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Summary Based on general partitions of unity and standard numerical flux
functions, a class of mesh-free methods for conservation laws is derived. A Lax-
Wendroff type consistency analysis is carried out for the general case of moving
partition functions. The analysis leads to a set of conditions which are checked
for the finite volume particle method FVPM. As a by-product, classical finite
volume schemes are recovered in the approach for special choices of the partition
of unity.

1 Introduction

The need for mesh-free methods typically arises in connection with problems
posed in time depending or very complicated geometries where the handling of
mesh discretizations becomes technically complicated or very time consuming.
If interesting features in solutions should be captured with maximal compu-
tational speed and minimal memory requirements, dynamic adaption of the
resolution is necessary. In mesh-based methods, refinement or coarsening tech-
niques require programming of complicated data structures which reflect the
hierarchical connectivity relations in the refined mesh. If the mesh points are
allowed to move, as in Lagrangian methods, large deviations lead to degenerate
mesh cells and stability problems can occur because the neighborhood structure
may no longer reflect the actual relative positions of the nodes. Other examples
where usual mesh structures are not applicable are high dimensional problems
because of memory limitations. A typical example for this situation arises in
connection with the Boltzmann equation where particle methods are classically
used to construct approximate solutions [10]. In gas and fluid dynamics, the
SPH method [9] has been successfully applied to problems with free boundaries
and large deviations. For variants of the SPH method, we refer to [6,14]. A
detailed analysis can be found in [2] and [5,11]. Another classical application of
particle methods is the simulation of vortex dynamics in incompressible Euler
or Navier-Stokes flows [12,4,3]. Recent developments in the area of mesh-free
methods for hyperbolic problems include the finite mass method (FMM) [15,
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16] and the partition of unity method (PUM) [7] (see also the references therein
for mesh-free finite element methods and [1] for a general overview on mesh-free
methods).
In this article, we analyze the finite volume particle method (FVPM) [8]. In
fact, we are going to embed this method into a more general framework which
also includes classical finite volume schemes. Since we will use a modification of
the original approach in [8], let us briefly outline the construction for the case
of scalar conservation laws in one space dimension

∂u

∂t
+
∂f(u)

∂x
= 0, u(0, x) = u0(x) (1)

In standard finite difference discretizations of the Cauchy problem, approximate
values ui are calculated at regularly spaced points xi = ih, i ∈ Z with distance
h > 0. The value ui typically represents the integral average of u over a volume
(xi− 1

2
, xi+ 1

2
] attached to xi. In terms of the indicator function ψi(x) of that

interval, we can write the cell average as

ui =
1

h

∫

R

ψiu dx =
1

Vi
〈u, ψi〉 , Vi = 〈1, ψi〉

where 〈·, ·〉 abbreviates x-integration. Note that {ψi : i ∈ Z} is a partition of
unity, i.e.

∑

i∈Z
ψi(x) = 1 for all x ∈ R.

As extension of this concept, we are going to introduce a particle method with
particle positions xi which may be irregularly spaced and moving. To each xi we
associate a function ψi, the particle. As in the finite difference approach, {ψi : i ∈
Z} will be a partition of unity but the supports of the functions ψi may overlap.
More precisely, we assume that the particles ψi are smooth functions which
are localized around the particle positions xi(t) and satisfy

∑

i∈Z
ψi(t, x) = 1

for all x ∈ R and t ∈ R
+ = [0,∞) (for details of the construction, we refer

to Section 4). The positions are supposed to move according to a differential
equation ẋ = a(t, x) with a given field a. As we will see, this movement implies
that ψi satisfies the relations

∂ψi

∂x
=
∑

j∈Z

(Γji − Γij) ,
∂ψi

∂t
= −

∑

j∈Z

(ẋiΓji − ẋjΓij) (2)

where the function Γij is localized on the intersection of the supports of particle
i and particle j. Using (2), we find that ψi satisfies the transport equation

∂ψi

∂t
+ ẋi

∂ψi

∂x
=
∑

j∈Z

(ẋj − ẋi)Γij . (3)

Note that the left hand side in (3) describes the movement of the particle while
the right hand side is related to a deformation of ψi. Deformations arise if
particles move relative to each other so that the function values have to change
in order to keep the property that the sum of all ψi is equal to one. For the local
averages ui = 〈u, ψi〉 /Vi of the solution u of equation (1) we find

d

dt
(uiVi) =

〈

∂u

∂t
, ψi

〉

+

〈

u,
∂ψi

∂t

〉

=

〈

f(u),
∂ψi

∂x

〉

+

〈

u,
∂ψi

∂t

〉
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and with (2), we get

d

dt
(uiVi) =

∑

j∈Z

(〈f(u) − ẋiu, Γji〉 − 〈f(u) − ẋju, Γij〉) .

For abbreviation, we introduce the Lagrangian flux

G(t, x, u) = f(u) − ua(t, x)

which consists of the flux in (1) as well as a contribution ua due to the particle
movement with velocity a. Setting Gi = G(t, xi, ui) and γij = 〈Γij , 1〉, we have
approximately

d

dt
(uiVi) ≈

∑

j∈Z

(Giγji −Gjγij)

since Γij are localized close to xi and xj. Now, we use the splitting ac − bd =
(a− b)(c+ d)/2 + (a+ b)(c− d)/2 which yields

∑

j∈Z

(Giγji −Gjγij) =
∑

j∈Z

1

2
(Gi −Gj)(γij + γji)

−
∑

j∈Z

1

2
(Gi +Gj)(γij − γji)

Assuming Gi ≈ Gj for γij + γji 6= 0 (i.e. for nearby particles), we conclude
further

d

dt
(uiVi) ≈ −

∑

j

|βij |
Gi +Gj

2
nij

where βij = γij−γji and nij = sign(βij). Note that 1
2 (Gi+Gj)nij is the numerical

flux function of central differencing. A more general approach is obtained if we
replace this particular expression by a general numerical flux function gij =
g(t, xi, ui, xj , uj , nij) for G(t, x, u).

We end up with a system of ordinary differential equations

d

dt
(uiVi) = −

∑

j

|βij |gij , ui(0) =
〈

u0, ψi(0)
〉

/Vi(0). (4)

Based on the solution ui(t) of (4) we construct an approximate solution ũ of
the original problem (1) by setting

ũ(t, x) =
∑

i∈Z

ui(t)ψi(t, x). (5)

Conservativity of the scheme follows from the property |βij |gij = −|βji|gji which
implies

d

dt
〈ũ, 1〉 =

d

dt

∑

i∈Z

uiVi = −
∑

i,j∈Z

|βij |gij

= −
1

2

∑

i,j∈Z

(|βij |gij + |βji|gji) = 0.
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Remark 1 Choosing a ≡ 0, xi = ih, ψi as indicator functions of (xi− 1
2
, xi+ 1

2
],

βi i+1 = 1, βi i−1 = −1, βij = 0 otherwise, and nij = sign(βij), then (4) turns
into a usual finite difference scheme for (1) provided that the time derivative is
discretized by Euler’s method.

In [14,2] schemes of a structure similar to (4) are considered but the coeffi-
cients βij in this approach are of a very special form and do not exactly satisfy
the requirements that will be introduced here. Using overlapping particles ψi

and βij = γij −γji as introduced above, the method turns into the finite volume
particle method which has been tested for scalar conservation laws like (1) and
for the system of Euler equations in [8].

Here, our aim is to show the consistency of (4) with a Lax–Wendroff type
result: assuming that (5) is close in a suitable sense to some function u : R

+ ×
R 7→ R, it already follows that u is a weak solution of the problem (1).

