We can therefore apply this interchange directly to (11).
Result:

−b(a + b) +

(
1

2
A0 − ab

)
= 0 (14)

17.6. f) Subtract (11) - (14) to deduce a = b.
Hint: A product can be zero only if at least one of its factors is zero.
| (Solution:)
Subtraction yields

(b− a)(a + b) = 0. (15)

a + b > 0 thus b− a = 0.

17.6. g) Calculate a and b from (11) and c from (3) and finally V .
Result:

a = b = c =

√
A0

6
, V =

(
A0

6

) 3
2

(16)

| (Solution:)
Since a = b, (11) yields

−2a2 + 1
2
A0 − a2 = 0 i.e. (17)

1
2
A0 = 3a2 (18)

a2 =
1

6
A0, a = b =

√
A0

6
(19)

By (3)

c =
1
2
A0 − A0

6

2
√

A0

6

=
1
3
A0

2
√

A0√
6

=
1

6

√
A0

√
6 =

√
A0√
6

=

√
A0

6

V = abc =

[(
A0

6

) 1
2

]3

=

(
A0

6

) 3
2

(20)

Rem: The following is a celebrated and important theorem:

The shape[
G
= form] with given surface area A = A0 and with

maximum volume V is a sphere.
And conversely: the shape with given volume V = V0 and with
minimum surface area A is again a sphere.

(21)

It is much more difficult to prove that theorem, requiring differential calculus with an
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infinite number of variables, the so-called calculus of variations[
G
= Variations-

rechnung] (being a subbranch of functional analysis[
G
= Funktionalanalysis]).

Our result was much more modest:
among all cubes the cube[

G
= Würfel] has the largest volume, when surface area is

given
(or smallest surface area, when volume is given).

17.Ex 7: Chain rule in several variables

17.7. a) Using the complete differential, derive the chain rule in 3 variables.
Result:

dI

dt
=

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂z

dz

dt
(chain rule in 3 variables) (1)

As an example I = I(x, y, z) might be the temperature in a room expressed in
Cartesian coordinates x, y, z. A fly moves in the room and at time t is at position
x = x(t), y = y(t), z = z(t). What is the change of temperature per time, i.e. dI

dt
, the

fly is experiencing?
| (Solution:)
When the complete differential of I, i.e.

dI =
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂z
dz (2)

is divided by dt, we immediately get the result (1).

17.7. b) The following is an important theorem:

Differentiation of an integral with respect to a parameter λ:
If λ does not occur in the boundaries,

instead of the integral, the integrand can be differentiated, i.e.
The integral can be differentiated under the integral sign, i.e.

Differentiation and integration can be interchanged.

(3)

Express that theorem as a formula, and give an intuitive proof.
| (Solution:)

d

dλ

∫ b

a

f(ξ, λ) dξ =

∫ b

a

∂f

∂λ
(ξ, λ) dξ (4)

Rem: Under the integral we have to use a partial derivative, since f(ξ, λ) depends
upon two variables. However, on the left hand side of (4), the integral does no
longer depend on ξ. (Instead the integral depends upon the boundaries a and b,
but from context, it is understood that these are constants.)

Intuitive proof: The integral is just a sum, and summation and differenti-
ation can be interchanged.
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(When the parameter λ does not occur in the boundaries, that corresponds to a
fixed number of summands in the sum.)

17.7. c) Calculate

d

dx

∫ x

a

f(ξ, x) dξ (5)

Hint: Use the chain rule with:

I(x, y) =

∫ x

a

f(ξ, y) dξ (6)

x = x(t) = t (7)

y = y(t) = t (8)

and in the final result, where x and y have been replaced by t, formally replace t by
x to obtain (9).
Result:

d

dx

∫ x

a

f(ξ, x) dξ = f(x, x) +

∫ x

a

∂f

∂x
(ξ, x) dξ (9)

| (Solution:)

d

dt

∫ x

a

f(ξ, y) dξ = (10)

=
dI

dt
=

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
= (11)

= f(x, y) · 1 +

∫ x

a

∂f

∂y
(ξ, y) dξ · 1 = (12)

= f(t, t) +

∫ t

a

∂f

∂t
(ξ, t) dξ (13)

17.7. d) When x and y are Cartesian coordinates, polar coordinates r and ϕ are given
by:

x = r cos ϕ (14)

y = r sin ϕ (15)

Express velocity

v =
√

ẋ2 + ẏ2 (16)

in terms of polar velocities ṙ and ϕ̇, and in particular for a fly moving along a circle
of radius R in time T with constant angular velocity.
Result:

v =
√

ṙ2 + r2ϕ̇2 (17)
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and for the fly:

v =
2πR

T
(18)

| (Solution:)

ẋ =
∂x

∂r
ṙ +

∂x

∂ϕ
ϕ̇ = cos ϕ ṙ − r sin ϕ ϕ̇ (19)

ẏ =
∂y

∂r
ṙ +

∂y

∂ϕ
ϕ̇ = sin ϕ ṙ + r cos ϕ ϕ̇ (20)

cos2 + sin2 = 1 (21)

v =
√

ẋ2 + ẏ2 =
√

ṙ2 + r2ϕ̇2 (22)

For the fly, we have r = R = const.⇒ ṙ = 0 and the constant angular velocity is

ϕ̇ =
2π

T
(23)

17.Ex 8: -- Complete differential as the tangential plane

Fig17.8. 1: Rotation paraboloid z = 16− (x2 + y2) intersects x-y-plane in a circle of radius R. We
will calculate the equation of the tangential plane (= shaded rectangle) at P0.

z = z(x, y) = 16− (x2 + y2) (1)
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is the equation of a rotation paraboloid (as will become more evident in the following
exercise b).
17.8. a) Calculate its extremum and height.
Result:

x = y = 0, z = 16 (2)

| (Solution:)

∂z

∂x
= −2x

!
= 0 ⇒ x = 0 (3)

∂z

∂y
= −2y

!
= 0 ⇒ y = 0 (4)

z = z(0, 0) = 16 (5)

17.8. b) Show that the intersection with the x-y-plane is a circle with radius R = 4.
Hint: intersection with the x-y-plane means that z = 0; use Pythagoras to
recognize the equation of a circle.
| (Solution:)

z = 0 ⇐⇒ 16− (x2 + y2) = 0 ⇐⇒ (6)

x2 + y2 = 16 (7)

According to Pythagoras this is the equation of a circle with radius R = 4.

Fig17.8. 2: Equation of a circle (7) is Pythagoras with r = radius of the circle and the coordinates
of a point P (x, y) on the periphery as the base and perpendicular.

Rem: intersection at an arbitrary height z gives a circle. Therefore our graph is
rotation symmetric about the z−axis.
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17.8. c) Show that the intersection with x-z-plane is a parabola.
| (Solution:)
x-z-plane means y = 0⇐⇒

z = 16− x2 (8)

This is the equation of a parabola.

17.8. d) At an arbitrary point P0(x0, y0, z0) with

z0 = z(x0, y0) (9)

calculate the (complete) differential.
Result:

dz = −2x0 dx− 2y0 dy (10)

| (Solution:)

dz =
∂z

∂x
dx +

∂z

∂y
dy (11)

∂z

∂x
= −2x = −2x0 (12)

∂z

∂y
= −2y = −2y0 (13)

Thus for the point P0

dz = −2x0 dx− 2y0 dy (14)

17.8. e) Calculate the equation of the tangential plane at P0.
Hint: the differential is the equation of the tangential when you identify dx, dy and
dz appropriately.
Result:

z − z0 = −2x0(x− x0)− 2y0(y − y0) (15)

| (Solution:)
P (x, y, z) is now a point on the tangential plane.
The meaning of the differential is

dx = x− x0, dy = y − y0 (16)

4z = z − z0 (17)
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where z is a point on the paraboloid.
In linear approximation

4z = dz (18)

and z is shifted to a point on the tangential plane. Thus

dz = z − z0 (19)

where z is on the tangential plane. With (16) and (19), equation (14) becomes (15),
which is the equation of the tangential plane at P0.

17.8. f) Since (15) is linear in x, y, z (i.e. only first powers x = x1, y = y1, z = z1

occur) it is clear (15) is the equation of a plane. Check that it passes through P0

and that at P0 it has the same partial derivatives (12) (13) as the paraboloid.
| (Solution:)
1) x = x0, y = y0, z = z0 satisfies (15). Thus the tangential plane passes through
P0.
2) From (15) we calculate the partial derivatives as follows (move the constant z0

to the right hand side of (15)).

∂z

∂x
= −2x0,

∂z

∂y
= −2y0 (20)

This is the same as (12) (13), the partial derivatives at P0 calculated for the
paraboloid.

17.8. g) Calculate the intersection of the tangential plane (15) with the x-axis.
Result:

x =
1

2x0

(16 + x0
2 + y0

2) (21)

| (Solution:)
Intersection with the x-axis means: z = y = 0, so (15) reads

−z0 = −2x0(x− x0) + 2y0
2 (22)

This yields

2x0(x− x0) = z0 + 2y0
2 (23)

2x0x = z0 + 2y0
2 + 2x0

2 (9)(1)
= 16− x0

2 − y0
2 + 2y0

2 + 2x0
2 (24)

2x0x = 16 + x0
2 + y0

2 (25)

x =
1

2x0

(16 + x0
2 + y0

2) (26)
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17.8. h) Calculate the equation of the straight line which is the intersection of the
tangential plane with the x-y-plane.
Result:

2x0 x + 2y0 y − x0
2 − y0

2 − 16 = 0 (27)

| (Solution:)
Intersection with the x-y-plane means z = 0. Thus (15) reads

−z0 = −2x0(x− x0)− 2y0(y − y0) (28)

By (9) and (1)

−16 + (x0
2 + y0

2) = −2x0x + 2x0
2 − 2y0y + 2y0

2 (29)

2x0 x + 2y0 y − x0
2 − y0

2 − 16 = 0 (30)

17.8. i) Calculate the differential (14) and the equation of the tangential plane (15)
for the extremal point of the paraboloid.
| (Solution:)
The extremal point of the paraboloid is given by (2) which is here

x0 = y0 = 0, z0 = 16 (2′)

Thus (14) reads

dz = 0 (for the extremum the differential vanishes) (31)

and (15) reads

z = 16 (32)

which is the equation for the horizontal tangential plane at the top of the paraboloid.
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18.T 1: Double integral as an integral of an integral
A double integral is an integral whose integrand is itself an integral, e.g.

I =

∫ b

a

∫ d(x)

c(x)

f(x, y) dy︸ ︷︷ ︸
I(x)

dx (1)

Fig18.1. 1: Shaded area A is the integration range of the double integral (1). The function
z = f(x, y) can be viewed as the height of mountains over the x-y-plane (with the z-axis upwards).
The inner integral (for a fixed x) corresponds to an integral over the solid vertical line. The
outer integral is the integral over all darkly shaded subranges. I represents the volume under the
mountains.

Rem: Note that an integral and its corresponding differential (e.g. dy) replace an
open and closed bracket, i.e. the inner (dy) integral must be performed first, giving
a result, say I(x). Finally we have to perform the outer (i.e. dx) integral with the
integrand I(x).

The order of integration can also be interchanged (the dx integral as the innermost)
i.e. (1) can also be written as

I =

β∫
α

δ(y)∫
γ(y)

f(x, y) dx dy (1′)

260



18. Ex 2: Area of a triangle calculated as a double integral 261

with suitable α, β, γ(y), δ(y) to represent the same integration range A. Since the
integration range A gives all the essential information, we can also write

I =

A

∫∫
f(x, y) dx dy (1′′)

(note: dx dy = dy dx) (2)

and leave it to the reader which axes he/she wants to introduce in the x-y-plane
and what the boundaries are of the successive simple integrals.
Very often only one integral sign is written (meaning a multiple integral) and the
range A is omitted if it is clear which one has to be taken:

I =

∫
A

f(x, y) dx dy (1′′′)

I =

∫
f(x, y) dx dy (1′′′′)

We can also write

I =

∫
A

f(x, y)dA (1′′′′′)

with

dA = d2A = dx dy (3)

where dA is an area element (an area differential). It is a second order differential,
as made explicit in the notation d2A.
A differential of second order (nth order) can be calculated to lowest order i.e. terms
of third order or higher ((n + 1)th order or higher) can be neglected.
Sometimes one says that a second order (nth order) differential is of second order
(nth order) small.

18.Ex 2: Area of a triangle calculated as a double integral
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Fig18.2. 1: The shaded area of the triangle is divided into identical small rectangles dx · dy. The
area is their sum (or integral).

The area A of the shaded triangle can also be expressed as a double integral:

A =

triangle

∫
dA =

∫
1 dx dy =

∫
dx dy (1)

In this case dA is a second order differential

dA = dx dy (2)

and the integrand is 1 (omitted in the last expression in (1)).

Rem: dA = dx dy is a second order differential, i.e. the product of two first order
differentials dx and dy, or loosely speaking, dA is of second order (infinitesimally)
small. To make this explicit, second order differentials are sometimes written with
a superscripted 2:

d2A = dx dy (2′)

18.2. a) Evaluate the double integral (1) as a succession of single integrals with the
dy integral as the innermost integral, i.e.

A =

∫ [∫
1dy

]
dx (3)

We have used brackets, though superfluous, to make it clear that the dy integral has
to be performed first. Give the four boundaries of the two integrals.
Hint: the equation of the dotted line (hypotenuse) is

y =
b

a
x (4)

Result:

A =

∫ a

0

∫ b
a
x

0

1 dy dx (5)
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18.2. b) Perform the inner integral and then the outer integral. Check that the
well-known formula for the area of a right triangle is obtained.
| (Solution:)

inner integral:

∫ b
a
x

0

dy
♠
= [y]

b
a
x

0 =
b

a
x (6)

♠ The antiderivative of 1 is x, or y here because our integration variable is y.

outer integral: A =

∫ a

0

b

a
x dx =

b

a

∫ a

0

x dx =
b

a

[
1

2
x2

]a

0

= (7)

=
1

2

b

a
(a2 − 0) =

1

2

b

a
a2 =

1

2
ba = (8)

=
1

2
· base · perpendicular (9)

18.2. c) Redo everything by evaluating (1) with the dx integral as the innermost one.
Hint: for the lower boundary of the dx integral solve (4) for x:

x =
a

b
y (4′)

| (Solution:)

A =

∫ b

0

[∫ a

a
b
y

dx

]
dy =

∫ b

0

[x]aa
b
y dy = (10)

=

∫ b

0

(a− a

b
y)dy = a

∫ b

0

dy − a

b

∫ b

0

y dy = (11)

= ab−
[
a

b

1

2
y2

]b

0

= ab− 1

2

a

b
b2 = ab− 1

2
ab =

1

2
ab (12)

18.Ex 3: Center of mass of a half-moon
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Fig18.3. 1: The see-saw is balanced when it is sustained at the center of mass of a mouse + man.
The beam[

G= Balken] of the see-saw is treated as massless.

The above see-saw[
G
= Wippe, Schaukel] is balanced when the total torque[

G
=

Drehmoment] is zero:

m1l1 = m2l2 (lever principle[
G
= Hebelgesetz]) (1)

It is more systematic to introduce an x-axis (with the origin at an arbitrary[
G
=

willkürlichen] point O) whereby m1 has coordinate x1, and m2 has coordinate x2,

and to introduce a point called the center of mass[
G
= Schwerpunkt], (x0 = xcm =

center of mass = xs = Koordinate des Schwerpunktes), and to express the lever
principle by saying:

the see-saw’s bar[
G
= Schaukelbalken] must be

sustained[
G
= unterstützt] at the center of mass xcm.

(2)

18.3. a) What must the definition of the center of mass coordinate x0 be so that
formulation (2) is equivalent to formulation (1)?
Hint: express l1, l2 by x1, x2, x0, then formulate (1) and solve for x0.
Result:

x0 = xcm =
m1x1 + m2x2

m1 + m2

(definition of center of mass) (3)

| (Solution:)

l1 = x0 − x1 (4)

l2 = x2 − x0 (5)

(1) then reads

m1(x0 − x1) = m2(x2 − x0) (1′)

then solving for x0,

(m1 + m2)x0 = m1x1 + m2x2 (6)
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18.3. b) Generalize (3) intuitively from two mass-points to N mass-points.
Result:

x0 =

n∑
i=1

mixi

M
(definition of center of mass) (7)

M =
n∑

i=1

mi = total mass (8)

18.3. c) Generalize (7) and (8) to a continuous[
G
= kontinuierliche] mass-

distribution by replacing the sum by an integral.
Result:17

x0 =

∫
x dm

M
(definition of center of mass) (7′)

M =

∫
dm = total mass (8′)

18.3. d) A symbol for a half-moon is made from cardboard[
G
= Karton] in the form

of a half-circle with radius R, see fig.2.

Fig18.3. 2: The position x0 of the center of mass of a flat half-moon with radius R is calculated.
All area elements (darkly shaded) in the area element (lightly shaded between x . . . x + dx) have
the same lever arm x, so they can be treated together when evaluating (7′).

17It would be more systematic to write m instead of M , but M is more common in physics
notation.
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Any mass element dm is proportional to its surface element (area element) dA

dm = α dA (α = constant of proportionality) (9)[
dm = % dV (% = specific mass = density[

G
= Dichte]

e.g. for iron % = 7.8 g cm−3)
(10)

dV = h · dA = volume element (h = thickness of the cardboard) (11)

α = ρh
]

(12)

The constant of proportionality α in (9) drops out of equation (7′) and (8′), so they
read

x0 =

∫
x dA

A
(definition of the center of mass coordinate) (7′′)

A =

∫
dA (total area) (8′′)

Second order area elements d2A, such as the darkly shaded one in fig.2, having the
same x coordinate can be combined (in fact it is integration along the y-coordinate)
to a first order area element dA, lightly shaded in fig.2.
Calculate dA expressing it by the angle ϕ.
Hint 1: Approximate dA as a rectangle.
Hint 2: Express x (the position of the differential dA) by ϕ; express dx by dϕ by
differentiating.
Hint 3: By area, e.g. dA, we always mean the positive area, so take the absolute
value.
Result:

dA = 2R2 sin2 ϕ dϕ (13)

| (Solution:)
dA can be calculated in first order as the area of a rectangle. Its width is dx. Its
height is 2y, y being a side-projection with respect to the angle ϕ, i.e.

y = R sin ϕ

The differential dA is situated at x = R cos ϕ (= projection of R with respect to the
angle ϕ), i.e. at

x = R cos ϕ (13)

Differentiating yields

dx = −R sin ϕ dϕ (14)

thus

dA = 2y dx = −2R2 sin2 ϕ dϕ (15)



18. Ex 3: Center of mass of a half-moon 267

Since we consider area as always being a positive quantity, we omit the minus sign;
dy is positive in the subsequent integration from ϕ = 0 to ϕ = +π

2
.

18.3. e) Evaluate integrals (7′′) and (8′′) using the differential (12).
Hint 1 for (8′′): the average of sin2 is 1

2
(over a full period, but also over a half one).

Hint 2: express x by ϕ.
Hint 3: the integration goes from x = R to x = 0; what is the corresponding
interval for ϕ?
Hint 4: check result (8′′′) which must be half the area of a circle.
Hint 5: For difficult integrals consult a formulary
Result:

A =
1

2
πR2 (8′′′)

x0 =
4

3π
R (7′′′)

| (Solution:)

1) A =

∫
dA = 2R2

+π
2∫

0

sin2 ϕ dϕ (16)

The lower boundary of the integral is zero because a factor 2 was already introduced
in (15).
The integration interval has length π

2
i.e. is half the period of sin2 ϕ. Thus the integral

is the average

sin2 ϕ =
1

2
(17)

times the interval length π
2
. Thus

A = 2R2 · 1
2
· π
2

=
1

2
πR2 (18)

which is half the area of a circle.
2)

x0
(7′′)
= A−1

∫
x dA

♠
= A−12R3

∫ π
2

0

cos ϕ sin2 ϕ dϕ (19)

♣
=

[
2A−1R3 · 1

3
sin3 ϕ

]π
2

0

=
2

3
A−1R3 =

4

3π
R (20)

♠ x = R cos ϕ
♣ formulary:

∫
sin2 x cos x dx = 1

3
sin3 x

(21)
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18.Ex 4: The cardioid

Fig18.4. 1: This curve given by (1) is called a cardioid because it has a shape similar to a heart.

An arbitrary[
G
= beliebiger] point P on the cardioid[

G
= Herzkurve] is given

in polar coordinates[
G
= Polarkoordinaten]18 (r, ϕ) by

r = a(1 + cos ϕ) (a = const., − π ≤ ϕ < π, a > 0) (1)

18.4. a) Check that (1) correctly represents the points Q1, Q2, and Q3 of the graph
given in fig. 1.
Hint: Q3 is obtained by ϕ = π.
| (Solution:)
Q1 has ϕ = 0, so by (1):

r = a(1 + cos 0︸︷︷︸
1

) = 2a (1a)

Q2 has ϕ = π
2
, so by (1):

r = a
(
1 + cos

π

2︸ ︷︷ ︸
0

)
= a (2)

Q3 has ϕ = π, so by (1):

r = a(1 + cos π︸︷︷︸
−1

) = 0 (3)

18Polar coordinates of the point P : r is the distance from P to an origin O on the x-axis (here
O = Q3): r = |PO|, ϕ is the angle of PO with the x-axis.
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18.4. b) From (1) show that the cardioid is mirror-symmetric with respect to the
x-axis.
Hint 1: show that if P (r, ϕ) fulfills (1) then its mirror-image P ′(r,−ϕ) also fulfills
(1).
Hint 2: cos is an even function: cos(−ϕ) = cos ϕ.
| (Solution:)

P : r = a(1 + cos ϕ) (4)

P ′ : r = a(1 + cos(−ϕ)) (5)

Since cos(−ϕ) = cos ϕ, equation (4) and (5) are equivalent:

(4)⇐⇒ (5) (6)

18.4. c)

Fig18.4. 2: The area of the cardioid is calculated here as a double integral, i.e. the ‘sum’ of all
shaded second order differentials at polar coordinate positions %, ϕ having increments d%, dϕ.

Consider the darkly shaded area element dA at the polar coordinate %, ϕ, having
side length d% and being in the centri-angle dϕ. Calculate dA as a rectangle with d%
and the arc length of dϕ as the side lengths.
Rem 1: It is possible to calculate dA as a rectangle because the r-coordinate line
and the ϕ−coordinate line intersect intersect at a right angle at (ρ, ϕ), see fig. 2.
Rem 2: A coordinate line, is obtained when only that coordinate is varying, while
the other coordinates are kept fixed. E.g. the ϕ−coordinate line is obtained by fixing
r = const. and varying ϕ.
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Result:

dA = % dϕ · d% (7)

18.4. d) Since it is possible to do easily (in this case), calculate (7) exactly (writing
∆A, ∆ϕ, ∆% instead of dA, dϕ, d% since we will get an exact result).
Result:

∆A = %∆ϕ∆% +
1

2
∆ϕ(∆%)2 (8)

| (Solution:)
(area of a sphere of radius % + ∆%)
− (area of a sphere of radius %) =

= π(% + ∆%)2 − π%2 (8a)

is the area of a circular ring. ∆A is only the fraction ∆ϕ
2π

of it. Thus,

∆A =
1

2π
∆ϕ · π︸ ︷︷ ︸
1
2
∆ϕ

[
(% + ∆%)2 − %2︸ ︷︷ ︸
%2+2%∆%+(∆%)2−%2

]
= %∆ϕ∆% +

1

2
∆ϕ(∆%)2 (9)

18.4. e) dA is a second order differential (it would have been better had we denoted
it by d2A instead of dA) so it has to be correct in second order approximation. In
view of the exact result (9), is (7) correct as a second order differential?
Result: yes.
| (Solution:)
(9) contains an additional third order term 1

2
∆ϕ(∆%)2 which can be neglected in a

second order differential like (7).

18.4. f) Using (7) and (1) write the area of a cardioid as a double integral.
Hint 1: perform the d% integral as the innermost integral. (It corresponds to the
shaded area element in the centri-angle dϕ of the figure below.)
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Fig18.4. 3: The innermost integral of the double integral is the calculation of the shaded first
order differential.

Hint 2: the only problem is to identify the four boundaries of the double integral.
Result:

A =

∫
dA =

∫
% dϕ d% =

2π∫
0

[∫ r=a(1+cos ϕ)

0

% d%

]
dϕ (10)

18.4. g) Calculate the innermost integral.
Result:∫ a(1+cos ϕ)

0

% d% =
1

2
a2(1 + cos ϕ)2 (11)

| (Solution:)∫ r

0

% d% =

[
1

2
%2

]r

0

=
1

2
r2 =

1

2
a2(1 + cos ϕ)2 (12)

18.4. h) Calculate the area A of the cardioid by evaluating the outermost integral in
(10).19

Hint 1: expand the integrand leading to a sum of integrands.

Hint 2: geometrically find
2π∫
0

cos ϕ dϕ = 0.

19(10) now reads

A =
∫ 2π

0

1
2
r r dϕ =

∫ 2π

0

dA (10′)

where dA is the shaded (1. order) differential in fig. 3. In first order approximation it can be
calculated as a right triangle with base r and perpendicular r dϕ, i.e. dA = 1

2rr dϕ. The experienced
mathematician starts immediately from (10′), omitting the innermost integration (11) which only
redoes the formula for the area of a triangle.
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Hint 3: average of cos2 = 1
2
; integral = average · integration range.

Result:

A =
3

2
πa2 (13)

| (Solution:)
According to (10)

A =
1

2
a2

∫ 2π

0

(1 + cos ϕ︸ ︷︷ ︸
1+2 cos ϕ+cos2 ϕ

)2 dϕ = (14)

=
1

2
a2

[∫ 2π

0

dϕ + 2

∫ 2π

0

cos ϕ dϕ +

∫ 2π

0

cos2 ϕ dϕ

]
(14a)

∫ 2π

0

1dϕ = [ϕ]2π
0 = 2π (15)∫ 2π

0

cos ϕ dϕ = 0 (16)

Since the shaded area is counted as positive and the darker shaded area is counted

as negative they cancel each other out[
G
= sich gegenseitig auslöschen].

Fig18.4. 4: The darkly and lightly shaded areas under the cosine curve cancel each other out.

∫ 2π

0

cos2 ϕ dϕ =
1

2
· 2π = π (17)

Average value of cos2 = 1
2
.

Integration range = (upper boundary) − (lower boundary) = 2π − 0 = 2π, thus

A =
1

2
a2[2π + π] =

3

2
a2π (18)
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18.4. i) Calculate the line element ds of the perimeter s of the cardioid.

Fig18.4. 5: A line element ds is calculated as the hypotenuse c of a right triangle with base
b ≈ r dϕ and perpendicular e = dr.

Hint 1: calculate c as the hypotenuse of a right triangle with base b and perpen-
dicular e; use Pythagoras.
e is dr, obtained by differentiating (1).20

b is approximately the arc length corresponding to the centri-angle dϕ.
Hint 2: use sin2 + cos2 = 1.
Hint 3: use the half-angle formula

√
2 cos

ϕ

2
=
√

1 + cos ϕ. (19)

Result:

ds = 2a cos
ϕ

2
dϕ (20)

| (Solution:)
According to (1)

dr

dϕ
= −a sin ϕ (21)

e = dr = −a sin ϕ dϕ (22)

20In a right triangle with a finite base h and an infinitesimal perpendicular db, the hypothenuse
is r =

√
h2 + (db)2 = h, by linear approximation in db since it is a differential.

h + e = r + e = r + dr ⇒ e = dr
r = h can also been seen geometrically:
The (shortest) distance between two parallels is perpendicular to them and therefore stationary
(= extremal) while comparing with slightly rotated (by an angle dα) straight connections between
the parallels.
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b = r dϕ = a(1 + cos ϕ)dϕ (23)

Pythagoras:

c =
√

e2 + b2 =
√

a2 sin2 ϕ dϕ2 + a2(1 + cos ϕ)2 dϕ2 =

= a dϕ
√

sin2 ϕ + 1 + 2 cos ϕ + cos2 ϕ =

= a
√

2
√

1 + cos ϕ dϕ
(19)
= 2a cos ϕ

2
dϕ

(24)

Note: dϕ2 means (dϕ)2, not d(ϕ2).

ds = c = 2a cos
ϕ

2
dϕ (25)

18.4. j) Integrate ds in (25) to calculate the perimeter s of the cardioid.
Hint: use the substitution α = 1

2
ϕ.

Result:

s = 8a (26)

| (Solution:)

s =

∫
ds = 2a

π∫
−π

cos
ϕ

2
dϕ (27)

With the substitution α = 1
2
ϕ, dα = 1

2
dϕ the integral becomes

s = 2a

π
2∫

α=−π
2

cos α · 2 dα = 4a [sin α]
π
2

−π
2

= 4a(1 + 1) = 8a (28)



19 Differential equations

(Recommendations for lecturing: 1, 2, 5, 6d, 7d, for basic exercises: 3, 4.)

19.Q 1: What are differential equations?
An algebraic equation e.g.

x + 2 = 5 (1)

asks for an (unknown) number x, which satisfies (solves) the equation. In our
case we have the solution x = 3.

It may happen that an equation, e.g.

y2 + 1 = 17 (2)

has more than one solution (y = 4 and y = −4), or none at all, e.g. in case of

z + 1 = z (3)

Besides the unknown (looked for) number, e.g. x, other given (known) numbers,
e.g. a, b, c, may occur in the equation. E.g. the general quadratic equation

ax2 + bx + c = 0 (4)

has the two solutions:

x =
−b±

√
b2 − 4ac

2a
(5)

(5) is the general solution of (4), since (4) does not have any other solutions
besides (5).

In (4) a is called the coefficient of the quadratic term, b is called the coefficient of
the linear term, and c is called the constant term.

———————————————–

In a differential equation we ask for an (unknown) function y = y(x), which has
to satisfy an equation involving differentials, in most cases, differential quotients,
i.e. (higher) derivatives.

275
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Example 1:

y′ − 4y

x
= x
√

y (6)

where y′ = dy/dx is the differential quotient of the unknown function y = y(x).
Solutions:

y = x4(
1

2
ln x + C)2 (7)

with an arbitrary constant C.
Test:

y′ = 4x3( 1
2 ln x + C)2 + 2x4( 1

2 ln x + C) · 1
2 ·

1

x
(8)

−4y

x
= −4x3( 1

2 ln x + C)2 (9)

x
√

y = x3( 1
2 ln x + C) (10)

q.e.d.
Rem 1: As usual, our differential equation (6) has infinitely many solutions as can
be seen from (7) which contains an arbitrary constant C (also called a constant of
integration).
Rem 2: We have simply given the solutions (7) and tested that they are solutions.
However, we did not give a general method how to find these solutions. Only in
special cases of differential equations, general methods are known how to find the
solutions.
There are books containing collections of differential equations with known solutions.
Algebraic programs such as Mathematica or Maple are able to produce most of the
known solutions.
In general, however, only approximate, numerical solutions for differential equations
can be found, i.e. as a collection of numeric pairs (x, y) for a special solution y(x)
(out of infinitely many ones), which then can be plotted as a curve (graph of y(x)).
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Example 2:

...
x − a2ẋ = 0 (11)

Here, the unknown function is denoted by x(t). The coefficient of the first derivative
(ẋ) is −a2, where a is an arbitrary but given (known) constant. The coefficient of
the third derivative of the unknown function (

...
x ) is 1.

Solutions:

x(t) = Co + C1e
at + C2e

−at (12)

with arbitrary constants Co, C1, C2.
Test:

ẋ = C1aeat − C2ae−at (13)
...
x = C1a

3eat − C2a
3e−at (14)

−a2 · ẋ = −C1a
3eat + C2a

3e−at (15)

q.e.d.

Example 3:

y′ = f(x) (16)

where the unknown (looked for) function is denoted by y = y(x), and f(x) is an
arbitrary, but given (known) function.
Formal Solutions:

y = y(x) =

∫ x

xo

f(ξ) dξ + C (17)

Test:
The derivative of an integral with respect to its upper boundary (x) is the integrand
at the upper boundary: y′ = f(x).

Rem 3: It seems that the solutions (17) depend upon two arbitrary constants (xo

and C). However, they are not independent: Without loss of generality, we
can choose, e.g. xo = 0, and with arbitrary C (17) is still the general solution of
(16).

Rem 4: We have called (17) a formal solution because it is not yet given in
explicit form, but merely as an integral which has still to be done (which might be
possible or not).

Rem 5: The differential equation (16) is simply the task of determining the anti-
derivative y(x) of the given function f(x).
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19.1. a) What is the order of a differential equation and how is ‘order’ related to the
m
¯

ultitude of solutions (i.e. of the general solution). Explain that for the examples
above.

| (Solution:)
The order of a differential equation is the ‘height’ of the highest occurring derivative
of the unknown function. E.g., second derivative is order n = 2.

The general solution of an n-th order differential equation depends
upon n arbitrary, independent constants, e.g. C1, · · ·Cn.

