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Kinetic derivation of a finite difference scheme for the

incompressible Navier Stokes equation ∗

Mapundi K. Banda† Michael Junk‡ Axel Klar†

Abstract

In the present paper the low Mach number limit of kinetic equations
is used to develop a discretization for the incompressible Navier-Stokes
equation. The kinetic equation is discretized with a first and second order
discretization in space. The discretized equation is then considered in the
low Mach number limit. Using this limit a second order discretization
for the convective part in the incompressible Navier Stokes equation is ob-
tained. Numerical experiments are shown comparing different approaches.

Keywords. kinetic equations, asymptotic analysis, low Mach number limit,
second order upwind discretization, slope limiter, incompressible Navier-Stokes
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1 Introduction

Kinetic equations or discrete velocity models of kinetic equations yield in the
limit for small Knudsen or Mach numbers an approximation of macroscopic
equations like the Euler or incompressible Navier Stokes equation. Discretiza-
tions of kinetic models are often used in combination with the above limiting
procedures to develop discretizations for the corresponding macroscopic limit
equation.
We consider first the Euler or hydrodynamic limit: As a first example of the
above approach we mention the Kinetic Schemes. A simple kinetic relaxation
model with a so called BGK operator is discretized. In the limit a scheme for
the hyperbolic limit equation is obtained. There is a large amount of literature
on the subject, examples can be found in [21, 20, 6, 7, 15].
A second example is given by the relaxation schemes developed in [14]. Based
on a simplified kinetic model efficient second order upwind discretizations for
the Euler equation are developed. For further examples and related schemes,
see [3, 19, 12, 18].
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As already mentioned, another scaling - the diffusive scaling - gives in the
limit the incompressible Navier Stokes equation. Again kinetic models - usually
based on a small number of velocities - are discretized and investigated in the
incompressible Navier Stokes limit.
A well known example are the Lattice-Boltzmann methods, see [9, 4, 11, 8].
Also relaxation schemes for diffusive limits have been developed for example in
[13, 17]. See also [18, 1] for related schemes for the limit equations.
In the present paper we start by recalling the diffusive scaling of kinetic equa-
tions, leading to the incompressible Navier Stokes equation. Then, a natural
discretization of the kinetic equation is used to obtain in the limit a second
order slope limiting procedure for the convective term of the Navier Stokes
equation. For the slope limiting procedure the behavior of the solution in all
spatial directions is important not only along the values of the solution along
the coordinate axis.
The paper is organized as follows: Section 2 contains a short description of
the results of the asymptotic analysis leading from kinetic equations to the
incompressible Navier Stokes equation. In section 3 the asymptotic procedure is
performed for the discretized kinetic equations and a general limit discretization
for the incompressible Navier Stokes equation is derived. In 4 we concentrate on
the derivation of the discretization of the convective part. A first and second
order upwind discretization for the limit equation is derived. Whereas the
first order discretization is standard, the second order discretization includes a
multidimensional slope limiting procedure.

2 Kinetic Equations and the Incompressible Navier

Stokes Equation

The incompressible Navier Stokes equation

∂tu+ u · ∇u+ ∇xp = µ∆xu, div xu = 0 (2.1)

is a reasonable model to describe the large scale and long time behavior of a
slowly flowing isothermal gas. We will use the fact that (2.1) can be formally
obtained as scaling limit of a Boltzmann type kinetic equation

∂tf + v · ∇xf = J(f). (2.2)

Here, f = f(x, v, t) is the phase space density of the gas atoms which we
consider, for simplicity, in the two dimensional case x = (x1, x2) ∈ R

2, v =
(v1, v2) ∈ R

2. We will not specify the complete structure of the collision opera-
tor J(f). Only those properties which are important in the Navier Stokes limit
will be listed below.
Using the diffusive space-time scaling x 7→ x/ε, and t 7→ t/ε2, the restriction to
large scale and long time behavior is incorporated. We find the scaled kinetic
equation

∂tf +
1

ε
v · ∇xf =

1

ε2
J(f). (2.3)
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The assumption of very slow, isothermal flows which exhibit only small density
variations is then taken care of by assuming that f is only a small perturbation
of the Maxwellian velocity distribution M

M(v) =
1

2π
exp

(

−
|v|2

2

)

, v ∈ R
2

which corresponds to the constant state: density one, velocity zero, and tem-
perature one. Our precise assumption on the structure of f is

f = M(1 + εg), g = g0 + εg1 + ε2g2 + . . . . (2.4)