Definition 1 A function u ∈ L
1
loc(R

+,L1
loc(R)) is called weak solution of the

Cauchy problem (1) with u0 ∈ L
1
loc(R) if

∫ ∞

0

〈

u(t),
∂φ

∂t
(t)

〉

+

〈

f(u(t)),
∂φ

∂x
(t)

〉

dt+
〈

u0, φ(0)
〉

= 0

for all φ ∈ C∞
0 (R+ × R). Here, φ(t) and u(t) denote the functions x 7→ φ(t, x)

and x 7→ u(t, x) respectively.

While the detailed consistency proof will be given in Section 3, we can already
outline the main steps. We start with the relation

〈

∂ũ

∂t
, φ

〉

=
∑

i∈Z

〈

ψi
dui

dt
, φ

〉

+
∑

i∈Z

〈

ui
∂ψi

∂t
, φ

〉

= −
∑

i∈Z

∑

j∈Z

〈

|βij |gij
ψi

Vi
, φ

〉

+
∑

i∈Z

(

〈

ui
∂ψi

∂t
, φ

〉

−

〈

ui
V̇i

Vi

ψi, φ

〉)

.

(6)

Using again the conservation property |βij |gij = −|βji|gji, we can rewrite the
flux term as

−
∑

i,j∈Z

〈

|βij |gij
ψi

Vi
, φ

〉

= −
∑

i,j∈Z

〈

1

2
|βij |gij

(

ψi

Vi
−
ψj

Vj

)

, φ

〉

.

The consistency of the numerical flux and the fact that βij 6= 0 only for particles
i, j which are close to each other (i.e. xi ≈ xj and ui ≈ uj), implies that we can
approximate gij by Ginij for such pairs

−
∑

i,j∈Z

〈

1

2
|βij |gij

(

ψi

Vi
−
ψj

Vj

)

, φ

〉

≈ −
∑

i,j∈Z

〈

Gi
1

2
βij

(

ψi

Vi
−
ψj

Vj

)

, φ

〉

.

A crucial observation is that the right hand side is a weak derivative

∑

i,j∈Z

〈

Gi
1

2
βij

(

ψi

Vi
−
ψj

Vj

)

, φ

〉

= −

〈

∑

i∈Z

GiHi,
∂φ

∂x

〉
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where the functions {Hi : i ∈ Z} are constructed from βij and {ψi : i ∈ Z} and
form again a partition of unity. In the special case of finite difference schemes
(see Remark 1), the partitions {ψi} and {Hi} are depicted in Fig. 1.

xi+1

ψi

xi+1

H i

xi

1/21

xi

Fig. 1. The partitions of unity in the case of finite difference schemes

Since the sum
∑

i∈Z
GiHi can be viewed as an approximation of the Lagrangian

flux G, we obtain

−
∑

i∈Z

∑

j∈Z

〈

|βij |gij
ψi

Vi
, φ

〉

≈

〈

f(ũ) − aũ,
∂φ

∂x

〉

. (7)

For the second sum in (6) we get with (3)

∑

i∈Z

〈

ui
∂ψi

∂t
, φ

〉

=

〈

∑

i∈Z

uiẋiψi,
∂φ

∂x

〉

+
∑

i∈Z

∑

j∈Z

ui(ẋj − ẋi) 〈Γij, φ〉 .

Here, the first term approximates 〈ũa, ∂xφ〉 and the second one is related to the
change of shape of the functions ψi. It turns out that this term is approximately

compensated by the contribution due to the volume change
∑

〈

uiV̇i/Viψi, φ
〉

in (6). Hence

∑

i∈Z

(

〈

ui
∂ψi

∂t
, φ

〉

−

〈

ui
V̇i

Vi

ψi, φ

〉)

≈

〈

aũ,
∂φ

∂x

〉

.

Combining this result with (7) and (6), the term 〈aũ, ∂xφ〉 vanishes so that
〈

∂ũ

∂t
, φ

〉

≈

〈

f(ũ),
∂φ

∂x

〉

. (8)

If now ũ converges in a suitable sense to a function u, the relation (8) is the
essential part in showing that u is a weak solution of the problem (1).

We conclude the introductory remarks with an outline of the article. In Sec-
tion 2, the general consistency result is presented together with some definitions
and the assumptions on the partition {ψi}, the geometric coefficients βij , and
the numerical flux function gij . The proof of the main result is contained in
Section 3. Finally, we check that the finite volume particle method (FVPM)
satisfies all requirements and thus is consistent.

2 A Lax-Wendroff type result

Our aim is to derive a consistency result for the finite volume particle method
which has been introduced in the previous section. It turns out that the result
is largely independent of the form of the chosen partition of unity and the exact
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structure of the geometric coefficients βij and therefore, we base the proof on
general assumptions which are listed below. In setting up these conditions, we
have taken care that standard finite volume (resp. finite difference) methods
on fixed regular or irregular grids are also contained in the considerations. For
example, the choice of parameters mentioned in Remark 1 obviously satisfies all
the requirements.

Before listing the assumptions, we need the notion of locally finite families.

Definition 2 Let M(R+,L1
loc(R)) be the set of strongly measurable functions

on R
+ with values in L

1
loc(R) and let

F = {Fi ∈ M(R+,L1
loc(R)) : i ∈ Z }.

For f ∈ L
1
loc(R) let supp f be the complement of the largest open set on which

f vanishes in the sense of distributions. We introduce

IF (t, x) : = { i ∈ Z : x ∈ suppFi(t) }

which is the set of indices of those Fi which are non-zero at (t, x). If we replace

t or x in IF (t, x) by sets, this abbreviates the union

IF (A,B) : =
⋃

t∈A

⋃

x∈B

IF (t, x) A,B ⊂ R.

The indices of the functions Fi whose support is completely contained in an

interval Bε(x) of radius ε > 0 around x at time t are collected in

IF (t, x, ε) : = { i ∈ Z : suppFi(t) ⊂ Bε(x) }.

The set F is called locally finite if IF ([0, T ],K) is finite for any compact set

K ⊂ R and any T > 0.

2.1 The particle clouds

A set of functions Ψ = {ψi : R
+ ×R 7→ R : i ∈ Z} will be called a moving cloud

of particles if the following conditions are satisfied:
Regularity properties

– ψi is measurable on R
+ × R,

– ψi ∈ C
1(R+,L1

loc(R)),
– diam suppψi(t) ≤ S for some S > 0,
– ψi(t, x) = 0 for all x 6∈ suppψi(t),

Partition of unity properties

– Ψ is locally finite,
– 0 ≤ ψi(t, x) ≤ 1 for all t ≥ 0 and x ∈ R,
–
∑

i∈Z
ψi(t, x) = 1 for all t ≥ 0, x ∈ R,

Position and volume properties

– for some α > 0, the volume Vi(t) = 〈1, ψi(t)〉 satisfies Vi(t) ≥ α for all i ∈ Z

and t ≥ 0,
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– there exists a continuous function xi : R
+ 7→ R such that xi(t) ∈ suppψi(t)

which is called the position of ψi,

Movement properties

– there exists a field a ∈ C0(R+, C1(R)) such that with ai(t) = a(t, xi(t)), the
relation

∂ψi

∂t
+ ai

∂ψi

∂x
= νiψi

holds for some νi ∈ L
∞
loc(R

+,L1(R)) satisfying

sup
0≤t≤T

‖ν
(h)
i (t)‖L1(R) ≤ CT

in the sense of distributions on R (since ψi ∈ C1(R+,L1
loc(R)) is compactly

supported, we can view ψi as a differentiable mapping with values in the
space of compactly supported distributions E

′(R)).

