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Abstract. Compared to standard numerical methods for hyperbolic systems of conservation
laws, kinetic schemes model propagation of information by particles instead of waves. In this article,
the wave and the particle concept are shown to be closely related. Moreover, a general approach to
the construction of kinetic schemes for hyperbolic conservation laws is given that summarizes several
approaches discussed by other authors.
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1. Introduction. Kinetic schemes have originally been used to construct ap-
proximate solutions of the Euler equations of gas dynamics, but the idea has also
been extended to other conservation laws. For scalar equations, the approach is very
successful because the main ingredient, a suitable equilibrium distribution that gener-
alizes the Maxwellian velocity distribution function of a gas in local thermodynamical
equilibrium, is available. Extensions to systems of conservation laws are also possible
but the construction of suitable equilibrium distributions is more difficult.

In this article, our goal is to find a construction principle for equilibrium distri-
butions that applies to general systems of conservation laws and that reduces to the
known results in the scalar case. After a brief description of the classical case of Euler
equations (section 2), the general framework of kinetic (or particle) formulations is
introduced, followed by the definition of a kinetic scheme in section 4. In the case of
linear hyperbolic systems the kinetic formulation is shown to be closely related to the
wave approach based on Fourier analysis. In fact, it turns out in section 5 that, for a
suitable choice of the equilibrium distribution function, the kinetic scheme yields the
exact solution of the general linear Cauchy problem. In section 6, an extension of the
approach gives rise to a general construction principle for equilibrium distributions.

A consistency and stability analysis singles out a class of hyperbolic systems for
which the kinetic approach seems to be extremely well suited. This class contains
all linear equations, all scalar conservation laws, and some systems. The members
of the class are characterized by the fact that the kinetic scheme has infinite order
of consistency and that its linearization is the exact solution of the linearized prob-
lem. A hyperbolic system belongs to this class if the Jacobian matrix of the fluxes
satisfies certain integrability conditions. In sections 8–10, the construction of equilib-
rium distributions is applied to several specific examples recovering many approaches
proposed by other authors. Also, the relation to the method in [7] is investigated.

2. A particle approach for Euler equations. To explain how a kinetic (par-
ticle) model can be used to approximate solutions of hyperbolic conservation systems,
we focus on the important example of Euler equations in gas dynamics (which we
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write using Einstein’s summation convention),

(2.1)

∂tρ+ ∂xj
ρuj = 0,

∂tρui + ∂xj
ρuiuj + ∂xi

p = 0,

∂tρε+ ∂xj
(ρε+ p)uj = 0.

In this continuum description of a gas, the densities of the conserved quantities mass,
momentum, and energy are ρ, ρu, and ρε. The vector u is the velocity of the gas and p
is the pressure. For an ideal gas, the pressure satisfies the relationship p = ρT (the gas
constant is suppressed by choosing an appropriate unit for the temperature T ). For
simplicity, we consider the case of a monoatomic gas, where the temperature is related
to the energy by T = 2/3(ε− |u|2/2). The idea to solve (2.1) with a particle method
has a clear physical origin. Indeed, the continuum description (2.1) can be refined
by taking the atomic structure of the gas into account. For the case of rarefied gases
this can be done with the theory of Boltzmann equation. In this approach, the basic
quantity is a particle distribution function fδ(t,x,v) that describes the density of gas
atoms with velocity v at position x and time t. The gas atoms (i.e., the particles)
move freely in space unless they undergo collisions. The corresponding evolution of
fδ is given by the Boltzmann equation

(2.2) ∂tfδ + vj∂xj
fδ =

1

δ
Q(fδ).

The left-hand side of (2.2) describes free flow of particles, whereas collisions are mod-
eled by the operator Q. In the kinetic approach, conservation of mass, momentum,
and energy is ensured by the property of the collision operator that velocity integrals
of Q(fδ) weighted with 1, v, and |v|2 vanish. The parameter δ in (2.2) denotes the
Knudsen number, which is a measure for the mean free path between particle col-
lisions (for details see [10]). A connection between the two descriptions (2.1) and
(2.2) is obtained in a limit where particle collisions are dominant (δ → 0). In this
asymptotic case, we find in lowest order Q(f) = 0 that implies, due to the structure
of the collision operator, that the limit density f has the form of a Maxwellian

(2.3) M(ρ,u, T ; v) =
ρ

(2πT )
3
2

exp

(

−|v − u|2
2T

)

.

This clearly relates the variables f and ρ, u, ε of both approaches.
Assuming that formally Q(fδ)/δ → Q̄ for δ → 0, we obtain the limiting evolution

(2.4) ∂tf + vj∂xj
f = Q̄ and f = M.

Note that Q̄ is an additional unknown in the problem but the constraint f = M also
yields an additional equation. Hence Q̄ can be viewed as a Lagrange multiplier which
ensures the constraint. (For the case of scalar conservation laws, these observations
have been made precise in [24].)