The scaled equation (2.3) together with (2.4) is the standard perturbation pro-
cedure to obtain (2.1) as limiting problem (see [2, 5, 22]). In the next section,
we demonstrate this procedure in a slightly more general situation where (2.3)
is modified by adding a diffusive term Dh(v)f and replacing ∇x with an ap-
proximation ∇h

x.
Let us now list some properties of J which will be needed for the analysis:
if (2.4) is inserted into (2.3) we need a Taylor expansion of J(M + εMg) to
compare terms of equal order in ε. We have

1

M
J(M + εMg) = εLg +

1

2
ε2Q(g, g) + ε3R(g) (2.5)

where L involves the first and Q the second Frechet derivative of J at the point
M (see [2] for details). The exact structure of the remainder R is not relevant
in the limit. Note that the zero order term in (2.5) drops out because of the
assumed equilibrium condition

J(M) = 0. (2.6)

Another important assumption is that the collision invariants of J are the func-
tions 1, v1, v2 (in isothermal flows |v|2 is not a collision invariant), which means
in terms of the weighted L

2 scalar product 〈g, h〉 =
∫

R2 ghM dv

〈

1

M
J(f), ψ

〉

= 0, ψ ∈ {1, v1, v2}. (2.7)

Note that (2.7) implies together with (2.5) that also

〈Lg, ψ〉 = 〈Q(g, g), ψ〉 = 〈R(g), ψ〉 = 0 (2.8)

for all collision invariants ψ. Important assumptions on the operator L are

1) L is selfadjoint with respect to 〈·, ·〉 and 〈Lh, h〉 ≤ 0.

2) L satisfies a Fredholm alternative with a three dimensional kernel spanned
by the collision invariants (we denote the pseudo inverse of L by L†, i.e.
L†L is the orthogonal projection onto (kerL)⊥).
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Additionally, with µ, λ > 0

〈

L†(vkvl), vi

〉

= 0,
〈

L†(vkvl), vivj

〉

= −λδklδij − µ(δikδjl + δilδjk), (2.9)

which would be a consequence of invariance of J under certain coordinate trans-
formations in the velocity space as well as L being self adjoint and semi definite.
Finally, we need a property of Q which is a direct consequence of the relation

Q(h, h) = −Lh2 for h = α+ β · v (2.10)

(see [2] for the derivation). Using the fact that 1, v1, v2 are in the kernel of L
and that L†L is the projection onto (kerL)⊥, we conclude

−L†Q(h, h) = βiβjL
†L(vivj) = βiβj(vivj − δij). (2.11)

The projection has been calculated with the usual Schmidt procedure which re-
quires the scalar products 〈1, vivj〉 and 〈vk, vivj〉. Such moments of the standard
Maxwellian will be frequently used later and we list them here for convenience

〈1, 1〉 = 1, 〈1, vi〉 = 0, 〈vi, vj〉 = δij

〈vivj, vk〉 = 1, 〈vivj , vkvl〉 = δijδkl + δikδjl + δjkδil.
(2.12)

3 The discretized kinetic equation and derivation of

macroscopic discretization

We start with the kinetic equation (2.2) which is discretized using the method
of lines

∂tf + v · ∇h
xf −Dh(v)f = J(f).

In this section, we only assume that ∇h
x = (∂h

x1
, ∂h

x2) and Dh(v) are linear oper-
ators, that ∇h

x is independent of v, and that the components of ∇h
x commute. In

the next section we choose ∂h
xi

as central difference approximations and Dh(v)
as numerical viscosity term.
Introducing the diffusive scaling as in the previous section and rescaling Dh(v)f
according to ε2Dh(v)f , we find

∂tf +
1

ε
v · ∇h

xf −Dh(v)f =
1

ε2
J(f).

With the expansion (2.4) and (2.5), we then get

∂tg +
1

ε
v · ∇h

xg −Dh(v)g =
1

ε2
Lg +

1

2ε
Q(g, g) +R(g).

and the regular expansion g = g0 + εg1 + ε2g2 + . . . leads to

∂tg +
1

ε
v · ∇h

xg −Dh(v)g

=
1

ε2
Lg0 +

1

ε

(

Lg1 + 1
2Q(g0, g0)

)

+
(

Lg2 +Q(g0, g1) +R(g0)
)

+ O(ε) (3.1)
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In lowest order ε−2 we immediately find Lg0 = 0 so that g0 ∈ kerL, i.e.

g0(v) = ρ+ u · v, ρ ∈ R, u ∈ R
2 (3.2)

with parameters ρ, u which are yet undetermined. In order ε−1, we have

v · ∇h
xg0 = Lg1 + 1

2Q(g0, g0) (3.3)

and with (2.8) we conclude
〈

v · ∇h
xg0, 1

〉

= 0,
〈

v · ∇h
xg0, vi

〉

= 0. (3.4)