A sequence Ψ∗ = {Ψh : 0 < h ≤ 1} of moving particle clouds is called uniformly
regular (or short “urp–sequence”) if the above assumptions hold for Ψ = Ψh

with S, α and CT replaced by SΨ∗
h, αΨ∗

h and CΨ∗,Th. Here, SΨ∗
, αΨ∗

and CΨ∗,T

are assumed to be uniform constants for the sequence Ψ∗. In addition, we require
that

sup
h>0

sup
t≥0

sup
x∈R

|IΨh
(t, x, rh)| <∞ ∀r > 0.

2.2 The geometric coefficients

Let Ψ = {ψi : i ∈ Z} be a moving cloud of particles. A family of measurable
functions Θ = {βij : R

+ 7→ R : i, j ∈ Z} is called Ψ–admissible if

– |βij(t)| ≤ C for all i, j ∈ Z and t ≥ 0,
– βij = −βji,
– there exists B > 0 such that βij(t) = 0 if |xi(t) − xj(t)| > B,
–
∑

j∈Z
βij(t) = 0 for all i ∈ Z and t ≥ 0,

– for each t ≥ 0 there exists x̄ ∈ R such that

∑

xi(t)≥x̄

∑

xj(t)≥x̄

βij(t) = 1

Let Ψ∗ = {Ψh : 0 < h ≤ 1} be a urp–sequence and Θ∗ = {Θh : 0 < h ≤ 1}

a sequence of families Θh = {β
(h)
ij : i, j ∈ Z}. Then Θ∗ is called Ψ∗–admissible

sequence of geometric coefficients if each Θh is Ψh–admissible with B replaced

by BΘ∗
h and β

(h)
ij being uniformly bounded also in h.
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2.3 The numerical flux function

If a ∈ C0(R+, C1(R)) is a given velocity field and f the Lipschitz continuous
flux of the conservation law, we first introduce the modified flux

G(t, x, u) = f(u) − ua(t, x).

We then assume that g(t, x1, u1, x2, u2, n) with t ≥ 0, x1, x2, u1, u2 ∈ R and
n ∈ {−1, 1} is a numerical flux function for G which satisfies
Consistency

– g(t, x, u, x, u, n) = G(t, x, u)n

Conservativity

– g(t, x, u, y, v,−n) = −g(t, y, v, x, u, n)

Continuity

– |g(t, x, u, y, v, n)−g(t, x̄, ū, ȳ, v̄, n)| ≤ L(|x−x̄|+|y−ȳ|+|u−ū|+|v−v̄|), where
L depends monotonically on t and max{|u|, |ū|, |v|, |v̄|}. Also, g is assumed
to be continuous in t ∈ R

+.

2.4 The particle method

Let Ψ = {ψi : i ∈ Z} be a moving particle cloud, g a numerical flux function sat-
isfying the assumptions of Section 2.3, and Θ = {βij : i, j ∈ Z} a Ψ–admissible
family of geometric coefficients. Further let u0 ∈ L

1
loc(R). A set of functions

{ui ∈ C1(R+) : i ∈ Z} is called solution of the (Ψ,Θ, g)–particle method (or
simply (Ψ,Θ, g)–solution) if for all i ∈ Z

d

dt
(uiVi) = −

∑

j∈Z

|βij |gij , ui(0) =
〈

u0, ψi(0)
〉

/Vi(0).

where

gij(t) = g(t, xi(t), ui(t), xj(t), uj(t), nij(t)), nij = signβij

and xi is the position of particle ψi.
If Ψ∗ is a urp–sequence, Θ∗ a Ψ∗–admissible sequence of geometric coeffi-

cients, then a sequence {u
(h)
i ∈ C1(R+) : i ∈ Z}, h > 0 is called solution of

the (Ψ∗, Θ∗, g)–particle method if for fixed h > 0 the set {u
(h)
i : i ∈ Z} is a

(Ψh, Θh, g)–solution.

2.5 Ψ∗-convergence

The particle method presented in the previous section includes an approximation
of the initial value u0. We now study in which sense, for example, u0 ∈ L

∞(R)
is approximated by ũ(0, x) =

∑

ui(0)ψi(0, x) where ui(0) are the local averages
〈

u0, ψi(0)
〉

/Vi(0). The resulting notion of Ψ∗-convergence will then be assumed
also for t > 0 to get the consistency result. We start with a preparatory remark.
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Lemma 1 Let Ψ = {ψi : i ∈ Z} be a moving particle cloud and {ui : R
+ 7→ R :

i ∈ Z} a family of measurable functions. Then,

u(t, x) =
∑

i∈IΨ (t,x)

ui(t)ψi(t, x)

is measurable on R
+×R and can be identified with

∑

i∈Z
uiψi ∈ M(R+,L1

loc(R)).
If |ui(t)| ≤ C(t) for some increasing function C : R

+ 7→ R
+, then u is contained

in L
∞
loc(R

+,L∞(R)). If ui ∈ C1(R+) then u ∈ C1(R+,L1
loc(R)) with derivative

∂u

∂t
=
∑

i∈Z

ψi
dui

dt
+
∑

i∈Z

ui
∂ψi

∂t
.

Proof The truncated series

Sn(t, x) =

n
∑

i=−n

ui(t)ψi(t, x)

is clearly measurable on R
+ × R and converges point-wise to

u(t, x) =
∑

i∈IΨ (t,x)

ui(t)ψi(t, x)

which is therefore measurable. Since Ψ is locally finite, we have for any compact
K ⊂ R that |IΨ (t,K)| <∞. For any x ∈ K it follows IΨ (t, x) ⊂ IΨ (t,K) which
leads to the estimate

|u(t, x)| ≤ max
i∈IΨ (t,K)

|ui(t)|
∑

i∈IΨ (t,K)

ψi(t, x) ≤ max
i∈IΨ (t,K)

|ui(t)|

for all x ∈ K so that u(t) ∈ L
∞
loc(R) ⊂ L

1
loc(R) Because of point-wise convergence

Sn → u and the uniform bound for x ∈ K ⊂ R, it follows that Sn(t) → u(t) in
L

1
loc(R) for n→ ∞. Hence, we can identify

∑

i∈Z
uiψi with the function u.

Under the condition |ui(t)| ≤ C(t), we find immediately |u(t, x)| ≤ C(t).
Finally, if ui ∈ C1(R+), then uiψi ∈ C1(R+,L1

loc(R)) still makes up a locally
finite family. Hence, if x is restricted to a given compact K ⊂ R and t ∈ [0, T ],
we can replace u by a finite sum so that the result follows.

Proposition 1 Assume Ψ∗ = {Ψh : 0 < h ≤ 1} is a urp–sequence and let

u ∈ L
∞
loc(R

+,L∞(R)) be given. Then, the coefficients

u
(h)
i (t) : =

〈

ψ
(h)
i (t), u(t)

〉

/V
(h)
i (t), ψ

(h)
i ∈ Ψh

are measurable on R
+ and, for a.e. t ∈ R

+,

satisfy |u
(h)
i (t)| ≤ ‖u(t)‖L∞(R) and

max
i∈IΨh

(t,x,rh)
|ui(t) − u(t, x)| → 0 as h→ 0

for a.e. x ∈ R and all r ≥ SΨ∗
. If u ∈ C1

0 (R+ × R), we even find

max
i∈IΨh

(t,x,rh)
|ui(t) − u(t, x)| ≤ Ch ∀t ≥ 0.
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Proof Since u is strongly measurable, u(t) is the L
1
loc(R) limit of simple functions

sn(t). The product t 7→ 〈ψi(t), sn(t)〉 is obviously measurable so that the same
holds for the limit, giving rise to measurability of ui (we suppress the index h
for ease of notation). The bound on ui simply follows from

|ui(t)| ≤ ‖u(t)‖L∞(R) 〈ψi(t), 1〉 /Vi(t) = ‖u(t)‖L∞(R).