Examples:
(6) is of order n = 1, the arbitrary constant in the general solution (7) is C.
(11) is of order n = 3, arbitrary constants in the general solution (12) are Co, C1, C2.
(16) is of order n = 1, the arbitrary constant in solution (17) is C, or alternatively,
xo. The constants C and xo are not independent, since a change in xo gives an
additional constant only, which can be absorbed in C.

Rem: The relation, given here, between order and multitude of solutions is valid only,
if so called Lipshitz-conditions are satisfied for the known functions occurring in
the differential equation. These Lipshitz-conditions are satisfied for most differential
equations occurring in physics.

19.1. b) Consider the differential equation

y′ = λy (18)

Give a name for that equation, when x is time, and a name for the (known, given)
constant λ.

Rem 1: In (18), y means an unknown function y = y(x). To look for the general
solution of the differential equation (18) means determining all functions y = y(x)
for which (18) holds.

| (Solution:)

It is called the growth equation[
G
= Wachstumsgleichung], λ = growth constant

= growth per unit time.

Rem 2: When λ is negative (18) it is called a decay-equation[
G
=

Zerfallsgleichung] and λ1 = −λ, which is then positive, is called the decay-

constant[
G
= Zerfallskonstante].



19. Q 1: What are differential equations? 279

19.1. c) Give the general solution for (18) and verify it, and give the

particular solution[
G
= spezielle Lösung] for the initial condition[

G
=

Anfangsbedingung]

y(0) = y0 (19)

| (Solution:)
General Solutions:

y = ceλx, c = integration constant (20)

Test:

y′ = cλeλx = λy (21)

q.e.d.

Rem: Since (18) is a first order differential equation (n = 1), the general solution
depends upon 1 arbitrary constant, c.

Initial condition:

y(0) = y0 = ce0 = c (22)

Particular Solution:

y(x) = y0e
λx (23)

19.1. d) What is the differential equation for the growth of a population (e.g. N(t) =
number of bacteria) and for radioactive decay (N(t) = number of radioactive
atoms)? Give the corresponding solutions.
| (Solution:)
Population:

Ṅ(t) = pN(t) (24)

· = derivative with respect to t.
Rem 1: (24) can also be written as:

dN = pN(t) dt (24’)

i.e. the increase dN in the number N of bacteria in the time interval (t · · · t + dt)
is proportional to the length dt of this interval and to the number N(t) of bacteria
already present at time t.
Note that this must be true only in linear approximation in dt, since dN is a
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differential.
The constant of proportionality (growth constant p) may depend e.g. on the

temperature and concentration of the nutrient solution[
G
= Nährlösung], in

which the bacteria are living, but also upon how efficiently waste, accumulated
by the bacteria, is removed. p will be constant only if these conditions are kept
constant in a particular experiment.

Solution:

N(t) = N0e
pt (25)

Radioactive decay:

Ṅ(t) = −λN(t), (λ = decay-constant) (26)

Rem 2: (26) can also be written as

dN = −λN(t) dt (26’)

Unlike the case of the bacteria, λ does not depend on the conditions in the stone
(mineral), in which the radioactive atoms are immersed, e.g. not on the number of
already decayed or of other non-radioactive atoms. Neither does λ depend on the
age of the radioactive atoms. This is unlike the case of animals or men, where the
probability of dying increases with age.

Solution:

N(t) = N0e
−λt (27)

Rem 3: In both cases N0 is the arbitrary constant upon which the general solution
(25) or (26) depend. At the same time N0 has the meaning of the initial condition
N0 = N(0), i.e. the initial number of bacteria or radioactive atoms.

19.Q 2: Separation of variables
Rem: This is the simplest method for solving differential equations and should always
be tried first.
With it, we get acquainted for the first time with a systematic method of how to
find solutions for a special class of differential equations.

Solve the differential equation

y′ =
ex

y2
(1)

by separation of variables, and explain the method in words. Give the general
solution and then the particular solution for the initial condition

y0 = y(x0). (2)
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Hint: We have to solve the following problem: Find all functions y = y(x), i.e. the
general solution, so that (1) is satisfied, where y′ is the derivative of the function
y = y(x). Then, select a particular solution of these functions satisfying (2), where
x0 and y0 are given constants.
| (Solution:)

dy

dx
=

ex

y2
(3)

We try to place the x- variables (i.e. x and dx, i.e. the independent variable and the
independent increment) on the one side of the equation and the y-variables (i.e. y
and dy, i.e. the dependent variable and the dependent increment) on the other side
of the equation.

Fig19.2. 1: An unknown function y = y(x) has initial values y0 = y(x0). The final (arbitrary)
values (x, y) are obtained by integration of the corresponding differentials dx and dy.

This is possible here:

y2 dy = ex dx (4)

(i.e. separation of variables was successful)
Integrating (4) leads to∫

y2 dy =

∫
ex dx (5)

[Further explanation: (4) is valid for each interval dx from an initial value x0

to a final value x. Integration is just summing all these cases of (4).]
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Performing the integrals in (5) gives

1

3
y3 = c + ex (6)

[Since no boundaries are specified for the integrals, both sides lead to integration
constants c1 and c2, which we unify c = c2 − c1]
Solving for y gives

y = 3
√

3(c + ex) (7)

which is the general solution for the differential equation (1)

The initial condition for (6)

1

3
y3

0 = c + ex0 (8)

leads to the calculation of c for the particular solution. This c must be inserted into
(7) and we obtain the particular solution (9).

Alternatively we could write (5) with definite integrals:∫ y

y0

η2 dη =

∫ x

x0

eξ dξ (5′)

leading to

1

3
(y3 − y3

0) = ex − ex0 (6′)

and for the particular solution in explicit form:

y = 3

√
3(ex − ex0) + y3

0 (9)

19.Ex 3: , Growth equation solved again by separation of variables
Recommendation for first reading: ignore the absolute signs ||, and omit the small printed para-
graphs explaining in detail, how to get rid of the absolute signs.
19.3. a) Write the growth equation

y′ = λy (λ = const.) (1)

as a differential equation with variables separated.

Result:

dy

y
= λ dx (2)

| (Solution:)

dy

dx
= λy ⇒ (2) (3)
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19.3. b) Integrate (2) indefinitely.

Hint: The integral of 1/x is ln |x|.

Result:

ln |y| = λx + c (4)

| (Solution:)∫
dy

y
=

∫
λ dx (5)

Rem: This is a short form for∫ y

yo

dη

η
=
∫ x

xo

λ dξ (6)

Note that the name of the integration variables (η, ξ) are irrelevant, but should be different from
symbols already used (x and y for upper boundaries).
In (6) boundaries correspond, i.e.

y = y(x) (7)
yo = y(xo)

where y( ) is the searched function. The y on the left hand side of (7) is a variable, not the name of
a function. By integrating (5) we could find a special solution satisfying the initial condition (7b).
But the present task was to integrate indefinitely, i.e. taking arbitrary upper boundaries (variables
y and x), but unspecified lower boundaries leading to different values of the integration constant
c.
This is the meaning of (5) with boundaries omitted.

Integration of (5) leads to

ln |y| = λx + c (8)

We need only one integration constant c.

19.3. c) Solve (4) for y

Hint 1: Exponentiate both sides of (4), i.e. take both sides as exponents of e.

Hint 2: For reasons of simplicity ignore the absolute value symbol: |x| = x. In the
next step try to understand the reasoning in the following solution concerning the
absolute sign.

Result:

y = Ceλx (9)
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| (Solution:)

eln |y| = eλx+c (10)

|y| = eλxec = Ceλx (11)

with a new arbitrary integration constant

C = ec (12)

eλx in (11) is positive definite. When C = 0 we obtain (9)21. When C 6= 0 then
|y| 6= 0 everywhere. Since y(x) is a continuous function, it must either be positive
everywhere (leading to (9)) or it is negative everywhere, so with a new integration
constant C (the negative of the previous C), we obtain again (9).

19.3. d) Give the special solution for the initial condition

y = yo for x = 0 (13)

| (Solution:)

yo
(13)
= y(0)

(9)
= Ceλ0 = C · 1 = C (14)

so the special solution of the differential equation (1) with initial condition (13) is

y = yoe
λx (15)

19.Ex 4: , Further examples for separation of variables

Recommendation for first reading: forget the absolute signs ||.

Solve the following differential equation by the method of separation of variables:
19.4. a)

y′ =
y

x
(1)

| (Solution:)

dy

y
=

dx

x
(2)

ln |y| = ln |x|+ c (3)

21Because of (12) C = 0 is possible only for the limiting case c = −∞. Therefore, it should be
checked explicitly that (9) is a solution for C = 0
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eln |y| = |y| = eln |x|+c = eln |x|ec = C|x| =⇒ |y| = C|x| (4)

Distinguishing the cases x > 0 and x < 0 leads to

y = Cx (5)

possibly with different C’s in both cases. But since y(x) has to be differentiable at
x = 0, both C’s must be the same, leading to (5).

With more details: For C = 0 in (4) we immediately conclude (5).
Otherwise, consider first the subregion x < 0 and we have from (4): |y| = −Cx and thus y = ±Cx.
Since y(x) has to be a differentiable (and thus continuous) function of x, the sign (±) cannot
change in the subregion x < 0, i.e. that sign can be absorbed into the constant C, forming a new
constant C used in (5), possibly different from the constant C in (4), differing by a sign.
Similarly for the subregion x > 0 we also obtain (5), possibly with a different constant C. But
because y(x) must be differentiable at x = 0, both constants C must be equal, leading to (5) for
−∞ < x < +∞.

19.4. b)

y′ =
x

y
(6)

| (Solution:)

y dy = x dx (7)

1
2
y2 = 1

2
x2 + c (8)

y2 = x2 + C (9)

y =
√

C + x2 (10)

Rem: Here, square root is double valued.

19.4. c)

y′ =
1± y

1± x
(11)

Rem: These are two exercises, one for the upper sign and one for the lower sign.

Hint: While integrating use the substitution

u = 1± x (12)

| (Solution:)∫
dy

1± y
=

∫
dx

1± x
(13)
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Both integrals have the same form. The substitution (12) gives

du = ±dx (14)

so for the second integral (13)∫ x dx

1± x
= ±

∫ u du

u
= [± ln |u|]u = ± ln |u|+ c = ± ln |1± x|+ c (15)

We have not to consider lower boundaries since that would influence the integration
constant c only.
Thus (13) reads

± ln |1± y| = ± ln |1± x|+ c1 (16)

where c1 contains contributions from the integrations constants c from both similar
integrals in (13). Multiplying by ±1 gives

ln |1± y| = ln |1± x|+ C (17)

where C = ±c1. Exponentiating both sides of (17), i.e. taking both sides of (17) as
exponents to the base e gives

eln |1±y|) = |1± y| = eCeln |1±x| = a|1± x| (18)

i.e.
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|1± y| = a|1± x| (19)

because e and ln cancel each other and putting a = eC , where a is an arbitrary
positive constant.
The same reasoning as in a) leads to22

1± y = a(1± x) (29)

possibly with a new integration constant a.

22E.g. for the case of the upper sign in (19), we have

|1 + y| = a|1 + x| (20)

and we consider first the subregion x > −1:

|1 + y| = a(1 + x) ⇒ 1 + y = ±a(1 + x) (21)

Both signs in (21) refer to the upper sign in(19). From (21) we deduce

y = −1± a(1 + x) (22)

Since a(1 + x) > 0 and y is a continuous function of x, the sign (±) cannot change in the whole
subregion x > −1. So, possibly with a new constant a (a 7→ ±a), we obtain

1 + y = a(1 + x) (23)

i.e. (29).
For the other subregion (x < −1) we have from (20)

|1 + y| = a(−1)(1 + x) ⇒ 1 + y = ±a(−1)(1 + x) (24)

Since a(−1)(1+x) > 0 and since y is a continuous function of x, the sign (±) in (24) cannot change
in the whole subregion x < −1. So possibly with a new constant a (a 7→ ±a), we have obtained:

1 + y = a(1 + x) (25)

i.e. again (29). But possibly the two constants a in (23) and (25), referring to the two subregions
might differ by a sign.
Differentiating (23) and (25) leads to

y′ = a (26)

This is valid also at the separation of the subregions (i.e. at x = −1). Since y(x) should be
differentiable there, the two a’s must be equal. Thus we obtain for both subregions (i.e. for −∞ <
x < +∞)

1 + y = a(1 + x) (27)

Similar reasoning can be performed for the lower sign in (19) leading to

1− y = a(1− x) (28)

(27) and (28) can be combined and written as (29).
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Multiplying both sides of (29) by ±1 gives:

y = ±a(1± x)∓ 1 (30)

y = ±a∓ 1 + ax (31)

y = ±(a− 1) + ax (32)

with an integration constant a.

19.Ex 5: The oscillation equation
One of the most important differential equations in physics is the oscillation

equation[
G
= Schwingungsgleichung]

ẍ = −kx, (k = const., k > 0) (1)

written here for an unknown function x = x(t).

Rem: Therefore, while solving a differential equation, it is good advice to check first
if it is an oscillation equation (possibly in disguised form).

Physical Application:

Fig19.5. 1: Simplest model for an harmonic oscillator: An elastic spring acts on a mass m with a
force proportional to the elongation x = x(t), leading to the oscillation equation.
The mass m is supported by a frictionless table.

An elastic spring acts on a mass m. No other forces (in the x-direction) should act, i.e. m moves on
a frictionless horizontal rail. A spring is characterized by a resting length[G= Ruhelänge] (also
called slack length[G= entspannte Länge]) l, when the spring does not exert any force on m. x
is measured from the resting position (x = 0).
In a general position x = x(t) the spring acts with the force

F = −Dx (spring law[
G= Federgesetz]) (2)
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When x is positive, i.e. m is to the right of the resting position, the force is negative, i.e. acting to
the left in the above figure. k is called the spring constant[G= Federkonstante].
Thus the equation of motion[G= Bewegungsgleichung] of the mass m is

mẍ = −Dx (3)

which is an oscillation equation with k = D/m.
19.5. a) What is the general solution of the oscillation equation (1) written in the
form:

ẍ(t) = −ω2 x(t) (oscillation equation) (1′)

(ω2 = k, possible since k = D/m > 0)
| (Solution:)

x(t) = A sin(ωt) + B cos(ωt) (4)

(General solution of the oscillation equation)

with integration constants A and B.

Rem: A system governed by the oscillation equation is called an harmonic oscil-
lator.

19.5. b) Check that (4) is a solution of (1) and determine the angular frequency[
G
=

Kreisfrequenz] ω in terms of k.
| (Solution:)
We insert (4) into (1) and therefore calculate:

ẋ = Aω cos(ωt)−Bω sin(ωt) (5)

ẍ = −Aω2 sin(ωt)−Bω2 cos(ωt) = −ω2x

Thus (1) is satisfied for

ω2 = k = D/m (6)

19.Ex 6: Constant velocity
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Fig19.6. 1: A body m is at position x = x(t) at time t.

A point-mass m moves along the x-axis with constant velocity23 v0 (e.g. v0 = 1 m
sec−1). We will calculate its position

x = x(t) (1)

at an arbitrary time t.

In the following (a-c) we give a very detailed explanation. The more experienced reader might
immediately turn to d, i.e. to Eq. (12).

19.6. a) Use the definition of velocity as the derivative with respect to time (in this
case we use a dot instead of a prime to denote differentiation):

ẋ(t) = v0 (2)

Determine x(t) as the antiderivative of the constant v0.
Result:

x(t) = v0t + c (c = integration constant) (3)

| (Solution:)
That (3) is the antiderivative of (2) can be checked by the following test.

ẋ(t) = (v0t + c)̇ = (v0t)̇ + ċ = v0ṫ + 0 = v0 q.e.d. (4)

19.6. b) The information from (2) was not sufficient enough to determine x(t) uniquely
since the antiderivative was indefinite due to the integration constant c.
Determine x(t) uniquely by imposing the

initial condition[
G
= Anfangsbedingung]24 (for a certain time t0).

x(t0) = x0 (5)

23This is the case when no force is acting on the body m, e.g. in cosmic space. In the laboratory
we let the body move on a frictionless horizontal rail or on ice.

24Typically t0 is the initial time t0 when the motion started. However, t0 can be any given time.
So, we could alternatively call (5) a final condition, or an intermediate condition.
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(typically t0 = 0, x0 = 0)
Result:

x(t) = x0 + v0(t− t0) (6)

| (Solution:)
In view of (3) our initial condition (5) reads

x(t0) = v0t0 + c = x0 ⇒ c = x0 − v0t0 (7)

so (3) becomes (6).

19.6. c)- In equivalent but slightly different notation we write (2) as

dx

dt
= v0 ⇐⇒ dx = v0 dt (2′)

and think of x(t) as its initial value x0 plus the sum (integral) of all increments dx:

x(t) = x0 +

∫ t

t0

dx = x0 +

∫ t

t0

v0 dτ (8)

(We have changed the name of the integration variable from t to τ since t was already
used as the upper boundary.) During integration τ moves from t0 to t:

t0 ≤ τ ≤ t (9)

For an illustration of (8) and (9) see fig. 2. Similarly we write (2′) as

dξ = v0 dτ (2′′)

as x is already used for x = x(t) at the final time t.)
For the range (9) we have

x0 ≤ ξ ≤ x (10)
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Fig19.6. 2: The final position x = x(t) is the initial position x0 = x(t0)
plus the sum (integral) of all increments dξ = v0 dτ , while τ goes
from t0 to t.

Evaluate (8) to obtain (6).
| (Solution:)
(8) reads

x(t) = x0 + [v0τ ]tt0 = x0 + v0(t− t0) (11)

19.6. d) Derive again the result (6) without intermediate explanations.
| (Solution:)

ẋ(t) = vo (constant velocity) (12)

dx

dt
= vo (13)

dx = vo dt (14)

∫ x(t)

xo

dx = vo

∫ t

to

dt (15)

x(t)− xo = vo (t− to) (16)

19.Ex 7: Constant acceleration
The acceleration[

G
= Beschleunigung] is the derivative of the velocity, i.e. the

second derivative of the position. For constant acceleration

ẍ(t) = g (g = constant acceleration) (1)

In the case of a free fall[
G
= freier Fall] on the earth

g = 9.81m sec−2 = gravitational acceleration of the earth
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and x points vertically downwards towards the center of the earth.

Rem 1: A body is called free if no force is acting upon it. The expression ‘free fall’
means that no force (e.g. no air resistance) is acting except gravitational attraction
by the earth leading to the constant acceleration g.

In the following (a-c) we give a very detailed explanation. The more experienced reader might
immediately turn to d, i.e. to Eq. (16).
19.7. a) Integrate (1) under the initial condition

ẋ(t0) = v0 (2)

to get the first integral ẋ(t) ≡ v(t).
Result:

ẋ(t) ≡ v(t) = v0 + g(t− t0) (3)

Rem 2: (3) is called a first integral because we have only integrated once (resulting
in only one integration constant v0), and we have not yet found the final solution
(8), requiring an additional (i.e. second) integration. (8) is thus called a second
integral, depending on two integration constants (v0 and x0).
| (Solution:)
The antiderivative of (1) is

ẋ(t) = gt + c (4)

Test: ẍ(t) = (gt + c)̇ = g (5)

The initial condition (2) yields

ẋ(t0) = v0 = g t0 + c1 ⇒ c1 = v0 − g t0 (6)

so (4) becomes (3).

19.7. b) Integrate (3) under the initial condition

x(t0) = x0 (7)

to get the second integral of (1), i.e. x(t).
Result:

x(t) = x0 + v0(t− t0) +
1

2
g(t− t0)

2 (8)

(free fall under the initial condition x(t0) = x0, ẋ(t0) = v0)
| (Solution:)
The antiderivative of (3) is

x(t) = v0t +
1

2
g(t− t0)

2 + c2 (9)

Test: ẋ(t) = v0 +
1

2
g · 2(t− t0) (10)
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where we have used the chain rule with

z = t− t0,
dz

dt
= 1 (11)

The initial condition (7) yields

x(t0) = x0 = v0t0 + c2 ⇒ c2 = x0 − v0t0 (12)

so (9) becomes (8).

19.7. c) Calculate the maximum height xm of a free fall and the time t = tm when xm

is reached.

Fig19.7. 1: 1-dimensional free fall x = x(t). We calculate x(t) from an arbitrary origin O, while
x is pointing downwards. In the 2-dimensional free fall the body m has constant velocity in
the horizontal direction. So the graph x = x(t) is also the trajectory[G= Bahnkurve] of the
2-dimensional free fall, which is a parabola.
In the figure we have assumed that vo is negative, so −vo > 0 points upwards.
If we choose O at the surface of the earth, for the situation of the figure x0 will be negative and
−xm will be the height of the maximum point above the earth. The negative sign comes because
we have chosen the x-axis downwards.
Sometimes the following terminology is used:
vo = 0: free fall[G= freier Fall]

vo 6= 0: free throw[
G= freier Wurf].
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Hint: Since x points downwards, the maximum height above the earth is a minimum
of x(t), see fig. 1.
Result:

tm = t0 −
v0

g
, xm = x0 −

v0
2

2g
(13)

| (Solution:)
1) The extremum of x(t) is where the derivative ẋ(t) vanishes, i.e. according to (3)

0 = v0 + g(tm − t0) (14)

which yields (13)

2) xm = x(tm)
(8)
= x0 + v0

(
−v0

g

)
+

1

2
g

(
−v0

g

)2

= x0 −
v0

2

g
+

1

2

v0
2

g
(15)

19.7. d) Derive again the result(8) without intermediate explanations.
| (Solution:)

ẍ(t) = g = const. = gravitational acceleration of the earth (16)

introduction of a new variable v, which has the meaning of velocity:

v(t) = ẋ(t) (17)

v̇(t) = g (18)

dv

dt
= g (19)

dv = g dt (20)∫ v(t)

vo

dv = g

∫ t

to

dt (21)

v(t)− vo = g(t− to) (22)

dx

dt
= ẋ(t) = vo + g(t− to) (23)

dx = vodt + g(t− to)dt (24)∫ x(t)

xo

dx = vo

∫ t

to

dt + g

∫ t

to

(t− to)dt (25)

x(t)− xo = vo(t− to) + 1
2
g
[
(t− to)

2
]t
to

= vo(t− to) + 1
2
g(t− to)

2 (26)



20 Binomial theorem

(Recommendations for lecturing: 1a, 1b, 1c, 1e, for basic exercises: 1d, 1f, 1g.)

20.Q 1: Binomial theorem

20.1. a) What is a monomial, binomial, trinomial?
| (Solution:)
A binomial is an expression of the form a + b (‘bi’ from Latin ‘bis’ = twice, ‘nom’
from Latin ‘nomen’ = name, or from Greek ‘νoµoς’ = range) i.e. the sum of two
terms.
a + b + c is a trinomial, though that word is rarely used.
A binomial is the sum of two monomials.
a, b, c can also be complicated expressions. So, ex + ln x is also a binomial.

20.1. b) What is the (first) binomial formula?
| (Solution:)

(a + x)2 = a2 + 2ax + x2 first binomial formula (1)

[We have written x instead of b in a very popular formula.]

20.1. c) Derive the second and third binomial formula.
| (Solution:)

(a− x)2 = a2 − 2ax + x2 second binomial formula (2)

[Can be derived from (1) by x→ −x.]

(a + x)(a− x) = a2 − x2 third binomial formula (3)

[Proof: (a + x)(a− x) = a2 − ax + xa− x2]

20.1. d) , Ex: Calculate (a + x)3 by direct expansion.
| (Solution:)
(a + x)3 = (a + x)(a2 + 2ax + x2) =
= a3 + 2a2x + ax2 + a2x + 2ax2 + x3

(a + x)3 = a3 + 3a2x + 3ax2 + x3 (4)

20.1. e) Formulate the binomial theorem.
What are the binomial coefficients?

What is the meaning of 0! ?
| (Solution:)

(a + x)n =
n∑

k=0

(
n

k

)
an−kxk binomial theorem (5)

296
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valid for n ∈ N.

The binomial coefficients are defined as(
n

k

)
=

n(n− 1)(n− 2) . . . (n− (k − 1))

k!
=

n!

k!(n− k)!
(6)

One adopts the definition

0! = 1 (7)

Rem 1: For n ∈ N, the numerator and the denominator of (6) have the same
number of factors.

20.1. f) , Calculate again (a + x)3 using the binomial theorem and read off the
occurring binomial coefficients by comparing with d) and check with (6).
| (Solution:)
For n = 3 the binomial theorem reads:

(a + x)3 =

(
3

0

)
a3 +

(
3

1

)
a2x +

(
3

2

)
ax2 +

(
3

3

)
x3 (8)

Comparing with (4) we read off(
3

0

)
= 1 =

3!

0!3!
,

(
3

1

)
= 3 =

3!

1!2!
,

(
3

2

)
= 3 =

3!

2!1!
,

(
3

3

)
= 1 =

3!

3!0!
(9)

Rem 2: For n ∈ N the binomial series (5) is a finite sum.

20.1. g) , Give and prove the symmetry formula for binomial coefficients.
| (Solution:)(

α

β

)
=

(
α

α− β

)
(10)



21 Introduction of vectors

(Recommendations for lecturing: 1-3, for basic exercises: 4,5,6.)

21.Q 1: Introduction of vectors
What is a (2-dimensional) vector?
21.1. a) geometrically
| (Solution:)

An arrow[
G
= Pfeil], or an oriented rod[

G
= Stab] in a plane. (’Oriented’ means:

it is known what is the tip (= end-point) and what is the starting-point of the rod.)

Rem 1: We say: a vector has a length, direction and orientation. Sometimes, the
term ‘direction’ is meant to imply orientation. Then we can say: a vector has length
and orientation.

Rem 2: Two arrows with the same length, direction and orientation but different
starting points are different arrows, but they are the same vector. Thus we should say

more exactly: a vector is an equivalence class[
G
= Äquivalenzklasse] of arrows,

whereby two arrows are called equivalent (with respect to the concept of vectors)
if they differ only by their starting points (or in other words: if they can be brought
to coincidence by a parallel-transport).

21.1. b) algebraically
| (Solution:)
A 2-tuple of numbers:

~a = (a1, a2) (1)

The ai; i = 1, 2 are called the components of the vector. a1 is the first component,
etc.

Rem: As here, it is usual to denote a vector by a kernel symbol[
G
= Kernsymbol]

(in this case a) with an arrow over it, to make manifest the symbolised quantity is
a vector. Alternatively, a bar under the kernel-symbol, i.e. underlining it,

a (2)

can be used, or simply a bold kernel symbol:

a (3)

is used to qualify a as a vector.

21.1. c) What is the connection between a) and b) ?
| (Solution:)

298
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Fig21.1. 1: Algebraic components a1 and a2 of a vector ~a

Introducing a Cartesian system of coordinates (x, y) the components are given
by (orthogonal) projections of the arrow to the x- and y-axis.

Rem:
−−→
P0P (4)

is a notation for a vector when the end points of the arrow are given.

21.1. d) What is the length of the vector?
| (Solution:)
According to the Pythagorean theorem, the length of the vector is

a = |~a| =
√

a2
1 + a2

2 (5)

Algebraically, instead of length, we say absolute value of the vector.

Rem 1: It is usual to denote the length (absolute value) of a vector with the kernel
symbol only, i.e. omitting the arrow symbol, the underlining or the bold type.

Rem 2: In mathematics ‘vector’ is a concept more general than introduced here by
the model of arrows having a definite length.
In mathematical terminology our vectors having length are called ‘vectors with a
(Euclidean) scalar product’.

21.1. e) What is the multiplication of a vector by a number (geometrically and alge-
braically)?
| (Solution:)
For

λ ∈ R, ~b = λ~a = (λa1, λa2) (6)
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i.e.

bi = λai, i = 1, . . . n scalar multiplication (7)

(n = 2).
Thus, algebraically, ‘multiplication of a vector by a number λ’ means to multiply

componentwise[
G
= komponentenweise], i.e. each component is multiplied by λ.

Geometrically, it means stretching the arrow by the factor λ. For λ < 0 the resulting
vector points into the opposite direction.

Rem: 3-vectors are very analogous to 2-vectors. They are arrows not necessarily
restricted to lie in a particular plane. Algebraically they are given by n-components,
n = 3, and we can identify the vector by the triple and in general n-dimensional
spaces by an n-tuple of its components:

~a = (a1, a2, . . . , an) (1′)

Thus vector calculus gives us the possibility to deal with n-dimensional spaces for
which (n ≥ 4) we have no intuitive geometrical insight.

n = dimension of vector space

21.1. f) What is a scalar in contrast to a number and in contrast to a component?
Give an example of a scalar and an alternative word for ’scalar’.
| (Solution:)
The length of a vector is a scalar, because it is independent of the choice (orientation)
of the cartesian coordinate system. A synonymous word for ‘scalar’ is ‘invariant’
(i.e. it does not vary when the cartesian coordinate system is changed).
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Fig21.1. 2: The same vector ~a has different components (a1, a2) and (a′1, a
′
2), respectively, when

the frames of reference (i.e. the coordinate axes) are changed from (x, y) to (x′, y′).
Euclid of Alexandria (325 BC - 265 BC) has written the first comprehensive book about Euclidian
geometry.

A component of a vector, e.g. a1 is not a scalar, because it depends on the choice of
the (cartesian) coordinate system: it is a1 for (x, y) and a′1 for (x′, y′).

Rem: ‘Number’ is a neutral expression, irrespective of questions of invariance or
covariance (i.e. variability together with the coordinate system). The length but
also the components of a vector are numbers, but only the length is a scalar (invari-
ant). Therefore (7) is called ‘multiplication by a scalar λ’ and not only ‘multiplication
by a number λ’.

21.1. g) What is the null-vector (geometrically and algebraically)?
| (Solution:)
The null-vector (0-vector) denoted by ~0 or simply by 0, e.g.

~a = 0 (8)

is geometrically an arrow of length zero, i.e. a point. Since −~0 = ~0, the orientation
of that point is irrelevant (undefined).

Algebraically, it is a vector with all its components zero:

~a = (a1, . . . , an) = (0, . . . , 0) = 0 null vector (9)

or

ai = 0 (10)
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where, as usual, we have omitted the range i = 1, . . . , n.
Rem: Only in case of the null-vector, the components of a vector are themselves
invariants.

21.1. h) Give the associative law for multiplication by a scalar λ.
| (Solution:)
For λ, µ ∈ R

λ(µ~a) = (λµ)~a =: λµ~a (associative law for scalar multiplication) (11)

Rem 1: Because of the associative law it is possible without ambiguity[
G
=

Zweideutigkeit] to omit brackets all together, as is done on the rightmost side
of (11).

Rem 2: There is also a commutative law

λ~a = ~aλ (12)

which can be and is avoided in mathematical literature, if one adopts the convention
that a scalar is always written to the left of the vector.

21.1. i) What is a unit vector[
G
= Einheits-Vektor]? Give a notation for it.

| (Solution:)
It is a vector of length 1

|~a| = 1 (13)

Usual notations for unit-vectors are:

~n, ~e, â (14)

21.1. j) What means ’division of a vector by a scalar’?
| (Solution:)

~a

λ
=

1

λ
~a (λ 6= 0) (15)

21.1. k) What is the meaning of â ?
| (Solution:)
â is a unit vector with the same direction (and orientation, i.e. sign) as ~a

â =
~a

|~a|
(for ~a 6= 0) (16)

Rem: The hat implies the arrow symbol.

21.1. l) Give the representation of an arbitrary vector as a scalar times a unit vector.
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| (Solution:)

~a = |~a| â = aâ (a 6= 0) (17)

21.Q 2: Addition of vectors

21.2. a) What means addition of vectors (geometrically and algebraically)?
| (Solution:)

Fig21.2. 1: ~c = ~a +~b constructed by the parallelogram rule

~c = ~a +~b vector addition (1)

is geometrically defined by the so called parallelogram construction (see figure,

in fact it is only half of a parallelogram plus its diagonal): Transport the vector ~b
parallel so that its starting point coincides with the tip of ~a. The vector ~c (sum of

~a plus ~b) is the arrow from the starting point of ~a to the tip of ~b.

Algebraically, addition of vectors is performed component-wise:

ci = ai + bi addition of vectors (2)

21.2. b) Give the commutative law of vector addition.
| (Solution:)

~a +~b = ~b + ~a commutative law for vector addition (3)
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21.2. c) Give the associative law of vector addition.
| (Solution:)

~a + (~b + ~c) = (~a +~b) + ~c =: ~a +~b + ~c (4)

associative law for vector addition

Rem 1: All these laws follow immediately from the representation of vectors by its
components.

Rem 2: Because of that law, brackets are not necessary, which is the third expression
in (4).

Rem 3: In (4) we have used =: similar to := meaning that something is defined.
The colon is on the side of the expression which is defined, e.g.
elephant := animal with a trunk ...