Using (3.2), the first condition can be reformulated

0 = ∂h
xi
〈g0, vi〉 = ∂h

xi
〈ρ+ vjuj , vi〉

= 〈1, vi〉 ∂
h
xi
ρ+ 〈vj, vi〉 ∂

h
xi
uj = ∂h

xi
ui = : div h

xu

where we have used moment relations from (2.12). Similarly, we find

0 = ∂h
xj

〈vjg0, vi〉 = 〈vj, vi〉 ∂
h
xi
ρ+ 〈vjvk, vi〉 ∂

h
xi
uk = ∂h

xi
ρ

so that (3.4) implies
div h

xu = 0, ∇h
xρ = 0 (3.5)

which has to be satisfied by the parameters ρ, u in (3.2). Applying L† to (3.3),
we obtain the projection of g1 onto (kerL)⊥, so that with additional parameters
ρ(1), u(1)

g1 = L†
(

v · ∇h
xg0 −

1
2Q(g0, g0)

)

+ ρ(1) + u(1) · v.

Using (3.5), we can calculate

v · ∇h
xg0 = vi∂

h
xi

(ρ+ vjuj) = vivj∂
h
xi
uj

and hence L†v · ∇h
xg0 = (∂h

xi
uj)L

†(vivj). The expression −L†Q(g0, g0) can be
simplified with (2.11), so that

g1 = (∂h
xi
uj)L

†(vivj) + 1
2uiuj(vivj − δij) + ρ(1) + u

(1)
j vj. (3.6)

Going back to (3.1) and collecting terms of order ε0, we find

∂tg0 + v · ∇h
xg1 −Dh(v)g0 = Lg2 +Q(g0, g1) +R(g0). (3.7)

Again, property (2.8) yields conditions on the undetermined parameters in g0

and g1. Integrating (3.7) and observing that 〈g1, vi〉 = u
(1)
i because of (2.9) and

(2.12), we get a divergence condition on u(1)

∂tρ+ div h
xu

(1) = 〈Dh(v)g0, 1〉 .

Integration of v · ∇h
xg1 after multiplication with ψ = vj yields with the help of

(2.9) and (2.12)

∂h
xi
〈vig1, vj〉 = (∂h

xi
∂h

xk
ul)(−λδklδij − µ(δikδjl + δilδjk))

+ 1
2∂

h
xi

(uluk)(δikδjl + δilδjk) + ∂h
xj
ρ(1)

5
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so that the vj weighted integral of (3.7) leads to

∂tuj + ∂h
xi

(uiuj) − 〈Dh(v)g0, vj〉 + ∂h
xj
ρ(1)

= λ∂h
xj

(∂h
xk
uk) + µ∂h

xk
(∂h

xj
uk) + µ∂h

xi
∂h

xi
uj .

Taking into account that ∂h
x1

and ∂h
x2

commute, relation (3.5) implies that
λ∂h

xj
(∂h

xk
uk) = µ∂h

xk
(∂h

xj
uk) = 0. Introducing the discretized Laplacian ∆h

x =

∂h
xi
∂h

xi
, we have the final result

∂tuj + ∂h
xi

(uiuj) − 〈Dh(v)g0, vj〉 + ∂h
xj
ρ(1) = µ∆h

xuj , div h
xu = 0. (3.8)

Note that (3.8) reduces to the incompressible Navier Stokes equation (2.1) if we
choose ∇h

x = ∇x and Dh(v) = 0. Obviously, ρ(1) takes the role of the pressure
and ∂h

xi
(uiuj)−〈Dh(v)g0, vj〉 gives a discretization of the convective terms ones

the numerical viscosity is fixed.

4 First and second order upwind schemes

To find expressions for ∇h
x and the numerical viscosity Dh(v) we consider the

linear transport part of the kinetic equation in two dimensions:

v · ∇xf = v1∂x1f + v2∂x2f. (4.1)

A first order discretization is given by

v1∂
h
x1
f + v2∂

h
x2
f −

c1h

2
∂2,h

x1
f −

c2h

2
∂2,h

x2
f (4.2)

with positive constants c1, c2 and

(∂h
x1
f)ij =

1

2h
(fi+1j − fi−1j), (∂2,h

x1
f)ij =

1

h2
(fi+1j − 2fij + fi−1j),

(∂h
x2
f)ij =

1

2h
(fij+1 − fij−1), (∂2,h

x2
f)ij =

1

h2
(fij+1 − 2fij + fij−1).