To show the convergence, we pick x ∈ R, t ≥ 0 and r ≥ SΨ∗
For any i ∈

IΨh
(t, x, rh) the conditions diam suppψi ≤ SΨ∗

h and 0 ≤ ψi ≤ 1 then imply
that ψi(t) is bounded from above by the indicator function XBrh(x) of a ball
with radius rh around x. Hence,

|ui(t) − u(t, x)| =
1

Vi(t)
| 〈u(t) − u(t, x), ψi(t)〉 |

≤
2rh

Vi(t)

1

2rh

〈

|u(t) − u(t, x)|,XBrh(x)

〉

≤
2rh

αΨ∗
h

av(|u(t) − u(t, x)|, Brh(x))

where av(f,A) = 1
|A|

∫

A
f(y) dy is the averaging operator. It is known [13] that

for all Lebesgue–points of u(t) (and thus a.e. in x) the average of |u(t, y)−u(t, x)|
over the ball y ∈ Brh(x) tends to zero for h → 0 which leads to the claimed
convergence. If u ∈ C1(R+ × R), uniform Lipschitz continuity yields at once

|ui(t) − u(t, x)| = | 〈ψi(t), u(t) − u(t, x)〉 |/Vi(t)

≤ Ldiam suppψi ≤ LSΨ∗
h.

The convergence result of Proposition 1 motivates the following definition of
Ψ∗–convergence.

Definition 3 Let Ψ∗ = {Ψh : 0 < h ≤ 1} be a urp–sequence. A sequence of

families of measurable functions {u
(h)
i : R

+ 7→ R : i ∈ Z}, 0 < h ≤ 1, Ψ∗–

converges to u : R
+ × R 7→ R if for a.e. t ≥ 0

max
i∈IΨh

(t,x,rh)
|u

(h)
i (t) − u(t, x)|

h→0
−−−→ 0

for a.e. x ∈ R and every r ≥ SΨ∗
.

2.6 The consistency result

Using the Definitions from above, we can now state

Theorem 1 Let Ψ∗ = {Ψh : 0 < h ≤ 1} be a urp–sequence, g a numerical flux

function, and Θ∗ a Ψ∗–admissible sequence of geometric coefficients. If {u
(h)
i ∈

C1(R+) : i ∈ Z}, 0 < h ≤ 1 is a solution of the (Ψ∗, Θ∗, g)–particle method which

satisfies the uniform bound |u
(h)
i (t)| ≤ C(t) for some function C : R

+ 7→ R
+ and

Ψ∗–converges to some u : R
+ ×R 7→ R, then u is a weak solution of the Cauchy

problem, satisfies ‖u(t)‖L∞(R) ≤ C(t) and ũ(h) : =
∑

i∈Z
u

(h)
i ψ

(h)
i converges to u

in L
1
loc(R

+,L1
loc(R)).
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3 Proof of Theorem 1

We split the proof into several sub-steps. Since there is no danger of ambiguity,
the superscript h is dropped in all proofs for ease of notation.

In the first step, we show the bound on u and convergence in the space
L

1
loc(R

+,L1
loc(R)).

Lemma 2 Under the conditions of Theorem 1, we have

ũ(h) =
∑

i∈Z

u
(h)
i ψ

(h)
i −−−→

h→0
u in L

1
loc(R

+,L1
loc(R))

and ‖u(t)‖L∞(R) ≤ C(t). For t = 0, we find ũ(h)(0) → u0 in L
1
loc(R). More

generally, if A : R
+ × R × R 7→ R is continuous, we obtain

∑

i∈Z

A(t, x
(h)
i (t), u

(h)
i (t))ψ

(h)
i (t, x)

h→0
−−−→ A(t, x, u(t, x))

in L
1
loc(R

+,L1
loc(R)).

Proof Let u be the Ψ∗ limit and note that, according to Lemma 1, the index set
in the definition of ũ can be replaced by IΨh

(t, x). Using the relation IΨh
(t, x) ⊂

IΨh
(t, x, rh) for r ≥ SΨ∗

as well as the partition of unity property, we find

|ũ(t, x) − u(t, x)| =

∣

∣

∣

∣

∣

∣

∑

i∈IΨh
(t,x,rh)

(ui(t) − u(t, x))ψi(t, x)

∣

∣

∣

∣

∣

∣

≤ max
i∈IΨh

(t,x,rh)
|ui(t) − u(t, x)| (9)

which tends to zero as h → 0 for a.e. t ≥ 0 almost everywhere in x ∈ R.
Assuming a bound on ui, it is easy to see from the above estimate that u is
also bounded. In this case, we obtain from the Lebesgue theorem ũ(t) → u(t) in
L

1
loc(R) for a.e. t ≥ 0 so that u is strongly measurable, i.e. u ∈ M(R+,L1

loc(R)).
Using again the bound on u(t) and ũ(t), we conclude ũ→ u in L

1
loc(R

+,L1
loc(R)).

Proposition 1 applied to the function u(t, x) = u0(x) shows that {ui(0) : i ∈
Z} Ψ∗-converges and is uniformly bounded. Hence, the above argument shows
that ũ(0, x) → u0(x) in L

1
loc(R). Repeating estimate (9) again for Ã(t, x) =

∑

i∈Z
A(t, xi(t), ui(t))ψi(t, x), we find

|Ã(t, x) −A(t, x, u(t, x))| ≤

max
i∈IΨh

(t,x,rh)
|A(t, xi(t), ui(t)) −A(t, x, u(t, x))|

where xi is the position of the particle ψi. Note that, due to uniform continuity
of A in a neighborhood of (t, x, u(t, x)), we get convergence for a.e. t ≥ 0 a.e.
in x ∈ R. If x is restricted to a compact set and t ∈ [0, T ], we conclude that
A(t, x, u(t, x)) and A(t, xi, ui) are bounded. Hence, with the same argument as
above, convergence in L

1
loc(R

+,L1
loc(R)) follows.
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Since the approximation ũ(h) of u is t-differentiable we just have to show con-
vergence of the flux terms to get consistency, as the following Lemma indicates.

Lemma 3 With the assumptions of Theorem 1, we find that u is a weak solution

of the Cauchy problem if the approximation ũ(h) satisfies

∫ ∞

0

〈

∂ũ(h)

∂t
, φ

〉

dt
h→0
−−−→

∫ ∞

0

〈

f(u),
∂φ

∂x

〉

dt

for every φ ∈ C∞
0 (R+ × R).

Proof The convergence ũ→ u obtained in Lemma 2 implies at once

∫ ∞

0

〈

u,
∂φ

∂t

〉

dt = lim
h→0

∫ ∞

0

∂

∂t
〈ũ, φ〉 −

〈

∂ũ

∂t
, φ

〉

dt

= − lim
h→0

〈ũ(0), φ(0)〉 − lim
h→0

∫ ∞

0

〈

∂ũ

∂t
, φ

〉

dt.

Using Lemma 2 again, we get convergence of the initial value and with the
assumption for the second limit, it follows that u is a weak solution.

The result of Lemma 1 implies

∂ũ

∂t
=
∑

i∈Z

ψi
dui

dt
+
∑

i∈Z

ui
∂ψi

∂t

and with ui being a (Ψh, Θh, g)–solution, we obtain

∂ũ

∂t
= −

∑

i,j∈Z

|βij |gij
ψi

Vi
+
∑

i∈Z

ui

(

∂ψi

∂t
−
V̇i

Vi
ψi

)

. (10)

In the next lemma, we consider convergence of the second term on the right
hand side of (10).

Lemma 4 Under the conditions of Theorem 1, we find for

φ ∈ C∞
0 (R+ × R)

∫ ∞

0

〈

∑

i∈Z

u
(h)
i

(

∂ψ
(h)
i

∂t
−
V̇

(h)
i

V
(h)
i

ψ
(h)
i

)

, φ

〉

dt
h→0
−−−→

∫ ∞

0

〈

au,
∂φ

∂x

〉

dt.

