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Summary. The maximum entropy moment systems of the Boltzmann equation is only
solvable with unphysical restrictions on the choice of the macroscopic variables. We show
that no such difficulties appear in the semiconductor case if Kane’s dispersion relation is
used for the energy band of electrons. As an application the 5-moment model is discussed.
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1 The maximum entropy moment systems for electrons in

semiconductors

In a semi classical approximation, a kinetic description of electrons in a semicon-
ductor is given by a transport equation for the one particle distribution function
f(t, x, k), which represents the probability of finding an electron at time t in an
elementary volume dxdk, around position x and with crystal momentum k,
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Here e is the absolute value of the electron charge, k represents the crystal mo-
mentum of the electron and E is the electric field which is related to the electron
distribution by Poisson’s equation:

E = −∇φ, ǫ∆φ = −e(ND − NA − n),

where φ is the electric potential, ǫ is the permittivity of the semiconductor, ND and
NA are respectively the donor and acceptor density, and n is the electron density.
The latter is related to f by n =

∫

B
fdk, B being the first Brillouin zone. The right

hand side C[f ] in (1) is the collision operator, which takes into account scattering of
the electrons with acoustical and optical phonons and with impurities. The electron
velocity v(k) depends on the electron energy E by the relation v(k) = 1

~
∇kE . In

general, the expression of E (the so called band structure) depends on the material
and is very complicated. A rough approximation is given by the parabolic band while
a more refined model is given by Kane’s dispersion relation which takes into account
the non-parabolicity at high energies
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where α is the non-parabolicity parameter. The corresponding electron velocity is

v(k) =
1

√

1 + 2α
m∗

~2|k|2
~

m∗
k.

In the mathematical modelling of electron transport in semiconductors the Kane
dispersion relation is considered as one of the best analytical approximation to the
real energy band.

Besides the electron density n, other physically relevant quantities are the aver-
age electron velocity, energy and energy-flux
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To generalize this observation, we introduce general weight functions ai : R
3 7→ R

and the corresponding moments ρi = 〈f, ai〉 , i = 1, . . . , m where 〈·, ·〉 denotes k

integration. We split the vector of weight functions a into two subgroups. The first
m1 components of a are chosen as (P1(v(k)), . . . , Pm1

(v(k))) where P1, . . . , Pm1

are linearly independent polynomials with P1(v) = 1, and the remaining m2 com-
ponents give rise to energy moments (E(k)Q1(v(k)), . . . , E(k)Qm2

(v(k))) where,
again, Q1, . . . , Qm2

are linearly independent polynomials and Q1(v) = 1.
Since the direct numerical approximation of the kinetic equation (1) is very

expensive due to the high dimensionality of the problem, and in view of the fact
that one is rather interested in moments of f than in f itself, it is a natural idea to
derive equations directly for the averaged quantities. Multiplying (1) with weight
functions a = (a1, . . . , am)T and integrating over k, we obtain equations for the
moments

∂ρ

∂t
+

∂

∂xj
〈f, vja〉 = 〈C[f ] + γE · ∇kf, a〉 , γ = e/~. (3)

The system would be closed if the particle distribution could be expressed in terms
of the moment vector ρ as f(t, x, k) = F (ρ(t, x), k) A method to obtain such a
relationship is the maximum entropy approach where F (ρ, k) is taken as solution
of the problem

maximize H(f) = −〈f, log f − 1〉 with f ≥ 0 and 〈f, a〉 = ρ (4)

It is important to remark that the maximum entropy distribution represents, in a
statistical sense [Jaynes (1957)], the least biased estimator of the exact distribution
f on the base of the knowledge of a finite number of moments of f .