The constants are chosen later according to the macroscopic flow situation under
consideration. In view of (4.2), we define

Dh(v)f =

(

c1
h

2
∂2,h

x1
f + c2

h

2
∂2,h

x2
f

)

and obtain

Dh(v)g0 = c1∂
2,h
x1
ρ
h

2
+ c2∂

2,h
x2
ρ
h

2
+ c1∂

2,h
x1
ui
hvi

2
+ c2∂

2,h
x2
ui
hvi

2

which yields with (2.12) the required expressions in (3.8)

〈Dh(v)g0, v〉 =
h

2

(

c1∂
2,h
x1 u+ c2∂

2,h
x2 u

)

.

6
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Figure 1: Piecewise linear definition of φ(x, y) in the sets S0, S1, S2

A second order discretization of (4.1) is obtained by slope limiting

(v · ∇h
xf)ij−

[c1(i, j)

2h

(

(1 − ϕi+ 1
2
j)∆i+ 1

2
jf − (1 − ϕi− 1

2
j)∆i− 1

2
jf

)

+
c2(i, j)

2h

(

(1 − ϕij+ 1
2
)∆ij+ 1

2
f − (1 − ϕij− 1

2
)∆ij− 1

2
f
)]

(4.3)

where ∇h
x are again central differences, the f increments are defined by

∆i+ 1
2
jf = fi+1j − fij, ∆ij+ 1

2
f = fij+1 − fij,

and

ϕi+ 1
2
j = ϕ(ri+ 1

2
j), ri+ 1

2
j = ∆i− 1

2
jf/∆i+ 1

2
jf

ϕij+ 1
2

= ϕ(rij+ 1
2
), rij+ 1

2
= ∆ij− 1

2
f/∆ij+ 1

2
f,

with ϕ(r) = max{0,min{r, 1}} being the minmod limiter. Using the definition
of ϕ, one can write expressions like (1 − ϕi+ 1

2
j)∆i+ 1

2
jf as φ(∆i− 1

2
jf,∆i+ 1

2
jf)

where φ is a continuous, piecewise linear function on R
2 defined according to

figure 1. Extracting the viscosity term in (4.3), we get

Dh(v)fij =
c1(i, j)

2h

(

φ(∆i− 1
2
jf,∆i+ 1

2
jf) − φ(∆i− 3

2
jf,∆i− 1

2
jf)

)

+
c2(i, j)

2h

(

φ(∆ij− 1
2
f,∆ij+ 1

2
f) − φ(∆ij− 3

2
f,∆ij− 1

2
f)

)]

Now, the task to calculate 〈Dh(v)g0, vj〉 is more involved than in the first order
case. We start with the observation that

∆i+ 1
2
jg0 = (∆i+ 1

2
ju) · v

because ρ satisfies ∇h
xρ = 0. Hence, a typical term appearing in 〈Dh(v)g0, v〉

has the form
〈φ(δ1 · v, δ2 · v), v〉 δ1, δ2 ∈ R

2. (4.4)

7
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Introducing the linear map

T =

(

δ11 δ12
δ21 δ22

)

we can rewrite (4.4) as 〈φ(Tv), v〉. Note that φ is linear in the convex sets
S0, S1, S2 (see figure 1). With the unit vectors e1 = (1, 0), e2 = (0, 1) and

S(a, b) = S+(a, b) ∪ S−(a, b), S± = {±(λ1a+ λ2b) : λ1, λ2 ≥ 0},

we can describe these sets as

S0 = S(e1, e1 + e2), S1 = (e1 + e2, e2), S2 = S(e2,−e1).

Assuming that T is invertible, we conclude that φ ◦ T is linear on the sets
Ŝi = T−1Si. Since S(a, b) = cS(a, b) for all c 6= 0, we have Ŝi = T̂ (Si) where

T̂ = (detT )T−1 =

(

δ22 −δ12
−δ21 δ11

)

=
(

−δ⊥2 δ⊥1
)

.

Hence,

Ŝ0 = S(−δ⊥2 , δ
⊥
1 − δ⊥2 ), Ŝ1 = S(δ⊥1 − δ⊥2 , δ

⊥
1 ), Ŝ2 = S(δ⊥1 , δ

⊥
2 ).

Taking into account that φ vanishes on S0, we find

〈φ(Tv), v〉 =

∫

Ŝ1

(δ2 · v − δ1 · v)vM(v) dv +

∫

Ŝ2

(δ2 · v)vM(v) dv

or with the help of the matrix valued function

I(a, b) =

∫

S(a,b)
v ⊗ vM(v) dv

that

〈φ(Tv), v〉 = I(δ⊥1 − δ⊥2 , δ
⊥
1 )(δ2 − δ1) + I(δ⊥1 , δ

⊥
2 )δ2 = : L(δ1, δ2).