Proof Using the assumption on the time derivatives of ψi, we get

∑

i∈Z

〈

ui
∂ψi

∂t
, φ

〉

=
∑

i∈Z

〈

uia(t, xi)ψi,
∂φ

∂x

〉

+
∑

i∈Z

〈uiνiψi, φ〉 . (11)

In view of Lemma 2, the first term on the right hand side gives the desired limit

∑

i∈Z

ui(t)a(t, xi(t))ψi(t, x)
h→0
−−−→ u(t, x)a(t, x)
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in L
1
loc(R

+,L1
loc(R)). Hence, it suffices to show that the second term in (11)

vanishes in connection with the contribution due to V̇i/Vi. We first observe that

V̇i =

〈

∂ψi

∂t
, 1

〉

= −a(t, xi)

〈

∂ψi

∂x
, 1

〉

+ 〈νiψi, 1〉

where the first term on the right equals zero. It remains to show that
∫ ∞

0

∑

i∈Z

ui

(

〈νiψi, φ〉 − 〈νiψi, 1〉
〈ψi, φ〉

Vi

)

dt
h→0
−−−→ 0. (12)

Since φ is compactly supported, we first note that for a given t ≥ 0, the sum-
mation can be restricted to the indices IΨh

(t, 0, R) for R sufficiently large. The
number of indices in this set can be estimated by |IΨh

(t, 0, R)| ≤ C/h. Indeed,
this bound is obtained by covering (−R,R) with intervals of length (SΨ∗

+ 1)h
which requires a number of O(1/h) since the particle number in each of the
small intervals is bounded

|IΨh
(t, x̄, (SΨ∗

+ 1)h)| ≤ sup
h>0

sup
t≥0

sup
x∈R

|IΨh
(t, x, (SΨ∗

+ 1)h)| <∞,

x̄ ∈ R.

Hence, convergence of (12) follows if we can bound each term in the sum by an
expression of order h2. Rearranging the bracket in (12), we get with Proposition
1 and the assumptions on νi

∣

∣

∣

∣

〈

νiψi, φ−
〈ψi, φ〉

Vi

〉∣

∣

∣

∣

≤ ‖νi‖L1(R)Ch ≤ C̃h2.

Since ui are uniformly bounded in h, the result follows.

Before we focus on the convergence of the flux terms in (10), we need some
auxiliary result which covers a central argument in the consistency proof.

Lemma 5 Let Ψ = {ψi : i ∈ Z} be a moving particle cloud and {βij : i, j ∈ Z}
a Ψ–admissible family of geometric coefficients. The functions

Πij(t, x) =
1

2
βij(t)

∫ x

−∞

ψi(t, s)

Vi(t)
−
ψj(t, s)

Vj(t)
ds, i, j ∈ Z

form a locally finite family of x–differentiable functions which satisfy |Πij(t, x)| ≤
supi,j∈Z |βij(t)|. Moreover Πij(t, x) 6= 0 implies i, j ∈ IΨ (t, x,D) where D =
3S + B is related to the maximal diameter S of the supports of ψi as well as

the constant B characterizing the indices i, j for which βij = 0. Based on Πij,

another locally finite family of functions

Hi(t, x) : =
∑

j∈Z

Πij(t, x)

can be defined which is a partition of unity
∑

i∈Z

Hi(t, x) = 1 ∀t ≥ 0, x ∈ R.
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Each Hi satisfies a bound

|Hi(t, x)| ≤ sup
i,j∈Z

|βij(t)| |IΨ (t, x,D)|.

Proof According to the definition, Πij is a function with compact support in the
convex hull of the supports of ψi and ψj . Indeed, if we denote this convex hull
by [a, b], we see that for x ≤ a the integrand is identically zero and for x ≥ b,
we have

Πij(t, x) =
1

2
βij

(
∫ ∞

−∞

ψi(t, s)

Vi(t)
ds−

∫ ∞

−∞

ψj(t, s)

Vj(t)
ds

)

= 0.

Moreover, we have the bound |Πij | ≤ |βij |/2 since

−1 ≤ −

∫ x

−∞

ψj

Vj
ds

∫ x

−∞

ψi

Vi
−
ψj

Vj
ds ≤

∫ x

−∞

ψi

Vi
ds ≤ 1.

Since xi is contained in suppψi, we have xi, xj ∈ [a, b] and since the support of
ψi has a diameter less than S, we find (with xi ≤ xj) that [a, b] ⊂ [xi−S, xj +S].
Since βij is different from zero only for |xi−xj| ≤ B, the condition Πij(t, x) 6= 0
implies that |b−a| < 2S+B as well as x ∈ [a, b] ⊂ x+[−(2S+B), 2S+B]. In other
words, i, j ∈ IΨ (t, x,D) with D = 3S+B. To show that L : = {Πij : i, j ∈ Z} is

locally finite, we take T > 0 and K ⊂ R compact. For a ball K̂ which contains
K in such a way that the boundaries have at least a distance D, we know that
IΨ ([0, T ], K̂) is finite and if i 6∈ IΨ ([0, T ], K̂) then the support of Πij(t) does not
intersect K for any j ∈ Z and t ∈ [0, T ]. Hence, |IL([0, T ],K)| can be estimated

by |IΨ ([0, T ], K̂)| supt≥0 supx∈R |IΨ (t, x,D)|. Based on the locally finite family
L, we now introduce H : = {Hi : i ∈ Z} according to

Hi(t, x) : =
∑

j∈Z

Πij(t, x), i ∈ Z.

With the same argument as above, one can show that

|IH([0, T ],K)| ≤ |IΨ ([0, T ], K̂)|

so that H is also locally finite. Moreover, each Hi satisfies the bound |Hi(t, x)| ≤
supij |βij | |IΨ (t, x,D)| since the sum involves at every point at most |IΨ (t, x,D)|
many terms. For the space derivative of the sum of all Hi, we find

∂

∂x

∑

i∈Z

Hi =
∑

i∈Z

∑

j∈Z

1

2
βij

(

ψi

Vi
−
ψj

Vj

)

=
∑

i∈Z

∑

j∈Z

βij
ψi

Vi
.

Since, by assumption,
∑

j∈Z
βij = 0, we conclude that

∑

i∈Z
Hi is a constant

c ∈ R. To determine c, we need the assumption on the geometric coefficients
that

∑

xi≥x̄

∑

xj≥x̄ βij = 1 for some x̄ ∈ R. The idea is to pick a test function

φ ∈ C∞
0 (R) which satisfies 0 ≤ φ ≤ 1, 〈1, φ〉 = 1 and which is supported

sufficiently far to the right of x̄, say a : = inf suppφ > x̄+ 2D. We then have

c =

〈

∑

i∈Z

Hi, φ

〉

=

〈

∑

xi≥x̄

Hi, φ

〉
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because for xi < x̄, the support of Hi is disjoint with the one of φ. Introducing
the function

Φ(x) =

∫ ∞

x

φ(s) ds, x ∈ R

we conclude that Φ′ = −φ and 〈1, φ〉 = 1 implies that Φ(x) = 1 for x ∈ (−∞, a].
Integration by parts yields

c =

〈

∑

xi≥x̄

H ′
i, Φ

〉

=

〈

∑

xi≥x̄

∑

j∈Z

∂Πij

∂x
, Φ

〉

.