21.2. d) Give the distributive law for vectors.
| (Solution:)

λ(~a +~b) = λ~a + λ~b distributive law for vectors (5)

Rem: The usual priority rules, with multiplication having higher priority than
addition is used also here. Therefore, on the right hand side of (5) brackets in

(λ~a) + (λ~b) can be omitted.

21.2. e) What means subtraction of vectors.
| (Solution:)

~c = ~a−~b := ~a + (−1)~b (6)

i.e. subtraction is reduced to a scalar multiplication by (-1) followed by a vector
addition.

Rem: ~c is called the difference vector.
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Fig21.2. 2: ~c = ~a−~b goes from the tip of the subtrahend (~b ) to the tip of the minuend (~a ). Test:
~a = ~b + ~c

It goes from the tip of ~b to the tip of ~a.
(Test: ~a = ~b + ~c)

21.T 3: Computer graphics: vector graphics

Fig21.3. 1: ~r is the position vector from the origin O to an arbitrary point P. When the elements
of a figure (e.g. eyes of the face) have position vectors ~a,~b, the shifted figure has position vectors
obtained by addition of a displacement vector ~D
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Vector calculus is a means to do analytic geometry, namely to describe geometric
objects algebraically, e.g. by vectors given as n-tuples (2-tuples for 2-vectors, e.g.
~a = (a1, a2)).

O, called the origin, is an arbitrary point of the plane. In computer graphics mostly
the lower-left corner of the screen is used as the origin.

Each point of the human face is given by a so called position vector[
G
=

Ortsvektor] (also called: radius vector[
G
= Ortsvektor]). So ~a is the position

vector for the left eye.

Position vectors all have their starting points at a common, arbitrarily chosen point,
called the origin.

On the other hand, the usual interpretation of vectors is

vector = displacement

Displacing the face by the displacement vector ~D we get a new face more to
the right of the screen. The new left eye has position vector

~a′ = ~a + ~D (1)

Position vectors, like ~a, can also be conceived as displacement vectors, displacing
from the origin to the intended object (e.g. the left eye).

An arbitrary point P of the plane is given by a radius vector usually denoted

by ~r. Thus, ~r is a vectorial variable[
G
= Vektorvariable = vektorwertige

Variable] ranging over all vectors, i.e. over the whole plane (for n = 2) or over the
whole space (for n = 3).

For the plane, the vectorial variable is equivalent to two numerical variables:

~r = (x, y) = (x1, x2) = (r1, r2) = (rx, ry) = ~x = (xi) = xi (2)

giving some usual notations.
The kernel symbol x is as usual as r.
Components are denoted by indices, the so called vector indices as in (x1, x2), or
by using different letters: (x, y).

In (xi) the index i is a so called an enumeration index[
G
= Aufzählungsindex]

(i = 1, . . . , n) and () is called the tuple bracket, i.e. (xi) is a shorthand for

(xi) = (x1, . . . , xn) i is an enumeration index (3)

Sometimes the tuple bracket is also omitted: xi

(depending of the degree of sloppiness of the author).

The displacement ~D gives a mapping[
G
= Abbildung] of the plane unto itself, i.e.

each point P (with position vector ~r ) is mapped (displaced) to a point P ′ (with



21. Ex 4: , ~a +~b, λ~a and â 307

position vector ~r ′) given by

~r ′ = ~r + ~D (4)

Thus ~D can also be viewed as an increment vector

~D = ∆~r = (∆x, ∆y) (5)

being equivalent to two numerical increments ∆x, ∆y. Then (4) reads

~r ′ = ~r + ∆~r (4′)

21.Ex 4: , ~a +~b, λ~a and â
Consider 3 vectors

~a = (1, 0, 2)
~b = (−1, 3, 1)

(1)

21.4. a) Calculate ~a +~b.
Result:

~a +~b = (0, 3, 3) (2)

21.4. b) Calculate a = |~a|.
Result:

a =
√

5 (3)

| (Solution:)

a = |~a| =
√

12 + 02 + 22 =
√

1 + 4 =
√

5 (4)

21.4. c) Calculate â.
Result:

â =
1√
5
(1, 0, 2) (5)

| (Solution:)

â =
~a

a
=

1√
5
~a =

1√
5
(1, 0, 2) (6)
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21.4. d) Show: ~a ∦ ~b i.e. the vectors ~a and ~b are not parallel.

Hint: assume parallelism ~a ‖ ~b, i.e.

~a = λ~b (7)

Write (7) componentwise and derive a contradiction.
| (Solution:)

(1, 0, 2) = λ(−1, 3, 1) (8)

means∣∣∣∣∣
1 = −λ
0 = 3λ
2 = λ

(9)

These equations are contradictory.

21.Ex 5: , Vector addition by parallelogram construction
Given two vectors

~a = (4, 2)
~b = (2, 3)

(1)

21.5. a) Calculate ~c = ~a +~b algebraically, i.e. componentwise.
Result:

~c = (6, 5) (2)

| (Solution:)

~c = ~a +~b = (4, 2) + (2, 3) = (4 + 2, 2 + 3) = (6, 5) (3)

21.5. b) Draw ~a and ~b on a sheet of graph paper[
G
= kariertes Papier]; construct

~a+~b by the parallelogram construction (using a ruler, triangle and compass). Verify

~a +~b = ~b + ~a = (6, 5) (4)

| (Solution:)
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Fig21.5. 1: Vector addition ~c = ~a +~b can be done graphically by parallelogram construction. By
sliding a solid triangle along a ruler we obtain a series of parallel lines. We adjust the ruler so that
these are parallel to ~b (with starting point at the origin O). Thus we construct the parallel dotted
line through the tip of ~a. With the compass we construct another copy of ~b on the dotted line
with the correct length b = |~b|. The tip of the new ~b is the tip of ~a +~b.

21.5. c) Calculate the length of ~a algebraically and verify the result graphically using

a compass[
G
= Zirkel] to draw the length of ~a along the x-axis.

Result:

a =
√

20 (5)

| (Solution:)

a = |~a| =
√

a1
2 + a2

2 =
√

42 + 22 =
√

16 + 4 =
√

20 ≈ 4.47 (6)

21.5. d) Draw the position vectors

~r = λ~a (7)
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with λ = 2, 1, −1, 0, and verify the graphical results algebraically.
| (Solution:)
E.g. λ = −1 :

~r = −~a = (−4, −2) (8)

21.5. e) Make it obvious to yourself that ~r is the equation for a straight line through
O in the direction of ~a while λ is considered to be a parameter

−∞ < λ < +∞ (9)

whereby the tips of ~r are points of that straight line.

21.5. f) What is the straight line

~r = ~a + λ~b ? (10)

Result: The dotted line in fig. 1.

21.Ex 6: , Equation of a sphere
Let ~r = (x, y, z) be a point on the surface of a sphere25 with center ~a = (1, 0, 2) and
radius 1.
21.6. a) Derive the x-y-z-equation for that sphere.
Hint: use

|~r − ~a| = 1 (1)

Result:

(x− 1)2 + y2 + (z − 2)2 = 1 (2)

| (Solution:)

~r − ~a = (x− 1, y, z − 2) (3)

|~r − ~a|2 =
√

(x− 1)2 + y2 + (z − 2)2
2

(4)

gives (2).

21.6. b) At which point(s) does the z-axis intersect that sphere?
Result:

P (0, 0, 2) (5)

| (Solution:)
In (2) we have to put

x = y = 0 (6)

25i.e. ~r is a position vector and its tip is a point on the sphere
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which gives

1 + (z − 2)2 = 1 ⇒ (z − 2)2 = 0 ⇒ z = 2 (7)

21.Ex 7: Construction of a regular tetrahedron

Fig21.7. 1: Equilateral triangle ABC in the x-y-plane as the base of a regular tetrahedron.

Given two points with their x-y-coordinate (see fig. 1):

A(0, 0), B(`, 0) (1)

21.7. a) Calculate the vector ~b =
−→
AB, i.e. the vector whose starting point is A and

whose tip is B.
Result:

~b = (`, 0) (2)

21.7. b) Calculate the vector ~b′ =
−→
BA.

Result:

~b′ = (−`, 0) (3)
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21.7. c) Express ~b′ as a scalar λ multiplied by ~b.
Result:

~b′ = −~b (4)

| (Solution:)

~b′ = λ~b (5)

This is true for λ = −1:

λ~b = λ(`, 0) = (λ`, 0) = (−`, 0) = ~b′ q.e.d. (6)

21.7. d) Calculate the lengths of the vectors ~b and ~b′ according to the formula for the
length of a vector.
Result:

|~b| = |~b′| = ` (7)

| (Solution:)

|~b| =
√

b2
x + b2

y =
√

`2 = `

|~b′| =
√

(−`)2 = `
(8)

21.7. e) Let C(x, y) be an arbitrary point in the plane. Calculate the vector ~c =
−→
AC.

Result:

~c = (x, y) (9)

21.7. f) Check that the following equation is true.

~c−~b =
−−→
BC (10)

| (Solution:)
According to the parallelogram rule, we must have

~c = ~b + ~c−~b (11)

which is true.

21.7. g) Determine the point C so that ABC becomes an equilateral triangle[
G
=

gleichseitiges Dreieck].
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Hint: the x-component of 1
2
~b and the x−component of C, denoted by x, must be

the same. The length of ~c must be `. Remove the square root by squaring.
Result:

C
(

1
2
`,

√
3

2
`
)

, ~c =
(

1
2
`,

√
3

2
`
)

(12)

| (Solution:)

1
2
~b =

(
1
2
`, 0
)
⇒ x = 1

2
` (13)

|~c| =
√

x2 + y2 = ` ⇒
√

1

4
` 2 + y2 = ` (14)

squaring:

1

4
`2 + y2 = `2 ⇒ y2 =

3

4
`2 ⇒ y =

√
3

2
` (15)

21.7. h) Check that the length of ~c−~b is again `.
| (Solution:)

~c−~b = (x, y)− (`, 0) = (x− `, y) = (1
2
`− `,

√
3

2
`) = (−1

2
`,

√
3

2
`) (16)

|~c−~b| =
√

1

4
`2 +

3

4
`2 =

√
`2 = ` q.e.d. (17)

21.7. i) The center of mass[
G
= Schwerpunkt] ~rcm of n mass points mα at positions

~rα, α = 1, 2, · · ·n is given by

~rcm =

n∑
α=1

mα~rα

n∑
α=1

mα

(18)

Rem: ~rα, ~rcm are position vectors from an origin, taken here as point A. Specialize
that formula for three equal masses.
Result:

~rcm =
1

3
(~r1 + ~r2 + ~r3) (19)

| (Solution:)

m1 = m2 = m3 = m (20)

~rcm =
m(~r1 + ~r2 + ~r3)

m + m + m
(21)
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21.7. j) Assuming that the masses at the corners of the triangle A, B, C are equal,
calculate their center of mass.
Hint: ~r1 is the null vector ~r2 = ~c, ~r3 = ~b.
Result:

~rcm = 1
2
`(1, 1√

3
) (22)

| (Solution:)

~r1 = (0, 0), ~r2 = ~c
(12)
= (1

2
`,

√
3

2
`), ~r3 = ~b

(2)
= (`, 0) (23)

~rcm = 1
3
(3

2
`,

√
3

2
`) = (1

2
`, 1

2
√

3
`) (24)

21.7. k) By introducing a z-axis upward, give the 3-dimensional coordinates of the

points A, B, C and the 3 components of the vectors ~b, ~c, ~rcm.
| (Solution:)

A(0, 0, 0), B(`, 0, 0), C(1
2
`,

√
3

2
`, 0) (25)

~b = (`, 0, 0), ~c = (1
2
`,

√
3

2
`, 0) (26)

~rcm = 1
2
`(1, 1√

3
, 0) (27)

21.7. l) Construct a regular tetrahedron by constructing a fourth point D at height z,
so that

|
−−→
AD| = `

Hint: D has the z-coordinate z and its x-y-coordinates are the same as the x-y-
components of ~rcm.
Result:

D(1
2
`, `

2
√

3
,
√

2
3
`) (28)

| (Solution:)

D(1
2
`, `

2
√

3
, z) (29)

−−→
AD = (1

2
`, `

2
√

3
, z) (30)

|
−−→
AD| =

√
1

4
`2 +

`2

4 · 3
+ z2 !

= `
squaring⇒ (31)
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4

3

1

4
`2 + z2 = `2 ⇒ z2 =

2

3
`2 ⇒ z =

√
2

3
` (32)

We have taken the positive sign of the root since D has to lie above the x-y-plane.

21.7. m) Check that all edges[
G
= Kanten] of our tetrahedron have equal length, i.e.

that we have obtained a regular tetrahedron.
| (Solution:)
We still have to prove

−−→
BD = |

−−→
CD| = ` (33)

we have

−−→
BD

(28)(25)
= (−1

2
`, `

2
√

3
,
√

2
3
`) (34)

−−→
CD

(28)(25)
= (0, − √̀

3
,
√

2
3
`) (35)

where we have used

√
3 =

3√
3

(36)

|
−−→
BD|

2
=

1

4
`2 +

`2

4 · 3
+

2

3
`2 =

`2

4 · 3
(3 + 1 + 2 · 4) = `2 (37)

|
−−→
CD|

2
=

`2

3
+

2

3
`2 = `2 q.e.d. (38)

21.7. n) Give the coordinates of the corners A′, B′, C ′, D′ of a new tetrahedron obtained
from the old one by applying a mirror-symmetry with respect to the x-y-plane (i.e.
the x-y-plane is the mirror).

Fig21.7. 2: Tetrahedron A′, B′, C ′, D′ is obtained from the tetrahedron A,B, C, D by a mirror-
symmetry with respect to one of its faces[G= Flächen].
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| (Solution:)

A′ = A = (0, 0, 0), B′ = B = (`, 0, 0), C ′ = C = (1
2
`,

√
3

2
`, 0)

D′(1
2
`, `

2
√

3
, −
√

2
3
`)

(39)

since D′ is obtained from D by changing the sign of the z-coordinate.

21.7. 0)

Fig21.7. 3: By applying a parallel transport to the tetrahedron A′, B′, C ′, D′ of fig. 2 we bring it
to a position A′′, B′′, C ′′, D′′ so that it is tip to tip above the old (A,B,C, D) one.

Apply a parallel transport (= displacement[
G
= Verschiebung]) to the tetrahe-

dron A′, B′, C ′, D′ so that in the new position A′′, B′′, C ′′, D′′ we have

D′′ = D (40)

Hint: when ~d is the displacement vector, any P ′′ is obtained from P ′ by adding the
components of ~d (for all P = A, B, C,D).

Choose ~d so that (40) holds.
| (Solution:)
Condition (40) yields

D′′ = D
(28)
= (1

2
`, `

2
√

3
,
√

2
3
`)

(Hint)
= D′ + ~d

(39)
= (1

2
`, `

2
√

3
, −
√

2
3
`) + (d1, d2, d3) (41)
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whereby we have identified a point (e.g. D) with its position vector (with A as the
origin). Vectorial equation (41) must hold componentwise, i.e. we have

1

2
` =

1

2
` + d1 ⇒ d1 = 0

`

2
√

3
=

`

2
√

3
+ d2 ⇒ d2 = 0√

2

3
` = −

√
2

3
` + d3 ⇒ d3 = 2

√
2

3
`

(42)

i.e. the displacement vector is

~d = (0, 0, 2
√

2
3
`) (43)

Applying it to all points we obtain

A′′(0, 0, 2
√

2
3
`)

B′′(`, 0, 2
√

2
3
`)

C ′′(1
2
`,

√
3

2
`, 2
√

2
3
`)

D′′(1
2
`, `

2
√

3
,
√

2
3
`)

(44)

21.Ex 8: Bisectors intersect at a single point
Prove the following well-known theorem of plane trigonometry:

In an arbitrary triangle, the

bisectors of the sides[
G
= Seitenhalbierenden]

intersect at one point.

(1)

by the following procedure.
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Fig21.8. 1: The dotted lines bisect the sides, i.e. they pass through a corner and the middle of the
opposite side. The three bisectors intersect at a single point.

21.8. a) The bisector of O has the parameter representation

~r =
1

2
(~a +~b)τ (2)

where ~r is an arbitrary point on the bisector and τ (−∞ < τ <∞) is the parameter.
Rem: all points on the plane are identified with their position vectors with respect
to the origin O, e.g.

A = ~a (3)

etc.
Check parameter representation (2) by showing that for certain values of the pa-
rameter τ you get ~r = O = the null vector and also the middle of the side opposite
O.
| (Solution:)
For τ = 0 we get ~r = ~0 = O.
For τ = 1 we get

~r =
1

2
(~a +~b) = ~b +

1

2
(~a−~b) q.e.d. (4)

21.8. b) Find the parameter representation of the remaining bisectors.
Hint:

~r = ~r1 + (~r2 − ~r1)t (parameter representation of a straight

line passing through ~r1 and ~r2)
(5)

Result:

~r = ~b +

(
1

2
~a−~b

)
λ (6)

~r = ~a +

(
1

2
~b− ~a

)
µ (7)
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21.8. c) Find where lines (6) and (7) intersect.
Hint: equalize the right hand sides of (6) and (7); write as a linear combination of

~a and ~b.
Result:

c1~a + c2
~b = 0 (8)

with

c1 = 1− µ− 1
2
λ

c2 = −1 + λ + 1
2
µ

(9)

| (Solution:)

~b +

(
1

2
~a−~b

)
λ = ~a +

(
1

2
~b− ~a

)
µ (10)

~b

(
1− λ− 1

2
µ

)
= ~a

(
1− µ− 1

2
λ

)
(11)

21.8. d) For a proper triangle ~a and ~b are linearly independent i.e. they span a
plane, i.e.

~a 6= 0, ~b 6= 0, ~a ∦ ~b (12)

Therefore, from (8) we can conclude

c1 = c2 = 0 (13)

Prove (13) by showing that any of the following cases are impossible.

c1 6= 0, c2 6= 0 (14a)

c1 = 0, c2 6= 0 (14b)

c1 6= 0, c2 = 0 (14c)

| (Solution:)

(14a) ⇒ ~a = − c2
c1
~b contradicts ~a ∦ ~b in (12).

(14b) ⇒ c2
~b = 0 ⇒ ~b = 0 contradicts ~b 6= 0 in (12).

(14c) ⇒ c1~a = 0 ⇒ ~a = 0 contradicts ~a 6= 0 in (12).

21.8. e) Now find the intersection point P and check that it lies on both lines (6) and
(7).
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Hint: use (13), (9), (6) and (7).
Result:

−→
OP =

1

3
(~a +~b) (15)

| (Solution:)∣∣∣ c1 = 1− µ− 1
2
λ = 0

c2 = −1 + λ + 1
2
µ = 0

(16)

Adding theses equations gives

(λ− µ)− 1

2
(λ− µ) =

1

2
(λ− µ) = 0 ⇒ λ = µ (17)

Then the first equation (16) gives

1− 3

2
µ = 0 ⇒ µ =

2

3
= λ (18)

Then (6) gives

−→
OP = ~r = ~b +

1

3
~a− 2

3
b =

1

3
(~a +~b) (19)

(7) gives the same:

~r = ~a +
1

3
~b− 2

3
~a =

1

3
(~a +~b) (20)

i.e. P lies on both lines (6) and (7).

21.8. f) Check that P also lies on the bisector (2), which proves our theorem.
| (Solution:)

For τ = 2
3

we obtain ~r =
−→
OP .



22 Vectors in physics. Linear combinations

(Recommendations for lecturing: 1-8, together with chapter 23.
Recommendations for basic exercises: 9.)

22.Q 1: Forces as vectors

22.1. a) What is the zeroth Newtonian axiom in physics.

Fig22.1. 1: Forces as vectors. In physics most vectors are fixed vectors, i.e. they must be
considered as different when they act (i.e. start) at different points, though they have the same
components (e.g. ~F2, ~F3, ~F4). For a rigid body (stone) ~F2, ~F4 are identical because they are on the
same line of action. When in a certain application it does not matter where the vector starts, we
call them free vectors.

| (Solution:)
Forces are vectors (= zeroth Newtonian axiom)

This means the following:

• The force can be represented as an arrow. The direction of the force being the
direction of the arrow, and the intensity (strength) of the force represented by
the length of the arrow.

• When two forces ~F1 and ~F2 are acting on a body (e.g. on a stone or on a

blancmange[
G
= Pudding]) pulling at the same material point A (e.g. by

attaching springs) that is equivalent to a single force

~F = ~F1 + ~F2 (1)

acting on the same point A.

321
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Rem: When representing physical vectors, e.g. forces, geometrically as arrows, as
was done in fig.1 , that presupposes the choice of a unit of length corresponding to
the physical unit, e.g. 1 cm =̂ 1 Newton.

22.1. b)-- In what sense is it physically equivalent or not, when the same force
~F3 = ~F2 is acting on a different point B.

Discuss the particular case B = C, i.e. ~F4 = ~F2 is on the same line of action[
G
=

Wirkungslinie] as ~F2.
Explain the following notions:
fixed vector (French: vecteur fixe),
gliding vector (French: vecteur glissant),
free vector (French: vecteur libre).

| (Solution:)

In general, e.g. in case of a custard, it is not equivalent. ~F2 produces local deforma-
tions at A, whereas ~F3 produces local deformations at B. Therefore, forces are fixed
vectors.

Even when the stone is approximated as a rigid body, it is not equivalent because
~F3 exerts a different torque[

G
= Drehmoment], thus producing a different rotation

of the body.

However, for rigid bodies, it does not matter if ~F2 is transported along its line of
action (dotted line of figure). Thus for rigid bodies, forces are gliding vectors, i.e. ~F4

is equivalent to ~F2.

When the stone is a point mass, we have trivially A = B = C and the question
becomes meaningless.

When we are only interested in the center of mass[
G
= Schwerpunkt] PCM of the

body, the famous law of the center of mass[
G
= Schwerpunktsatz] holds:

The center of mass PCM moves as if the vectorial sum of all forces (acting
on the body) is acting on PCM .

Thus when we are interested in the center of mass only, forces are free vectors.

22.1. c) Discuss free-vector and fixed-vector in the example of computer graphics.
| (Solution:)
Position vectors ~r are fixed vectors because their starting points are fixed at the
origin O. (Position vectors are meaningful only when the adopted origin O is known.)

The displacement vector ~D is a free vector because ~D is everywhere the same, so it
does not matter at which point it acts.

22.Q 2: Vectors depending on a scalar variable
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Explain what is a vector valued function

~r = ~r(t) (1)

depending on a scalar variable (often called a parameter, because x, y, z are the
principal variables) t by giving an example and by explaining it algebraically.
| (Solution:)
~r = ~r(t) can e.g. denote the position vector of a moving point-mass at time t.

Algebraically:

~r = ~r(t) = (x(t), y(t), z(t)) (2)

is equivalent to three number valued (i.e. ordinary) functions of one variable t.

Fig22.2. 1: The path of a (pointlike) bee, i.e. its position ~r(t) as a function of time, is an example
of a vector valued function of a scalar variable (time t).
We can always write ∆t = dt, since t is the independent variable. d~r is ∆~r in linear approximation
in dt, i.e. ∆~r ≈ d~r for sufficiently small dt.
The velocity ~v can be drawn into the figure only after a scale for velocities, e.g. 1m/s =̂ 1 cm has
been chosen.

22.Q 3: Velocity as a vector
Explain why velocity is a vector. Use the position vector ~r(t).
| (Solution:)
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When the point mass has position ~r(t) at time t and ~r(t + ∆t) at a later time, then
it has made the positional displacement

∆~r = ~r(t + ∆t)− ~r(t) (1)

during that time interval. Thus its velocity is

~v =
∆~r

∆t
(2)

This is valid only for uniform velocity (= constant velocity).

For arbitrary motion, in analogy to the definition of the derivative y′ of a function
y(x), we have

~v = lim
∆t→0

∆~r

∆t
=

d~r

dt
= (

dx

dt
,
dy

dt
,
dz

dt
) = (ẋ, ẏ, ż) (3)

Remainder: Differentials d~r, dt are increments in lowest order of approximation,
becoming exact in the limit ∆t→ 0.

Rem: d~r is a differential vector, being equivalent to a tuple of numerical differ-
entials, e.g.

d~r = (dx, dy, dz) (4)

22.Q 4: Vector fields
Explain (algebraically) the notion of a vector field.
| (Solution:)
A vector field is a vector valued function of a vectorial variable, e.g.

~v = ~v(~r ) = (v1(x, y, z), v2(x, y, z), v3(x, y, z)) (1)

i.e. it is equivalent to n ordinary functions of n variables.

Rem 1: In general, velocities are not constant in time, then a fourth independent
variable t occurs:

~v = ~v(~r, t) = ~v(x, y, z, t) = . . . (1′)

It is sometimes usual to suppress writing down the variable t, which is then called
a parameter.

Rem 2: The velocity field of a liquid can be made visible by inserting a blob of ink
into the liquid (e.g. water). In a short time interval dt, the blob remains pointlike
and performs a path to be approximated by the vector d~r. Dividing that vector by
dt gives the velocity of the liquid at that point.
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Fig22.4. 1: Visualization of vector fields in 2 and 3 dimensions.

Fig22.4. 2: a) Magnetic field of the earth. b) Magnetic field of an electric current loop (bold hori-
zontal circle with battery symbol). In these pictures the integral curves of the magnetic vector
field are depicted. The tangents to the curves give the direction of the magnetic field vector. The
length of the vectors (= intensity of the magnetic field) is not displayed with this representation
by integral curves. Of course, only some of the integral curves can be displayed. However, one
draws more lines per unit of transverse length (higher density of lines) at places of higher intensity.
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22.Q 5: Vector spaces

What is a vector-space[
G
= Vektor-Raum]. Give examples for n = 3, 2, 1, 4, 0 and

then for general n.
| (Solution:)

A vector space is a collection (or to use another word: a set[
G
= Menge] of vectors

closed under the operation of addition and scalar multiplication.
In other words: If ~a and ~b belong to the vector space V , then ~a +~b and λ~a (for all
λ ∈ R) belong to V. In formulae

~a ∈ V, ~b ∈ V ⇒ ~a +~b ∈ V (1)

~a ∈ V, λ ∈ R ⇒ λ~a ∈ V

Examples:

• n = 3: all arrows in 3-space (V = V3)

• n = 2: all arrows in a definite plane (V = V2)
Rem: In this case V2 is a subspace of V3:

V2 ⊂ V3 (2)

• n = 1: all arrows lying on a definite straight line (V = V1)

• n = 0: the null vector (V = V0)

• n = n: all n-tuples (a1, . . . , an), i.e. (V = Vn)

The last vector (n-tuple) could represent the stock[
G
= Vorrat] of a fruit store owner

who has n types of fruits. a1 represents the number of his apples, a2 the number of
his pears, etc. Addition of two such vectors occurs when two fruit stores merge. The
addition (5, 0, 0, · · · ) + (0, 3, 0, · · · ) means the addition of 5 apples + 3 pears.

22.Q 6: - Vector space versus geometrical space

22.6. a) What is the difference between a 2-dim. vector space (V2) and a (geometrical)
plane?
| (Solution:)
From a pragmatic point of view, there is no difference: Each point P of the plane
corresponds to a position vector ~r, and vice versa.

However, there is a subtle[
G
= spitzfindig] conceptual difference: A plane is com-

pletely smooth, having no distinguished point, i.e. all points are equivalent. A plane



22. Q 7: Linear combinations, linear dependence 327

becomes a vector space by giving the plane an additional structure, namely by se-
lecting a point (e.g. by dropping a blob of ink onto it) and declaring it as the origin.
The origin then corresponds to the null vector.

Rem: In a vector space, the null vector can be found immediately, by starting from
any vector ~a and by multiplying it by the scalar 0:

0~a = ~0 = 0 (1)

In a smooth plane there is no such operation.

22.6. b) Similarly, what is the difference between a V1 and R
| (Solution:)
There is almost no difference, since the number axis R has a distinguished origin,
the number 0, which corresponds to the null-vector. The number 1 corresponds to a
vector with length 1. In V1, there are two vectors with length 1, differing by a sign.
Thus there is still a small difference between a V1 and R:
R has an orientation (from 0 to 1), while a V1 has no (defined) orientation.
Rem: According to the terminology used in (pure) mathematics, vectors do not
(necessarily) have a (defined) length. Thus, in mathematics, we could say: R is a V1

together with a definition for length and orientation.

22.6. c) What’s the difference between R and a straight line?
Rem: That’s the same question as a) for the 1-dimensional case.
| (Solution:)
In R each element is a unique individual, which can be distinguished from any other
element. (E.g. the number 1.482 has certain properties which no other number has.)
On the other hand all elements on a straight line g are equivalent. (The points on g
are indistinguishable from each other: translation invariance of the straight line).
By selecting a point on g (denoted by O and called the origin) g becomes (almost)
R, because, now each element of g is unique, distinguishable by its distance from
O. (We can identify the origin O with the number 0, a point P on g with distance
d by the number d ∈ R.) We have said ‘almost’ since our g together with O still
has no orientation, because there are two point on g having distance d. By selecting
one of them as positive, this point is identified with the number d. Then g has an
orientation and g with O and that orientation is (isomorphic to) R.

22.Q 7: Linear combinations, linear dependence

22.7. a) What is a linear combination of two vectors ~a and ~b ? Give some trivial
examples.
| (Solution:)
It is a vector ~c of the form

~c = λ~a + µ~b with λ, µ ∈ R (1)

Trivial examples:

• ~a is such a linear combination (λ = 1, µ = 0)
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• the null vector is one (λ = µ = 0)

• ~a +~b is one (λ = µ = 1), etc.

Rem: The generalization to a linear combination of k vectors is

~b =
k∑

i=1

λi~ai (2)

22.7. b) (For n = 3,~a 6= 0,~b 6= 0,~a ∦ ~b)

give a geometric description of all linear combinations of ~a and ~b. What means ‘a
plane spanned by ~a and ~b’ ?
| (Solution:)

Considering position vectors for n = 3, all linear combinations of ~a and ~b form a
plane through the origin O, with ~a and ~b lying in the plane. We say ‘the plane is

spanned[
G
= aufgespannt] by ~a and ~b ’.

Fig22.7. 1: All linear combinations of ~a,~b are the position vectors whose end-points lie on
the shaded plane. ~c is not such a linear combination of ~a,~b, but is linearly independent from ~a,~b.

22.7. c) Give an example of a vector ~c not being a linear combination of ~a and ~b.
| (Solution:)
Any vector not lying in the plane, e.g. ~c chosen perpendicular to the plane.

22.7. d) what does it means that a vector ~c is linearly dependent on two vectors ~a

and ~b ?
| (Solution:)
‘linear dependent’ is synonymous with ‘being a linear combination of’. E.g. a vector
lying in the plane spanned by ~a and ~b is linearly dependent on ~a and ~b.
A vector ~c not lying in that plane, e.g. perpendicular to it, is linearly independent
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of ~a and ~b.

22.Q 8: Linear independence. Components of a vector in an arbitrary
skew (= oblique angled) base

22.8. a) What does it means that some (e.g. p) vectors, e.g. ~a1,~a2, · · · ,~ap, are linearly
independent?
| (Solution:)
The null-vector can be constructed as a linear combination out of them only when
all coefficients are zero:

p∑
k=0

λk~ak = 0 =⇒ all λi = 0 (linear independence) (1)

22.8. b)

Fig22.8. 1: All vectors in this figure are position vectors starting at O.
In this n = 2-dimensional vector space, (~a,~b) is a base, because these two vectors are linearly
independent, and every vector is a linear combination of them.
Linear independence just means that none of the base vectors is superfluous.
According to this base, µ~b is the vectorial component of an arbitrary vector ~c in the direction
of the base vector ~b.
µ′~b is the normal component ~c in the direction of ~b.
Note that normal components are independent of the choice of the other base vectors (requiring
only ~b 6= 0). On the other hand, a vectorial component depends upon the choice of the other base
vectors.

In fig. 1, show geometrically the vectors ~a and~b are linearly independent, and formu-
late in this 2-dimensional case the condition for 2 vectors to be linearly independent.
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| (Solution:)

~c is a linear combination of ~a and ~b:

~c = λ~a + µ~b (2)

As can be inspected from the figure, ~c = 0 is possible only if λ = µ = 0.
This is true because ~a 6= 0, ~b 6= 0 and

~a ∦ ~b not parallel (3)

22.8. c) Show that the vectors ~a and ~d = 2~a (i.e. one is a multiple of the other) are
not linearly independent.
| (Solution:)
We can write

0 = 1 · ~d− 2 · ~a (4)

and 1 is not zero.

22.8. d) When a collection of vectors contains the null vector, they cannot be linearly
independent. Show this for three vectors.
| (Solution:)

5 ·~0 + 0 · ~a + 0 ·~b = ~0 (5)

and 5 6= 0.
Rem: Most of the time, the null vector is denoted by 0, but here we have used the
more correct notation ~0.

22.8. e) When in a collection of vectors, one vector is linearly dependent upon the
others, then the collection is not linearly independent.
Show this for three vectors.
| (Solution:)
We have (denoting the vectors in a suitable way)

~c = λ~a + µ~b (6)

i.e.