Hence, the numerical viscosity for the second order discretization has the form

〈Dh(v)g0, v〉ij =
c1(i, j)

2h

(

L(∆i− 1
2
ju,∆i+ 1

2
ju) − L(∆i− 3

2
ju,∆i− 1

2
ju)

)

+
c2(i, j)

2h

(

L(∆ij− 1
2
u,∆ij+ 1

2
u) − L(∆ij− 3

2
u,∆ij− 1

2
u)

)]

We conclude by giving an explicit formula for the function I. First, we note
that, using the symmetry of M(v) and v ⊗ v

I(a, b) = 2

∫

S+(a,b)
v ⊗ vM(v) dv.

Using that S+(a, b) is a cone with some opening angle 0 < β < π around the

8
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Figure 2: Angles α, β characterizing the cone S+(a, b)

ray in direction α (see figure 2), we go over to polar coordinates and find

I(a, b) = 2

∫ α+β/2

α−β/2

(

cos2 ψ sinψ cosψ
sinψ cosψ sin2 ψ

)

dψ

∫ ∞

0

r2

2π
e−

r2

2 r dr.

After some straight forward calculations we get

I(a, b) =
1

π

(

δ + sin δ

(

cos(2α) sin(2α)
sin(2α) − cos(2α)

))

.

In the case where T is not invertible, one can either slightly modify the row
vectors δ1, δ2 in order to obtain an invertible mapping (note that 〈φ(Tv), v〉 is
continuous in T ), or one can use the relation

〈φ(Tv), vj〉 = φ(Tej). (4.5)

To prove (4.5), let us consider the case δ2 = γδ1. Then, Tv = δ1 · v
(

1
γ

)

and
φ(Tv) = (δ1 · v)φ(1, γ). Now, 〈δ1 · v, vj〉 = δ1 · ej so that (4.5) follows. The case
δ1 = γδ2 can be treated similarly.

5 Numerical results

We investigate the above first and second order discretizations of the convective
term numerically for the following stationary equation and compare them with
the second order scheme described in [18]. The viscous term ε∆u is treated by
straightforward second order central differences.

∇x(u⊗ u) − ε∆u = 0 + boundary conditions

To test our scheme for pure convection we use test examples for the stationary
case as presented in [10].
The first example is pure convection of a Step Profile, i.e. the following flow
situation is considered: Consider (x1, x2) in [0, 1]2. The domain of computation
is divided into two subdomains which give a step profile as sketched below.

9
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Boundary values are chosen according to the respective domain. The solution
domain is discretized using a 41 × 41 regular mesh for different flow angles θ.
We may choose c1 and c2 constant proportional to the maximal flow velocity:

c1 = maxij{|2uij |}, c2 = maxij{|2vij |}.

Alternatively the local flow velocity can be used:

c1(i, j) = max{|2ui+1j |, |2uij |}, c2(i, j) = max{|2vij+1|, |2vij |}

In our numerical tests the local flow velocity is used.
The resulting nonlinear system is solved by a GMRES-based solver described
and implemented by Kelley [16].
The results are plotted in the following figures. They show the computed profile
at the line x1 = 1

2 for both the velocity components u1 and u2. In the figures we
make a comparison of the first order upwind method, the second order approach
by Kurganov and Tadmor [18] and the kinetic second order approach developed
here. We always use the local flow velocity to determine c1 and c2.
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The second example is pure convection of a box-shaped profile:
We consider a box-shaped profile as shown in the figure below. As in the
previous example we compare approximations of the profile across a vertical
plane in the middle of the solution domain. We compare the different schemes
using a uniform 41 × 41 mesh.
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The figures show that in the cases considered here the results are comparable
to those obtained by the Kurganov-Tadmor approach.
Further, the convection-diffusion equation for the step-profile is considered. We
choose ε = 0.001. Just like in the previous examples we took a uniform 41× 41
mesh.
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Conclusion

Starting from special discretizations of the Boltzmann equation we have ob-
tained corresponding discretizations of the incompressible Navier Stokes equa-
tion in the diffusive, low Mach number limit. In particular, a second order slope
limiting approach on the kinetic level gives rise to a limiter for the nonlinear
term in the Navier Stokes equation which exhibits an intersting structure. From
the simple numerical tests one can conclude that the new scheme yields results
which are comparable to those obtained by other second order methods. A
test of the new limiter in more complicated flow situations with strongly locally
varying velocity fields is in preparation.
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