Note that for index pairs (i, j) with xi ≥ x̄, xj < x̄ and βij 6= 0, the function
Πij must be supported close to x̄ so that, by construction, it is supported in
x ∈ (−∞, a] where Φ = 1. Hence, the corresponding integrals 〈∂xΠij, Φ〉 vanish
and

c =

〈

∑

xi≥x̄

∑

xj≥x̄

1

2
βij

(

ψi

Vi

−
ψj

Vj

)

, Φ

〉

=

〈

∑

xi≥x̄

∑

xj≥x̄

βij
ψi

Vi

, Φ

〉

.

Finally, our construction assures that for indices i with 〈ψi, Φ〉 < Vi, xi is close
to the support of φ and thus sufficiently far from x̄ to assure that all j ∈ Z with
βij 6= 0 satisfy xj ≥ x̄. Using

∑

j∈Z
βij = 0, we get

∑

xj≥x̄

βij = 0 =
∑

xj≥x̄

βij
〈ψi, Φ〉

Vi

For indices i with 〈ψi, Φ〉 = Vi, we also have

∑

xj≥x̄

βij =
∑

xj≥x̄

βij
〈ψi, Φ〉

Vi

and hence
c =

∑

xi≥x̄

∑

xj≥x̄

βij = 1.

Now, we can conclude the proof of Theorem 1 by showing the convergence of
the flux terms in (10).

Lemma 6 With the assumptions of Theorem 1, we find for any φ ∈ C 1
0(R+×R)

∫ ∞

0

〈

−
∑

i,j∈Z

|β
(h)
ij |g

(h)
ij

ψ
(h)
i

V
(h)
i

, φ

〉

dt
h→0
−−−→

∫ ∞

0

〈

f(u) − au,
∂φ

∂x

〉

dt.

Proof We first note that the double sum is actually finite since both indices can
be restricted to IΨh

([0, T ],K) for T > 0 and K ⊂ R sufficiently large so that
suppφ is well contained in the compact set [0, T ] ×K.
We then exploit the relation nji = sign(βji) = − sign(βij) = −nij together with
the conservativity of g which leads to |βij |gij = −|βji|gji. This allows us to write

∑

i,j∈Z

|βij |gij
ψi

Vi
=
∑

i,j∈Z

1

2
|βij |gij

(

ψi

Vi
−
ψj

Vj

)

.
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According to Lemma 5, we have

1

2
βij

(

ψi

Vi
−
ψj

Vj

)

=
∂Πij

∂x

so that with integration by parts

∫ ∞

0

〈

−
∑

i,j∈Z

|βij |gij
ψi

Vi

, φ

〉

dt =

∫ ∞

0

〈

∑

i,j∈Z

gijnijΠij,
∂φ

∂x

〉

dt

Using consistency of g, we write

gijnij = Gi +Rij, Gi(t) = G(t, xi(t), ui(t)). (13)

The remainder Rij = g(t, xi, ui, xi, ui, nij)nij − gijnij can be estimated with the
help of Lipschitz continuity of g

|Rij | ≤ L(|ui − uj | + |xi − xj|).

Defining

R(t, x) =
∑

i,j∈Z

Rij(t)Πij(t, x)
∂φ

∂x
(t, x)

and using the fact that Πij(t, x) 6= 0 only if i, j ∈ IΨh
(t, x,DΨ∗

h) with DΨ∗
=

3SΨ∗
+BΨ∗

, we have the estimate

|R(t, x)| ≤
∑

i,j∈IΨh
(t,x,DΨ∗

h)

sup
i,j∈Z

|βij(t)|L(|ui(t) − uj(t)|

+ |xi(t) − xj(t)|)|∂xφ(t, x)|

Due to the uniform bound on |βij |, ui and u as well as the estimate |xi − xj| ≤
2DΨ∗

h and the assumed Ψ∗–convergence, we conclude
∫ ∞

0
〈R, 1〉 dt

h→0
−−−→ 0.

In view of (13), it remains to show that

∫ ∞

0

〈

∑

i∈Z

GiHi,
∂φ

∂x

〉

dt
h→0
−−−→

∫ ∞

0

〈

G,
∂φ

∂x

〉

dt (14)

where G = G(t, x, u(t, x)) and Hi is defined as in Lemma 5. Using the fact that
Hi is a partition of unity, (14) reduces to the condition

∫ ∞

0

〈

∑

i∈Z

(Gi −G)Hi,
∂φ

∂x

〉

dt
h→0
−−−→ 0. (15)

The Lipschitz continuity of G leads to the estimate

|Gi −G| ≤ L(|ui − u| + |xi − x|).
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Since Hi(t, x) 6= 0 implies i ∈ IΨh
(t, x,DΨ∗

h)

∑

i∈Z

L(|ui − u| + |xi − x|)|Hi∂xφ(t, x)|

≤ L|IΨh
(t, x,DΨ∗

h)| max
i∈IΨh

(t,x,DΨ∗
h)

(|ui − u| + |xi − x|)|Hi∂xφ(t, x)|

so that (15) follows with the uniform bounds on ui,
|Hi|, |IΨh

(t, x,DΨ∗
h)| and the assumed convergence of ui.

In view of (10), Lemma 4 and Lemma 6 show that the assumption of Lemma 3
is satisfied which completes the proof of Theorem 1.

4 The finite volume particle method

Based on a given set of particle positions xi which move according to ẋi =
a(t, xi), we construct a partition of unity {ψi} and geometric coefficients βij .
Together with (4) this defines the finite volume particle method (FVPM). For
suitable sequences of particle positions and the associated partitions and co-
efficients we then check the conditions of Section 2. Applying Theorem 1, we
conclude that FVPM is consistent to (1).

4.1 Point clouds

In order to obtain reasonable approximation properties with a cloud of points
C = {xi ∈ R : i ∈ Z }, it is clear that some regularity of C has to be assumed.
To quantify gaps in the cloud C, we introduce the functional

γ(C) : = sup
x∈R

inf
p∈C

|x− p|

and to control the clustering of points, we use

N(r, C) : = sup
x∈R

|{p ∈ C : |x− p| < r }| r > 0

where | · | is the counting measure. Obviously, N(r, C) is the largest number of
points p ∈ C in an interval of radius r around any x ∈ R.

Definition 4 The set C = {xi ∈ R : i ∈ Z } is called a regular point cloud, if

γ(C) <∞ and N(r, C) <∞ for all r > 0.

If we study families of point clouds we will assume a certain uniformity.

Definition 5 A family {Ch : h > 0 } is called uniformly regular if

sup
h>0

γ(Ch/h) <∞ and sup
h>0

N(r, Ch/h) <∞ ∀r > 0.
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Note that γ(Ch/h) <∞ assures that the maximal distance between neighboring
points in Ch is of order h. Indeed, if we assume the points xi of a cloud C to be
ordered according to xi ≤ xi+1, we can write

γ(C) =
1

2
sup
i∈Z

|xi+1 − xi| (16)

so that γ(Ch/h) ≤ α implies |xi+1 − xi| ≤ 2αh for all i ∈ Z.
It is a simple matter to check that

N(rh,Ch) = N(r, Ch/h)

so that the second condition in Definition 4 assures that in an interval of radius
rh the points from Ch cannot cluster in such a way that their number becomes
infinite as h→ 0.

4.2 Moving point clouds

In the next step, we consider point clouds which move along a prescribed velocity
field a ∈ C0(R+, C1(R)). If C = C(0) is the initial point configuration, we define
C(t) = X(t;C, 0), where X(t; x̄, τ) is the solution at time t of the problem
ẋ = a(t, x), x(τ) = x̄.

Lemma 7 Let a ∈ C0(R+, C1(R)) and C(0) be a regular cloud of points. Then,

for any T > 0 there exists K > 0 such that

|X(t; p, τ) −X(t; q, τ)| ≤ K|p− q| ∀t, τ ∈ [0, T ], p, q ∈ R.

