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A limiter based on kinetic theory ∗

Mapundi K. Banda† Michael Junk‡ Axel Klar†

Abstract

In the present paper the low Mach number limit of kinetic equations
is used to develop a discretization for the incompressible Euler equation.
The kinetic equation is discretized with a first and second order discretiza-
tion in space. The discretized equation is then considered in the limit of
low Mach and Knudsen number which gives rise to an interesting limiter
for the convective part in the incompressible Euler equation. Numerical
experiments are shown comparing different approaches.

Keywords. kinetic equations, asymptotic analysis, low Mach number limit,
second order upwind discretization, slope limiter, incompressible Euler equation

1 Introduction

Kinetic equations or discrete velocity models of kinetic equations yield in the
limit of small Knudsen and Mach numbers an approximation of macroscopic
equations like the incompressible Euler or Navier Stokes equations. Hence,
discretizations of kinetic models can be used in combination with the limiting
procedures to develop discretizations for the corresponding macroscopic limit
equation. For variants of this general approach, we refer to [16, 15, 4, 5, 11]
for kinetic schemes, [7, 2, 9, 6] for Lattice-Boltzmann methods, and [10, 13] for
relaxation schemes for diffusive limits.
In the present paper we start by recalling the scaling of kinetic equations which
leads to the incompressible Euler equation. Then, a natural discretization of
the kinetic equation is used to obtain in the limit a second order slope limiting
procedure for the convective term of the Euler equation. This slope limiter has
interesting algebraic properties like reflection and rotation invariance.
The paper is organized as follows: section 2 contains a short description of the
results of the asymptotic analysis leading from kinetic equations to the incom-
pressible Euler equation. In section 3 the asymptotic procedure is performed
for the discretized kinetic equations and a general limit discretization for the
incompressible Euler equation is derived. In section 4 we concentrate on the
derivation of the discretization of the convective part. A first and second order
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upwind discretization for the limit equation are presented. Whereas the first
order discretization is standard, the second order discretization includes a mul-
tidimensional slope limiting procedure which is analyzed further in section 5.
Finally, the new slope limiter is tested in several examples.

2 Kinetic equations and the incompressible Euler

equation

The incompressible Euler equation

∂tu+ u · ∇u+ ∇xp = 0, div xu = 0 (2.1)

can be formally obtained as scaling limit of a Boltzmann type kinetic equation
(see [1, 3, 17])

∂tf + v · ∇xf = J(f). (2.2)

Here, f = f(x, v, t) is a phase space density which we consider, for simplicity,
in the two dimensional case x = (x1, x2) ∈ R

2, v = (v1, v2) ∈ R
2. We will

not specify the complete structure of the collision operator J(f). Only those
properties which are important in the Euler limit will be listed below.
We follow the approach in [1] and use the scaled kinetic equation

∂tf +
1

ε
v · ∇xf =

1

εq+1
J(f) (2.3)

with q > 1. Furthermore, we assume that f is only a small perturbation of the
Maxwellian velocity distribution M

M(v) =
1

2π
exp

(

−|v|2
2

)

, v ∈ R
2.

Our precise assumption on the structure of f is

f = M(1 + εgε). (2.4)

In the next section, the formal asymptotic analysis is carried out in a slightly
more general situation where (2.3) is modified by adding a diffusive termDh(v)f
and replacing ∇x with an approximation ∇h

x.
Let us now list some properties of J which will be needed for the analysis. First
(2.4) is inserted into (2.3) using a Taylor expansion of J(M + εMgε). We have

1

M
J(M + εMgε) = εLgε +

1

2
ε2Q(gε, gε) + ε3R(gε) (2.5)

where L involves the first and Q the second Frechet derivative of J at the point
M (see [1] for details). The exact structure of the remainder R is not relevant
in the limit. Note that the zero order term in (2.5) drops out because of the
equilibrium condition