0 = −~c + λ~a + µ~b. (7)

and −1 6= 0.

22.8. f) What is a base of a vector space?
What is the dimension n of a vector space?
Hint: Compare fig. 1, where (~a,~b) is a base.
| (Solution:)
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Definition of base and dimension of a vector space:
A collection of linearly independent vectors, so that each vector of the
vector space is a linear combination of them, is called a base of the vector
space.
The number n of base vectors is the dimension of the vector space.

This definition is possible because there is a fundamental theorem, stating this
number n is unique:

Theorem 1:
Two bases in the same vector space have the same number of base vectors.

and conversely

Theorem 2:
In an n-dimensional vector space, a collection of n linearly independent
vectors is a base.

22.8. g) The vector space of all n-tuples is n-dimensional. Show this for n = 3.
Hint: Use the canonical base.26

| (Solution:)
The canonical base is the following collection of 3 vectors:

~e1 = (1, 0, 0)
~e2 = (0, 1, 0)
~e3 = (0, 0, 1)

(8)

From

0 =
3∑

k=0

λk ~ek = (λ1, λ2, λ3) ⇒ λ1 = λ2 = λ3 = 0 (9)

Therefore, the 3 vectors (8) are linearly independent. So they form a base, since
every vector ~c can be written as a linear combination of them:

~c = (c1, c2, c3) = c1~e1 + c2~e2 + c3~e3 (10)

Since (8) are 3 vectors, the vector space of all triples is 3-dimensional.

22.8. h) Show that the collection

~a = (1, 0, 0)
~b = (0, 1, 0)
~c = (1, 1, 1)

(11)

26In mathematics, canonical means uniquely given.
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is a base in the vector space of all triples.
| (Solution:)
They are linearly independent, since

0 = λ~a + µ~b + ν~c = (λ + ν, µ + ν, ν) ⇒ ν = 0, λ = µ = 0 (12)

So, according to Theorem 2, they form a base.

22.8. i) Given a base (~e1, · · · , ~en) in an n-dimensional vector-space, what are the vec-
torial coordinates (vectorial components) of a given vector ~c with respect to
this base? Show that they are unique.
| (Solution:)
Since it is a base, we can write

~c =
n∑

k=1

ck ~ek (13)

The ck’s are the vectorial coordinates.
The ck ~ek ’s are the vectorial components.
If someone else proposes other coordinates c′k for the vector ~c in the same base:

~c =
n∑

k=1

c′k ~ek (14)

we have

0 =
n∑

k=1

ck ~ek −
n∑

k=1

c′k ~ek =
n∑

k=1

(ck − c′k)~ek (15)

Since the base vectors are linearly independent, we have ck = c′k for all k.

Rem: In fig. 1 we have n = 2 and ~e1 = ~a,~e2 = ~b, c1 = λ, c2 = µ.

22.8. j) What are the normal coordinates (normal components)?
Rem: This question requires the scalar product given in the next chapter.

| (Solution:)
The normal coordinates (denoted by c̄i) are the lengths of the normal projections
of ~c upon the base vectors ~ei, i.e.

c̄i = ~c êi =
~c ~ei√
~ei ~ei

(16)

where êi is the unit vector (= vector of length 1) in the direction of ~ei.

Rem: In fig.1 we have c̄1 = |λ′~a| and c̄2 = |µ′~b|.
The normal components are vectors in the direction of ~ei with the normal coor-
dinates as its lengths:

c̄iêi = (~c êi)êi =
(~c ~ei)~ei

~ei~ei

(17)
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22.8. k) What is an orthonormal base?
| (Solution:)
One where all base vectors are mutually perpendicular and all are of length 1:

~ei~ei = 1 and ~ei~ej = 0 for all i 6= j (18)

22.8. l) Show that in an orthonormal base, vectorial components (coordinates) are
identical with normal components (coordinates)
| (Solution:)
By (16)(13)(18):

c̄i = ~c êi = ~c ~ei = ~ei ~c = ~ei

n∑
k=1

ck~ek =
n∑

k=1

ck ~ek ~ek = ci ~ei ~ei = ci (19)

vectorial component =

ck~ek = c̄k~ek = c̄kêk (20)

= normal component.

22.Ex 9: , Linear combinations, vectorial and normal components
Consider three vectors

~a = (1, 0, 2)

~b = (−1, 3, 1)

~c = (0, 1, 1)

(1)

22.9. a) Show that ~c is a linear combination of ~a and ~b.
| (Solution:)
The proposition is

~c = λ~a + µ~b (2)

i.e.

(0, 1, 1) = λ(1, 0, 2) + µ(−1, 3, 1) (3)

or componentwise∣∣∣∣∣
0 = λ− µ
1 = 3µ
1 = 2λ + µ

(4)

µ = 1
3
, λ = µ = 1

3

Since the third equation of (4) is then also fulfilled:

1 =
2

3
+

1

3
(5)
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22.9. b) What is the vectorial component of ~c in the direction of ~a ? (provided the

other base vector (the other direction) is ~b.)
Result:

λ~a =
1

3
~a =

1

3
(1, 0, 2) (6)

22.9. c) What is the normal component of ~c in the direction of ~a ? (which is
independent of other directions.)
Rem: This exercise can be done only with the scalar product given in the next
chapter.
| (Solution:)
(See Q1d of the next chapter)
The normal component of ~c in the direction of ~a is:

(~c â) â =
(~c~a)~a

~a~a
=

2~a

~a~a
= 2

5
~a = 2

5
(1, 0, 2) = ( 2

5
, 0, 4

5
) (7)



23 Scalar product

(Recommendations for lecturing: 1, for basic exercises: 2, 3.)

23.Q 1: Scalar product (= dot product)

23.1. a) What is the scalar product of two vectors (geometrical definition)?
| (Solution:)

~a ~b = ab cos ϕ (1)

where ϕ is the angle between both vectors.

Fig23.1. 1: The scalar product ~a ~b of two vectors ~a and ~b is the length of ~a times the length of ~b

times the cosine of the enclosed angle ϕ.

Rem 1: Since cos(2π − ϕ) = cos ϕ it is irrelevant which of two possible ‘enclosed
angles’ you take. It is usual to take the smaller one: 0 ≤ ϕ ≤ π.

Rem 2: Sometimes, instead of (1), we write

~a · ~b = ab cos ϕ (1’)

i.e. with a dot[
G
= Tupfen] between ~a and ~a, to emphasize it is not ordinary multipli-

cation by numbers. Thus, instead of ‘scalar product’ we can also say dot product.
This is advantageous, because ‘scalar product’ can easily be confused with ‘multi-
plication by a scalar’: λ~a.

23.1. b) Why the word scalar product?
| (Solution:)

~a~b is not a vector but a number, and that number is an invariant (i.e. a scalar):
moving both vectors (translation and rotation by an angle χ)

335
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Fig23.1. 2: When the pair (~a,~b) is translated (from O to O′) and rotated by an angle χ the scalar
product remains invariant (i.e. is unchanged: ~a~b = ~a′~b′).

all quantities on the right hand side of (1) are invariants

a
′
= a, b

′
= b, ϕ

′
= ϕ (2)

thus ~a
′~b

′
= ~a ~b, i.e. the scalar product is an invariant (=scalar).

23.1. c) Express the length of a vector with the help of the scalar product.
| (Solution:)

a = |~a| =
√

~a~a =
√

~a 2 (3)

Proof: In (1) put b = a, ϕ = 0, cos 0 = 1

23.1. d) Express the normal component of a vector ~a in the direction of a
unit-vector with the help of the scalar product.
| (Solution:)
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Fig23.1. 3: When ~a is an arbitrary vector and ~n is an arbitrary unit-vector, the normal projection
of ~a unto ~n is (~a~n)~n, i.e.can be expressed by a scalar product.

~a~n = a · 1 cos ϕ = normal projection of the rod ~a onto the line ~n. Thus (~a~n)~n is the
component of ~a in the direction of ~n.

Rem: When ~n is not a unit-vector but an arbitrary vector ~b, the component of ~a in
the direction ~b is

(~a b̂) b̂ (4)

23.1. e) Express the orthogonality of two vectors with the help of the scalar product.

| (Solution:)

~a ⊥ ~b ⇐⇒ ~a ~b = 0 (5)

Orthogonality means vanishing scalar product

Fig23.1. 4: When two vectors ~a and ~b are orthogonal (i.e. their intermediate angle is right) they
have vanishing scalar product (because the cosine of a right angle is zero).



338 23. Scalar product

Rem 1: We adopt the convention that the null-vector is orthogonal to any
vector.

Rem 2: ∨ denotes the logical OR[
G
= logisches ODER]. The symbol ∨ reminds

us of the Latin vel = or.
The logical OR is the non-exclusive OR, where both alternatives might be true. This
is in contrast to the exclusive OR (XOR) of everyday language, e.g.: You may
get chocolate or ice-cream (but not both).

Proof of (5):

~a ⊥ ~b ⇐⇒ (~a = 0 ∨~b = 0 ∨ ϕ = π
2
) ⇐⇒ (a = 0 ∨ b = 0 ∨ cos ϕ = 0) ⇐⇒

⇐⇒ ab cos ϕ = 0 ⇐⇒ ~a~b = 0

23.1. f) Give the algebraic formula for the scalar product of two vectors, i.e. in terms
of their cartesian components ai and bi.
| (Solution:)

~a~b =
n∑

i=1

aibi = a1b1 + a2b2 + a3b3 (for n = 3) (6)

23.1. g) The same but formulated using Einstein’s summation convention. What
does the latter mean?
| (Solution:)

~a ~b = ai bi (7)

Einstein introduced the convention, that when the same index occurs twice in a
term, the formula should be read with an additional summation symbol, i.e. (7) is
a shorthand for (6). Einstein used n = 4. In classical physics one has n = 3.

23.1. h) Give the commutative law for the scalar product and an associative law valid
for scalar multiplication.
| (Solution:)

~a~b = ~b~a commutative law (8)

~a(λ~b) = (λ~a)~b = λ(~a~b) = λ~a~b (9)

associative law for scalar multiplication

i.e. brackets can be omitted

~aλ~b = λ~a~b = ~a~bλ (10)

23.1. i) Why is the expression

~a~b~c (11)
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in general meaningless?
| (Solution:)

The expression could either mean ~a(~b~c) or (~a~b)~c. Since the brackets are scalars, the
first is a vector in the direction of ~a, the second a vector in the direction of ~c, and
both cases are in general unequal. In other words: There is no associative law for
the scalar product.

23.1. j) What does it mean that the scalar product is bilinear?
| (Solution:)
It means that the distributive law is valid in both [bi = twice] factors

~a(λ1
~b1 + λ2

~b2) = λ1~a~b1 + λ2~a~b2 (12)

in words: the scalar product of a vector with a linear combination of vectors is the
linear combination of the individual scalar products.

The linearity in the first factor

(λ1 ~a1 + λ2 ~a2)~b = λ1 ~a1
~b + λ2 ~a2

~b (13)

now follows from the commutative law.

23.Ex 2: , Angles in an equilateral triangle
Prove: in an equilateral triangle any angle is 60◦.

Fig23.2. 1: In an equilateral triangle |~a| = |~b| = |~a−~b| we conclude γ = 60◦.

Hint 1: in an equilateral triangle[
G
= gleichseitiges Dreieck], by definition,

each side has the same length, say `.
Hint 2: use

~a2 = ~a~a = `2, ~b2 = `2, (~a−~b)2 = `2 (1)
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In the last condition use the bi-linearity and the symmetry of the scalar product.
Finally express the scalar product ~a~b with the help of cos γ. From cos γ = 1

2

conclude γ = 60◦ since γ ≥ 0 and γ ≤ π.
| (Solution:)

(~a−~b)2 = (~a−~b)(~a−~b)
♠
= ~a(~a−~b)−~b(~a−~b) = (2)

♣
= ~a~a− ~a~b−~b~a +~b~b

♠♠
= ~a2 +~b2 − 2~a~b

(1)
= 2`2 − 2~a~b

(1)
= `2 (3)

⇒ 1

2
`2 = ~a~b = ab cos γ = `2 cos γ ⇒ cos γ =

1

2
(4)

♠ linearity of the scalar product in the first factor

♣ linearity of the scalar product in the second factor

♠♠ symmetry of the scalar product

(5)

Fig23.2. 2: Graph of y = cos γ. cos γ = 1
2 only has the solution γ = 60◦ in the interval [0, 180◦].

One solution is γ = 60◦, as can be seen from fig. 2. This is the only solution for a
triangle.
Rem 1: In this proof O is an arbitrary corner, so any angle is 60◦.
Rem 2: All angles are equal due to symmetry: α = β = γ. Because the sum of the
angles in a triangle is π, we immediately have γ = π

3
= 60◦. Thus our procedure was

much too complicated, but it was useful as an exercise and it is necessary when the
side lengths of the triangle are not equal.

23.Ex 3: , Shortest distance from a straight line
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Fig23.3. 1: ~r(t) = ~a + t~b is a parameter representation of a straight line (dashed line), where t is
the parameter (−∞ < t < ∞). The straight line passes through ~a and has direction ~b. We de-
termine the point Q which has the shortest distance from a point P given by its position vector ~c.

Determine the point Q on the straight line

~r = ~a + t~b (1)

having the shortest distance from the point P , see fig. 1.

23.3. a) By minimizing d2, where d is the distance (dotted line in figure) of P to an
arbitrary point ~r of the straight line (dashed line).
Result:

Q :
−→
OQ = ~r = ~a +

[(~c− ~a)~b ]

~b2

~b (2)

| (Solution:)

d2 = (~r − ~c)2 =
[
(~a− ~c) + t~b

]2
= (~a− ~c)2 + 2t(~a− ~c)~b + t2~b2 (3)

0
!
=

d

dt
d2 = 2(~a− ~c)~b + 2t~b2 (4)

t =
(~c− ~a)~b

~b2
(5)

Q : ~r = ~a + t~b = ~a +
[(~c− ~a)~b]

~b2

~b (6)

Attention: there is no associative law for scalar product, thus (6) cannot be sim-
plified to

~a +
(~c− ~a)(~b~b)

~b2
= ~a + ~c− ~a = ~c (7)
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23.3. b) By the condition that
−→
PQ is perpendicular to ~b.

| (Solution:)

Let Q be given by ~r, i.e.
−→
OQ = ~r, then we have

−→
PQ = ~r − ~c and

O
!
= (~r − ~c)~b = (~a− ~c + t~b)~b (8)

(~c− ~a)~b = t~b2 ⇒ t =
(~c− ~a)~b

~b2
(9)

We have again obtained (5) and further calculation proceeds as before.

23.3. c) For the special case ~c = 0, ~a ⊥ ~b calculate d and verify d = a.
| (Solution:)
(2) gives ~r = ~a, thus d2 = ~r 2 = ~a 2 ⇒ d = a.

23.Ex 4: Shortest distance from a plane

Fig23.4. 1: ~r(λ, µ) = ~a +~bλ + ~cµ is a parameter representation of the shaded plane where ~r is a
general point on that plane. λ ∈ (−∞,+∞), µ ∈ (−∞,+∞) are the parameters. The plane is
spanned by ~b and ~c and it passes through ~a. We determine the point Q on the plane having the
shortest distance from the origin.

Determine the point Q on the plane

~r = ~a + λ~b + µ~c (1)

having the shortest distance d from the origin, see fig. 1. Calculate d as well.
To save calculation time we only consider the special case

~a ⊥ ~b, ~a ⊥ ~c, ~b ⊥ ~c, ~b 6= 0, ~c 6= 0 (2)
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23.4. a) Give the answer geometrically without any calculation.
Result:

d = a,
−→
OQ = ~a (3)

| (Solution:)
−→
OQ must be perpendicular to the plane, i.e. to ~b and ~c. This is already the case for
~r = ~a.

23.4. b) - By minimizing d2 = r2.
Hint: both partial derivative must be zero.
| (Solution:)

d2 = ~r 2 = (~a + λ~b + µ~c )2 = (4)

= ~a2 + λ2~b 2 + µ2~c 2 + 2λ ~a~b︸︷︷︸
0

+2µ ~a~c︸︷︷︸
0

+2λµ ~b~c︸︷︷︸
0

(5)

We must have∣∣∣∣∣ O
!
= ∂

∂λ
d2 = 2λ~b2

O
!
= ∂

∂µ
d2 = 2µ~c 2

(6)

⇒ λ = µ = 0 ⇒ ~r = ~a, d = r = a (7)

23.Ex 5: Invariance of the scalar product under rotations

23.5. a) Calculate the vector
−→
AB in fig 1.
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Fig23.5. 1: The triangle A′, B′, C ′ is obtained from the triangle A, B, C by a mirror-symmetry
where P is the plane of the mirror. The position vector of A is obtained by

−→
OA = ~A + ~a, etc,

while
−−→
OA′ = ~A− ~a, where ~a ~A = 0 and ~A is in the mirror plane.

Result:
−→
AB = − ~A + ~B − ~a +~b (1)

| (Solution:)

−→
OA = ~A + ~a,

−−→
OB = ~B +~b (2)

−→
AB =

−−→
OB −

−→
OA = − ~A + ~B − ~a +~b (3)

23.5. b) Similarly we want
−→
AC. Find it directly from (1) by applying a formal sym-

metry.
Result:

−→
AC = − ~A + ~C − ~a + ~c (4)

| (Solution:)
We obtain (4) from (1) by formal symmetry

B → C, b→ c (5)

23.5. c) Calculate the scalar product

−→
AB ·

−→
AC (6)
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Hint: use symmetry and bi-linearity of the scalar product. Use orthogonality, i.e.
all vectors ~a, ~b, ~c are orthogonal to the mirror plane, i.e. to all ~A, ~B, ~C.
Result:

−→
AB ·

−→
AC = A2 − ~A~C − ~A~B + ~B ~C + ~a~a− ~a~c−~b~a +~b~c (7)

| (Solution:)

−→
AB ·

−→
AC = (− ~A + ~B − ~a +~b)(− ~A + ~C − ~a + ~c ) =

= A2 − ~A~C + ~A~a︸︷︷︸
0

− ~A~c︸︷︷︸
0

− ~A~B + ~B ~C − ~B~a︸︷︷︸
0

+ ~B~c︸︷︷︸
0

+

+ ~a ~A︸︷︷︸
0

− ~a~C︸︷︷︸
0

+~a~a− ~a~c− ~b ~A︸︷︷︸
0

+ ~b ~C︸︷︷︸
0

−~b~a +~b~c

(8)

8 terms are zero because of orthogonality.

23.5. d) By applying a formal symmetry to (7) calculate
−−→
A′B′ ·

−−→
A′C ′ and show that

scalar products are invariant under mirror-symmetry.
Result:

−−→
A′B′ ·

−−→
A′C ′ = same as (7) (9)

| (Solution:)
The formal symmetry to be applied to (7) is

~a→ −~a, ~b→ −~b (10)

while the capital letters remain unchanged. Thus the right-hand side of (7) remains
unchanged, i.e. scalar products are invariant under mirror-symmetry.

23.5. e) Show that lengths and angles are invariant under mirror-symmetry, e.g.

|
−→
AB| = |

−−→
A′B′|, α = α′ (11)

| (Solution:)
Lengths and angles are given by scalar products which are invariant.

23.5. f)

A rotation can be obtained by a succession of mirror symmetries. (12)

Visualize this for a plane triangle

A(2, 2), B(5, 2), C(5, 4)

and apply two mirror symmetries, one with respect to the x-axis and the other one
with respect to the line

y = −x (13)
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| (Solution:)

Fig23.5. 2: Any rotation is obtained by a succession of mirror symmetries. The triangle A′, B′, C ′

is obtained from A, B, C with the x-axis as the mirror-symmetry axes (x-z-plane as the mirror)
and A′′, B′′, C ′′ is obtained by the dotted line as the second mirror-symmetry axis. The resulting
rotation is around the intersection of both mirror-symmetry axes (the origin in our case) and the
angle of rotation is twice the angle between both mirror-symmetry axes (a rotation by 1

2π in our
case).

Result:

Scalar products, lengths and angles are invariant under translation,

mirror-symmetries and rotations.
(14)



24 Vector product

(Recommendations for lecturing: 1, 3, for basic exercises: 2, 4.)

24.Q 1: Vector product
Rem: The vector product in the form below is possible only for n = 3.

24.1. a) Give the geometric definition of the vector product.
| (Solution:)

Fig24.1. 1: The vector product ~c = ~a×~b is orthogonal to both of its factors ~a and ~b. Its length is
the length of ~a times the length of ~b times the sine of the enclosed angle ϕ (0 ≤ ϕ ≤ π).

~c = ~a×~b is a vector perpendicular to both ~a and ~b (or: perpendicular to the plane

spanned by ~a and ~b). Its length is given by

c = ab sin ϕ (1)

where ϕ is the (shorter, positive, i.e. 0 ≤ ϕ ≤ π, i.e. sin ϕ ≥ 0) angle between ~a and
~b. The orientation of ~c is the direction of forward movement of a right screw[

G
=

Rechtsschraube] (or corkscrew[
G
= Korkenzieher]) when it is rotated like ~a is

rotated into the direction of ~b (via the shorter angle, i.e. via ϕ).

Rem 1: In case ~a = 0 or ~b = 0, we have ~c = 0, thus the above definition is unique
even in these cases, although every vector is perpendicular to the null-vector.

Rem 2: The above definition presupposes that space has an orientation, e.g. by
selecting a particular corkscrew and defining it as a right screw.
If we were exactly mirror-symmetric, we could not distinguish between left and right.

347
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24.1. b) Give an alternative name for the vector product and explain both names.
| (Solution:)
Cross-product, because a cross (×) is used (instead of the multiplication point) to
distinguish it from the scalar product. It is called vector product, because the result
~c is a vector.

Rem: More exactly it is only a pseudo-vector, differing from a true vector when
reflections are considered. For more details, see Ex.5.

24.1. c) Express parallelism (including anti-parallelism) of two vectors with the help
of the vector product.
| (Solution:)

~a‖~b ⇔ ~a×~b = 0 (2)

parallelism means vanishing vector product

where we adopt the convention that the null vector is parallel to any vector.

Proof :
~a‖~b ⇐⇒ (~a = 0 ∨~b = 0 ∨ ϕ = 0 ∨ ϕ = π) ⇐⇒
⇐⇒ (a = 0 ∨ b = 0 ∨ sin ϕ = 0) ⇐⇒ ab sin ϕ = 0 ⇐⇒ ~a×~b = 0

24.1. d) Express the area A of the parallelogram spanned by ~a and ~b with the help of
the vector product.
| (Solution:)

Fig24.1. 2: ~a and ~b span a parallelogram. The length of the vector product ~A = ~a×~b is identical
to the area of the parallelogram.
Sometimes the area of the parallelogram is considered the vector ~A itself, being orthogonal to
the surface of the parallelogram. Thus ~A gives the area and the orientation in space of the
parallelogram.



24. Q 1: Vector product 349

A is the base line a times height h, i.e.

A = ah = ab sin ϕ = |~a×~b| (3)

Rem: All points of the parallelogram are given as ~r = λ~a + µ~b with
0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1.

24.1. e) Give the modified commutative law.
| (Solution:)

~a×~b = −~b× ~a anticommutative law (4)

24.1. f) Give an associative law.
| (Solution:)

λ(~a×~b) = (λ~a)×~b = ~a× (λ~b) (5)

for which reason we can omit bracket e.g.

λ~a×~b = ~a× λ~b = ~a×~bλ (6)

24.1. g) Prove that in general

~a× (~b× ~c) 6= (~a×~b)× ~c (7)

(Hint: use ~a ⊥ ~b, ~b = ~c, a = b = c = 1 as a counter example.)
| (Solution:)

Fig24.1. 3: A simple example of three vectors for which the associative law for vector products
does not hold: ~a× (~b× ~c) 6= (~a×~b)× ~c
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~b× ~c = 0 (8)

so the left hand side of (7) is zero.

On the other hand: ~a ×~b ⊥ ~c, |~a ×~b| = 1, therefore the right hand side of (7) is
−~a.

Rem 1: Thus an associative law for vector multiplication does not hold.

Rem 2: Thus ~a×~b×~c is meaningless (ambiguous) except if we adopt the convention
that with equal priority of operation, priority is from left to right

~a×~b× ~c := (~a×~b)× ~c (9)

but which is not usual

24.1. h) Explain why the vector product is bilinear.
| (Solution:)
It is linear in both factors, i.e. the vector product of a vector with a linear combi-
nation of vectors is the linear combination of the individual vector products.

~a× (λ1
~b1 + λ2

~b2) = λ1~a× ~b1 + λ2~a× ~b2 (10)

(λ1 ~a1 + λ2 ~a2)×~b = λ1 ~a1 ×~b + λ2 ~a2 ×~b (11)

Rem: The last formula follows from the anticommutative law.

24.1. i) By writing ~a = ~a⊥ + ~a|| prove

~a×~b = ~a⊥ ×~b = ~a×~b⊥ (12)

where ~a|| is component of ~a in the direction of~b and ~a⊥ is the orthogonal component.

| (Solution:)

~a×~b = (~a⊥ + ~a‖)×~b = ~a⊥ ×~b + ~a‖ ×~b (13)

with the help of linearity. The last term is zero.

24.1. j) Give the generation rule for the calculation of the components of ~a×~b (alge-
braic definition of the vector product)
| (Solution:)

To calculate ~a ×~b = ~c = (c1, c2, c3) in cartesian components: write down the com-
ponents of both factors above each other in two lines:

a1 a2 a3

b1 b2 b3
(14)



24. Ex 2: , Products of coordinate unit vectors 351

You obtain ci by deleting the i-th column and by calculation of the remaining de-
terminant27 (with an additional -1 in the case i = 2):

c1 =

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ = a2b3 − a3b2

c2 = −
∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ = −(a1b3 − b1a3)

c3 =

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1

(15)

in summary

~a×~b = (a2b3 − a3b2, −a1b3 + b1a3, a1b2 − a2b1) (16)

Rem 1: You should not learn by hard that formula, but instead the procedure how
it was generated.

Rem 2: (15)(16) are valid only in a right-handed[
G
= rechtshändig] Cartesian

coordinate system, i.e. when a right screw which is rotated as ~ex 7→ ~ey moves in the
direction of ~ez (and not in the direction of −~ez) or in other words, if

~ex × ~ey = ~ez

.
Without strong reasons for the contrary, only right handed Cartesian coordi-
nate systems are used in physics.

24.Ex 2: , Products of coordinate unit vectors

27The definition of the determinant is given in Ex 3 (3).
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Fig24.2. 1: 3-dimensional cartesian coordinate system with unit vectors ~ex, ~ey, ~ez in the direction
of the axes.

24.2. a) Calculate the components of the unit vectors along the coordinate axes, see
fig. 1.
Result:

~ex = (1, 0, 0)

~ey = (0, 1, 0)

~ez = (0, 0, 1)

(1)

24.2. b) Show algebraically that those vectors form an ortho-normalized reference

frame[
G
= Bezugssystem] i.e. that they are normalized, i.e. have length 1 and are

orthogonal in pairs.
| (Solution:)
E.g.

~e 2
x = ~ex~ex = (1 · 1 + 0 · 0 + 0 · 0) = 1 (2)

~ex~ey = (1 · 0 + 0 · 1 + 0 · 0) = 0 (3)

24.2. c) Verify algebraically.

~ex × ~ey = ~ez (4)

| (Solution:)
We use the scheme

1 0 0
0 1 0

(5)

to obtain the components of

~ex × ~ey = (0, 0, 1) = ~ez (6)
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24.2. d) Write down again (4) and all equations obtained from (4) by cyclic permu-
tation.

x −→ y

↙
z

↖
(7)

Result:

~ex × ~ey = ~ez

~ey × ~ez = ~ex

~ez × ~ex = ~ey

(vector products of coordinate unit vectors) (8)

24.2. e) Verify all 3 equations from (8) geometrically.
| (Solution:)
The right-hand side is orthogonal to both factors on the left-hand side. Since both
factors on the left-hand side are orthogonal and have unit length, the right-hand
side must have unit length.
That the signs of the right-hand sides are correct must be checked for each equation
separately by applying the right-screw rule.

24.2. f) Check the last equation of (8) algebraically.
| (Solution:)
We apply the scheme

0 0 1
1 0 0

(9)

to obtain

~ez × ~ex = (0, 1, 0) = ~ey q.e.d.

24.Ex 3: Area of a parallelogram expressed by a determinant
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Fig24.3. 1: Area A of parallelogram spanned by ~a and ~b will be expressed by a determinant. From
elementary planimetry it is known that the area is the base · the height, i.e. A = a · h.

We will show that the area A of a parallelogram spanned by the vectors

~a = (a1, a2)

~b = (b1, b2)
(1)

(see fig. 1) can be expressed by the determinant

A =

∣∣∣∣a1 a2

b1 b2

∣∣∣∣ ((oriented) area A of a parallelogram spanned by ~a and ~b) (2)

Determinants are defined for arbitrary quadratic matrices. For a 2×2 matrix that
definition is∣∣∣∣α β

γ δ

∣∣∣∣ = αδ − βγ (definition of a 2×2 determinant) (3)

Rem 1: the vertical bars cannot in general be confused with an absolute value
because 1×1 matrices are rarely used. To avoid possible confusion, there is an alter-
native notation for determinants, e.g.

det

(
α β
γ δ

)
≡
∣∣∣∣α β
γ δ

∣∣∣∣ = αδ − βγ (3′)

Rem 2: (2) gives an oriented area changing its sign when the vectors are inter-
changed.∣∣∣∣a1 a2

b1 b2

∣∣∣∣ = −
∣∣∣∣b1 b2

a1 a2

∣∣∣∣ (4)

When A is understood to be the ordinary (i.e. un-oriented, positive definite) area,
(2) should read

A =

∥∥∥∥a1 a2

b1 b2

∥∥∥∥ =

∣∣∣∣det

(
a1 a2

b1 b2

)∣∣∣∣ (2′)

Here in the first expression the outer bars denote an absolute value while the inner
bars denote the determinant.
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Rem 3: in n = 3 and in higher dimensional spaces (n ≥ 4) the determinant
also gives the (oriented) volume of a parallelepiped (hyper-parallelepiped for n ≥ 4)
spanned by n vectors.

24.3. a) First verify that the absolute value of the vector product gives the area A in
keeping with the rule

area = base · height (5)

A = ah = |~a×~b| (6)

| (Solution:)

|~a×~b| = ab sin ϕ (7)

See fig. 1.
Relative to the angle ϕ, the height h is the side-projection of b:

h = b sin ϕ (8)

which proves (6).

24.3. b) Assume that there is a third axis (i.e. an upward z-axis), we enlarge (1) to
n = 3 dimensional vectors

~a = (a1, a2, 0)

~b = (b1, b2, 0)
(9)

calculate its vector product and prove (2′).
| (Solution:)
Using the scheme

a1 a2 0
b1 b2 0

(10)

we obtain the components of

~c = ~a×~b =

(
0, 0,

∣∣∣∣a1 a2

b1 b2

∣∣∣∣) (11)

Since the other components are zero, the third component is the absolute value,
except for a possible minus sign. Together with (6) this proves (2′). q.e.d.

24.Ex 4: , Linear (in)dependence expressed by vector product
We will prove the following equivalences.

~a, ~b linearly dependent ⇐⇒ ~a×~b = 0 (1)
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~a, ~b linearly independent ⇐⇒ ~a×~b 6= 0 (2)

Rem: the zero on the right-hand side of (1) and (2) is the null-vector, so a more
exact representation of it would be ~0.

24.4. a) Prove ⇒ in (1).

Hint: ~a, ~b linear dependent means one of the following cases:

~a = 0 or ~b = 0 or ~a = λ~b (3)

These three cases can be reduced to the following two cases:

~a = λ~b or ~b = λ~a (4)

(including the possibility that λ = 0)
| (Solution:)

For ~a = λ~b ⇒ ~a×~b = λ~b×~b︸︷︷︸
0

= 0

For ~b = λ~a ⇒ ~a×~b = ~a× λ~a = λ(~a× ~a) = 0

(5)

24.4. b) Prove ⇐ in (1).
Hint: consider the absolute value of the vector product.
| (Solution:)

~a×~b = 0 ⇒ |~a×~b| = 0 ⇒ ab sin ϕ = 0 (6)

From this we have three possibilities: a = 0 (i.e. ~a = 0), or b = 0 (i.e. ~b = 0), or

sin ϕ = 0 i.e. either ϕ = 0 or ϕ = π i.e. ~a = λ~b.

24.4. c) Prove (2).
Hint: use the following logical equivalence.