For 0 ≤ t ≤ T , the set C(t)X(t;C(0), 0) is a regular cloud with

γ(C(t)) ≤ Kγ(C(0)) and N(r, C(t)) ≤ N(rK,C(0)) ∀r > 0.

Proof Due to our smoothness assumptions on a, the flow map X is well defined
and the constant K is obtained with a standard Gronwall estimate. Assuming
that xi ≤ xi+1 for all xi ∈ C(0), we note that the ordering is not changed in the
evolution. According to (16), we have

γ(C(t)) =
1

2
sup
i∈Z

|X(t;xi+1, 0) −X(t;xi, 0)| ≤ Kγ(C(0))

With a similar argument for the backward movement, we conclude with the
relation p = X(0;X(t; p, 0), t) that

|X(0;x, t) − p| = |X(0;x, t) −X(0;X(t; p, 0), t)| ≤ K|x−X(t; p, 0)|.

Hence |x − X(t; p, 0)| < r implies |X(0;x, t) − p| < Kr so that N(r, C(t)) ≤
N(rK,C(0)).

Mainly to avoid working with finite time intervals, we introduce the notion of
fields with finite strain.
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Definition 6

A function a is called field of finite strain if a ∈ C 0(R+, C1(R)) gives rise to a

flow map X which satisfies for some K > 0

|X(t; p, τ) −X(t; q, τ)| ≤ K|p− q| ∀t, τ ∈ R
+, p, q ∈ R

Corollary 1 Let a be a field of finite strain and {Ch(0) : h > 0 } a uniformly

regular family of point clouds. Then {Ch(t) : h > 0 } is uniformly regular and

sup
t∈R

sup
h>0

γ(Ch(t)/h) <∞

sup
t∈R

sup
h>0

N(r, Ch(t)/h) <∞ ∀r > 0.

Proof We just note that the assumptions on the field a guarantee existence of
solutions to ẋ = a(t, x), x(0) = x̄ for all times. The uniform regularity follows
immediately from Lemma 7.

4.3 Construction of particles

To explain the construction of particles, we first restrict to the case of a single,
non–moving point cloud C. Taking a Lipschitz continuous function W : R 7→ R

+

which is strictly positive for |x| ≤ λ = γ(C), say W (x) ≥ σmin > 0, and which
vanishes for |x| ≥ κλ with some κ > 1, we define

ψi(x) =
Wi(x)

σ(x)
, σ(x) =

∑

i∈Z

Wi(x), Wi(x) = W (x− xi), i ∈ Z.

In Fig. 2, this construction is visualized. The symbols on the x-axis indicate the
particle positions. Around each position xi, the function Wi is plotted.

0

1

-4 -2 0 2 4
x

Fig. 2. Irregular particle positions xi and functions Wi

The sum σ of all the functions Wi is shown in Fig. 3.

0

1

2

3

-4 -2 0 2 4
x

Fig. 3. The function σ corresponding to Fig. 2

After dividing Wi by σ, we get the partition functions ψi which, in contrast to
Wi, may be non-symmetric and of different height (see Fig. 4).
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0

1

-4 -2 0 2 4
x

Fig. 4. The partition of unity corresponding to Fig. 2

We remark that the sum defining σ is finite at each x ∈ R because it involves
only those points xi ∈ C with |xi − x| ≤ κλ which are at most N(κλ,C) many.
We also know that σ ≥ σmin because the biggest gap in the particle cloud is of
length λ = γ(C) but the functions Wi are bigger than σmin over intervals of at
least that length. Hence the maximal possible gap is still covered by at least one
of the Wi.

If the regular cloud is moving along a field of finite strain, the same construc-
tion is carried out with λ = supt≥0 γ(C(t)) and

ψi(t, x) =
Wi(t, x)

σ(t, x)
, σ(t, x) =

∑

i∈Z

Wi(t, x), Wi(t, x) = W (x− xi(t)) (17)

Finally, for a moving, uniformly regular family {Ch : h > 0 } we introduce
particles using λ = suph>0 supt≥0 γ(Ch(t)/h) and

W
(h)
i (t, x) = W

(

x− xi(t)

h

)

giving rise to ψ
(h)
i and σ(h) as in (17).

Proposition 2 Let Ψ∗ = {Ψh : 0 < h ≤ 1 } be a family of particle clouds

Ψh = {ψ
(h)
i : i ∈ Z } which are constructed based on a uniformly regular family

of point clouds moving along a field of finite strain. Then, each Ψh is locally

finite with

sup
h>0

sup
t≥0

sup
x∈R

|IΨh
(t, x, rh)| <∞ ∀r > 0

and

ψ
(h)
i ∈ C0(R+,W 1,1(R)) ∩C1(R+,L1(R)).

Further, there exists SΨ∗
> 0 such that

diam suppψ
(h)
i (t) ≤ SΨ∗

h ∀i ∈ Z, h > 0

and αΨ∗
> 0 such that

V
(h)
i (t) : =

〈

ψ
(h)
i (t), 1

〉

≥ αΨ∗
h

for all t ≥ 0 and h > 0. The derivatives of ψ
(h)
i are given by

∂ψ
(h)
i

∂x
=
∑

j∈Z

(

Γ
(h)
ji − Γ

(h)
ij

)

,

∂ψ
(h)
i

∂t
= −

∑

j∈Z

(ẋ
(h)
i Γ

(h)
ji − ẋ

(h)
j Γ

(h)
ij )
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where

Γ
(h)
ij =

ψ
(h)
i

σ(h)

∂W
(h)
j

∂x
.

We also have

∂ψ
(h)
i

∂t
+ ẋ

(h)
i

∂ψ
(h)
i

∂x
= ν

(h)
i ψ

(h)
i

where ν
(h)
i ∈ L

∞
loc(R

+,L1(R)) allows the estimate

sup
0≤t≤T

‖ν
(h)
i (t)‖L1(R) ≤ CΨ∗,Th ∀h > 0.

Proof We assume that Ψh is based on a moving point cloud Ch(t). Due to our
construction of ψi (we suppress the superscript h), the support is contained in a
ball of radius κλh, giving rise to SΨ∗

= 2κλ. Since the number of points in a ball
of radius rh certainly dominates the number of particles which are completely
contained in that ball, we also conclude that |IΨh

(t, x, rh)| ≤ N(rh,Ch(t)) which
is uniformly bounded by assumption. Since for any compact K ⊂ R, we can find
R > 0 such that K is contained in a ball of radius Rh around the origin, we get
at once

|IΨh
(t,K)| ≤ |IΨh

(t, 0, Rh)| ≤ N(Rh,Ch(t)) ≤ N(K̄Rh,Ch(0))

where the last inequality follows from Lemma 7.
Altogether, |IΨh

([0, T ],K)| is uniformly bounded for any T > 0 which shows
that Ψh (and thus also Wh : = {Wi : i ∈ Z }) is locally finite.

The estimate on the diameter of the supports also implies
IΨh

(t, x) ⊂ IΨh
(t, x, SΨ∗

h), giving rise to a uniform bound

σ(t, x) ≤ sup
t≥0

sup
x∈R

|IΨh
(t, x, SΨ∗

h)|max
x∈R

W (x) = : σmax.

Since W (x/h) ≥ σmin on |x| ≤ λh, we obtain

ψi(t, x) ≥
σmin

σmax
, |x| ≤ λh.

Consequently, the volume can be estimated from below

Vi ≥

∫

|x|≤λh

ψi dx ≥
σmin

σmax
2λh

and we set αΨ∗
= 2λσmin/σmax.