J(M) = 0. (2.6)
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Another important assumption is that the collision invariants of J are the func-
tions 1, v1, v2 (for simplicity, we consider isothermal flows and suppress the
energy equation with corresponding collision invariant |v|2), which means in
terms of the weighted L

2 scalar product 〈g, h〉 =
∫

R2 ghM dv

〈

1

M
J(f), ψ

〉

= 0, ψ ∈ {1, v1, v2}. (2.7)

Note that (2.7) implies together with (2.5) that also

〈Lgε, ψ〉 = 〈Q(gε, gε), ψ〉 = 〈R(gε), ψ〉 = 0 (2.8)

for all collision invariants ψ. Important assumptions on the operator L are

1) L is selfadjoint with respect to 〈·, ·〉.

2) L satisfies a Fredholm alternative with a three dimensional kernel spanned
by the collision invariants.

Finally, we need a property of Q which is a direct consequence of the relation

Q(h, h) = −Lh2 for h = α+ β · v (2.9)

(see [1] for the derivation). Using the fact that 1, v1, v2 are in the kernel of L,
we conclude

−Q(h, h) = βiβjL(vivj). (2.10)

For convenience, we list some moments of the standard Maxwellian which will
be frequently used later

〈1, 1〉 = 1, 〈1, vi〉 = 0, 〈vi, vj〉 = δij

〈vivj, vk〉 = 0, 〈vivj , vkvl〉 = δijδkl + δikδjl + δjkδil.
(2.11)

3 The discretized kinetic equation and derivation of

macroscopic discretization

We start with the kinetic equation (2.2) which is discretized using the method
of lines

∂tf + v · ∇h
xf −Dh(v)f = J(f).

In this section, we only assume that ∇h
x = (∂h

x1
, ∂h

x2) and Dh(v) are linear oper-
ators, that ∇h

x is independent of v, and that the components of ∇h
x commute. In

the next section we choose ∂h
xi

as central difference approximations and Dh(v)
as numerical viscosity term.
As in the previous section, we introduce a scaled version of the kinetic equation
(with q > 1)

∂tf +
1

ε
v · ∇h

xf −Dh(v)f =
1

εq+1
J(f).

With the expansion (2.4) and (2.5), we then get

∂tgε +
1

ε
v · ∇h

xgε −Dh(v)gε =
1

εq+1
Lgε +

1

2εq
Q(gε, gε) +

1

εq−1
R(gε). (3.1)
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In our formal analysis, we will assume that gε converges in a suitable sense for
ε→ 0 to some function g0 and that all relevant operations behave continuously
for that particular sequence. Moreover, terms which are formally of order ε
are assumed to vanish in the limit (see [1] for a more detailed investigation).
Upon multiplying (3.1) with εq+1 we thus find that Lg0 = limε→0 Lgε = 0 which
shows that g0 ∈ kerL, i.e.

g0(v) = ρ+ u · v, ρ ∈ R, u ∈ R
2 (3.2)

with parameters ρ, u which are yet undetermined. In order to get more informa-
tion about these parameters, we consider the mass and momentum conservation
equation related to (3.1) which are obtained by multiplying (3.1) with M and
Mv and integrating over v

∂t 〈gε, 1〉 +
1

ε

〈

v · ∇h
xgε, 1

〉

− 〈Dh(v)gε, 1〉 = 0, (3.3)

∂t 〈gε, v〉 +
1

ε

〈

v · ∇h
xgε, v

〉

− 〈Dh(v)gε, v〉 = 0. (3.4)

Multiplying the equations by ε and letting ε tend to zero, we conclude

〈

v · ∇h
xg0, 1

〉

= 0,
〈

v · ∇h
xg0, vi

〉

= 0. (3.5)