(A ⇐⇒ B) ⇐⇒ (¬A ⇐⇒ ¬B) (7)

A and B are any statements, ¬A is the negation of the statement A.
| (Solution:)

A ≡ (~a, ~b are linearly dependent)

¬A ≡ (~a, ~b are linearly independent)

B ≡ (~a×~b = 0)

¬B ≡ (~a×~b 6= 0)

(8)

24.Ex 5: - The vector product as a pseudo-vector; axial and polar vectors
Consider two position vectors

~a = (a1, a2, a3)

~b = (b1, b2, b3)
(1)
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24.5. a) Calculate the position vectors ~a′, ~b′ obtained from ~a, ~b by a mirror-symmetry
with respect to the x-y-plane.
Result:

~a′ = (a1, a2, −a3)

~b′ = (b1, b2, −b3)
(2)

| (Solution:)
The z-component of the vector changes sign, while the x and y-components remain
unchanged.

24.5. b) Calculate the vector product.

~c = ~a×~b (3)

Result:

~c = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) = (c1, c2, c3) (4)

| (Solution:)
Use the scheme

a1 a2 a3

b1 b2 b3
(5)

24.5. c) By applying a formal symmetry to (4), calculate the components of

~c ′ = ~a′ ×~b′ (6)

Result:

~c ′ = (−a2b3 + a3b2, −a3b1 + a1b3, a1b2 − a2b1) = (−c1, −c2, c3) (7)

| (Solution:)
The formal symmetry to be applied is changing the sign of a3 and b3.

24.5. d) Apply mirror-symmetry directly to ~c, assuming (incorrectly) that ~c is an
ordinary vector.
Result:

~c ′ = (c1, c2, −c3) (8)

in analogy with the result (2).

Result: The vector ~c obtained by forming a vector product ~c = ~a×~b from ordinary
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(e.g. position) vectors ~a and ~b does not behave like an ordinary vector under a
mirror-symmetry. The correct result is (7), which compared to an ordinary vector
(with result (8)) assumes an additional factor of −1.

(2) and (8) are true if ~a, ~b and ~c are ordinary vectors. (7) is true, as assumed in
(1)(3), that ~c is the vector product of two ordinary vectors.

24.5. e) Visualize this behaviour graphically using the example

~a = (4, 0, 0)

~b = (2, 3, 0)
(9)

by drawing ~a′, ~b′, ~c = ~a×~b and ~c ′ = ~a′ ×~b′.
| (Solution:)

Fig24.5. 1: Under a mirror-symmetry with respect to the x-y-plane we have ~a′ = ~a, ~b′ = ~b (since
these vectors lie in the mirror plane). The vector products ~c = ~a ×~b and ~c ′ = ~a′ ×~b′ are equal,
namely upwards along the z-axis with the length 4 · 3 = 12 units (3 units = projection of ~b to the
y-axis). Therefore, the vector product yields a pseudo-vector, assuming an additional −1 under a
mirror-symmetry, since an ordinary vector would behave like ~c ′ = −~c.

The vector ~c = ~a ×~b points upwards (along the positive x-axis) since by moving ~a

into the direction of ~b via the shorter angle a right-screw moves upwards.

24.5. f) The mapping[
G
= Abbildung]

~r 7→ ~r ′ = −~r
(point-symmetry)
(central-symmetry)

(10)
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is called a point-symmetry[
G
= Punkt-Symmetrie] or a central-symmetry[

G
=

Zentralsymmetrie].

Rem: In the case of (10), the ‘point’ = the ‘center’ is the origin (~r = 0).

Show that the point-symmetry (10) can be obtained by applying 3 mirror symmetries
in succession, e.g. a first one with the x-y-axis as the mirror, a second one with the
x-z-axis as the mirror and a last one with the y-z-axis as the mirror.
Hint: write ~r = (x, y, z). In a mirror-symmetry that component changes sign which
are not the axes of the mirror.
| (Solution:)
~r = (x, y, z). Denoting by Mxy the mirror-symmetry with the x-y-axis as the mirror,
we obtain

~r ′′ = Mxy~r = (x, y, −z) (11)

~r ′′′ = Mxz~r
′′ = MxzMxy~r = (x, −y, −z)

~r ′′′′ = Myz~r
′′′ = MyzMxzMxy~r = (−x, −y, −z) = −(x, y, z) = −~r = ~r ′

(12)

q.e.d.

24.5. g) Since a point symmetry is obtained by a succession of three mirror-symmetries

whereby the vector product ~c = ~a ×~b assumes three times an additional factor of
−1, we expect that a vector product assumes the additional factor

(−1)3 = −1 (13)

compared to an ordinary (i.e. position) vector. Validate that statement by applying
point-symmetry (10) to the general vectors (1).
| (Solution:)

~a′ = −~a

~b′ = −~b
⇒ ~c ′ = ~a′ ×~b′ = (−~a)× (−~b) = (−1)2~a×~b = ~a×~b = ~c (14)

~c ′ = ~c (15)

If ~c were an ordinary (i.e. position) vector we would have

~c ′ = −~c (16)

instead of (15).

24.5. h) Validate the last statement graphically by using the vectors ~a and ~b in fig. 1.

| (Solution:)
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Fig24.5. 2: The vectors ~a′, ~b′ are obtained from ~a, ~b by a point-symmetry (with respect to the
origin). Forming the vector products ~c = ~a ×~b and ~c ′ = ~a′ ×~b′ we have to move the first factor
(~a or ~a′) via the shorter angles into the direction of the second factor (~b or ~b′). In both cases this
means the same sense of rotation (arc arrows in figure) so ~c and ~c ′ both point upwards: ~c ′ = ~c,
while for an ordinary vector we would have ~c ′ = −~c.

Facit: a position vector ~r is the prototype of an ordinary vector. It behaves like
(10) under a point-symmetry. Thus an ordinary vector is also called a polar vector
since it changes polarity (i.e. sign) under a point-symmetry,

~r ′ = −~r (17)

while ~c does not:

~c ′ = ~c (18)

24.5. i) Because the vector ~c obtained by a vector product from ordinary vectors, ~c =

~a×~b, assumes an additional (-1) under a mirror-symmetry (compared to an ordinary
vector) it is called a pseudo-vector. A second example of a pseudo-vector is the

angular velocity vector[
G
= Winkelgeschwindigkeitsvektor] ~ω of a rotation

~ω = angular velocity vector (19)

defined as follows:28

• ~ω has the direction of the axis of rotation.

• ~ω has the same orientation as a right-screw when it is rotated in the same way
as the body.

28It is defined here only for a fixed axis.
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• ~ω has magnitude

|~ω| = ω = α̇ (20)

For the definition of α see fig. 3.

Fig24.5. 3: A rotating body (e.g. a ball) rotating about the axis A (assumed here to be
perpendicular to the sheet of the figure). A physical mark P on the body has angular position
α = α(t) with respect to an arbitrary (but fixed) dotted reference line. When α is increasing ~ω

points upwards.

Assume that a conical[
G
= kegelförmig] top (spinning top[

G
= Kreisel]) is

standing (rotating) upright. Construct the point-symmetric top and show that
both have the same angular velocity. Do the same for a mirror-symmetry with the
sustaining plane as the mirror. Perform that experiment with a real top and mirror.

| (Solution:)
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Fig24.5. 4: A spinning top rotating with angular velocity ~ω as also indicated by the arc’s arrow
−−→
AB on the top. The dotted top is obtained by a point-symmetry with respect to O. Though both
tops are not identical they have the same angular velocity ~ω′ = ~ω. Thus angular velocity is a
pseudo-vector (= axial vector) since an ordinary vector, e.g.

−−→
OP , would behave like

−−→
OP ′ = −

−−→
OP .

The same results if we apply a mirror-symmetry with the sustaining plane as the mirror.

Result: since angular velocity is a prototype for a pseudo-vector, they are also
called axial vectors29.

24.5. j) What is the difference between axial and polar vectors under rotations?
Hint: a rotation is obtained by the succession of an even number of mirror-
symmetries.
Result: nothing
| (Solution:)
Each mirror-symmetry gives an additional factor of (-1) compared to a polar vector.
Since a rotation involves an even number of mirror-symmetries these signs drop
out.

24.5. k) Write down equations analogous to (10), (11) and (12) for an axial vector,
e.g. for ~ω.
Hint: compared to a polar vector an additional (-1) occurs for each mirror
symmetry.
| (Solution:)

29The axis ω̂ = ~ω
ω is also a pseudo-vector.
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~ω 7→ ~ω′ = ~ω point symmetry for an axial vector (10′)

~ω = (ω1, ω2, ω3)

~ω′′ = Mxy~ω = (−ω1, −ω2, ω3)
(11′)

~ω′′′ = Mxz~ω
′′ = MxzMxy~ω = (ω1, −ω2, −ω3)

~ω′′′′ = Myz~ω
′′′ = MyzMxzMxy~ω = (ω1, ω2, ω3) = ~ω = ~ω′

(12′)

Summary

A position vector is the prototype of an ordinary vector. (21)

ordinary vector ≡ true vector ≡ polar vector (22)

Angular velocity is the prototype of a pseudo-vector. (23)

pseudo vector ≡ axial vector (24)

The vector product of two ordinary vectors is a pseudo-vector. (25)

Under rotation, vectors and pseudo-vectors behave identically. (26)

Under mirror-symmetries (and point symmetries),

a pseudo-vector assumes an additional (−1)

compared to an ordinary vector.

(27)

Rem 1: Pseudo-vectors come into play because of the notion of a right-screw, which
was indeed used both in the definition of vector product and in the definition of
angular velocity. While we did perform the mirror-symmetry, the right-screw re-
mained unchanged. Had we applied the mirror-symmetry to both the top and the
right-screw, it would have then been transformed into a left-screw, and if we had
used the latter for the definition of ~ω, ~ω would have behaved like an ordinary vector.

Rem 2: Instead of ‘ordinary vector’ we say also ‘true vector’. The notations ‘true’
and ‘pseudo’ have historical origins, because the position vector was discovered first
and was considered to be true. From a mathematical point of view pseudo-vectors
are as good as true vectors, they are only different.



25 Wedge product. Multiple vector products.

(Recommendations for lecturing: 1, 2, 5, for basic exercises: 3, 4.)

25.Q 1: Wedge product

What is the wedge product[
G
= Spatprodukt]

25.1. a) expressed by a vector product.
| (Solution:)

(~a×~b)~c (1)

which is a scalar.

25.1. b) What is its geometrical meaning?
| (Solution:)

Geometrically it represents the volume of the parallelepiped[
G
= Spat].

Rem: wedge[
G
= Keil]

Fig25.1. 1: the wedge product (~a ×~b)~c is the volume of the parallelepiped spanned by the three
vectors ~a,~b,~c.
Two wedge-shaped minerals: smokey quartz (left) and calcite (right).

V = (~a×~b)~c (2)

Rem: V is the oriented volume, i.e. it can be negative, indeed

(~a×~b)~c = −(~b× ~a)~c (3)

364
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i.e. the oriented volume depends on the order of the vectors spanning the paral-
lelepiped.
The usual volume, which is always positive, is obtained by taking the absolute value.

V = |(~a×~b)~c| (4)

instead of (1)

25.1. c) Give the cyclic permutation rule of the wedge product.
| (Solution:)

(~a×~b)~c = (~c× ~a)~b = (~b× ~c)~a (5)

where letters have been permutated cyclically:

Fig25.1. 2: Cyclic permutation of three symbols a, b, c

25.1. d) What is the connection with determinants?
| (Solution:)

(~a×~b)~c =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ (6)

Rem: For the definition of determinants, see Ex 5.
You can prove (6) by developing the determinant along the last row (c1, c2, c3).

25.Q 2: Multiple vector products
With the help of a formulary check the following formula for multiple vector

products[
G
= Entwicklungssatz]:

~a× (~b× ~c) = ~b(~a~c)− ~c(~a~b) (1)
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25.Ex 3: , Other formulas for multiple vector products

25.3. a) Verify

~a× (~b× ~c) = ~b(~a~c)− ~c(~a~b) (1)

for

~a = (0, 0, 1)

~b = (1, 0, −1)

~c = (1, 2, 0)

(2)

| (Solution:)
Using the scheme

1 0 −1
1 2 0

(3)

we obtain

~b× ~c = (2, −1, 2). (4)

Using the scheme

0 0 1
2 −1 2

(5)

we obtain

~a× (~b× ~c) = (1, 2, 0). (6)

On the other hand we have

~a~c = 0

~a~b = −1
(7)

and the right-hand side of (1) gives +~c which is identical to (6). q.e.d.

25.3. b) Look up a formula for (~a×~b)(~c× ~d) in a formulary.
Result:

(~a×~b )(~c× ~d ) = (~a~c )(~b ~d )− (~a ~d )(~b~c ) (8)

25.Ex 4: , Purely vectorial treatment of a regular tetrahedron
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Fig25.4. 1: A regular tetrahedron with corners O, A,B and C spanned by three vectors ~a, ~b and
~c having 6 edges of equal length taken to be unity: a = b = c = 1 etc. It has 4 faces which are
equilateral triangles. ~ha is the height from corner A to its opposing base. All four heights intersect
at a single point S.

Rem: In a previous exercise we dealt with a regular tetrahedron (tetra Greek =
4, hedron Greek = face) using special coordinates. Here, we do a purely vectorial
treatment, i.e. the tetrahedron has a general orientation. Such a treatment is also
called a coordinate-independent treatment or a covariant30 treatment.

A regular tetrahedron with 6 edges[
G
= Kanten] of length 1 is spanned by three

vectors ~a, ~b and ~c, see fig. 1.
25.4. a) Derive the conditions of 6 unit length edges in vertical form.
Result:

~a 2 = ~b 2 = ~c 2 = 1

~a~b = ~a~c = ~b~c =
1

2

(1)

| (Solution:)

1
!
= (~a− ~c )(~a− ~c ) = ~a 2 + ~c 2︸ ︷︷ ︸

2

−2~a~c ⇒ (2)

~a~c =
1

2
(3)

The two remaining edges are obtained by applying formal cyclic symmetry

a −→ b
↙

c
↖

(4)

Thus we can apply this cyclic symmetry directly to (3) to obtain the remaining
conditions in (1).

30because everything can vary depending on the (choice of the) coordinates.
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25.4. b)

In a regular tetrahedron opposite edges are perpendicular. (5)

Prove this for sides ~a and ~c−~b.
| (Solution:)

~a(~c−~b ) = ~a~c− ~a~b =
1

2
− 1

2
= 0 q.e.d.

25.4. c) The middle of face a (i.e. opposite to the corner A, also called a face center)
is given by the position vector

~ma =
1

3
(~b + ~c ) (6)

Rem: because this face is a regular (i.e. unilateral) triangle, this point (face center)
can be defined in several equivalent ways:
1) it is the center of mass if the corners O, B and C of the triangle are equal mass-
points.
2) It is the center of mass if the triangle O, B, C is a plate with homogeneous mass
distribution.
3) It is the (common) intersection of the three bisectors of the angle.
4) It is the (common) intersection of the bisectors of the (opposite) sides.
5) It is the (common) intersection of the (triangle’s) heights.
6) Here we prove that it has the same distance from all corners O, B and C.

Calculate the length of ~ma and prove that its tip (= face center) has the same
distance from C and B.
Result:

|~ma| =
1√
3

(7)

| (Solution:)

~m2
a =

1

9
(~b + ~c )(~b + ~c ) =

1

9
(~b 2 + ~c 2 + 2~b~c )

(1)
=

1

3
(8)

Distance of the face center from B:

(~b− ~ma)
2 =

(
2

3
~b− 1

3
~c

)2

=
1

9
(4~b 2 + ~c 2 − 4~b~c ) =

1

9

(
4 + 1− 4 · 1

2

)
=

1

3
(9)

Identical to (8).
The distance of the face center from C is obtained from (9) by the formal symmetry

B ↔ C (10)
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which does not affect the result from (9), i.e. 1
3
. q.e.d.

25.4. c) Calculate the height ~ha as a vector and also its length (magnitude).
Result:

~ha = ~a− ~ma = ~a− 1

3
~b− 1

3
~c (11)

ha =

√
2

3
(12)

The height ha of a regular tetrahedron with side length a is

√
2

3
a. (13)

| (Solution:)

~h2
a = ~a 2 +

1

9
~b 2 +

1

9
~c 2 − 2

3
~a~b− 2

3
~a~c +

2

9
~b~c

(1)
= 1 +

1

9
+

1

9
− 1

3
− 1

3
+

1

9
=

9 + 1 + 1− 3− 3 + 1

9
=

6

9
=

2

3

(14)

25.4. e) Applying the formal cyclic symmetry (5) also find ~hb, ~hc.
Result:

~hb = ~b− 1

3
~c− 1

3
~a (11′)

~hc = ~c− 1

3
~a− 1

3
~b (11′′)

25.4. f) Calculate the remaining fourth height ho as the center of mass of the corners
of face A, B, C, i.e. as the average of their position vectors.
Result:

~ho =
1

3
(~a +~b + ~c) (15)

25.4. g) Check that ~ho has length
√

2
3
.

| (Solution:)

~h2
o =

1

9
(~a 2 +~b 2 + ~c 2 + 2~a~b + 2~a~c + 2~b~c )

=
1

9
(1 + 1 + 1 + 1 + 1 + 1) =

6

9
=

2

3
, h0 =

√
2

3

(16)

25.4. h) Calculate the angle ϑ between neighboring faces.
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Hint:

The angle between two planes is defined as the angle
between their normals.

(17)

Result:

ϑ = 70.5288◦ (18)

| (Solution:)

~ha
~ho =

1

9
(3~a−~b− ~c )(~a +~b + ~c ) =

=
1

9
(3~a 2 + 3~a~b + 3~a~c− ~a~b−~b2 −~b~c− ~a~c−~b~c− ~c 2 ) =

(19)

=
1

9
(3 +

3

2
+

3

2
− 1

2
− 1− 1

2
− 1

2
− 1

2
− 1) =

=
1

18
(6 + 3 + 3− 1− 2− 1− 1− 1− 2) =

4

18

(20)

= ha ho cos ϑ =

√
2

3

√
2

3
cos ϑ =

2

3
cos ϑ (21)

cos ϑ =
1

3
⇒ (18) (22)

25.4. i) Let S be the center of the tetrahedron. S is found by averaging the position
vectors of all the corners.

−→
OS = ~S =

1

4
(~a +~b + ~c ) (23)

Rem : 1) S is the center of mass when the tetrahedron is homogeneously (i.e. uni-
formly) filled with mass.
2) S is the center of mass when all four corners are equal mass points.
3) S is the center of mass when all faces are plates with homogeneous mass distri-
bution.
4) S is the common intersection of all heights ~ma, ~mb, ~mc, ~mo.
Calculate the distance of S from all corners and show that they are equal.
Result:

|OS| = 1

2

√
3

2
(24)

| (Solution:)

|~s|2 =
1

16
(~a 2 +~b 2 + ~c 2 + 2~a~b + 2~a~c + 2~b~c ) =

=
1

16

(
1 + 1 + 1 +

2

2
+

2

2
+

2

2

)
=

6

16
=

3

8

(25)
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|AS| =
(

3

4
~a− 1

4
~b− 1

4
~c

)2

=
1

16
(3~a−~b− ~c )(3~a−~b− ~c ) =

=
1

16
(9~a 2 − 3~a~b− 3~a~c− 3~a~b +~b 2 +~b~c− 3~a~c +~b~c + ~c 2) =

=
1

16

(
9− 3

2
− 3

2
− 3

2
+ 1 +

1

2
− 3

2
+

1

2
+ 1

)
=

12

32
=

3

8

(26)

By formal cyclic symmetries we obtain the same value for the remaining corners.

25.4. j) Show that all heights intersect at a common point which is S.
Hint: By writing down the equation of a straight line bearing the height, show that
each height passes through S.
| (Solution:)
Equation for the straight line having height ho:
(~r is an arbitrary point on that straight line.)

~r
(15)
=

1

3
(~a +~b + ~c )λ (27)

For the parameter value λ = 3
4

we obtain ~r = ~s from (23).
For the height ha:

~r
(11)
= ~a + (~a− 1

3
~b− 1

3
~c )λ (28)

~r = ~s for λ = −3
4
.

By cyclic symmetry the same is true for the remaining heights. q.e.d.

25.4. k) Write down a parametric representation of the plane having face ABC.
Result:

~r = ~a + (~b− ~a)λ + (~c− ~a)µ (29)

(~r is an arbitrary point on that plane.)

25.4. l) Check that the points A, B, C are obtained from (29) by suitable values of the
parameters.

25.4. m)
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Fig25.4. 2: Inscribed and circumscribed sphere of a tetrahedron.

Give the equation of a sphere passing through all corners (circumscribed sphere),
see fig. 2.
(~r is an arbitrary point on that sphere.)
Result:

(~r − ~s)2 = R2 (30)

with

R = |OS| (24)
=

1

2

√
3

2
(31)

25.4. o) Give the equation of a sphere touching the four faces.

Hint: The center of that sphere is the point S given by the position-vector OS.
One point on (the surface of) that sphere is ~h0, see f). ~h0 and OS are parallel.

Result: The same as (30) but

R = h0 − |OS| (16)(20)
=

√
2

3
− 1

2

√
3

2
=

1

4

√
2

3
(32)

25.Ex 5: Volume of a cube calculated by wedge product and determinants
Consider three orthogonal vectors

~a = (a, 0, 0)

~b = (0, 0, b)

~c = (0, c, 0)

(1)
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with

a > 0, b > 0, c > 0. (2)

They span a cube with volume

V = abc (3)

25.5. a) Verify this by calculating the wedge product.
| (Solution:)

~a×~b is calculated by the scheme

a 0 0
0 0 b

(4)

i.e.

~a×~b = (0, −ab, 0) (5)

Thus

(~a×~b )~c = 0 · 0− abc + 0 · 0 = −abc (6)

We have obtained the oriented volume which, in this case, turned out to be negative.
The absolute value of (6) is (3).

25.5. b) Write the wedge product as a determinant.
Result:

(~a×~b )~c =

∣∣∣∣∣∣
a 0 0
0 0 b
0 c 0

∣∣∣∣∣∣ =: det (7)

25.5. c) A determinant is calculated by the following rule: take any row (or column)
then multiply each element (of that row or column) by the corresponding sign given
by + − +

− + −
+ − +

 (8)

and the corresponding sub-determinant[
G
= Unterdeterminante] then add up

these products.
For definiteness we take the uppermost row in (7) (and also in (8))∣∣∣∣∣∣

a 0 0
0 0 b
0 c 0

∣∣∣∣∣∣ (7′)
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 + − +
− + −
+ − +

 (8′)

and we need the sub-determinants S1, S2, S3 corresponding to the three elements in
the upper row. S1 S2 S3

? ? ?
? ? ?

 (9)

Calculate S1, S2 and S3.
Hint 1: A sub-determinant, e.g. S1, to an element is found by crossing out the
column and the row containing that element.
Hint 2: A 2× 2 determinant is defined as:∣∣∣∣α β

γ δ

∣∣∣∣ = αδ − βγ (10)

| (Solution:)

S1 =

∣∣∣∣∣∣
a 0 0
0 0 b
0 c 0

∣∣∣∣∣∣ =

∣∣∣∣0 b
c 0

∣∣∣∣ = 0− bc = −bc (11)

S2 =

∣∣∣∣∣∣
a 0 0
0 0 b
0 c 0

∣∣∣∣∣∣ =

∣∣∣∣0 b
0 0

∣∣∣∣ = 0− 0 = 0 (12)

S3 =

∣∣∣∣∣∣
a 0 0
0 0 b
0 c 0

∣∣∣∣∣∣ =

∣∣∣∣0 0
0 c

∣∣∣∣ = 0− 0 = 0 (13)

25.5. d) According to the rule in c) the determinant is

det = a (+1) S1 + 0 (−1) S2 + 0 (+1) S3 (14)

Calculate det and show that it is identical to (6).
| (Solution:)

a(−bc) + 0 + 0 = −abc (15)

25.5. e) We would like to calculate the determinant in (10) by a similar rule with the
signs (

+ −
− +

)
(16)
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and the rule

|α| = α (17)

Rem: The vertical lines in (17) denote the determinant, not an absolute value.
Normally this does not lead to confusion since the determinant of a 1 × 1 matrix,
as in (17), is rarely used.
Hint: For definiteness take the uppermost row∣∣∣∣ α β

γ δ

∣∣∣∣ (10′)

(
+ −
− +

)
(16′)(

s1 s2

? ?

)
(18)

Calculate the sub-determinants s1 and s2.
| (Solution:)

s1 =

∣∣∣∣α β
γ δ

∣∣∣∣ = |δ| = δ (19)

s2 =

∣∣∣∣α β
γ δ

∣∣∣∣ = |γ| = γ (20)

25.5. f) Verify (10) by calculating the determinant in (10).
| (Solution:)∣∣∣∣α β

γ δ

∣∣∣∣ = α (+1) s1 + β (−1) s2 = αδ + β(−1)γ = αδ − βγ q.e.d.



26 Leibniz’s product rule for vectors

(Recommendations for lecturing: 1, 3, 5, for basic exercises: 2.)

26.Q 1: Leibniz’s product rule for vectors
Give the product rule for the following quantities (~a = ~a(t), ~b = ~b(t), λ = λ(t)):

26.1. a) d
dt

(~a~b) = ?
| (Solution:)

d

dt
(~a~b) =

d~a

dt
~b + ~a

d~b

dt
product rule for scalar product (1)

26.1. b) d
dt

(~a×~b) = ?
| (Solution:)

d

dt
(~a×~b) =

d~a

dt
×~b + ~a× d~b

dt
product rule for vector product (2)

(Mind the order!)

26.1. c ) d
dt

(λ~b) = ?
| (Solution:)

d

dt
(λ~b) =

dλ

dt
~b + λ

d~b

dt
product rule for scalar multiplication (3)

26.Ex 2: , Proof of Leibniz’s product rule for vectors

26.2. a) Prove the Leibniz product rule for scalar product for 2-dimensional vectors
(n = 2).
| (Solution:)

~a = ~a(t) = (a1(t), a2(t)) ≡ (a1, a2)

~b = ~b(t) = (b1(t), b2(t)) ≡ (b1, b2)
(1)

d

dt
(~a~b) ≡ (~a~b)̇ = (a1 b1 + a2 b2)̇

♣
= a1ḃ1 + ȧ1b1 + a2ḃ2 + ȧ2b2 = ~a~̇b + ~̇a~b (2)

♣ derivative of a sum = sum of the derivatives
Leibniz’s product rule for scalar function.

26.2. b) Prove Leibniz’s product rule for vector product (first component only, for a
3-dimensional vector (n = 3)).
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| (Solution:)
According to the scheme

a1 a2 a3

b1 b2 b3
(3)

the first component of ~a×~b is given by

(~a×~b)1 = a2b3 − a3b2 (4)

Since differentiation of a vector is componentwise, i.e. the first component of the
derivative of a vector is the derivative of the first component, we have to prove[

d

dt
(~a×~b)

]
1

≡
[
(~a×~b)̇

]
1

=
[
(~a×~b)1

]̇
(4)
= (a2b3 − a3b2)̇ = (ȧ2b3 − ȧ3b2) + (a2ḃ3 − a3ḃ2)

(5)

On the other hand, the right-hand side of Leibniz’s product rule states (for the first
component)[

d~a

dt
×~b + ~a× d~b

dt

]
1

= ȧ2b3 − ȧ3b2 + a2ḃ3 − a3ḃ2 (6)

where we have used a formula analogous to (4) and[
d~a

dt

]
2

≡ (~̇)a2 = (a2)̇ ≡ ȧ2 (7)

q.e.d.

26.Ex 3: Velocity and acceleration of circular motion
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Fig26.3. 1: Calculation of velocity and acceleration of a mass point m moving along a circle with ra-
dius r (r = const.) and with arbitrary angle ϕ = ϕ(t). ~n is a unit-tangential vector to the circle.

A mass point (e.g. a car on a road, or the earth around the sun) moves along a circle
with radius r (see fig. 1) in an arbitrary (e.g. non-uniform) way:

ϕ = ϕ(t) (1)

26.3. a) Calculate the position vector

~r = ~r(t) = (x, y) = (x(t), y(t)) (2)

Result:

~r = r(cos ϕ(t), sin ϕ(t)) (r = const. ) (3)

| (Solution:)

projection x = r cos ϕ

side-projection y = r sin ϕ
(4)

26.3. b) Calculate the velocity

~v = ~v(t) = (vx(t), vy(t)) = ~̇r (5)

Hints:

vx = ẋ =
dx

dt
=

dx

dϕ

dϕ

dt
(6)

according to the chain rule, and we can write:

dϕ

dt
= ϕ̇(t) (7)
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Result:

~v = rϕ̇(− sin ϕ, cos ϕ) (8)

| (Solution:)

x = r cos ϕ,
dx

dϕ
= −r sin ϕ, (9)

dx

dt
=

dx

dϕ

dϕ

dt
= −r sin ϕ · ϕ̇ (10)

Similarly:

vy =
dy

dt
= r cos ϕ · ϕ̇ (11)

26.3. c) Prove that at any moment ~r and ~v are orthogonal.
Hint: Calculate their scalar product using (3) and (8).
| (Solution:)

~r~v = r2ϕ̇(− cos ϕ sin ϕ + sin ϕ cos ϕ) = 0 ⇒ ~r ⊥ ~v (12)

26.3. d) Alternatively, prove that directly from

~r 2 = r2 (3)

Hint: ~r 2 = ~r~r. Use the rule for differentiation of a scalar product. Use r = const,
the symmetry of the scalar product and ~̇r = ~v.
| (Solution:)

d

dt
~r 2 =

d

dt
r2 = 0 (14)

since r2 is constant

~r ~̇r + ~̇r ~r = 0 (15)

2~r ~̇r = 0 (16)

~r ~̇r = 0, i.e. ~r~v = 0 ⇒ ~r ⊥ ~v (17)

26.3. e) ~v is a tangential vector along the path (i.e. the circle). Introduce the corre-
sponding unit-vector,

~n = v̂ (18)
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see fig. 1.
Calculate ~n and express ~v in terms of ~n.
Hint: first calculate v = |~v| using (8) and sin2 + cos2 = 1. Assume ϕ̇ > 0 for reasons
of simplicity.
Result:

v = rϕ̇ (19)

~n = (− sin ϕ, cos ϕ) (20)

~v = rϕ̇ ~n (21)

| (Solution:)

v =
√

vx
2 + vy

2 =
√

r2ϕ̇2 (sin2 ϕ + cos2 ϕ)︸ ︷︷ ︸
1

= r|ϕ̇| = rϕ̇ (22)

ϕ̇ is called the angular velocity[
G
= Winkelgeschwindigkeit], mostly denoted by

ω,

ω ≡ ϕ̇ angular velocity (23)

v = rϕ̇

tangential velocity v = radius · angular velocity ϕ̇
(24)

~n = v̂ =
~v

v
= (− sin ϕ, cos ϕ) (25)

solving (25) for ~v gives (21).

26.3. f) From (8) calculate the acceleration of the mass-point

~a = ~̇v = ~̈r = (ẍ, ÿ) = (ax, ay) = (v̇x, v̇y) (26)

and express the result in terms of r̂ and ~n.
Hint: use the product rule for differentiation.
Result:

~a = rϕ̈ ~n− rϕ̇2r̂ (27)

In words:

The centripetal acceleration is radius · velocity squared. (28)

Rem: centripetal = to strive in the direction of the center, from Latin petere = to

strive for[
G
= streben nach].

The tangential acceleration is radius · angular acceleration (ϕ̈). (29)
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| (Solution:)

vx
(8)
= −rϕ̇ sin ϕ (30)

ax = v̇x = −rϕ̈ sin ϕ− rϕ̇ cos ϕ · ϕ̇ (31)

vy
(8)
= rϕ̇ cos ϕ (32)

ay = v̇y = rϕ̈ cos ϕ− rϕ̇ sin ϕ · ϕ̇ (33)

~a = rϕ̈ (− sin ϕ, cos ϕ)︸ ︷︷ ︸
~n

−rϕ̇2 (cos ϕ, sin ϕ)︸ ︷︷ ︸
r̂

(34)

26.3. g) Specialize this for constant angular velocity

ϕ̇ = ω = const. (35)

Result:

~a = −rω2r̂ (36)

| (Solution:)

ϕ̈ = 0 (37)

26.3. h) According to Newton’s second law, the force ~F necessary to produce the
acceleration ~a of a mass m is

~F = m~a (Newton’s second law) (38)

in words:

force = mass · acceleration (38′)

and Newton’s law of gravitation states (see fig. 2),

~F2 =
γ m1m2

|~r1 − ~r2|3
(~r1 − ~r2) (Newton’s law of gravitation) (39)
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Fig26.3. 2: Newton’s law of gravitation gives the force ~F2 on a mass m2 at position ~r2 produced
by the gravitational attraction due to mass m1 at position ~r1.

where

γ = 6.7 · 10−8 cm g−1sec−2 (gravitational constant) (40)

Specialize this for ~r1 ≡ 0, m1 = M = mass of the sun, m2 = m = mass of the earth.
Write ~r2 = ~r and use (36), (38) and (39) to calculate the distance r between the
earth and the sun (assume that r = const. and ω = const.) .
Result:

r =

(
γM

ω2

) 1
3

, ω =
2π

1 year
(41)

| (Solution:)

~F = ~F2
(39)
= −γmM

r3
~r

(38)
= m~a

(36)
= −mrω2r̂ (42)

since ~r = rr̂ (43)

γM

r2
= rω2 (44)

26.Ex 4: Mathematical pendulum
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Fig26.4. 1: Mathematical pendulum with mass m and thread length `. The mass is being acted
upon by vertical gravitational force ~G and by a strain force ~S along the thread.