For general ai, the formal solution of (4) is obtained with the method of Lagrange
multipliers. We introduce the Lagrange functional L(f, λ) := H(f)−λ ·(ρ − 〈f, a〉)
where λ is the vector of Lagrange multipliers. The necessary condition that all
directional derivatives vanish in the maximum fλ leads to

fλ = exp(λ · a). (5)

Finally, the Lagrange multipliers λ are chosen in such a way (if possible) that the
moment constraints ρ = 〈fλ, a〉 are satisfied which gives rise to a function λ = λ(ρ).
We then introduce F (ρ, k) = fλ(ρ)(k).

Depending on the choice of weight functions ai, it can happen that problem (4) is
not always solvable, i.e. that there exist moment vectors ρ which cannot be written
as a-moments of any exponential density fλ = exp(λ·a) [Junk (1997), Junk (1998),
Dreyer et al (2001) , Junk et al (2002)]. Our main goal is to show that, when Kane’s
model is considered for the energy band, problem (4) is always solvable which implies
that the corresponding moment system is a symmetric hyperbolic system with an
open and convex domain of definition.
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2 Solvability of the maximum entropy problem

In order to state our main result, we first reformulate (4). For notational conve-
nience, we measure E , k, v in units 1/(2α),

√

m∗/(2α~2), and 1/
√

2αm∗ which
leads to

E(k) =
√

1 + |k|2 − 1, v(k) =
k

√

1 + |k|2
. (6)

Note that for large k, v(k) is bounded and E(k) grows only linearly due to the
estimates

|v(k)| < 1, |k| − 1 ≤ E(k) ≤ 2|k| + 1. (7)

Based on E and v and two sets {P1, . . . , Pm1
}, {Q1, . . . , Qm2

} of linearly independent
polynomials with P1 = Q1 = 1, we define the weight functions as

a = (P1(v), . . . , Pm1
(v), EQ1(v), . . . , EQm2

(v))T . (8)

Since the assumption of a three dimensional k-space is not relevant for our argu-
ment, we assume k ∈ R

d. The moment set related to the weights ai is generated by
the functions in F = {f ≥ 0 : f 6≡ 0, |a|f ∈ L

1(Rd)}. The corresponding moments
are collected in M = {〈f, a〉 : f ∈ F}. Using this notation and the definition of the
entropy functional H(f) = −〈f, log f − 1〉 , we can restate (4) as

maximize H(f) subject to f ∈ F and 〈f, a〉 = ρ (9)

Our main result is

Theorem 1. The maximum entropy moment problem (9) is uniquely solvable for

any ρ inside the open, convex cone M. The solution is an exponential density

exp(λ · a) for some λ ∈ R
m depending on ρ.

First we observe that, up to normalization, every f ∈ F can be viewed as a probabil-
ity density. The normalization f∗ = f/ 〈f, 1〉 is abbreviated by a ∗-superscript and
its image of F is denoted F∗. Since we assume a1 = 1, the moment vector of f∗ has
the structure 〈f∗, a〉 = (1, ρ2/ρ1, . . . , ρm/ρ1)

T , ρ = 〈f, a〉 , which gives rise to a nor-
malization operation acting on vectors in R

m by α∗ = (α2/α1, . . . , αm/α1)
T , α ∈

R
m, α1 > 0.

Note that a∗ = (a2, . . . , am)T because a1 = 1 and thus 〈f, a〉 = ρ im-
plies 〈f∗, a∗〉 = ρ∗. Apart from the passage to probability measures, we need
to introduce the functional of relative entropy. If P and R are probability mea-
sures on the Borel sets B on R

d, such that P has a density with respect to R,
i.e. P (A) =

∫

A
pR dR with A ∈ B, the relative entropy (or I-divergence) is de-

fined as I(P ||R) =
∫

pR log pR dR. As measure R we are going to use R(A) =
∫

A
g∗ dk, g(k) = exp(−E(k)) where g is integrable since E(k) grows linearly (see

(7)). Then, if Pf∗ has density f∗ ∈ F∗ with respect to the Lebesgue measure, it has
density f∗/g∗ with respect to R and