Using (3.2), the first condition can be reformulated

0 = ∂h
xi
〈g0, vi〉 = ∂h

xi
〈ρ+ vjuj , vi〉

= 〈1, vi〉 ∂h
xi
ρ+ 〈vj, vi〉 ∂h

xi
uj = ∂h

xi
ui = : div h

xu

where we have used moment relations from (2.11). Similarly, we find

0 = ∂h
xj

〈vjg0, vi〉 = 〈vj, vi〉 ∂h
xi
ρ+ 〈vjvk, vi〉 ∂h

xi
uk = ∂h

xi
ρ

so that (3.5) implies
div h

xu = 0, ∇h
xρ = 0 (3.6)

which has to be satisfied by the parameters ρ, u in (3.2). Since ρ is essentially
determined by the condition ∇h

xρ = 0, it remains to find the time evolution of
u. First, we rewrite the second term in (3.4) as

1

ε

〈

v · ∇h
xgε, vj

〉

=
1

ε
∂h

xi
〈gε, vivj〉 =

1

ε
∂h

xi
〈gε, vivj − δij〉 +

1

ε
∂h

xj
〈gε, 1〉 .

Since ∂h
xj

〈gε, 1〉 → ∂h
xj
ρ = 0 for ε → 0, we can assume that ∂h

xj
〈gε, 1〉 /ε con-

verges to ∂h
xj
ρ1 if we think of an expansion gε = g0 + εg1 + . . . with corre-

sponding 〈gε, 1〉 = ρ + ερ1 + . . . . Secondly, the function vivj − δij is orthogo-
nal to the kernel of L (which is easily checked with relations (2.11)). Hence,
vivj − δij = LL−1(vivj − δij) and

1

ε
〈gε, vivj − δij〉 =

1

ε

〈

Lgε, L
−1(vivj − δij)

〉

.
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Using (3.1) after multiplication with εq, we find

lim
ε→0

1

ε
〈gε, vivj − δij〉 = −1

2

〈

Q(g, g), L−1(vivj − δij)
〉

so that (2.10) implies

lim
ε→0

1

ε
〈gε, vivj − δij〉 =

ukul

2

〈

L(vkvl), L
−1(vivj − δij)

〉

=
ukul

2
〈vkvl, vivj − δij〉 .

In view of (2.11), we conclude

lim
ε→0

∂h
xi

1

ε
〈gε, vivj〉 = ∂h

xj
ρ1 + ∂h

xi
(uiuj).

Hence, in the limit ε→ 0, equation (3.4) turns into

∂tuj + ∂h
xi

(uiuj) − 〈Dh(v)g0, vj〉 + ∂h
xj
ρ1 = 0, div h

xu = 0. (3.7)

Note that (3.7) reduces to the incompressible Euler equation (2.1) if we choose
∇h

x = ∇x and Dh(v) = 0. Obviously, ρ1 takes the role of the pressure and
∂h

xi
(uiuj) − 〈Dh(v)g0, vj〉 gives a discretization of the convective terms.

4 First and second order upwind schemes

To find expressions for ∇h
x and the numerical viscosity Dh(v) we consider the

linear transport part of the kinetic equation in two dimensions:

v · ∇xf = v1∂x1f + v2∂x2f. (4.1)

A first order discretization is given by

v1∂
h
x1
f + v2∂

h
x2
f − c1h

2
∂2,h

x1
f − c2h

2
∂2,h

x2
f (4.2)

with positive constants c1, c2 and

(∂h
x1
f)ij =

1

2h
(fi+1j − fi−1j), (∂2,h

x1
f)ij =

1

h2
(fi+1j − 2fij + fi−1j),

(∂h
x2
f)ij =

1

2h
(fij+1 − fij−1), (∂2,h

x2
f)ij =

1

h2
(fij+1 − 2fij + fij−1).