A mathematical pendulum is a point-mass m suspended by a thread of fixed length
`, see fig. 1. We consider the simple case of the pendulum moving in a plane - the
x-y-plane.
26.4. a) Calculate the position vector ~r of mass m (relative to the origin O) in terms
of the elongation angle ϕ.
Result:

~r = (x, y) = `(sin ϕ, cos ϕ) (1)

| (Solution:)
y is the projection of length `, x is the side projection, thus

y = ` cos ϕ

x = ` sin ϕ
(2)

26.4. b) Formally calculate the length of vector ~r in (1) and check that it is `.
| (Solution:)

r = |~r | =
√

x2 + y2 =

√
`2 sin2 ϕ + `2 cos2 ϕ =

√
`2 (sin2 ϕ + cos2 ϕ)︸ ︷︷ ︸

1

=
√

`2 = ` (3)

26.4. c) Calculate the unit vector r̂ in the direction of ~r.
Result:

r̂ = (sin ϕ, cos ϕ) (4)
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| (Solution:)

r̂ =
~r

|~r|
=

`

`
(sin ϕ, cos ϕ) (5)

26.4. d) Calculate the unit-vectors ~ex and ~ey in the direction of the x-axis and the
y-axis, respectively.
Result:

~ex = (1, 0), ~ey = (0, 1) (6)

26.4. e) Formally check that they are perpendicular.
Hint: Calculate their scalar product.
| (Solution:)

~ex~ey = 1 · 0 + 0 · 1 = 0 (7)

26.4. f) The gravitational force ~G is vertical, i.e. has direction ~ey and has magnitude

G = |~G| = mg (8)

where g is the (local) gravitational acceleration due to the earth[
G
=

Erdbeschleunigung], which is approximately

g = 9.81 m sec−2 (9)

Calculate ~G and also write it as a multiple of ~ey.
Result:

~G = G~ey = mg~ey = mg(0, 1) (10)

26.4. g)
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Fig26.4. 2: The path of mass m is a circle with radius `. We calculate the tangential vector ~n to
the path which is perpendicular to the position vector ~r.
Note that pairwise orthogonal legs lead to equal angles: ϕ = ϕ.

We would like to calculate a unit vector ~n which is a tangential vector to the path
of the mass. Since the path is a circle, ~n is perpendicular to ~r.
In fig. 2, besides the original elongation angle ϕ, you see two additional angles ϕ
and the angle 90◦−ϕ. Prove these relationships using the following well-known rules
from plane trigonometry which, in condensed form, read:

alternating angles are equal (11)

pair-wise orthogonal legs ⇒ equal angles (12)

| (Solution:)
The y-axis and the dotted vertical line are parallel and are both intersected by the
line of position vector ~r. The angles on both sides of that line are called alternating
angles which, by (11), are equal.
Since ~r and ~n are orthogonal, 90◦ − ϕ is a complementary angle.

The original elongation angle has legs[
G
= Schenkel] y-axis and position vector ~r.

The third angle ϕ has legs ~n and the horizontal dotted line. These legs are pair-wise
orthogonal thus, by (12) both angles are equal (= ϕ).

26.4. h) From the angles indicated in fig. 2 calculate the tangential vector ~n.
Result:

~n = (cos ϕ, − sin ϕ) (13)

| (Solution:)

projection ⇒ nx = 1 · cos ϕ (14)

side-projection ⇒ −ny = 1 · sin ϕ (15)
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(Alternatively:

projection ⇒ −ny = 1 · cos(90◦ − ϕ) = 1 · sin ϕ) (16)

26.4. i) Check that ~n from (13) and r̂ from (4) are orthogonal.
| (Solution:)

~nr̂ = sin ϕ cos ϕ− cos ϕ sin ϕ = 0 (17)

26.4. j)- We have derived ~n geometrically. Alternatively derive (13) analytically (i.e.
formally)

~n = (nx, ny) (18)

by using the fact that ~n is a unit-vector orthogonal to r̂.
Hint: Solve ~nr̂ = 0 for nx. Find a common denominator. Use sin2 + cos2 = 1. Use
fig. 2 to choose the sign of ~n.
| (Solution:)

1
!
= ~n2 = nx

2 + ny
2 (19)

0
!
= ~nr̂

(4)
= nx sin ϕ + ny cos ϕ ⇒ (20)

nx = −cos ϕ

sin ϕ
ny (21)

Thus (19) reads

1 = ny
2

((
cos ϕ

sin ϕ

)2

+ 1

)
⇒ ny =

1√
1 + ( cos ϕ

sin ϕ
)2

(22)

with a common denominator

ny = ± sin ϕ√
sin2 ϕ + cos2 ϕ

= ± sin ϕ (23)

We choose the lower sign to conform to fig. 2. (The conditions of unit length and
orthogonality of the tangential vector ~n is still unspecified by a sign.)

ny = − sin ϕ (24)

(21) now gives

nx = cos ϕ (25)

26.4. k) Besides the gravity force ~G, a second force ~S along the thread is acting on
mass m. Up to now we only know its direction - along the thread, i.e.

~S = −Sr̂ (26)
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but we do not know its magnitude S. S is just big enough (or small enough) to

enforce the constant length of the thread. Therefore, ~S is called a coercion force[
G
=

Zwangskraft].31 Since we can find out its strength S only after having solved the
problem, we must now express the equation of motion of m not in the fixed

reference frame[
G
= Bezugssystem] ~ex, ~ey, but in the moving reference frame

r̂, ~n.
Thus we pose the following task: break ~G down into a component in the direction
of r̂ and a component in the direction of ~n.

Fig26.4. 3: The gravitational force ~G is broken down into a component ~G1 in the (opposite)
direction of the (instantaneous) tangent ~n of the path and into a component ~G2 in the direction
of the (instantaneous) position unit-vector r̂: ~G = ~G1 + ~G2.

Result:

~G = mg cos ϕ r̂ −mg sin ϕ ~n (27)

26.4. l) In a previous exercise we calculated the acceleration corresponding to the
circular motion of the pendulum mass m. The result was

~a = rϕ̈ ~n− rϕ̇2r̂, r ≡ ` (28)

31Physically, it is an ordinary force, e.g. an electromagnetic force in this case, called an inter-
molecular (or interatomic) force which becomes active when we try to enlarge the distance between
the molecules (or atoms) of the thread. In reality, the thread will be slightly stretched. Treating the
intermolecular force as a coercion force is an approximation which means that the intermolecular
force is always so that the length of the thread becomes exactly constant, i.e. fulfills the coercion
condition r = ` = const.
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Express Newton’s second law which states that mass × acceleration is the (total)

force, i.e. ~G + ~S.
Result:

m`ϕ̈~n−m`ϕ̇2r̂︸ ︷︷ ︸
m~a

= mg cos ϕ r̂ −mg sin ϕ ~n︸ ︷︷ ︸
~G

−Sr̂︸︷︷︸
~S

(29)

26.4. m) Write this equation in components (using ~n, r̂ as the reference frame).
Result:

m`ϕ̈ = −mg sin ϕ (30)

−m`ϕ̇2 = mg cos ϕ− S (31)

Equation (31) is useful for calculating the force S in the thread.

Rem: The method of decomposing into the moving reference frame r̂, n̂ has now
turned out to be successful: (30) is a differential equation for ϕ = ϕ(t) independent
of the unknown coercion force S.

26.4. n) The differential equation (30) cannot be solved exactly. Instead make a linear
approximation for small angles ϕ.
Result:

ϕ̈ = −g

`
ϕ (30′)

26.4. o) Show that a solution is given by

ϕ = ϕ0 sin[ω(t− t0)] (32)

with

ω =

√
g

`
(33)

with two integration constants ϕ0 and t0.
| (Solution:)

ϕ̇ = ωϕ0 cos[ω(t− t0)]

ϕ̈ = −ω2ϕ0 sin[ω(t− t0)]

(34)

q.e.d.

26.Ex 5: Conservation of angular momentum
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Fig26.5. 1: A body m is moving (~r = ~r(t)) under the influence of an arbitrary force ~F = ~F (t).
When the force ~F is a central force, i.e. is always directed to a fixed center M , the angular
momentum of the body is conserved and it moves in a plane through M . In the gravitational case,
m could be the mass of the earth and M the mass of the sun.

Relative to a fixed center M , taken as the origin of the position vector ~r, angular

momentum[
G
= Drehimpuls] is defined as

~L = ~r × ~p = m~r × ~̇r (angular momentum) (1)

where ~p is the ordinary or linear momentum[
G
= Linearimpuls]

~p = m~v = m~̇r (linear momentum) (2)

26.5. a) From Newton’s second law

~F = m~̈r (3)

deduce the following angular momentum law[
G
= Drehimpulssatz]

~̇L = ~N (angular momentum law) (4)

where ~N is the torque[
G
= Drehmoment]

~N = ~r × ~F (torque) (5)

Hints: m is a constant.

~a× ~a ≡ 0 (6)

| (Solution:)

~̇L
(1)
= (m~r × ~̇r )̇

♣
= ṁ︸︷︷︸

0 •

(~r × ~̇r ) + m(~r × ~̇r )̇
♠
= m (~̇r × ~̇r )︸ ︷︷ ︸

0 (6)

+m(~r × ~̈r )

= ~r ×m~̈r
(3)
= ~r × ~F

(5)
= ~N q.e.d.

(7)
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♣ Leibniz’s product rule for scalar multiplication
• m is a constant
♠ Leibniz’s product rule for vector product

26.5. b) A force is called a central force[
G
= Zentralkraft] when it is always directed

toward (or against) a fixed center. Taking that center as the origin of the position
vectors (M in fig. 1), we have

~F = λ(~r, t)~r (definition of a central force) (8)

i.e. λ is arbitrary.
Prove:

central force ⇒ conservation of angular momentum (9)

Hint: Calculate the torque.
| (Solution:)

~N
(5)
= ~r × ~F = λ~r × ~r

(6)
= 0

(4)⇒ ~̇L = 0 ⇒ ~L = const. (10)

26.5. c)- The following statement is true:

conservation of angular momentum ⇒ plane motion (11)

Prove this for ~L 6= 0.
Hint: Use linear independence expressed by vector product. Consider the plane
spanned by ~r and ~v. Is that plane dependent on t? What is the normal vector of
that plane (i.e. a vector perpendicular to that plane)?
| (Solution:)
~L 6= 0 ⇒ ~r, ~v are linearly independent, i.e. they determine (span) a unique plane
(at any t). That plane is independent of t, i.e. it is a fixed plane since it is always

perpendicular to ~L, which is constant, and since it must go through the fixed point
M . Since m is always on that fixed plane, m performs a plane motion.
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27.Q 1: Complex numbers

27.1. a) What are complex numbers (historical introduction)? Why the word ‘com-
plex’? What is an imaginary number? What is i ?
| (Solution:)
Complex numbers are “numbers” of the form:

z = x + iy x, y ∈ R, z ∈ C (1)

(C = set of all complex numbers),
where

i =
√
−1 (2)

(‘complex’ because they are composed of two real numbers x, y and i)
There is no real number i ∈ R. Therefore, i was called the imaginary unit

(imaginary[
G
= imaginär, frei erfunden]) and ib with b ∈ R are called imagi-

nary numbers.

Historically one had observed very early that by assuming all calculation rules known
from real numbers together with

i2 = −1 (2′)

one obtains a consistent, beautiful and very useful mathematical theory.

27.1. b) What is the real part[
G
= Realteil], what is the imaginary part[

G
=

Imaginärteil] of a complex number z, and how are they denoted?
| (Solution:)

z = x + iy, x, y ∈ R ⇒ <z = x, =z = y (3)

< = real part, = = imaginary part.
Alternative notation:
Re z = x, Im z = y

Rem 1: Measured physical quantities are always real. Sometimes two related phys-
ical quantities can be combined in an elegant way as the real- and imaginary part
of a complex physical quantity.

Rem 2: Sometimes iy (instead of y) is called the imaginary part of z.

27.Ex 2: Hieronimo Cardano’s problem from the year 1545

27.2. a) Split the number 10 into two parts x and y so that their product is 40.
Hints: Formulate the problem as two equations. Eliminate y to obtain a quadratic

391
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equation, which is solved formally.
Results:

x = 5 + i
√

15 (1)

y = 5− i
√

15

| (Solution:)

x + y = 10
xy = 40

(2)

y =
40

x
(3)

x +
40

x
= 10 (4)

x2 + 40− 10x = 0 (5)

x =
10±

√
(10)2 − 4 · 1 · 40

2
=

10±
√
−60

2
= (6)

= 5±
√
−15 = 5± i

√
15 (7)

y = 10− x = 5∓ i
√

15 (8)

Since it is irrelevant what is x and what is y, we take the upper sign in (7)(8) to
obtain (1).

27.2. b) Using the formal rule for i, check that the product of x and y is indeed 40.
| (Solution:)

xy = (5 + i
√

15)(5− i
√

15)
♠
= 25− i2︸︷︷︸

−1

√
15

2
= 25 + 15 = 40 (9)

♠ third binomial formula q.e.d.

27.Q 3: Addition and multiplication in components
For two complex numbers z1 = x1 + iy1, z2 = x2 + iy2, (xi, yi ∈ R) compute the
following expression by decomposing the result into real- and imaginary parts.

27.3. a) z1 + z2 = ?
| (Solution:)

z1 + z2 = x1 + iy1 + x2 + iy2 = (1)

z1 + z2 = (x1 + x2) + i(y1 + y2) (2)

Addition of complex numbers is done componentwise
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27.3. b) z1z2 = ?
| (Solution:)

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 + x1iy2 + iy1x2 + iy1iy2 = (3)

= x1x2 + i(x1y2 + y1x2) + i2y1y2) =

z1z2 = (x1x2 − y1y2) + i(x1y2 + y1x2) multiplication of complex numbers (4)

27.T 4: Fundamental theorem of algebra
In the real domain not all quadratic equations have a solution. E.g.

a0 + z2 = 0 (1)

has only a solution for a0 ≤ 0. For mathematicians the theory of complex numbers
and functions is a favourite topic since in the complex domain a lot of beautiful the-
orems are valid, whose analog in the real domain are plagued with ugly exceptions.

The first example is the so called fundamental theorem of algebra[
G
=

Fundamentalsatz der Algebra]:

Every algebraic equation (of nth-order), i.e.

n∑
k=0

akz
k = 0, (z, ak ∈ C, an 6= 0) (2)

has at least one solution z.

Rem: In general it has n solutions (e.g. n = 2 for quadratic equations). In special
cases it has fewer solution, but at least one.
E.g. a0 = 0 in (1) has one solution only. In these cases we say that two (or

more) solutions have coalesced[
G
= zusammengefallen], or we speak of multiple

solutions[
G
= Mehrfachlösungen].

27.Ex 5: Example: square root of i
As a special case show that

z2 = i (1)

has two solutions. Calculate them, i.e.
√

i, giving the answer decomposed in real and
imaginary parts.
| (Solution:)
Let be

z =
√

i =: x + iy x, y ∈ R (2)
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z2 = x2 − y2 + 2ixy
!
= i (3)

every complex equation is equivalent to 2 real equations:
the real and the imaginary part of that complex equation.

(4)

<z2 = x2 − y2 = <i = 0 (5)

=z2 = 2xy = =i = 1 (6)

(5)⇒ x = ±y, (6)⇒ ±2y2 = 1 (7)

Since y ∈ R, only the upper sign in (7) is possible:

x = y, 2y2 = 1 (7’)

i.e.

x = y = ±
√

2

2
(8)

√
i = ±

√
2

2
(1 + i) (9)

27.Q 6: Real models of C

27.6. a) Give a real representation (i.e. a real model) for complex numbers.
| (Solution:)
Complex numbers are not as “imaginary” as one had believed in former times.
Indeed, they have a real model as points on a plane (the so called complex

plane[
G
= komplexe Zahlenebene], also called Gaussian plane[

G
= Gauß’sche

Zahlenebene]).

Fig27.6. 1: Complex numbers can be viewed as points on a plane (the Gaussian plane).
Hieronimo Cardano (1501-1576)
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The complex number z = a + ib is the point with cartesian coordinates (a, b). The

x-axis is called the real axis[
G
= reelle Achse], the y-axis is called the imaginary

axis.

Rem 1: Alternatively, we could say that complex numbers form a (real) 2-vector
space (with a Euclidean metric) with two distinguished orthogonal unit vectors,
denoted by 1 and i. Addition of complex numbers corresponds to vector addition.

Rem 2: Alternatively, we could say: Complex numbers are pairs of real numbers,
e.g. z1 = (a1, b1), z2 = (a2, b2) with the following definition for addition and
multiplication of pairs (see Q3 (3) and (4)):

z1 + z2 = (a1 + a2, b1 + b2) (1)

z1z2 = (a1a2 − b1b2, a1b2 + b1a2) (2)

The marvelous[
G
= fabelhaft] fact is that with these curious calculation laws for

these pairs (almost) all properties and theorems known from real numbers still hold
- and a lot more beautiful theorems like the fundamental theorem of algebra.

Rem 3: Already negative integers −n and rational numbers
m/n (/∈ N) are “imaginary” as long as numbers are conceived as the result of
counting (natural numbers). But they have found a “real” interpretation and a
useful application as points on a straight line, the so called real axis R.

Rem 4: The calculation with rational numbers n/m can be understood also as
calculation with pairs (n, m) of integers, with special well-known rules for addition
and multiplication.

27.6. b) What is the geometrical interpretation of addition in C?
| (Solution:)
vector addition (when the z are regarded as position vectors in the complex plane
C).

27.6. c) What is the geometric interpretation of multiplication by a real number λ ∈ R
(with proof).
| (Solution:)
For z1 = λ ∈ R, z = a + ib we have

λz = λ(a + ib) = (aλ) + i(λb) (3)

i.e. it corresponds to multiplication by a scalar for the 2-vectors.

27.6. d) What is the absolute value, what is the arcus of a complex number
(geometrical interpretation and notation).
| (Solution:)



396 27. - Complex numbers

Fig27.6. 2: Absolute value (|z|) and arcus (arc z) of a complex number z in the Gaussian plane

|z| = absolute value is the length of the vector z.

|z| =+

√
x2 + y2 for z = x + iy absolute value of a complex number (4)

arcus z = angle α (measured in the mathematically positive sense) of the vector z
and the real axis:

arcus z = arc z = arctan
y

x
(5)

27.6. e) Give the representation of a complex number by its absolute value and its
arcus.
| (Solution:)

z = |z|(cos α + i sin α) with α = arc z (6)

polar representation of a complex number

27.6. f) What is the geometrical interpretation of multiplication of two complex
numbers.
| (Solution:)

z = z1z2 ⇒ |z| = |z1| |z2| (7)

Rem 1: Thus we see that the fundamental law for the absolute value: ‘the absolute
value of a product is the product of the absolute values of the factors’ is valid also
in the complex domain.

z = z1z2 ⇒ arc z = arc z1 + arc z2 (8)
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Multiplication of z1 by z2 has the following
geometrical interpretation:

The vector z2 is rotated by arc z1 and its length (|z2|) is
multiplied by the length |z1| of z1.

(9)

Rem 2: For z2 = λ ∈ R the rotation is zero and complex multiplication is multipli-
cation by a scalar.

Rem 3: Multiplication of complex numbers is not the scalar product ~z1~z2 of the
corresponding vectors. Scalar product is present in C (see Ex 14) but rarely used. The
multiplication when writing z1z2 is not a scalar product, but complex multiplication.

Rem 4: Because of that difference, it is sometimes erroneously argued that complex
numbers are not vectors and in German a new word: Zeiger is used instead of
vectors. However, that view is incorrect: C is a vector space. But it has additional
structures, e.g. complex multiplication and the selection of two unit vectors 1
and i.

Rem 5: That complex multiplication has nothing to do with the vector product is
obvious because the latter cannot be defined in a two dimensional vector space.

27.Ex 7: Proof of the multiplication law
Prove Q6 (7) and (8).

Hint: Use the polar representation (Ex 6 (6)) and the addition theorem for
trigonometric functions.
| (Solution:)

z1 = |z1|(cos α1 + i sin α1) (1)

z2 = |z2|(cos α2 + i sin α2) (2)

z1z2 = |z1| |z2|[(cos α1 cos α2 − sin α1 sin α2) + i(cos α1 sin α2 + sin α1 cos α2)] =

= |z1| |z2|[cos(α1 + α2) + i sin(α1 + α2)] (3)

q.e.d.

Rem: The last expression is the polar representation of z = z1z2. Thus arc z =
α1 + α2 = arc z1 + arc z2 and |z| = |z1| |z2|.

27.Q 8: Complex conjugation

27.8. a) What is the complex conjugate[
G
= komplex-konjugiertes] (algebraically,
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geometrically, 2 notations) of a complex number.
| (Solution:)

z∗ ≡ z = a− ib for z = a + ib, a, b ∈ R (1)

(complex conjugation)
Geometrically it is (mirror-) reflection at the real axis.

Rem: In mathematical literature overlining the number (z), in physical literature
starring (z∗) is more usual to denote the operation of complex conjugation.

27.8. b) Express reality by complex conjugation.
| (Solution:)

z = z∗ ⇔ z ∈ R (2)

or in words:

A complex number is real if and only if
it is identical to its complex conjugate.

(2’)

Proof:

z = a + ib = z∗ = a− ib ⇔ b = 0 (3)

27.8. c) What is the square of the operation of complex conjugation?
| (Solution:)
The square of an operator is the operator applied twice in succession: z∗ = a− ib

(z∗)∗ = a + ib = z (4)

or

z∗∗ = z (5)

i.e. it is the identical operation id, which does nothing:

id(z) = z identical operation (6)

symbolically

∗∗ = id (7)

27.8. d) What is the inverse of the operation of complex conjugation?
| (Solution:)
Complex-conjugation is a bijective mapping (also called: a 1-1-mapping) of C
unto itself

C∗ = C (8)
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i.e. there is a unique inverse mapping[
G
= Umkehrabbildung], which from z∗ leads

back to z from which we have started. Because of (5) that is again *, symbolically:

∗−1 = ∗ (9)

27.8. e) What does it mean that complex conjugation is an automorphism[
G
=

strukturerhaltende Abbildung]?
| (Solution:)

(z1 + z2)
∗ = z∗1 + z∗2 (10)

(z1z2)
∗ = z∗1z

∗
2 (11)

(complex conjugation as an automorphism)

Rem 1: In words: the operation of addition and the operation of complex conjugation
can be interchanged: the complex conjugate of a sum is the sum of the complex
conjugates of the summands (and similarly for multiplication).

Rem 2: In still other words: the mapping of complex conjugation is structure
preserving (where structure means here the additive and multiplicative structure;

Greek: morphos = form, structure): The images[
G
= Bilder], i.e. the results of

the mapping (z∗1 , z
∗
2 , (z1 + z2)

∗, (z1z2)
∗) have the same (additive and multiplicative)

relations to each other as the originals[
G
= Urbilder] (z1, z2, z1 + z2, z1z2).

Rem 3 Only because * is an automorphism, it is a relevant operation in C. The
automorphism means that C has a (mirror-)symmetry.

Rem 4: The symmetry means that i =
√
−1 is as good as i = −

√
−1 to define

complex numbers.

Rem 5: * and id are the only automorphisms of C.

Rem 6: R has no non-trivial automorphism (i.e. none except id).

27.Ex 9: Reflection at the imaginary axis is not an automorphism
With z = a + ib, show that

z̃ := −a + ib (1)

is not an automorphism.
| (Solution:)

(z1z2)
∼ = [(a1 + ib1)(a2 + ib2)]

∼ = (2)

= [(a1a2 − b1b2) + i(a1b2 + b1a2)]
∼ =

= (b1b2 − a1a2) + i(a1b2 + b1a2)
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On the other hand we have:

z∼1 z∼2 = (−a1 + ib1)(−a2 + ib2) = (3)

= (a1a2 − b1b2) + i(−a1b2 − a2b1)

which is not identical with (2)

Rem:

Fig27.9. 1: Complex numbers have a mirror symmetry at the real axis, very like that face. The
symmetry operation is given by complex conjugation (*).

C has a symmetry as the above face. * is the corresponding symmetry-operation
(symmetry-mapping).

27.Q 10: < and = expressed by ∗
Express the real- and imaginary part with the help of complex conjugation.
| (Solution:)

< z =
1

2
(z + z∗) (1)

= z = −1

2
i (z − z∗) (2)

Proof:

1

2
(z + z∗) =

1

2
(a + ib + a− ib) = a (3)
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−1

2
i (z − z∗) = −1

2
i (a + ib− a + ib) = b (4)

27.Q 11: |z| expressed by ∗
Express the absolute value of a complex number with the help of complex conjuga-
tion.
| (Solution:)

|z| =+

√
zz∗ (1)

|z|2 = zz∗ (2)

Proof:

zz∗ = (a + ib)(a− ib) = a2 − i2b2 = a2 + b2 = |z|2 (3)

27.Q 12: No < relation in C

We had stated previously in a loose way that “almost all” properties known in R is
also valid in C. What is the essential structure which is lost in C?
| (Solution:)
The greater-than-relation (>) is lost, i.e. the statement z1 < z2 is meaningless, if
not both z1 and z2 are in R.

Rem 1: Of course, |z1| < | z2| is a meaningful statement.
But for real numbers r1, r2 we have the property that

either r1 < r2, or r2 < r1 or r1 = r2 (1)

That property is lost, if we tried to interpret z1 < z2 as meaning |z1| < |z2|.

Rem 2: It is possible to regard still higher dimensional vector spaces Vn, n ≥ 3 as
number systems. But then, at least, the commutative property of multiplication is
also lost. The resulting theory (theory of matrices) is much less elegant and powerful
than the theory of C. Thus the generalizations from N to Z, Q, R to C has found a
natural conclusion with C.

27.Q 13: Quotients decomposed in real- and imaginary parts

27.13. a) Calculate z1/z2 by decomposing it into real- and imaginary parts. (Express
the method also in words.)
| (Solution:)
The trick is to enlarge the fraction by the conjugate complex of the
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denominator:

z1

z2

=
z1z

∗
2

z2z∗2
=

(a1 + ib1)(a2 − ib2)

(a2 + ib2)(a2 − ib2)
= (1)

=
1

a2
2 + b2

2

[(a1a2 + b1b2) + i(b1a2 − a1b2)]

27.13. b) In particular calculate 1
i

= ?
| (Solution:)

1

i
= −i (2)

27.13. c) 1
−i

= ?
| (Solution:)

1

−i
= −1

i
= i (3)

27.Ex 14: Scalar product expressed by complex multiplication and ∗
Prove

~z1 ~z2 =
1

2
(z1z

∗
2 + z∗1z2) (1)

Rem: We have put arrow symbols above the symbols for complex numbers to indicate
that their product is meant to be a scalar product (dot product), not complex
multiplication.
| (Solution:)
Twice of the right hand side of (1) gives

(a1 + ib1)(a2 − ib2) + (a1 − ib1)(a2 + ib2) = 2(a1a2 + b1b2) = 2~z1~z2 (2)



28 - Complex functions

28.Q 1: Complex functions

28.1. a) Explain in words what is a complex valued function[
G
= komplexwertige

Funktion]

w = w(z) (1)

of a complex variable z, and express it by real valued functions.
| (Solution:)
To each complex number z ∈ C (or at least of a subset of C = domain of the function
w) is uniquely attributed a function value w = w(z) with w ∈ C.

Splitting w in real- and imaginary parts, the complex function is equivalent to two
real valued functions of two real variables x, y (with z = x + iy):

w = w(z) = u + iv = u(z) + iv(z) = u(x, y) + iv(x, y) (2)

Rem: So, w = w(z) is a 2-dimensional vector field.

28.1. b) What is the meaning of functions known for real variables, e.g. w = ez, w =
sin z, when generalized to complex arguments z ?
| (Solution:)
When these functions have power series representations (given by Taylor’s formula),
e.g.

ez =
∞∑

k=0

1

k!
zk (3)

it can be used as the definition of that function for z ∈ C (or at least for those z
the series is convergent).

Rem: That procedure is possible, because of the theorem of uniqueness of power

series[
G
= Eindeutigkeit der Potenzreihenentwicklung]: When a function is

known on an infinite number of points z ∈ C (which have a limit point), e.g.
on an interval of the real axis, the function can have at most one power series rep-
resentation.

28.Ex 2: w = z2 decomposed as two real valued functions
For the complex valued function

w = z2 =: u + iv (1)

give its real and imaginary parts u and v.
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Results:

u = x2 − y2 (2)

v = 2xy

| (Solution:)

w = z2 = (x + iy)2 = x2 + 2ixy + i2︸︷︷︸
−1

y2 (3)

28.Q 3: Euler’s formula
Give Euler’s formula connecting the exponential function with trigonometric
functions.
| (Solution:)

eiz = cos z + i sin z (1)

28.Ex 4: Proof of Euler’s formula
Prove Euler’s formula using the power series of all three functions (and assuming
the terms in the infinite series can be rearranged).

Hint: In the power series for ez replace z 7→ iz.
Simplify ik to ±1, ±i.
Rearrange the series so that even powers of z come first. In the series of the odd
powers pull an i before the series. Finally, compare with the known power series of
sin and cos.
| (Solution:)

eiz = 1 +
iz

1!
+

(iz)2

2!
+

(iz)3

3!
+

(iz)4

4!
+

(iz)5

5!
+

(iz)6

6!
+ · · · (1)

Using

i2 = −1, , i3 = −i, , i4 = 1, , i5 = i, , i6 = −1, · · · (2)

that reads

eiz =(1− z2

2!
+

z4

4!
− z6

6!
± · · · )+ (3)

+i(
z

1!
− z3

3!
+

z5

5!
∓ · · · ) = cos z + i sin z

Rem: Here we have assumed tacitly[
G
= stillschweigend] that it is allowed to

rearrange the terms in an infinite series. That is a non-trivial statement which can
be proved in rigorous mathematics.
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28.Q 5: Phase: complex number on the unit circle
A complex number

z = eiα, (α ∈ R) (phase) (1)

is called a ‘phase’. (This is one of several meanings of the word ‘phase’ in physics
and mathematics.)

28.5. a) Give a geometric interpretation of a phase.
| (Solution:)

Fig28.5. 1: A phase eiα is a complex number on the unit circle.

According to Euler’s formula

arc eiα = α (2)

|eiα| = cos2 α + sin2 α = 1 (3)

i.e. phases are points on the unit circle[
G
= Einheitskreis] (about 0).

28.5. b) Give the representation of an arbitrary complex number z as its absolute
value times its phase (exponential representation).
| (Solution:)

z = |z|eiα, α = arc z (4)

(exponential representation of z)
in words: A complex number z is its absolute value |z| times its phase eiα.
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Rem: Sometimes, instead of eiα, α = arc α itself is called the phase of z.

28.Ex 6: Plane rotation
Derive the formula for rotation (about 0 with angle α) of a plane in cartesian
coordinates, using complex methods.

Hints: Let z = x + iy be the original point, let z′ = x′ + iy′ be the rotated point
(image point), so that the rotation reads

z′ = eiα z (1)

Give (x′, y′) as a function of (x, y).
Use Euler’s formula.
Decompose the equation in real- and imaginary parts.
| (Solution:)

x′ + iy′ = (cos α + i sin α)(x + iy) = (cos α x− sin α y) + i(sin α x + cos α y) (2)

x′ = cos α x− sin α y

y′ = sin α x + cos α y
rotation in a plane by α (3)

Rem 1: This is the first example for using complex numbers to derive real results
in an elegant way.

We take the occasion to collect some bracket conventions (or better: bracket habits used by
physicist and mathematicians):

Rem 2: functional binding has highest priority
Therefore,

cos αx := (cos α)x (4)

Rem 3: In physics very often, contradicting (4) and in a sloppy way:

sinωt := sin(ωt) (5)

since from context it is known what is meant.
To avoid such ambiguities, one writes:

cos αx 7→ cos α x = x cos α (6)

i.e. with an extra space before x or with x written before cos.

Rem 4: The rule in Rem 2 is overridden when a typographical compact symbolism, e.g. a root
symbol (

√
a), a fraction (a

b ) or a upper set construction with an exponent (ab) produces a compact
block

sin ex := sin(ex) (7)

and not = (sin e)x

Rem 5:

sin2 x := (sin x)2 (8)
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The left hand side is a widely used, but a sloppy if not an incorrect notation. It is believed that
sin alone has no meaning, so it is clear that at first sin x should be calculated and then the square
of that expression has to be taken. However, sin2 does have a meaning, namely the square of the
mapping sin, i.e. sin applied twice. So the left hand side of (8) could mean: sin(sinx).