I(Pf∗ ||R) =

∫

f∗

g∗
log

f∗

g∗
dR =

∫

f∗ log
f∗

g∗
dk

Using the definition of H and log f∗ = log f − log 〈f, 1〉 , log g∗ = −E − log 〈g, 1〉 ,
we obtain the relation

I(Pf∗ ||R) = − 1

〈f, 1〉H(f) + 1 + log
〈g, 1〉
〈f, 1〉 +

〈f, E〉
〈f, 1〉 . (10)

Since 〈f, 1〉 and 〈f, E〉 are constant on the set of densities f ∈ F with 〈f, a〉 = ρ,
we see that maximizing H subject to 〈f, a〉 = ρ is equivalent to

minimize I(Pf∗ ||R) subject to f∗ ∈ F∗ and 〈f∗, a∗〉 = ρ∗ (11)

Therefore the main theorem can be reformulated as follows.
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Proposition 1. Let ρ ∈ M. Then problem (9) has a unique solution f ∈ F if and

only if (11) has a unique solution f∗ ∈ F∗. The relation between f and f∗ is given

by f = ρ1f
∗. In particular, if f∗ = c exp(ξ ·a∗) for some ξ ∈ R

m−1 and some c > 0,
then f = exp(λ · a) with λ = (log(cρ1), ξ1, . . . , ξm−1)

T .

Using a results by Csiszar’s [Csiszár (1975)] for measurable spaces (X,H) with
weight functions a∗ = (a2, . . . , am) being H-measurable, we are able to shows that
(11) is uniquely solvable with an exponential density if Pf∗ is replaced by general
probability measures P on R

d that have the correct moments. In connection with
Proposition 1 this immediately yields Theorem 1. Here we skip all the technical
details (the interested reader is referred to [Junk et al (2004)]) but want only remark
that the important point in the proof of Theorem 1 is the boundedness of |v(k)|.
Therefore a similar result can be expected for more general dispersion relations
which exhibit an effect of saturation for the modulus of v(k).

3 The Euler-Poisson model

As an example of application we analyze the Euler-Poisson model in the case of
Kane’s dispersion relation. It is based on the same moments employed in ideal gas
dynamics, that is density n, average velocity u and average energy W
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+
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+
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n
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R3
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For the 5-moment case the weight function vector is a = (1, v, E) and the cor-
responding Lagrange multipliers are given by the vector λ = −

(

λ, λv, λW
)

.

The MEP distribution function reads fλ = exp
(

−λ − λv
i vi − λW E

)

and one
has the straightforward characterization of the cone Λ (which is obviously con-
vex and open) Λ =

{

λ = −
(

λ, λv, λW
)

: λ ∈ R
5, λW > 0

}

. By writing dk =
m∗

~3

√

2m∗E(1 + αE)(1 + 2αE)dE dΩ with dΩ elementary solid angle, the explicit
relation between the Lagrange multipliers and the macroscopic variables are given
by
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1
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E
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dE (14)
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√

2π
(m∗)3/2

~3
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z = λv
3 v(E), d0 =

∫ ∞

0

e−λW
E
√
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z
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It is relevant only to study the dependence of λv
3 and λW on u3 and W because λ

plays only the role of a normalization factor. We want to investigate whether the mo-
ment cone, that is the set of moment for which the MEP distribution there exists, is
sufficiently large for concrete applications. To this aim we have numerically checked
the invertibility of the rectangle

{

(W, u3) ∈ [0.04, 0.35]× [−1.2 × 105, 1.2 × 105]
}

under the mapping (u3, W ) 7→ (λv
3 , λW ) implicitly defined by the relations (14)-

(15)2. W is expressed in eV , u3 in m/sec, λv
3/
√

m∗ in 1/
√

eV and λW in 1/eV .
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We remark that these values are those usually encountered in the simulations of
electron devices. The numerical analysis (see figure) shows that the moment cone
contains the above rectangle and therefore it is sufficiently wide to enclose the rel-
evant physical region of velocity and energy.
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