In view of (4.2), we define

Dh(v)f =

(

c1
h

2
∂2,h

x1
f + c2

h

2
∂2,h

x2
f

)

and obtain

Dh(v)g0 = c1∂
2,h
x1
ρ
h

2
+ c2∂

2,h
x2
ρ
h

2
+ c1∂

2,h
x1
ui
hvi

2
+ c2∂

2,h
x2
ui
hvi

2
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which yields with (2.11) the required expressions in (3.7)

〈Dh(v)g0, v〉 =
h

2

(

c1∂
2,h
x1 u+ c2∂

2,h
x2 u

)

.

We may choose c1 and c2 constant proportional to the maximal flow velocity:

c1 = maxij{|2(u1)ij |}, c2 = maxij{|2(u2)ij|}.

Alternatively the local flow velocity can be used:

c1(i, j) = max{|2(u1)i+1j |, |2(u1)i−1j |}, c2(i, j) = max{|2(u2)ij+1|, |2(u2)ij−1|}

giving rise to the expression

〈Dh(v)g0, v〉ij =
h

2

(

c1(i, j)(∂
2,h
x1
u)ij + c2(i, j)(∂

2,h
x2
u)ij

)

(4.3)

Note that (4.3) has the usual form of the numerical viscosity related to an
upwind discretization of divu⊗ u which is first order accurate.
A second order discretization of (4.1) is obtained by slope limiting

(v · ∇h
xf)ij−

[c1(i, j)

2h

(

(1 − ϕi+ 1
2
j)∆i+ 1

2
jf − (1 − ϕi− 1

2
j)∆i− 1

2
jf

)

+
c2(i, j)

2h

(

(1 − ϕij+ 1
2
)∆ij+ 1

2
f − (1 − ϕij− 1

2
)∆ij− 1

2
f
)]

(4.4)

where ∇h
x are again central differences, the f increments are defined by

∆i+ 1
2
jf = fi+1j − fij, ∆ij+ 1

2
f = fij+1 − fij,

and

ϕi+ 1
2
j = ϕ(ri+ 1

2
j), ri+ 1

2
j = ∆i− 1

2
jf/∆i+ 1

2
jf,

ϕij+ 1
2

= ϕ(rij+ 1
2
), rij+ 1

2
= ∆ij− 1

2
f/∆ij+ 1

2
f,

with ϕ(r) = max{0,min{r, 1}} being the minmod limiter. Using the definition
of ϕ, one can write expressions like (1 − ϕi+ 1

2
j)∆i+ 1

2
jf as φ(∆i− 1

2
jf,∆i+ 1

2
jf)

where φ is a continuous, piecewise linear function on R
2 defined according to

figure 1. Extracting the viscosity term in (4.4), we get

Dh(v)fij =
c1(i, j)

2h

(

φ(∆i− 1
2
jf,∆i+ 1

2
jf) − φ(∆i− 3

2
jf,∆i− 1

2
jf)

)

+
c2(i, j)

2h

(

φ(∆ij− 1
2
f,∆ij+ 1

2
f) − φ(∆ij− 3

2
f,∆ij− 1

2
f)

)]

In order to calculate 〈Dh(v)g0, vj〉, we note that

∆i+ 1
2
jg0 = (∆i+ 1

2
ju) · v

because ρ satisfies ∇h
xρ = 0. Hence, a typical term appearing in 〈Dh(v)g0, v〉

has the form

L(δ1, δ2) = 〈φ(δ1 · v, δ2 · v), v〉 δ1, δ2 ∈ R
2 (4.5)
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Figure 1: Piecewise linear definition of φ(x, y) in the sets S0, S1, S2

and we find the numerical viscosity for the second order discretization

〈Dh(v)g0, v〉ij =
c1(i, j)

2h

(

L(∆i− 1
2
ju,∆i+ 1

2
ju) − L(∆i− 3

2
ju,∆i− 1

2
ju)

)

+
c2(i, j)

2h

(

L(∆ij− 1
2
u,∆ij+ 1

2
u) − L(∆ij− 3

2
u,∆ij− 1

2
u)

)]

.