Rem: The latter interpretation suggests itself when the exponent is -1, denoting the inverse func-
tion: When f is a function, the inverse function is denoted by f−1

f(f−1(x)) = x = f−1(f(x)) f−1 is the inverse function of f (9)

or symbolically

f ◦ f−1 = id = f−1 ◦ f (10)

In particular,

sin−1 x = arcsinx (11)

(alternative notation for the inverse trigonometric functions)

Result: A sloppy notation has to be interpreted according to context.

28.T 7: Properties of complex functions
Most formulae valid for real functions are again valid for their complex generalizations
(because these properties are derivable formally from their power series), e.g.

ez1+z2 = ez1ez2 (1)

sin(−z) = − sin z (2)

cos(−z) = cos z (3)

sin(z + 2π) = sin z (4)

cos(z + 2π) = cos z (5)

(ez1)z2 = ez1z2 (6)

28.Ex 8: Functional properties derived from power series
From the corresponding power series derive that cos z is an even, sin z is an odd
function (now valid in the complex domain).
| (Solution:)

sin(−z) =
∞∑

k=0

(−1)k (−z)2k+1

(2k + 1)!
(1)

Since 2k + 1 is always an odd number, we have

(−z)2k+1 = (−1)2k+1z2k+1 = −z2k+1 (2)

sin(−z) = −
∞∑

k=0

(−1)k z2k+1

(2k + 1)!
= − sin z (3)
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(Similarly you can prove cos(−z) = cos z.)

28.Q 9: Trigonometric functions as exponentials
Give sin z and cos z in terms of e-functions.
| (Solution:)

sin z =
eiz − e−iz

2i
(1)

cos z =
eiz + e−iz

2
(2)

28.Ex 10: Parity of sine and cosine derived from Euler’s formula

28.10. a) From the above definitions of sin and cos in terms of e-functions, derive again

their parity[
G
= Parität], i.e. if they are even or odd functions.

Rem: Very often in mathematics it is a matter of taste what is a definition and what
is a theorem. We had defined sin z by its power series known from the real domain,
then

sin z =
eiz − e−iz

2i
(1)

is a theorem.
Alternatively, we could also regard (1) as a definition. Then its power series repre-
sentation is a theorem.
| (Solution:)
trivial

28.10. b) Derive (2) from Euler’s formula and from the known parity of the trigono-
metric functions.

Hint: Write Euler’s formula also with z 7→ −z
| (Solution:)

eiz + e−iz = cos z + i sin z + cos(−z) + i sin(−z) = (2)

= cos z + i sin z + cos z − i sin z = 2 cos z

28.Q 11: e-function has an imaginary period
Give the periodicity property of the e-function.
| (Solution:)

e2πni = 1, (n ∈ Z) e-function has (primitive) period 2πi (1)
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or

ez+2πni = ez (2)

Proof:

e2πni = cos(2πn) + i sin(2πn) = 1 + i0 = 1 (3)

28.Ex 12: ∗ of an exponential
From the power series of the e-function and from * as an automorphism (applied to
infinite series) prove

(ez)∗ = e(z∗) (1)

and in particular

(eiα)∗ = e−iα, α ∈ R (2)

| (Solution:)

(ez)∗ =

(
∞∑

k=0

1

k!
zk

)∗

=
∞∑

k=0

(
1

k!
zk)∗ =

∞∑
k=0

(
1

k!
(z∗)k) = e(z∗) (3)

z = iα ⇒ z∗ = (iα)∗ = i∗α = −iα (α ∈ R) (4)

28.Ex 13: Moivre’s formula
Using Euler’s formula and the formula for the exponential of a sum derive

(cos z + i sin z)n = cos(nz) + i sin(nz) Moivre’s formula (1)

(Prove it only for n ∈ N)
| (Solution:)

(cos z + i sin z)n = eizeiz · · · eiz︸ ︷︷ ︸
n−times

= einz = cos nz + i sin nz (2)

Rem: In the last expression we have used a sloppy notation. From context, it is clear
that cos nz means cos(nz) and not (cos n)z.
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Fig28.13. 1: Abraham de Moivre (1667-1754)

28.Ex 14: Addition theorem for trigonometric functions derived via C

As a last example of elegant derivations of real results by complex methods, derive
the addition theorem for trigonometric functions from

ei(α+β) = eiαeiβ (1)

Hint: Euler’s theorem. Decomposition into real- and imaginary parts.
| (Solution:)

ei(α+β) = cos(α + β) + i sin(α + β) = (2)

= eiαeiβ = (cos α + i sin α)(cos β + i sin β) =

= (cos α cos β − sin α sin β) + i(sin α cos β + cos α sin β)

Decomposing this complex equation into 2 real equations:

cos(α + β) = cos α cos β − sin α sin β

sin(α + β) = sin α cos β + cos α sin β
(3)
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:=, 304
=:, 304
0-vector, 301

1-1-Abbildung
E
= 1-1-mapping, 104

1-1-mapping, 398

1-1-mapping
G
= 1-1-Abbildung, 104

!, see factorials
◦ , see degree
′, see derivative
∗, see complex conjugation
0!, 296
∆, see increment
=, see imaginary part
⇐⇒ (logical equivalence), 356
<, see real part
ℵ, 111
·, derivative with respect to time, 169
◦ (composition of operators), 196
∃ (there exists), 104
∀ (for all), 104
~, 119
∞ (infinity), 133∫

integral, 193
[ ] (boundaries of integrals), 199
| (with the property), 104
¬ (logical negation), 356
∦ = non parallel, 330
ν, see frequency and period
ω, see angular frequency
∂ , see derivative, partial
⊥ = perpendicular = orthogonal, 337
π, 2
π with 50 decimals, 90
∼ (equivalent), 196
θ-function, 147
×, see vector product
ε-environment, 134
~a = vector, 298
∨ (logical OR), 114, 338
{}, 100
D, 13
D differential operator, 195
J integral operator, 195

C, see complex numbers
N, see numbers, natural
Q, see numbers, rational
R, see numbers, real
Z integers, 101

∀ (for all), 104
Å= angstrom, 120

Abbildung
E
= mapping, 306, 358

abbreviation
G
= Abkürzung, 3

abgeschnitten
E
= truncated, 79, 185

abhängige Variable
E
= dependent-

variable, 27

Abkürzung
E
= abbreviation, 3

Ableitung, partielle, 239

abschätzen
E
= estimate, 181

abschneiden
E
= Truncate, 187

absolute error
G
= absoluter Fehler, 79

absolute minimum or maximum, 174

absolute value
G
= absoluter Betrag, 43

absolute value of a complex number,
395

absolute value of complex numbers ex-
pressed by complex conjuga-
tion, 401

absolute value of vector, 299
absolute value of vector expressed by

scalar product, 336

absoluter Betrag
E
= absolute value, 43

absoluter Fehler
E
= absolute error, 79

Abweichungen
E
= discrepancies, 123

abwickeln
E
= unbending, 225

abzählbar unendlich
E
= denumerably

infinite, 105
acceleration

centripetal, 380
circular motion, for, 380
tangential, 380

acceleration
G
= Beschleunigung, 292

acceleration as force divided by mass,
381

acceleration of circular motion, 377
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accumulation points
G
=

Häufungspunkte, 135
addition of vectors, 303
addition theorem for trigonometric

functions (sin, cos), 45
addition theorem for trigonometric

functions (tan, cot), 55

adjacent
G
= anliegend, 36

affect
G
= beeinflussen, 137

ℵ, 111
aleph ℵ, 111
algebra, 245

fundamental theorem of, 393
algebraic equation, 275

allocation
G
= Zuordnung, 15

almost all
G
= fast alle, 134

alt
E
= ancient, 132

alternating
G
= alternierend, 136

alternating angles are equal, 385

alternierend
E
= alternating, 136

ambiguity
G
= Zweideutigkeit, 302

ambiguous
G
= vieldeutig, 197

ambiguous
G
= zweideutig, 93

amount
G
= Menge, 175

amplitude, 26

An-Kathete
E
= base, 11, 12, 28, 29

Analysis, 195
analytic geometry, 306

analytical
G
= formelmäßig, 41

ancient
G
= alt, 132

Anfangs-
E
= initial, 96

Anfangsbedingung
E
= initial condition,

279, 290

angenähert
E
= approximately, 2

angle’s sum in a triangle, 35
angle, positive, 4
angstrom, see Å
angular frequency, 32, 56

angular frequency
G
= Kreisfrequenz,

289
angular momentum

G
= Drehimpuls,

389
angular momentum conservation, 388
angular momentum conservation

yields plane motion, 390

angular momentum law
G
= Drehim-

pulssatz, 389

angular velocity
G
=

Winkelgeschwindigkeit, 32,
380

angular velocity vector
G
=

Winkelgeschwindigkeitsvek-
tor, 360

angular-frequency
G
= Kreisfrequenz, 27

anliegend
E
= adjacent, 36

Annäherung
E
= approach, 138

Anordnungen
E
= arrangements, 76

anticommutative law for vector prod-
uct, 349

antiderivative
G
= Stammfunktion, Au-

fleitung, 197

approach
G
= Annäherung, 138

approximately
G
= angenähert, 2

approximately
G
= näherungsweise, 79

approximation
first order, 80
linear, 80
lowest (non-vanishing) order, 80

approximation (linear, quadratic,
zeroth-order, n-th order, 83

approximation of cos, 83
approximation of fractions, 83
approximation of general power, 83
approximation of ln, 83
approximation of sin, 82
approximation of square root, 83
approximation of tan, 83

Äquator
E
= equator, 16

Äquivalenzklasse
E
= equivalence class,

298
Äquivalenzklassen

E
= equivalence

classes, 102

Äquivalenzrelation
E
= equivalence rela-

tion, 101

arbitrarily
G
= willkürlich, 15

arbitrary
G
= beliebig, 37

arbitrary
G
= beliebiger, 268

arbitrary
G
= willkürlichen, 264
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arc, see arcus

arc
G
= Bogen, 2

arc cos, multiple values of, 49
arc sin, 14
arc’s length, 2

arc-arrow
G
= Winkelböglein, 6

Archimedes, 181
arcus of a complex number, 395
arcus-function, see arc sin, arc cos, arc

tan
area

integral, see integral, area

area
G
= Fläche, 36, 175

area of circle, 36
area of parallelogram expressed by vec-

tor product, 348
Arithmetics: Fundamental Theorem of

Arithmetics, 109

arrangements
G
= Anordnungen, 76

arrow
G
= Pfeil, 298

associative law for scalar multiplica-
tion of vectors, 302

associative law for scalar products, 338
associative law for vector addition, 304

Ast
E
= branch, 15

Ast, Zweig
E
= branch, 247

atomic units, 118
atoms (set theory), 104

attached
G
= befestigt, 25

Aufgabe
E
= task, 180

aufgemalt
E
= plotted, 129

aufgespannt
E
= spanned, 328

Aufleitung, see Stammfunktion

aufschneiden
E
= cutting off, 225

Aufzählungsindex
E
= enumeration in-

dex, 306

ausarbeiten
E
= Elaborate, 37

ausdenken
E
= devise, 63

Auslenkung
E
= elongation, 26

ausreißen
E
= tear out, 220

austauschen
E
= Interchanging, 138

Auswahlaxiom
E
= axiom of choice, 103

auswerten, vereinfachen
E
= Evaluate,

251

automorphism
G
= strukturerhaltende

Abbildung, 399
automorphism for complex numbers,

399
auxiliary

G
= Hilfs-, 32

auxiliary condition
G
= Nebenbedin-

gung, 250

auxiliary variable
G
= Hilfvariable, 7

available
G
= zur Verfügung stehend, 175

average
G
= Durchschnitt, 123, 178, 215

average height
G
= durchschnittliche

Höhe, 214
average, definition of, 179

axiom of choice
G
= Auswahlaxiom, 103

Bahnkurve
E
= trajectory, 294

Balken
E
= beam, 218, 264

Balken
E
= upper bar, 215

Banach-Tarski paradox, 115

base
G
= An-Kathete, 11, 12, 28, 29

base of a vector space, 331
base, orthonormal, 333

basic set
G
= Grundmenge, 101

Basic trigonometric identity, 32, 33

Baustelle
E
= building site, 65

Bewegungsgleichung
E
= equation of

motion, 289

beam
G
= Balken, 218, 264

beating (of oscillations)
G
= Schwebung,

61
Becher

E
= cup, 175

bee, path of, 323

beeinflussen
E
= affect, 137

befestigt
E
= attached, 25

befördert
E
= promoted, 5

Beginn
E
= onset, 41

begründe
E
= Justify, 211

behauptet
E
= stipulates, 116

Behauptung
E
= statement, 54

beiderlei Vorzeichen
E
= both signs, 180

Beitrag
E
= contribution, 83

bekräftigen
E
= corroborate, 220

beliebig
E
= arbitrary, 37
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beliebiger
E
= arbitrary, 268

bend
G
= biegen, 220

bequem
E
= convenient, 133

Beschleunigung
E
= acceleration, 292

Besonderheit
E
= peculiarity, 39

Bezeichnungen
E
= denotations, 128

Bezeichnungsweise
E
= notation, 32, 38

Bezeichnungsweisen
E
= notations, 93

Bezugssystem
E
= reference frame, 352,

387
bi = twice, 296
bi-linearity of the scalar product, 339
bi-linearity of vector product, 350

biegen
E
= bend, 220

big hand
G
= großer Zeiger, 21

bijective, 104
bijective mapping, 398

Bilder
E
= images, 399

bildlich
E
= picturesque, 136, 156

binomial, 296
binomial coefficient, 296
binomial formula, first, second, third,

296
binomial theorem, 296

bisection of angles
G
= Winkelhal-

bierende, 16

bisectors of the sides
G
= Seitenhal-

bierenden, 317

bisectrix of the angle
G
= Winkelhal-

bierende, 38

blancmange
G
= Pudding, 321

blemish
G
= Makel, 147

blob
G
= Tropfen, 5

Bogen
E
= arc, 2

Bogenmaß
E
= radian measure, 2

Bohr’s radius, 119

bold
G
= fett, 7, 13, 22

bold line
G
= fette Kurve, 247

both signs
G
= beiderlei Vorzeichen, 180

boundary, see integral, boundary

boundary term
G
= Randterm, 230

brackets
G
= Klammern, 66

branch
G
= Ast, 15

branch
G
= Ast, Zweig, 247

Brechungsindex
E
= diffraction index,

180
Brennpunkte

E
= focal points, 53

Bruch kürzen
E
= cancel, 153

Bruchstrich
E
= line of the fraction, 67

Bruttosozialprodukt
E
= gross national

product, 190

Brüche
E
= fractions, 106

building site
G
= Baustelle, 65

C, see complex numbers
c, see velocity of light
calcite, 364

calculator
G
= Taschenrechner, 22, 46

calculus
G
= Infinitesimalrechnung, 195

calculus of variations
G
= Variations-

rechnung, 253

cancel
G
= Bruch kürzen, 153

cancel each other out
G
= sich gegen-

seitig auslöschen, 272

canceling
G
= sich aufheben, 211

cancels
G
= herausfallen, 17

canonical, 331
Cardano, Hieronimo, 391
Cardano: Picture, 394

cardboard
G
= Karton, 265

cardinal numbers
G
= Kardinalzahlen,

111
cardioid

G
= Herzkurve, 268

cartesian coordinates, 8
Cartesian product, 106
Cartesius, 9
Cartesius: Picture, 9

cavity
G
= Hohlraum, 118

center of mass
G
= Schwerpunkt, 264,

313, 322

central force
G
= Zentralkraft, 390

central-symmetry
G
= Zentralsymme-

trie, 359

centriangle
G
= Zentriwinkel, 2

centripetal acceleration, 380
cgs, 118
chain rule, see derivative, chain rule
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chain rule in several variables, 253
chaos, deterministic, 90

Check
G
= überprüfen, 54

circle
G
= Kreis, 36

circle, area of, 36
circle, circumference of, 1
circumference, 1

circumference
G
= Umfang, 1

circumscribed
G
= umschrieben, 36

closed interval, 105

coalesced
G
= zusammengefallen, 393

coefficient, 275

coercion force
G
= Zwangskraft, 387

coincidence
G
= Zufall, 89

coined
G
= geprägt, 43

columns
G
= Spalten, 77

commutative law for scalar multiplica-
tion of vectors, 302

commutative law for scalar products,
338

commutative law for vector addition,
303

compass
G
= Zirkel, 53, 309

complementary angle
G
= Komple-

mentärwinkel, 42
complete differential, 242

complex conjugate
G
= komplex-

konjugiertes, 397
complex conjugation of an exponen-

tial, 409
complex number

polar representation, 396
complex number represented by its ab-

solute value and its arcus, 396
complex numbers, 391

exponential representation, 405

complex plane
G
= komplexe

Zahlenebene, 394

complex valued function
G
= komplexw-

ertige Funktion, 403
component of a vector, 298
component of vector expressed by a

scalar product, 336
component, vectorial, 329
components, vectorial, 332

componentwise
G
= komponentenweise,

300
composition

G
= Hintereinander-

ausführen, 196

composition of functions
G
= Zusam-

mensetzung von Funktionen,
38

cone
G
= Kegel, 222

congruent, 115

conical
G
= kegelförmig, 361

conservation
angular momentum, 388

continuous
G
= kontinuierliche, 265

continuous
G
= stetig, 145

continuum, 111
continuum hypothesis, 112

contour line
G
= Höhenlinie, 248

contribution
G
= Beitrag, 83

contribution of n-th order, 82

convenient
G
= bequem, 133

convention
G
= Verabredung, 41

coordinate line, 269
coordinate-independent, 367
coordinates, 8

corkscrew
G
= Korkenzieher, 347

corroborate
G
= bekräftigen, 220

cos, 9, 16
derivative, 158

cos as an even function, 42
sin has half-period π, 43
sin has period 2π, 43
cos of complementary angles, 42
cos of double angle, 45
cos x, power series of cos x, 75
cos, addition theorem, 45
cos, approximation of, 83
cos, integral of, 207
cos, power series of, 83
cosine, 9
cot, 29
cot as odd function, 44
cot has period π, 44
cot of complementary angles, 44
cotangent, 29
countable, 105
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countable infinite, 105

counter-clockwise
G
= gegen den

Uhrzeiger, 4
covariant, 367

credibility
G
= Glaubwürdigkeit, 125

cross product, see vector product

cross-section
G
= Querschnitt, 222

ctg, see cot

cube
G
= Würfel, 71, 253

cuboid
G
= Quader, 226, 250

cuboids
G
= Quader, 115

cup
G
= Becher, 175

curve, length of, 231

cutting off
G
= aufschneiden, 225

cycle
G
= Umlauf, 118

cyclic permutation rule for wedge
product, 365

cyclic symmetry, 367

D differential operator, 195
d, see differential
∆, see increment
∂=see derivative

partial, 240
D, 13

damped
G
= gedämpft, 169

dann und nur dann = genau dann
E
= if

and only if, 146

dark-shaded
G
= dunkel-schraffiert, 225

dazwischenliegend
E
= intermediate, 120

decadic logarithm
G
= dekadischer Log-

arithmus, 93

decay
G
= Zerfall, 96

decay-constant
G
= Zerfallskonstante, 69

decay-constant
G
= Zerfallskonstante,

278
decay-equation

G
= Zerfallsgleichung,

278
decaying

G
= zerfallende, abnehmende,

170
decimal logarithm

G
= Zehner-

Logarithmus, 93
definitely divergent, 136

Definitionsbereich
E
= domain, 13

degree, 1

dekadischer Logarithmus
E
= decadic

logarithm, 93

denominator
G
= Nenner, 231

denominator
G
= Zähler, 106

denotations
G
= Bezeichnungen, 128

dense
G
= dicht, 110

density
G
= Dichte, 266

denumerably infinite
G
= abzählbar un-

endlich, 105

dependent-variable
G
= abhängige Vari-

able, 27
derivative, 154

chain rule, 160, 168
composite functions, 159
constant can be pulled before the

derivative, 159
elementary functions, 158
implicit, 247
Leibniz’s product rule, see deriva-

tive, product rule
of a constant is zero, 158
partial, 239
power rule, 158
product rule, 159
quotient, 160
sum, 159

derivatives
higher, 183

Descartes, 9
Descartes: Picture, 9
determinant

2 by 2, 354
determinant, 3 by 3, 373
deterministic chaos, 90
development of a function, see Taylor’s

formula
devise

G
= ausdenken, 63

diameter
G
= Durchmesser, 1

dicht
E
= dense, 110

Dichte
E
= density, 266

difference quotient
G
= Differenzenquo-

tient, 155
difference vector, 304
differential, 154
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differential equation, order, 278
differential equations, 275
differential operator, 195
differential vector, 324
differential, complete, 242
differential, total, 242
differentiation, see derivative

Differenzenquotient
E
= difference quo-

tient, 155

diffraction index
G
= Brechungsindex,

180
dimension of a vector, 298
dimension of a vector space, 331

dimensioned quantity
G
= dimensionsbe-

haftete Größe, 117

dimensionless
G
= dimensionslos, 118

dimensionsbehaftete Größe
E
= dimen-

sioned quantity, 117

dimensionslos
E
= dimensionless, 118

discarded
G
= fallenlassen, 118

discontinuous
G
= unstetig, 145

discrepancies
G
= Abweichungen, 123

displacement
G
= Verschiebung, 316

displacement
G
= Verschiebung,

Verrückung, 154
distance from a line or plane, 340

distinction
G
= Fallunterscheidung, 148

distinguish
G
= kennzeichnen, 188

distributing
G
= verteilen, 76

distributive law for vectors, 304
divergent, definitely, 136
division of a vector by a scalar, 302

domain
G
= Definitionsbereich, 13

doppeldeutig
E
= double valued, 63

dot
G
= Tupfen, 335

dot product = scalar product, 335

dotted
G
= punktiert, 16, 71

dotted
G
= punktierte, 237

double angle formula for sin and cos,
45

double valued
G
= doppeldeutig, 63

Draht
E
= wire, 18

Drehimpuls
E
= angular momentum,

389

Drehimpulssatz
E
= angular momentum

law, 389

Drehmoment
E
= torque, 264, 322, 389

dual logarithm
G
= Zweier-Logarithmus,

93
dunkel-schraffiert

E
= dark-shaded, 225

Durchmesser
E
= diameter, 1

Durchschnitt
E
= average, 123, 178, 215

durchschnittliche Höhe
E
= average

height, 214

∃ (there exists), 104
e, see exponential function
~e = unit vector, 302

eckige Klammern
E
= square brackets,

121
economist

G
= Wirtschaftswis-

senschaftler, 190

edges
G
= Kanten, 315, 367

ε-environment
G
= ε-Umgebung, 134

eigentlich
E
= proper, 32

Eindeutigkeit der Potenzreihenen-

twicklung
E
= uniqueness of

power series, 403

eingebettet
E
= immersed, 5

eingeschrieben
E
= inscribed, 36

Einheit, Maßeinheit
E
= Unit, 117

Einheits-Vektor
E
= unit vector, 302

Einheitskreis
E
= unit circle, 244, 405

Einheitskugel
E
= solid unit sphere, 114

Einschaltfunktion
E
= switching-

function, 147
Einstein’s summation convention, 338

eintauchen
E
= immersed, 181

Elaborate
G
= ausarbeiten, 37

elctron
charge, in gaussian electrostatic

units, 119
electron

mass, 119
ellipse, parametric representation of,

51
elongation

G
= Auslenkung, 26

empty set, 100
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empty set
G
= leere Menge, 100

entspannte Länge
E
= slack length, 288

Entwicklungssatz
E
= formula for multi-

ple vector products, 365

enumeration index
G
= Aufzählungsin-

dex, 306

equation of motion
G
= Bewegungs-

gleichung, 289
equation, algebraic, 275
equation, differential, 275
equation, quadratic, 275

equator
G
= Äquator, 16

equilateral
G
= gleichschenklig, 12

equilateral triangle
G
= gleichseitiges

Dreieck, 312, 339

equipotent
G
= gleichmächtig, 104

equivalence
logical, 356
negation of, 356

equivalence class
G
= Äquivalenzklasse,

298
equivalence classes, 196

equivalence classes
G
= Äquivalenzk-

lassen, 102

equivalence relation
G
= Äquivalenzrela-

tion, 101
equivalent, 196

Erbse
E
= pea, 115

Erdbeschleunigung
E
= gravitational ac-

celeration due to the earth, 384

Erdbeschleunigung
E
= gravitational ac-

celeration on earth, 203

Ereignisse
E
= events, 27

erhalten
E
= obtained, 93

error
absolute, 79
relative, 79

error (absolute, relative), 83
error of a product: relative errors are

additive, 89
error propagation

multiple error sources, 248

Error propagation
G
= Fehler-

fortpflanzung, 180

erschöpfende
E
= exhaustive, 102

ersetzen
E
= substitute, 228

estimate
G
= abschätzen, 181

Euclid: Picture, 301
Euclidean transformation, 115
Euklid: Picture, 301
Euler’s formula eiz = cos z+i sin z, 404
Euler’s formula for sin and cos, 408
Euler’s number, see exponential func-

tion
defined by a limit, 143

Euler: Picture, 69

ε-Umgebung
E
= ε-environment, 134

Evaluate
G
= auswerten, vereinfachen,

251
even

G
= gerade, 42, 64

even function
G
= gerade Funktion, 42,

189
events

G
= Ereignisse, 27

ex, power series of ex, 68
exclusive OR = XOR, 338

exhaustive
G
= erschöpfende, 102

existence, axiomatic and constructive,
116

exp, see exponential function
exp x, power series of exp x, 68
exponential function, 67

derivative, 159
period, 408

exponential representation of complex
numbers, 405

exponentiation of sets, 112
extrapolation, 191

f−1, 38

fabelhaft
E
= marvelous, 395

faces
G
= Flächen, 315

factorial
0!, 296

factorials
G
= Fakultäten, 68

Faden
E
= string, 54

Fakultäten
E
= factorials, 68

fallenlassen
E
= discarded, 118

Fallunterscheidung
E
= distinction, 148

fast alle
E
= almost all, 134
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Feder
E
= spring, 25

Federgesetz
E
= spring law, 288

Federkonstante
E
= spring constant, 289

Fehler-Fortpflanzung
E
= propagation of

errors, 88

Fehlerfortpflanzung
E
= Error propaga-

tion, 180

festgelegt
E
= particular, 95

fett
E
= bold, 7, 13, 22

fette Kurve
E
= bold line, 247

first integral, 293

fit
G
= passen, 57

fixed vectors, 322

Fläche
E
= area, 36

Fläche
E
= area, 175

Flächen
E
= faces, 315

flex-point
G
= Wendepunkt, 189

flex-points
G
= Wendepunkte, 214

focal points
G
= Brennpunkte, 53

Folgen
E
= sequences, 132

force is mass times acceleration, 381
forces as vectors, 322

Form
E
= shape, 175

form
E
= shape, 252

formal solution, 277
formal symmetry, 251

formelmäßig
E
= analytical, 41

Formelsammlung
E
= formulary, 37

formula for multiple vector products
G
=

Entwicklungssatz, 365

formulary
G
= Formelsammlung, 37

fractions, see numbers, rational

fractions
G
= Brüche, 106

fractions, approximation of, 83
fractions, power series of, 83

frame
G
= Rahmen, 216, 218

free fall
G
= freier Fall, 292, 294

free throw
G
= freier Wurf, 294

free vectors, 322

freier Fall
E
= free fall, 292, 294

freier Wurf
E
= free throw, 294

freiwillig
E
= optional, 6

frequency
G
= Häufigkeit, 27, 90

frequency and period, 56

fully-fledged
G
= vollwertig, 237

function
implicit, 243
inverse, 245
linear, 162

functional analysis
G
= Funktionalanal-

ysis, 253

fundamental theorem of algebra
G
=

Fundamentalsatz der Algebra,
393

Fundamental Theorem of Arithmetics,
109

Fundamentalsatz der Algebra
E
= fun-

damental theorem of algebra,
393

Funktionalanalysis
E
= functional anal-

ysis, 253

Funktionswert
E
= value of the function,

26

Galilei, 115
Galilei (picture), 117

ganze Zahlen
E
= integers, 13, 101

Ganzes
E
= totality, 194

Gauss, 178

Gauss’sche Glockenkurve
E
= gaussian

bell-shaped curve, 188

Gauß’sche Zahlenebene
E
= Gaussian

plane, 394
Gauss: Picture, 179

gaussian bell-shaped curve
G
=

Gauss’sche Glockenkurve,
188

Gaussian plane
G
= Gauß’sche

Zahlenebene, 394

Gebirge
E
= mountain range, 214

gedämpft
E
= damped, 169

geeignet
E
= suitable, 59, 199

gegen den Uhrzeiger
E
= counter-

clockwise, 4

Gegen-Kathete
E
= perpendicular, 11,

12, 28, 29

geheilt
E
= remedied, 152
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genau dann = dann und nur dann =
iff = ⇔, 146

Genauigkeit
E
= precision, 37

general power, approximation of, 83
general power, power series of, 83
general solution, 275
geometric series, see series, geometric
geometry, analytic, 306

geprägt
E
= coined, 43

Gerade
E
= straight line, 155

gerade
E
= even, 42, 64

gerade Funktion
E
= even function, 42,

189
Geschwindigkeit

E
= velocity, 123

gewaltig
E
= tremendous, 217

gewöhnlich
E
= ordinary, 133

gist
G
= Knackpunkt, 185, 241

glatt
E
= smooth, 5

Glaubwürdigkeit
E
= credibility, 125

gleichmächtig
E
= equipotent, 104

gleichschenklig
E
= equilateral, 12

gleichschenklig
E
= unilateral, 30

gleichseitiges Dreieck
E
= equilateral tri-

angle, 312, 339

gleichzeitig
E
= simultaneously, 44

gliding vectors, 322
grade, 1
gradient, see slope

gradient
G
= Steigung, 155

graph, 12

graph paper
G
= kariertes Papier, 308

gravitational acceleration due to the

earth
G
= Erdbeschleunigung,

384
gravitational acceleration on earth

G
=

Erdbeschleunigung, 203
gravitational attraction, Newton’s law,

381
gravitational constant, 382

great diameter
G
= große Halbachse, 52

Grenzwert
E
= the limit, 132

gross national product
G
= Bruttosozial-

produkt, 190

große Halbachse
E
= great diameter, 52

großer Zeiger
E
= big hand, 21

ground state
G
= Grundzustand, 118

growth equation
G
= Wachstumsgle-

ichung, 278

growth-constant
G
= Wachstumskon-

stante, 69

Grundmenge
E
= basic set, 101

Grundzustand
E
= ground state, 118

guess
G
= Vermutung, 125

guess
G
= Voraussage, 178

~, 119

Höhe
E
= height, 30

Halbwertszeit
E
= half life time, 96

half angle line
G
= Winkelhalbierende,

246
half axis of an ellipse, 52

half life time
G
= Halbwertszeit, 96

half-logarithmic, 129
half-period, 43
harmonic oscillator, 25

Häufigkeit
E
= frequency, 27, 90

Häufungspunkte
E
= accumulation

points, 135

Hauptast
E
= principal branch, 247

Hauptwert
E
= principal value, 247

hebbare Singularität
E
= removable sin-

gularity, 152

Hebelgesetz
E
= lever principle, 264

height
G
= Höhe, 30

herausfallen
E
= cancels, 17

Hertz, 41

Herzkurve
E
= cardioid, 268

Hilbert, David (picture), 117

Hilfs-
E
= auxiliary, 32

Hilfvariable
E
= auxiliary variable, 7

Hintereinanderausführen
E
= composi-

tion, 196

Höhenlinie
E
= contour line, 248

Hohlraum
E
= cavity, 118

hydrogen
G
= Wasserstoff, 118
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hydrogen atom
G
= Wasserstoffatom,