To show smoothness properties of ψi, we continue with the observation that
the support of Wi(t) stays in a compact set K ⊂ R if t varies in a compact
interval [0, T ]. Hence, we can replace σ by

σ̃(t, x) =
∑

i∈Ĩ

Wi(t, x), Ĩ = IWh
([0, T ],K)

which is only a finite sum. Since Lipschitz continuity implies differentiability
almost everywhere, we immediately get

∂ψi

∂x
=

1

σ̃

∂Wi

∂x
−
Wi

σ̃

1

σ̃

∑

k∈Ĩ

∂Wk

∂x
. (18)
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At this point, we remark that ψi ∈ C0(R+,W 1,1(R)). Indeed, a small change
in time leads to a little translation of the participating functions Wk which is a
continuous operation in L

1(R).

Multiplying equation (18) by ψj, summing over all j and replacing σ̃ again
by σ, we arrive at

∂ψi

∂x
=

1

σ

∑

j∈Z

(

ψj
∂Wi

∂x
− ψi

∂Wj

∂x

)

. (19)

Using the fact that ∂tWi = −ẋi∂xWi, we obtain in an analogous way

∂ψi

∂t
= −

1

σ

∑

j∈Z

(

ẋiψj
∂Wi

∂x
− ẋjψi

∂Wj

∂x

)

. (20)

ConsideringWi as an L
1(R) valued function on R

+, we haveWi ∈ C
1(R+,L1(R))

where continuity of the first derivative is again due to the continuity of the
translation operator in L

1(R). A straight forward estimate of difference quotients
shows that also ψi ∈ C1(R+,L1(R)). Combining (19) and (20), we end up with

∂ψi

∂t
+ ẋi

∂ψi

∂x
=





1

σ

∑

j∈Z

(ẋj − ẋi)
∂Wj

∂x



ψi. (21)

Introducing

νi =





1

σ

∑

j∈Z

(ẋj − ẋi)
∂Wj

∂x



 ζi

with ζi being the indicator function of a ball of radius κλh around xi(t), the right
hand side in (21) can also be written as νiψi. To estimate the L

1–norm of νi(t),
we note that σ ≥ σmin and, since the velocity field a(t) is uniformly bounded
in C1(R) if t ranges in a compact interval, we get |ẋj − ẋi| ≤ L(t)|xj − xi|.
Note that this estimate is only needed if ζi∂xWj 6= 0 which may happen if
|xj − xi| ≤ 2κλh (otherwise the supports are disjoint). The number of involved
points xj is estimated by N(2κλh,Ch(t)) ≤ N(2Kκλh,Ch(0)) according to
Lemma 7 so that

‖νi(t)‖L1(R)) ≤ L(t)N(2Kκλh,Ch(0))

∥

∥

∥

∥

∂W (·/h)

∂x

∥

∥

∥

∥

L1(R)

2κλh.

With the change of variables y = x/h, we find that ‖∂xW (·/h)‖L1(R)

= ‖∂xW‖L1(R) for all h > 0 so that the result follows with

CΨ∗
(T ) : = sup

0≤t≤T

sup
h>0

2κλL(t)N(2Kκλh,Ch(0)).
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4.4 Geometric coefficients

Motivated by the derivation of the method in Section 1, we define the coefficients

β
(h)
ij (t) =

〈

Γ
(h)
ij (t) − Γ

(h)
ji (t), 1

〉

(22)

where Γ
(h)
ij are taken from Proposition 2

Γ
(h)
ij =

ψ
(h)
i

σ(h)

∂W
(h)
j

∂x

Proposition 3 The coefficients β
(h)
ij are uniformly bounded and satisfy β

(h)
ij =

−β
(h)
ji as well as

∑

j∈Z
β

(h)
ij = 0 for all i ∈ Z. There exists a constant B > 0

such that |x
(h)
i (t) − x

(h)
j (t)| ≥ Bh implies β

(h)
ij (t) = 0. Finally, for every x̄ ∈ R,

we have
∑

x
(h)
i (t)≥x̄

∑

x
(h)
j (t)≥x̄

β
(h)
ij (t) = 1 ∀t ≥ 0, h > 0.

Proof We again suppress the superscript h in the proof. ¿From the definition
(22) of βij , the skew symmetry follows at once.
Since |ψi/σ| ≤ 1/σmin, we find

∫

R

|Γij(t, x)| dx ≤
1

σmin

∫

R

∣

∣

∣

∣

∂W (x/h)

∂x

∣

∣

∣

∣

dx =
1

σmin

∫

R

∣

∣

∣

∣

∂W

∂x
(y)

∣

∣

∣

∣

dy

which is a uniform bound giving rise to |β
(h)
ij (t)| ≤ 2‖∂xW‖L1(R)/σmin. Taking

into account that diam suppψi ≤ SΨ∗
h, we conclude that for |xi(t) − xj(t)| ≥

2SΨ∗
h, the supports of Wj and ψi are disjoint and hence βij = 0. The remaining

two properties are shown based on a useful reformulation of the formula for βij

βij = 2

〈

ψi,
∂ψj

∂x

〉

. (23)

Equation (23) follows immediately from

∂ψj

∂x
=

1

σ

∂Wj

∂x
− ψj

1

σ

∂σ

∂x

so that

〈Γij, 1〉 =

〈

ψi,
∂ψj

∂x

〉

+

〈

ψiψj ,

(

∂σ

∂x

)

/σ

〉

and

βij = 〈Γij − Γji, 1〉 =

〈

ψi
∂ψj

∂x
− ψj

∂ψi

∂x
, 1

〉

= 2

〈

ψi,
∂ψj

∂x

〉

.

It implies that
∑

j∈Z

βij = 2

〈

ψi,
∂

∂x

∑

j∈Z

ψj

〉

= 0
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and with Ψx̄(t, x) : =
∑

xi≥x̄ ψi(t, x),

∑

xi≥x̄

∑

xj≥x̄

βij = 2

〈

Ψx̄
∂

∂x
Ψx̄, 1

〉

=

〈

∂

∂x
Ψ2

x̄ , 1

〉

= Ψ2
x̄

∣

∣

x=∞

x=−∞
.

Note that Ψx̄(t, x) = 0 for x → −∞ since all ψi(t, x) with xi ≥ x̄ vanish for
x < x̄−Bh. On the other hand, for x > x̄+Bh, the function Ψx̄(t, x) coincides
with

∑

i∈Z
ψi(t, x) = 1, so that Ψ 2

x̄

∣

∣

x=∞

x=−∞
= 1.

5 Conclusion

We have presented a consistency result for a general class of conservative, mesh-
free methods based on partitions of unity. Apart from the partition and a stan-
dard numerical flux function, the schemes are characterized by the parameters
βij which contain geometrical information about relative position of particles
and the amount of overlap. For example, in classical finite volume methods,
which are recovered in the approach for a special choice of the partition of
unity, the coefficients βij are related to the surface area of the cell faces (in
the multi-dimensional case) and the corresponding normal directions. In the fi-
nite volume particle method (FVPM), which can be viewed as a generalization
of classical finite volume methods to the case of overlapping and moving grid
cells, the coefficients are calculated based on the partition functions according
to βij = 2 〈ψi, ∂xψj〉. Since the proof of the consistency result requires only little
regularity of the partition of unity functions and is mainly based on some gen-
eral assumptions on the coefficients βij , it applies at the same time to FVPM
and standard finite volume methods.

The advantage of FVPM to work for general distributions of particle positions
and overlapping partition functions has to be paid with the calculation of Vi

and βij which involve integration over ψi and ∂xψj . The goal is to discretize
the integrals in such a way that the evaluation becomes fast without violating
the consistency conditions presented here (note that for consistency, the specific
form βij = 2 〈ψi, ∂xψj〉 is not necessary). Since additional restrictions on βij

may arise from stability considerations, a convergence analysis is naturally the
next step in the investigation of the method. Apart from that, the treatment of
bounded domains is most important, because the main applications of particle
methods will be in complicated and time depending geometries.
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