We remark that row-wise application of the minmod limiter in the discretization
of divu⊗u gives rise to a numerical viscosity of the same form with L replaced
by L̂, where

L̂(δ1, δ2) =

(

φ(δ11, δ21)
φ(δ12, δ22)

)

, δi =

(

δi1
δi2

)

. (4.6)

In the next section, we study properties of the function L and compare it to
the row-wise minmod limiter L̂.

5 The kinetic limiter

Introducing the linear map

T =

(

δ11 δ12
δ21 δ22

)

we can rewrite (4.5) as L(δ1, δ2) = 〈φ(Tv), v〉. Note that φ is linear in each
of the convex sets S0, S1, S2 (see figure 1). With the unit vectors e1 = (1, 0),
e2 = (0, 1) and

S(a, b) = S+(a, b) ∪ S−(a, b), S±(a, b) = {±(λ1a+ λ2b) : λ1, λ2 ≥ 0},

we can describe these sets as

S0 = S(e1, e1 + e2), S1 = (e1 + e2, e2), S2 = S(e2,−e1).

Assuming that T is invertible, we conclude that φ ◦ T is linear on each of the
sets Ŝi = T−1Si. Since S(a, b) = cS(a, b) for all c 6= 0, we have Ŝi = T̂ (Si)
where

T̂ = (det T )T−1 =

(

δ22 −δ12
−δ21 δ11

)

=
(

−δ⊥2 δ⊥1
)

.

7
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Figure 2: Angles α, β characterizing the cone S+(a, b)

Hence,

Ŝ0 = S(−δ⊥2 , δ⊥1 − δ⊥2 ), Ŝ1 = S(δ⊥1 − δ⊥2 , δ
⊥
1 ), Ŝ2 = S(δ⊥1 , δ

⊥
2 ).

Taking into account that φ vanishes on S0, we find

〈φ(Tv), v〉 =

∫

Ŝ1

(δ2 · v − δ1 · v)vM(v) dv +

∫

Ŝ2

(δ2 · v)vM(v) dv

or with the help of the matrix valued function

I(a, b) =

∫

S(a,b)
v ⊗ vM(v) dv (5.7)

that
L(δ1, δ2) = I(δ⊥1 − δ⊥2 , δ

⊥
1 )(δ2 − δ1) + I(δ⊥1 , δ

⊥
2 )δ2. (5.8)

Next, we derive an explicit formula for the function I. Using the symmetry of
M(v) and v ⊗ v, we find

I(a, b) = 2

∫

S+(a,b)
v ⊗ vM(v) dv.

To parameterize the cone S+(a, b) which has some opening angle 0 < β < π
around the ray in direction α (see figure 2), we go over to polar coordinates and
find

I(a, b) = 2

∫ α+β/2

α−β/2

(

cos2 ψ sinψ cosψ
sinψ cosψ sin2 ψ

)

dψ

∫ ∞

0

r2

2π
e−

r2

2 r dr.

After some straight forward calculations we get

I(a, b) =
1

π

(

β + sinβ

(

cos(2α) sin(2α)
sin(2α) − cos(2α)

))

.

8
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In terms of a, b, the angles α and β are given by

α = ^

(

a

|a| +
b

|b| , e1
)

, β = ^(a, b).

We remark that an efficient implementation of (5.8) requires the evaluation of
scalar products and square roots and only one arccos call per evaluation of I
to find the angle β.
Up to now, we have assumed that the arguments δ1, δ2 of L are linearly inde-
pendent. If this is not the case, one can either slightly modify δ1, δ2 in order to
make them independent (note that L is continuous), or one can use the relation

L(γ1e, γ2e) = φ(γ1, γ2)e, γ1, γ2 ∈ R, e ∈ R
2. (5.9)

To prove (5.9), we go back to (4.5) which yields together with the homogeneity
of φ and (2.11)

L(γ1e, γ2e) = 〈φ(γ1, γ2)(e · v), v〉 = φ(γ1, γ2) 〈1, v ⊗ v〉 e = φ(γ1, γ2)e.