119
Hyperbel

E
= hyperbola, 237

hyperbola
G
= Hyperbel, 237

hypotenuse, 11
Hz, 41

| (with the property), 104
i, 391
id, 39, see identical operation
id (identical operator), 195
identical function, 39
identical operation, 398
identical operator, 195
identity, 39

if and only if
G
= dann und nur dann =

genau dann, 146
=, see imaginary part

im Wesentlichen
E
= in essence, 15

images
G
= Bilder, 399

imaginär, frei erfunden
E
= imaginary,

391
Imaginärteil

E
= imaginary part, 391

imaginary
G
= imaginär, frei erfunden,

391
imaginary part

G
= Imaginärteil, 391

Imaginary part expressed by complex
conjugation, 400

immersed
G
= eingebettet, 5

immersed
G
= eintauchen, 181

implication, 102
implicit function, see function, implicit

implied
G
= impliziert, unterstellt,

angenommen, 64

impliziert, unterstellt, angenommen
E
=

implied, 64

improper integrals
G
= uneigentliche In-

tegrale, 237

in essence
G
= im Wesentlichen, 15

inclination
G
= Neigung, 33

increment, 154
increment vector, 307

increments
G
= Zuwächse, 154

indefinite integral, see integral, indefi-
nite

independent variable
G
= unabhängige

Variable, 26
index, 77

infinitely multivalued
G
= unendlich

vieldeutig, 15

Infinitesimalrechnung
E
= calculus, 195

infinity
G
= unendlich, 133

inherent
G
= innewohnend, 5

initial
G
= Anfangs-, 96

initial condition
G
= Anfangsbedingung,

279, 290

innewohnend
E
= inherent, 5

inscribed
G
= eingeschrieben, 36

instantaneous velocity
G
= Momen-

tangeschwindigkeit, 158
integers, 101

integers
G
= ganze Zahlen, 13, 101

integral
additivity in the integration range,

200
area, 192
area, counted negative, 200
boundary, 192
constant can be pulled before the

integral, 199
double, 260
improper, 236
indefinite, 194
integration range, 200
linear combinations of, 200
multiple, 260
substitution method, 228
sum, 200

integral curves of a vector field, 325
integral of 1/x, 206
integral of cos, 207
integral of sin, 208
integral operator, 195
integral, first, 293
integral, second, 293
integrand, 192
integration

logarithmic, 231
partial, 230

integration as the inverse of differenti-
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ation, 195
integration constant, 198
integration interval, see integral, inte-

gration range
integration range, see integral, integra-

tion range
integration variable, 194

interchange
G
= vertauschen, 38

Interchanging
G
= austauschen, 138

intermediate
G
= dazwischenliegend, 120

interval: closed interval, 105
interval: open interval, 105
invariance of scalar products, lengths

and angles, 343
invariant= scalar, 300

inverse function
G
= Umkehrfunktion, 14

inverse function
G
= Umkehrfunktion,

inverse Funktion, 245

inverse mapping
G
= Umkehrabbildung,

104, 399
irrational number, 2

irrational numbers
G
= irrationale

Zahlen, 110

irrationale Zahlen
E
= irrational num-

bers, 110

J integral operator, 195

Jahrtausende
E
= millenniums, 133

Justify
G
= begründe, 211

Kanten
E
= edges, 315, 367

Kardinalzahlen
E
= cardinal numbers,

111
kariertes Papier

E
= graph paper, 308

Karton
E
= cardboard, 265

Kegel
E
= cone, 222

kegelförmig
E
= conical, 361

Keil
E
= wedge, 364

kennzeichnen
E
= distinguish, 188

kernel symbol
G
= Kernsymbol, 298

Kernsymbol
E
= kernel symbol, 298

Klammern
E
= brackets, 66

kleine Halbachse
E
= small diameter, 52

Knackpunkt
E
= gist, 185, 241

Komplementärwinkel
E
= complemen-

tary angle, 42

komplex-konjugiertes
E
= complex con-

jugate, 397

komplexe Zahlenebene
E
= complex

plane, 394

komplexwertige Funktion
E
= complex

valued function, 403

komponentenweise
E
= componentwise,

300
kontinuierliche

E
= continuous, 265

Korkenzieher
E
= corkscrew, 347

Kreis
E
= circle, 36

Kreisel
E
= spinning top, 361

Kreisfrequenz
E
= angular frequency,

289
Kreisfrequenz

E
= angular-frequency, 27

Kronecker, 100
Kronecker product, 106

lapse
G
= Zeit-Spanne, 96

law of the center of mass
G
= Schwer-

punktsatz, 322
ld, see log

leere Menge
E
= empty set, 100

leg
G
= Schenkel, 12

legs
G
= Schenkel, 36, 385

Leibniz’s product rule
for vectors, 376

Leibniz’s product rule for derivatives,
see derivative, product rule

Leibniz: Picture, 160
length of a curve, 231
length of a vector, 298
length of vector, 299
length of vector expressed by scalar

product, 336

lever principle
G
= Hebelgesetz, 264

lg, see log

limit from the left
G
= linksseitiger

Limes, 148

limit from the right
G
= rechtsseitiger

Limes, 148

line of action
G
= Wirkungslinie, 322
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line of the fraction
G
= Bruchstrich, 67

linear, 2
linear combination of vectors, 327
linear dependence expressed by vector

product, 355
linear function, 162
linear independence expressed by vec-

tor product, 355

linear momentum
G
= Linearimpuls, 389

Linearimpuls
E
= linear momentum, 389

linearly dependent, 328
linearly independent, 328, 329

linksseitiger Limes
E
= limit from the

left, 148
Lipshitz-condition, 278
ln, see log
local minimum or maximum, 174
log, 93

derivative, 159
logarithm, see log
logarithm, approximation of, 83
logarithm, power series of, 83
logarithmic integration, 231
logarithmic paper, 125
logarithmic scale, 125

logical implication
G
= logische

Schlussfolgerung, 102

logical OR
G
= logisches ODER, 338

logische Schlussfolgerung
E
= logical im-

plication, 102

logisches ODER
E
= logical OR, 338

lower boundary
G
= untere Grenze, 192

lower sum
G
= Untersumme, 194

Mächtigkeiten
E
= potencies, 111

magnetic field of a current loop, 325
magnetic fields of the earth, 325
main theorem

calculus, 195

Makel
E
= blemish, 147

mankind
G
= Menschheit, 133

mantissa, 120

mapping
G
= Abbildung, 306, 358

marvelous
G
= fabelhaft, 395

Maßstab
E
= ruler, 180

Maßzahl
E
= Measure number, 117

mathematically positive, 4
matrices = plural of matrix, 77
matrix, 77
maximum, 186

absolute, 174
local, 174

Measure number
G
= Maßzahl, 117

Mehrfachlösungen
E
= multiple solu-

tions, 393

Menge
E
= amount, 175

Menge
E
= set, 13, 326

Mengenlehre
E
= set theory, 100

Menschheit
E
= mankind, 133

mile, 123

millenniums
G
= Jahrtausende, 133

minerals, 364
minimum, 186

absolute, 174
local, 174

mirror symmetry
G
= Spiegelsymmetrie,

16, 38

mirror symmetry
G
= Spiegelsymme-

trieachse, 52

mirror-symmetry
G
= Spiegelung, 74

MKS, 118
modulo, 13
Moivre’s formula, 409
Moivre: Picture, 410

Momentangeschwindigkeit
E
= instanta-

neous velocity, 158
momentary velocity, 169
monomial, 296

monoton fallend
E
= monotone decreas-

ing, 135

monotone decreasing
G
= monoton fall-

end, 135

mountain range
G
= Gebirge, 214

mph, 123

multiple solutions
G
= Mehrfachlösun-

gen, 393

multivalued
G
= vieldeutig, 15

N, see numbers, natural
N∗, see numbers, natural
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No, see numbers, natural
ν, see frequency and period
~n = unit vector, 302
n = dimension of vector space, 300
n-tuple, 106, 298

näher bestimmen
E
= qualify, 25

näherungsweise
E
= approximately, 79

Nährlösung
E
= nutrient solution, 280

Naive Mengenlehre
E
= Naive set theory,

112
Naive set theory

G
= Naive Mengenlehre,

112
Napier: Picture, 94

natural numbers
G
= natürliche Zahlen,

100
natürliche Zahlen

E
= natural numbers,

100
Nebenbedingung

E
= auxiliary condi-

tion, 250
negation, 356

Neigung
E
= inclination, 33

Nenner
E
= denominator, 231

Nenner
E
= numerator, 106

new grades, 1
Newton’ s axiom, zeroth, 321
Newton’s law of gravitation, 381
Newton’s second law, 381
Newton: Picture, 154

nicht-strenge
E
= non-rigorous, 220

non-rigorous
G
= nicht-strenge, 220

normal component, 336
normal projection, 10

notation
G
= Bezeichnungsweise, 32, 38

notations
G
= Bezeichnungsweisen, 93

null sequence
G
= Nullfolge, 136

null vector is parallel to any vector, 348
null-vector, 301
null-vector is orthogonal to any vector,

338
Nulldurchgang

E
= zero crossing, 40

Nulldurchgang
E
= zero-passage, 26

Nullfolge
E
= null sequence, 136

Nullpunkt
E
= origin, 41

Nullstellen
E
= zeroes, 13

number systems, 100
numbers

complex, see complex numbers
integer, 101
irrational, 110
natural, 100
pure, 118
rational, 106
real, 109

numerator
G
= Nenner, 106

numerator
G
= Zähler, 231

nutrient solution
G
= Nährlösung, 280

◦, 38
ω, see angular frequency

Oberfläche
E
= surface, 72

Oberfläche
E
= surface area, 250

Obermenge
E
= superset, 105

Obersumme
E
= upper sum, 194

obtained
G
= erhalten, 93

obvious
G
= offensichtlich, 228

odd
G
= ungerade, 42, 64

odd function
G
= ungerade Funktion, 42

offensichtlich
E
= obvious, 228

onset
G
= Beginn, 41

open interval, 105
operand, 195
operator, 195
operator product, 196
operator, identical, 195
operator, trivial, 195

optional
G
= freiwillig, 6

orbiting
G
= umkreisen, 118

order (of an approximation), 83
order, of a differential equation, 278

ordinary
G
= gewöhnlich, 133

Ordinate
E
= ordinate, 13

ordinate
G
= Ordinate, 13

orientation, 5
orientation of a vector, 298
oriented volume, see volume, orienta-

tion of
origin

G
= Nullpunkt, 41

originals
G
= Urbilder, 399
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orthogonal = perpendicular, 337
orthogonality expressed by scalar

product, 337
orthonormal base, 333

Ortsvektor
E
= position vector, 306

Ortsvektor
E
= radius vector, 306

oscillation equation
G
= Schwingungs-

gleichung, 288

oscillator
G
= Schwinger, 25

oscillator, harmonic, 25

pairwise orthogonal gives equal angles,
385

paradox, 115
paradox of Banach-Tarski, 115

parallelepiped
G
= Spat, 364

parallelism expressed by vector prod-
uct, 348

parallelogram construction, 308
parallelogram rule for vector addition,

303
parameter, 32
parameter representation

plane, 342
straight line, 340

Parameterdarstellung eines Kreises
E
=

parametric representation of a
circle, 31

parametric representation of a circle
G
= Parameterdarstellung eines
Kreises, 31

Parität
E
= parity, 408

parity
G
= Parität, 408

partial derivative
G
= partielle

Ableitung, 239
partial integration, see integration,

partial

Particular
G
= spezielle, 8

particular
G
= festgelegt, 95

particular solution
G
= spezielle Lösung,

279
partielle Ableitung

E
= partial deriva-

tive, 239

passen
E
= fit, 57

pea
G
= Erbse, 115

peculiarity
G
= Besonderheit, 39

penalty
G
= Strafe, 178

pendulum
mathematical, 382

percent, 33
perimeter, 1
period and frequency, 56
period, primitive, 14
periphery, 1
permutation, 75

perpendicular
G
= Gegen-Kathete, 11,

12, 28, 29

perpendicular
G
= senkrecht, 11, 225

perpendicular = orthogonal, 337

Pfeil
E
= arrow, 298

phase, 26
phase = complex number on the unit

circle, 405
phase shift, 39

phase-shift
G
= Phasenverschiebung, 26

Phasenverschiebung
E
= phase-shift, 26

photon number flux density
G
= Photo-

nenzahlflussdichte, 24

Photonenzahlflussdichte
E
= photon

number flux density, 24
π, 2
π with 50 decimals, 90
pico, 118

picturesque
G
= bildlich, 136, 156

piecewise continuous
G
= stückweise

stetig, 148
Planck’s constant, see ~
plane

parameter representation, 342

plotted
G
= aufgemalt, 129

point
stationary, 174

point-symmetry
G
= Punkt-Symmetrie,

359
polar coordinates

G
= Polarkoordinaten,

268
polar representation of complex num-

ber, 396

Polarkoordinaten
E
= polar coordinates,

268
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poles
G
= Polstellen, 44

Polstellen
E
= poles, 44

polygons
G
= Vieleck, 37

position vector
G
= Ortsvektor, 306

position vector as an ordinary vector,
363

positive definite, 188

potencies
G
= Mächtigkeiten, 111

Potenz
E
= power, 65

Potenzen
E
= powers, 63

potenzieren
E
= raising to a power, 94

Potenzmenge
E
= power set, 112

Potenzregel
E
= power rule, 158

Potenzreihenentwicklung
E
= power se-

ries, 67
Potenzreihenentwicklung von cos x, 75
Potenzreihenentwicklung von ex =

exp x, 68
Potenzreihenentwicklung der allge-

meinen Potenz, 83
Potenzreihenentwicklung von

Brüchen, 83
Potenzreihenentwicklung von cos, 83
Potenzreihenentwicklung von ln, 83
Potenzreihenentwicklung von sin, 82,

187
Potenzreihenentwicklung von tan, 83
Potenzreihenentwicklung von Wurzel,

83
power

G
= Potenz, 65

power rule, see derivative, power rule

power rule
G
= Potenzregel, 158

power series
G
= Potenzreihenentwick-

lung, 67
power series of cos x, 75
power series of ex = exp x, 68
power series of cos, 83
power series of fractions, 83
power series of general power, 83
power series of ln, 83
power series of sin, 82, 187
power series of square root, 83
power series of tan, 83

power set
G
= Potenzmenge, 112

powers
G
= Potenzen, 63

precision
G
= Genauigkeit, 37

prefactor
G
= Vorfaktor, 69

preliminary
G
= Vorbereitung, 251

previous
G
= vorhergehend, 59

prime number
G
= Primzahl, 109

Primzahl
E
= prime number, 109

principal branch
G
= Hauptast, 247

principal value
G
= Hauptwert, 247

principle of least squares
G
= Prinzip der

kleinsten Fehlerquadrate, 178
principle of uniqueness of quantum

systems, 118

Prinzip der kleinsten Fehlerquadrate
E
=

principle of least squares, 178
priority

addition and multiplication, 66
exponents, 65
functional binding, 406
powers or exponentiation, 67
subtraction and division, 67

probability
G
= Wahrscheinlichkeit, 90

product of operators, 196
product rule, see Leibniz’s product

rule
product rule for derivatives, see deriva-

tive, product rule
projection, orthogonal, 10

promoted
G
= befördert, 5

proof by contradiction, 109

propagation of errors
G
= Fehler-

Fortpflanzung, 88

proper
G
= eigentlich, 32

proportional, 2

provisos
G
= Vorbehalte, 116

ps (pico sec), 118
pseudo-probability, 90
pseudo-vector, 348, 360

Pudding
E
= blancmange, 321

Punkt-Symmetrie
E
= point-symmetry,

359
punktiert

E
= dotted, 16, 71

punktierte
E
= dotted, 237

Pythagoras, 29
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Pythagoras: Picture, 29

Pythagorean theorem
G
= Satz des

Pythagoras, 29

Q, see numbers, rational

Quader
E
= cuboid, 226, 250

Quader
E
= cuboids, 115

quadrant, 8

Quadrat
E
= square, 36

quadratic, equation, 275

Quadratwurzel
E
= square root, 37, 63

quadrieren
E
= squaring, 37

qualify
G
= näher bestimmen, 25

Querschnitt
E
= cross-section, 222

quotient decomposed into real and
imaginary parts, 401

quotient rule, see derivative, quotient

R, see numbers, real
rad, 2
rad = 1, 119
radian, see rad, 3

radian measure
G
= Bogenmaß, 2

radicand, 63

radioactive decay
G
= radioaktiver Zer-

fall, 96

radioaktiver Zerfall
E
= radioactive de-

cay, 96

radius vector
G
= Ortsvektor, 306

Rahmen
E
= frame, 216, 218

raising to a power
G
= potenzieren, 94

Rakete
E
= rocket, 128

random errors
G
= zufällige Fehler, 180

Randterm
E
= boundary term, 230

range
G
= Wertebereich, 14, 214

Rate
E
= rate, 96

rate
G
= Rate, 96

ratio
G
= Verhältnis, 33

rational numbers
G
= rationale Zahlen,

106
rationale Zahlen

E
= rational numbers,

106
rationals, see numbers, rational

Raumdiagonale
E
= (space-) diagonal,

71
<, see real part

real axis
G
= reelle Achse, 395

real axis
G
= Zahlengerade, 110

real numbers
G
= reelle Zahlen, 109

real part
G
= Realteil, 391

Real part expressed by complex conju-
gation, 400

reals, see numbers, real

Realteil
E
= real part, 391

Rechteck mit fetten Umrissen
E
= solid

rectangle, 214

rechtshändig
E
= right-handed, 351

Rechtsschraube
E
= right screw, 347

rechtsseitiger Limes
E
= limit from the

right, 148

rechtwinkliges Dreieck
E
= right trian-

gle, 9
rectification, 231
reductio ad absurdum, 109

reelle Achse
E
= real axis, 395

reelle Zahlen
E
= real numbers, 109

reference frame
G
= Bezugssystem, 352,

387
reflection

G
= Spiegelung, 115

reflexivity, 102

refuted
G
= widerlegt, 116

Reihe
E
= series, 138

Relation, 114

relative error
G
= relativer Fehler, 79

relativer Fehler
E
= relative error, 79

remedied
G
= geheilt, 152

removable singularity
G
= hebbare Sin-

gularität, 152

Repräsentant
E
= representative, 103

representative
G
= Repräsentant, 103

rest-position
G
= Ruhelage, 26

resting length
G
= Ruhelänge, 288

right screw
G
= Rechtsschraube, 347

right triangle
G
= rechtwinkliges

Dreieck, 9

right-handed
G
= rechtshändig, 351
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rocket
G
= Rakete, 128

rod
G
= Stab, 117, 178, 298

root, 64
rope, 17

rope
G
= Seil, 16

rotation as a succession of mirror-
symmetries, 345

rotation in a plane expressed by com-
plex multiplication, 406

rows
G
= Zeilen, 77

Ruhelage
E
= rest-position, 26

Ruhelänge
E
= resting length, 288

ruler
G
= Maßstab, 180

rutschen
E
= slipping, 7∫

integral, 193
saddle point, 186

sample
G
= Stichprobe, 91

Satz des Pythagoras
E
= Pythagorean

theorem, 29

save
G
= sparen, 176

scalar = invariant, 300
scalar multiplication of vector, 300
scalar product, 335

scale
G
= Skalierung = Maßstab, 125

scanty
G
= spärlich, 116

Schallwellen
E
= sound waves, 58

schattiert
E
= shaded, 36

Schaukelbalken
E
= see-saw’s bar, 264

Scheitel
E
= vertices, 54

Schenkel
E
= leg, 12

Schenkel
E
= legs, 36, 385

Schenkel
E
= sides, 224

schluderig
E
= sloppy, 194

schraffierte
E
= shaded, 216

Schwebung
E
= beating (of oscillations),

61
Schwerpunkt

E
= center of mass, 264,

313, 322

Schwerpunktsatz
E
= law of the center

of mass, 322

Schwinger
E
= oscillator, 25

Schwingungsgleichung
E
= oscillation

equation, 288
secant, 155
second integral, 293

see-saw
G
= Wippe, Schaukel, 264

see-saw’s bar
G
= Schaukelbalken, 264

Seil
E
= rope, 16

Seitenhalbierenden
E
= bisectors of the

sides, 317
semi-definite, 214

senkrecht
E
= perpendicular, 11, 225

sense of rotation, 4
separation of variables, 280
sequences

infinite
composite, 139

sequences
G
= Folgen, 132

series
G
= Reihe, 138

series, geometric, 142

set
G
= Menge, 13, 326

set theory
G
= Mengenlehre, 100

shaded
G
= schattiert, 36

shaded
G
= schraffierte, 216

shape
G
= Form, 175

shape
G
= form, 252

shifted
G
= verschieben, 58

shortest distance from a line or plane,
340

SI-units, 118

sich aufheben
E
= canceling, 211

sich gegenseitig auslöschen
E
= cancel

each other out, 272
side-projection, 10

sides
G
= Schenkel, 224

sign
G
= Vorzeichen, 5

simultaneously
G
= gleichzeitig, 44

sin, 9
derivative, 158

sin as an odd function, 42
sin has half-period π, 43
sin has period 2π, 43
sin of complementary angles, 42
sin of double angle, 45
sin, addition theorem, 45
sin, approximation of, 82
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sin, integral of, 208
sin, power series of, 82, 187
sin, sum of sines expressed as a prod-

uct, 55
sin, zeroes of, 13
sine, 9

Singularität
E
= singularity, 152

singularity
G
= Singularität, 152

Skalierung = Maßstab
E
= scale, 125

Sketch
G
= skizzieren, 59

skizzieren
E
= Sketch, 59

slack length
G
= entspannte Länge, 288

slipping
G
= rutschen, 7

slope
G
= Steigung, 33, 155

sloppy
G
= schluderig, 194

small diameter
G
= kleine Halbachse, 52

small quantity of first order, 79
smokey quartz, 364

smooth
G
= glatt, 5

solid rectangle
G
= Rechteck mit fetten

Umrissen, 214

solid unit sphere
G
= Einheitskugel, 114

solution, formal, 277
solution, general, 275

sound waves
G
= Schallwellen, 58

(space-) diagonal
G
= Raumdiagonale,

71
Spalten

E
= columns, 77

spanned
G
= aufgespannt, 328

sparen
E
= save, 176

Spat
E
= parallelepiped, 364

Spatprodukt
E
= wedge product, 364

spezielle
E
= Particular, 8

spezielle Lösung
E
= particular solution,

279
sphere

vectorial equation of, 310

Spiegelsymmetrie
E
= mirror symmetry,

16, 38

Spiegelsymmetrieachse
E
= mirror sym-

metry, 52

Spiegelung
E
= mirror-symmetry, 74

Spiegelung
E
= reflection, 115

spinning top
G
= Kreisel, 361

spitzfindig
E
= subtle, 326

spring
G
= Feder, 25

spring constant
G
= Federkonstante, 289

spring law
G
= Federgesetz, 288

Spritze
E
= syringe, 105

spärlich
E
= scanty, 116

square
G
= Quadrat, 36

square brackets
G
= eckige Klammern,

121
square root

G
= Quadratwurzel, 37, 63

square root, approximation of, 83
square root, power series of, 83

squaring
G
= quadrieren, 37

squashing
G
= zerquetschen, 225

Stab
E
= rod, 117, 178, 298

Stammfunktion, Aufleitung
E
= an-

tiderivative, 197
standard set theory, 112
statement

logical, 356

statement
G
= Behauptung, 54

stationary point, 174

steering wheel
G
= Steuerrad, 189

Steigung
E
= gradient, 155

Steigung
E
= slope, 33, 155

stetig
E
= continuous, 145

Steuerrad
E
= steering wheel, 189

Stichprobe
E
= sample, 91

stillschweigend
E
= tacitly, 404

stipulates
G
= behauptet, 116

stock
G
= Vorrat, 326

Strafe
E
= penalty, 178

straight line
parameter representation, 340

straight line
G
= Gerade, 155

streben nach
E
= to strive for, 380

Streuung
E
= variance, 91

string
G
= Faden, 54

strukturerhaltende Abbildung
E
= auto-

morphism, 399

stückweise stetig
E
= piecewise continu-
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ous, 148
sub-determinant, 373

sub-determinant
G
= Unterdetermi-

nante, 373

subset relation
G
= Untermengen-

beziehung, 104

subset relations
G
= Untermengen-

beziehungen, 110

substitute
G
= ersetzen, 228

substitution method, see integral, sub-
stitution method

substitution of variables, see integral,
substitution method

substitution of variables
G
= Vari-

ablensubstitution, 229

subtle
G
= spitzfindig, 326

subtraction of vectors, 304

suitable
G
= geeignet, 59, 199

sum
infinite, 138
partial, 138

summation convention, see Einstein’s
summation convention

superfluous
G
= überflüssig, 229

superposition
G
= Überlagerung, 58

superposition of waves, 57

superset
G
= Obermenge, 105

surface
G
= Oberfläche, 72

surface area
G
= Oberfläche, 250

sustained
G
= unterstützt, 264

switching-function
G
= Einschaltfunk-

tion, 147
symmetry

cyclic, 367
formal, 251

cyclic, 367

syringe
G
= Spritze, 105

tacitly
G
= stillschweigend, 404

tan, 27
tan as odd function, 44
tan has period π, 44
tan of complementary angles, 44
tan, addition theorem, 55
tan, approximation of, 83

tan, poles of, 44
tan, power series of, 83
tan, zeros of, 44

Tangens
E
= tangent, 156

tangent, 27, 154

tangent
G
= Tangens, 156

tangent
G
= Tangente, 155, 156

Tangente
E
= tangent, 155, 156

tangential mapping
G
= Tangentialab-

bildung, 157

tangential plane
G
= Tangentialebene,

243
Tangentialabbildung

E
= tangential

mapping, 157

Tangentialebene
E
= tangential plane,

243
Taschenrechner

E
= calculator, 22, 46

task
G
= Aufgabe, 180

Taylor’s formula, 184
several variables, 240

Taylor: Picture, 185

tear out
G
= ausreißen, 220

tearing
G
= zerreißen, 225

term of n-th order, 82
tertium non datur, 109
tetrahedron, 366
tg, see tan, 28

the limit
G
= Grenzwert, 132

theta-function, 147

time-lag
G
= Zeitverschiebung, 27

tip of a vector, 298

to strive for
G
= streben nach, 380

torque
G
= Drehmoment, 264, 322, 389

total differential, 242

totality
G
= Ganzes, 194

trajectory
G
= Bahnkurve, 294

transfinite numbers, 113
transitivity, 102
translation invariance, 327

tremendous
G
= gewaltig, 217

trigonometric function, 12
trivial operator, 195

Tropfen
E
= blob, 5

Truncate
G
= abschneiden, 187
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truncated
G
= abgeschnitten, 79, 185

Tupfen
E
= dot, 335

tuple, 103, 298
tuple bracket, 306

überflüssig
E
= superfluous, 229

Überlagerung
E
= superposition, 58

überprüfen
E
= Check, 54

Umfang
E
= circumference, 1

Umkehrabbildung
E
= inverse mapping,

104, 399

Umkehrfunktion
E
= inverse function, 14

Umkehrfunktion, inverse Funktion
E
=

inverse function, 245

umkreisen
E
= orbiting, 118

Umlauf
E
= cycle, 118

umschrieben
E
= circumscribed, 36

unabhängige Variable
E
= independent

variable, 26

unambiguous
G
= unzweideutig, 73

unbending
G
= abwickeln, 225

uneigentliche Integrale
E
= improper in-

tegrals, 237

unendlich
E
= infinity, 133

unendlich vieldeutig
E
= infinitely mul-

tivalued, 15

ungerade
E
= odd, 42, 64

ungerade Funktion
E
= odd function, 42

unilateral
G
= gleichschenklig, 30

union of sets
G
= Vereinigungsmenge,

100
uniqueness of power series

G
= Ein-

deutigkeit der Potenzreihenen-
twicklung, 403

Unit
G
= Einheit, Maßeinheit, 117

unit circle
G
= Einheitskreis, 244, 405

unit vector, 302

unit vector
G
= Einheits-Vektor, 302

unstetig
E
= discontinuous, 145

Unterdeterminante
E
= sub-

determinant, 373

untere Grenze
E
= lower boundary, 192

Untermengenbeziehung
E
= subset rela-

tion, 104

Untermengenbeziehungen
E
= subset re-

lations, 110

unterstützt
E
= sustained, 264

Untersumme
E
= lower sum, 194

unzweideutig
E
= unambiguous, 73

upper bar
G
= Balken, 215

upper sum
G
= Obersumme, 194

Urbilder
E
= originals, 399

value
G
= Wert, 13

value of the function
G
= Funktionswert,

26
vanish

G
= verschwinden, 80

Variablensubstitution
E
= substitution

of variables, 229

variance
G
= Streuung, 91

Variationsrechnung
E
= calculus of vari-

ations, 253
vector, 298

axial, 363
multiplication by a scalar, 300
ordinary, 363
polar, 363
pseudovector, 363

vector addition by parallelogram con-
struction, 308

vector field, 324
vector fields, visualization of, 325
vector index, 306
vector product, 347

multiple, 365
vector product in components, 350
vector products of coordinate unit vec-

tors, 353
vector, addition, 303
vector, represented as its length times

a unit vector, 302

vector-space
G
= Vektor-Raum, 326

vectorial component, 329
vectorial components, 332

vectorial variable
G
= Vektorvariable =

vektorwertige Variable, 306
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vectors depending on a scalar variable,
323

Vektor-Raum
E
= vector-space, 326

Vektorvariable = vektorwertige Vari-

able
E
= vectorial variable, 306

velocity
G
= Geschwindigkeit, 123

velocity as a vector, 323
velocity as the derivative with respect

to t, 169
velocity of circular motion, 377
velocity of light, 118

Verabredung
E
= convention, 41

Vereinigungsmenge
E
= union of sets,

100
Verhältnis

E
= ratio, 33

Vermutung
E
= guess, 125

verschieben
E
= shifted, 58

Verschiebung
E
= displacement, 316

Verschiebung, Verrückung
E
= displace-

ment, 154

verschwinden
E
= vanish, 80

vertauschen
E
= interchange, 38

verteilen
E
= distributing, 76

vertices
G
= Scheitel, 54

vieldeutig
E
= ambiguous, 197

vieldeutig
E
= multivalued, 15

Vieleck
E
= polygons, 37

vineyard: picture, 23
visualization of vector fields, 325

vollwertig
E
= fully-fledged, 237

volume
hyperparallelepipedon, 355
orientation of, 364
parallelepipedon, 355

volume expressed by a wedge product,
364

Voraussage
E
= guess, 178

Vorbehalte
E
= provisos, 116

Vorbereitung
E
= preliminary, 251

Vorfaktor
E
= prefactor, 69

vorhergehend
E
= previous, 59

Vorrat
E
= stock, 326

Vorzeichen
E
= sign, 5

Wachstumsgleichung
E
= growth equa-

tion, 278

Wachstumskonstante
E
= growth-

constant, 69

Wahrscheinlichkeit
E
= probability, 90

Wasserstoff
E
= hydrogen, 118

Wasserstoffatom
E
= hydrogen atom,

119
wedge

G
= Keil, 364

wedge product
G
= Spatprodukt, 364

wedge product and determinants, 365
wedge shaped minerals, 364

Wendepunkt
E
= flex-point, 189

Wendepunkte
E
= flex-points, 214

Wert
E
= value, 13

Wertebereich
E
= range, 14, 214

widerlegt
E
= refuted, 116

willkürlich
E
= arbitrarily, 15

willkürlichen
E
= arbitrary, 264

Winkelböglein
E
= arc-arrow, 6

Winkelgeschwindigkeit
E
= angular ve-

locity, 32, 380

Winkelgeschwindigkeitsvektor
E
= an-

gular velocity vector, 360

Winkelhalbierende
E
= bisection of an-

gles, 16

Winkelhalbierende
E
= bisectrix of the

angle, 38

Winkelhalbierende
E
= half angle line,

246
Wippe, Schaukel

E
= see-saw, 264

wire
G
= Draht, 18

Wirkungslinie
E
= line of action, 322

Wirtschaftswissenschaftler
E
=

economist, 190

Würfel
E
= cube, 71, 253

Wurzel, Approximationen, 83
Wurzel, Potenzreihen, 83

XOR = exclusive OR, 338

Z, 13, integers101

Zahlengerade
E
= real axis, 110

Zähler
E
= numerator, 231
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Zähler
E
= denominator, 106

Zehner-Logarithmus
E
= decimal loga-

rithm, 93
Zeiger as complex numbers, 397

Zeilen
E
= rows, 77

Zeit-Spanne
E
= lapse, 96

Zeitverschiebung
E
= time-lag, 27

Zentralkraft
E
= central force, 390

Zentralsymmetrie
E
= central-

symmetry, 359

Zentriwinkel
E
= centriangle, 2

Zerfallskonstante
E
= decay-constant, 69

Zerfall
E
= decay, 96

zerfallende, abnehmende
E
= decaying,

170
Zerfallsgleichung

E
= decay-equation,

278
Zerfallskonstante

E
= decay-constant,

278
zero crossing

G
= Nulldurchgang, 40

zero-passage
G
= Nulldurchgang, 26

zeroes
G
= Nullstellen, 13

zeroes of sin, 13

zerquetschen
E
= squashing, 225

zerreißen
E
= tearing, 225

Zirkel
E
= compass, 53, 309

Zufall
E
= coincidence, 89

zufällige Fehler
E
= random errors, 180

Zuordnung
E
= allocation, 15

zur Verfügung stehend
E
= available, 175

zusammengefallen
E
= coalesced, 393

Zusammensetzung von Funktionen
E
=

composition of functions, 38

Zuwächse
E
= increments, 154

Zwangskraft
E
= coercion force, 387

zweideutig
E
= ambiguous, 93

Zweideutigkeit
E
= ambiguity, 302

Zweier-Logarithmus
E
= dual logarithm,

93