Note that we also have

L̂(γ1e, γ2e) =

(

φ(γ1e1, γ2e1)
φ(γ1e2, γ2e2)

)

= φ(γ1, γ2)

(

e1
e2

)

= L(γ1e, γ2e)

so that the standard minmod limiter L̂ coincides with L in the case of linearly
dependent arguments. We summarize our results in the following Lemma.

Lemma 5.1 Let δ1, δ2 ∈ R
2. If δ1, δ2 are linearly dependent, i.e. δi = γie for

some e ∈ R
2, γi ∈ R, then L(γ1e, γ2e) = φ(γ1, γ2)e. If δ1, δ2 are independent,

then
L(δ1, δ2) = I(δ⊥1 − δ⊥2 , δ

⊥
1 )(δ2 − δ1) + I(δ⊥1 , δ

⊥
2 )δ2

where (e1, e2)
⊥ = (e2,−e1),

I(a, b) =

∫

S(a,b)
v ⊗ vM(v) dv, a, b ∈ R

2,

and S(a, b) = {λ1a+ λ2b : λ1, λ2 ∈ R}.

Using the representation of L, we can deduce the following symmetry properties:

Proposition 5.2 Let δ1, δ2 ∈ R
2. Then, for any λ ∈ R, we have L(λδ1, λδ2) =

λL(δ1, δ2). If B ∈ R
2×2 is any rotation or reflection matrix, then L(Bδ1, Bδ2) =

BL(δ1, δ2). If δ1 = δ2 then L(δ1, δ2) = 0 (no limiting).

Proof: Using (4.5) and the homogeneity of φ, the relation L(λδ1, λδ2) =
λL(δ1, δ2) follows at once. Also, in the case of linearly dependent vectors δ1, δ2,
we get

L(B(γ1e), B(γ2e)) = φ(γ1, γ2)Be = BL(γ1e, γ2e)

which is even true for any matrix B ∈ R
2×2. Let us therefore assume that δ1, δ2

are linearly independent. Since BT = B−1 for reflections and rotations, we

9
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conclude that also Bδi are independent and we can use relation (5.8). we first
investigate the function I. Applying the change of variables v = B−1w = BTw
in (5.7), we have in view of |detB| = 1

I(a, b) =

∫

S(a,b)
v ⊗ vM(v) dv =

∫

BS(a,b)
(BTw) ⊗ (BTw)M(BTw) dw.

Since B is an isometry, we find |Btw| = |w| so that M(BTw) = B(w). Due to
the definition of S(a, b) we also get BS(a, b) = S(Ba,Bb) and finally

(BTw) ⊗ (BTw)e =
(

(BTw) · e
)

BTw = B−1 (w · (Be))w = B−1(w ⊗ w)e

implies together with the other remarks that

BI(a, b) = I(Ba,Bb)B. (5.10)

Writing the ⊥-operation in terms of a matrix A

e⊥ = Ae =

(

0 1
−1 0

)

e,

it is easy to check that A commutes with all rotation matrices (in fact, A itself is
a rotation matrix and rotations commute in 2D). For a reflection matrix B, we
find, on the other hand, AB = −BA. Using the relation S(−a,−b) = S(a, b),
we thus have

I((Ba)⊥, (Bb)⊥) = I(Ba⊥, Bb⊥). (5.11)

Combining (5.10) and (5.11), we conclude L(Bδ1, Bδ2) = BL(δ1, δ2). Finally,
in the case δ1 = δ2) we have L(δ1, δ2) = φ(1, 1)δ1 = 0 because φ(1, 1) = 0.

We conclude with the remark that the row-wise minmod limiter L̂ defined
in (4.6) also has the homogeneity property and coincides with L for linearly
dependent arguments. The rotation and reflection invariance, however, is not
shared by L̂ as is easily checked with the rotation and reflection matrices

B1 =
1

2

(
√

3 1

−1
√

3

)

, B2 =
1

5

(

−3 4
4 3

)

.

6 Numerical results

Since the new feature in the discretization of the incompressible Euler equation
is the limiter L for the convective term, we separate effects and just study
the behavior of the nonlinear part. As first test case, we take the stationary
equation

∇x(u⊗ u) = 0 + boundary conditions

and compare the scheme based on L with the second order scheme described
in [14]. The test example is taken from [8]: Consider (x1, x2) in [0, 1]2. The
domain of computation is divided into two subdomains which give a step profile
as sketched below.

10
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Boundary values are chosen according to the respective domain. The solution
domain is discretized using a 41 × 41 regular mesh for different flow angles θ.
The resulting nonlinear system is solved by a GMRES-based solver described
by Kelley [12]. The results are plotted in the following figures. They show
the computed profile at the line x1 = 1

2 for both the velocity components u1

and u2. In the figures we make a comparison of the first order kinetic method
(which is equivalent to the usual upwind method), the second order approach by
Kurganov and Tadmor [14] and the kinetic minmod approach developed here.
We always use the local flow velocity to determine c1 and c2.
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Obviously, all methods coincide within plotting accuracy. The reason for this
behavior is probably related to the fact that the solution is constant in large
subregions so that velocities u in neighboring cells are linearly dependent. As we
have seen in the previous section, at least the kinetic and the row-wise minmod
approach coincide in this situation.
In our second example, we therefore study a problem with a solution that
exhibits a more complicated structure. We consider the Cauchy problem for
the pressure-less Euler equation in the unit square with periodic boundary
conditions

∂tu+ div xu⊗ u = 0, u(0, x) = u0(x).

The initial condition is piecewise constant with velocity directions as shown in
figure 3. The speed is zero in the corner cells,

√
2 in the center, and one in the

remaining cells. Because of the strong diagonal movement, the solution develops
a jet-like structure (see figure 4 for isolines of |u| at time t = 0.5 obtained on a
fine grid). For a 50 × 50 grid, we compare the standard minmod limiter with
the new kinetic limiter by considering the solution |u| along several y-sections.
Note that, due to symmetry of the solution, similar results are obtained for
x-sections. Both algorithms are used with a second order Runge Kutta time
discretization and a CFL number 0.5 based on the maximal velocity. Because
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Figure 3: Initial condition
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Figure 5: |u| at y = 0.12
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Figure 6: |u| at y = 0.52

of its complexity, the kinetic limiter requires more computational time than
the minmod approach. However, the factor two for the increase in runtime
is still moderate (since a corresponding three dimensional approach has not
been implemented, we do not know the increase in computational complexity
in that case). In many of the y-sections, the two results are almost identical (see
figure 5 and 7) but in general, the kinetic limiter (solid line without symbols)
yields higher extrema. In figure 8, the ratio of the maxima of |u| in each
y-section is shown. Typically, the maxima obtained with the kinetic limiter
exceed those of the minmod limiter by 2%. In other words, the kinetic limiter
better works out the details of the solution. One can also see from the results
that, at certain points, the kinetic limiter is considerably less diffusive than the
minmod approach (see figure 6).
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Figure 7: |u| at y = 0.6
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Conclusion

Starting from special discretizations of the Boltzmann equation we have ob-
tained corresponding discretizations of the incompressible Euler equation in the
limit of low Mach and Knudsen numbers. In particular, a second order slope
limiting approach on the kinetic level gives rise to a limiter for the nonlinear
term in the Euler equation which exhibits an interesting structure. From simple
numerical tests one can conclude that the new scheme yields results which are
comparable or better than those obtained by other second order methods. A
test of the new limiter in more complicated flow situations with strongly locally
varying velocity fields is in preparation.
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