To see that the limiting evolution (2.4) implies the Euler evolution (2.1), we
multiply (2.4) by 1, v, 1

2 |v|2 and integrate over v:

(2.5) ∂t

∫

R3





1
v

1
2 |v|2



M dv + ∂xj

∫

R3

vj





1
v

1
2 |v|2



M dv = 0.
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Here we have used the conservation property of the operator Q, which we assume
to carry over to Q̄ in the limit δ → 0. Now, using the explicit form (2.3) of M, we
calculate

(2.6)

∫

R3





1
v

1
2 |v|2



M dv =





ρ
ρu
ρε



 ,

∫

R3

vj





1
vi

1
2 |v|2



M dv =





ρuj

ρuiuj + pδij
(ρε+ p)uj





so that, indeed, (2.5) turns into (2.1).
In the following, we call (2.4) a kinetic formulation of the Euler equation. Note

that the kinetic formulation describes the Euler evolution in terms of a particle ensem-
ble that moves according to the equation ∂tf + vj∂xj

f = Q̄ subject to the constraint
f = M on the velocity distribution of the particles. The advantage of the kinetic
formulation in comparison to the original system (2.1) is the simpler structure: the
differential operator ∂t + vj∂xj

is scalar and linear in contrast to the nonlinear op-
erator in (2.1). In particular, any numerical method known for the simple advection
equation can directly be applied to (2.4). A corresponding discretization of the Euler
system is obtained by multiplying the discretized version of (2.4) with 1, v, and 1

2 |v|2,
integrating over v, and observing the constraint and the conservation property of Q̄.
In [29], the kinetic formulation is discretized in both x and v. A similar approach is
taken in [28], where a more efficient, semidiscrete form of (2.4) is used. The latter
approach was also developed in [13] and extended in several directions by exploiting
the possibility to discretize (2.4) with different methods [14, 15, 16].

Taking into account that the relation between the kinetic formulation (2.4) and
the Euler system relies only on the property (2.6) of the Maxwellian, it is not surprising
that any other function M(ρ,u, T ; v) that satisfies (2.6) also leads to a kinetic formu-
lation if f = M in (2.4) is replaced by the constraint f = M . This approach has been
applied to the Euler system in [22, 30]. Further examples of modified Maxwellians can
be found in [26], where M is derived using a maximum entropy principle. A general
construction principle of Maxwellians is also given in [3]. Another generalization of
the kinetic formulation is obtained by modifying the velocity space. In fact, instead
of using R

3 with Lebesgue measure, one can work with more general measure spaces
(see [3, 25]).

3. A particle approach for general hyperbolic systems. In the following,
we will consider general, autonomous hyperbolic problems of the form

(3.1) ∂tU (t,x) + ∂xj
F j(U (t,x)) = 0, U (0,x) = U 0(x)

with x ∈ R
d. We assume that the unknowns U = (U1, . . . , Um)t are contained in

a connected open set S ⊂ R
m and that F j : S 7→ R

m are C1-functions. In the
generic case d > 1 and m > 1, we also assume that S is simply connected. Note
that (3.1) is hyperbolic if all linear combinations ξjA

j(U ) of the Jacobian matrices
Aj(U ) = ∇F j(U ) of the fluxes have only real eigenvalues for all ξ ∈ R

d and all
U ∈ S.

Introducing 〈·, ·〉v to denote integrals over v ∈ R
d, we call, in accordance with

our considerations above,

(3.2) (∂t + vj∂xj
)Φ = Q, Φ(t,x,v) = µ(U (t,x); v), 〈Q, 1〉v = 0

a kinetic formulation of the general system (3.1) if the constraint function µ : S×R
d 7→

R
m satisfies the consistency conditions

(3.3) 〈µ(U ; v), 1〉v = U and 〈µ(U ; v), vj〉v = F j(U ).
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Again, the kinetic formulation describes the evolution of each Ui in terms of a par-
ticle ensemble with velocity distribution v 7→ µi(U ; v) that moves according to the
transport equation (∂t + vj∂xj

)Φi = Qi.
The particular case of Euler equations is recovered by setting

(3.4) U =





ρ
ρu
ρε



 , µ(U ; v) =





1
v

1
2 |v|2



M(ρ,u, T ; v), Q =





1
v

1
2 |v|2



 Q̄.

Here the first and last component of µ are the mass and energy distribution of the
particle ensemble and the other components represent the momentum distribution.

For the case of scalar equations (m = 1) a constraint function µ has been derived
and investigated by several authors [2, 4, 17, 27]. The same constraint will also
follow from our construction principle, which can be viewed as a generalization of the
approach in [18] for linear hyperbolic systems in one space dimension. For systems
of conservation laws, constraint functions have mainly been proposed in special cases
[1, 8, 19, 12], but there are also general approaches to the construction of constraints
[3, 18].

4. A kinetic scheme. We have already noted that kinetic formulations can be
discretized in many ways, giving rise to different kinetic schemes. Here we focus on
the construction of constraint functions µ and therefore restrict ourselves to a simple
semidiscrete approximation of (3.2), which has also been used in [26, 22, 2] and which
is sometimes called the transport-collapse method [6]. The basic idea is to enforce
the constraint Φ = µ only at tn = n∆t, leading to a purely temporal discretization.
Starting with Φ(tn,x,v) = µ(Un(x); v) we neglect the Lagrange multiplier Q for
tn < t < tn+1 and thus have to solve the free flow equation (∂t + vj∂xj

)Φ = 0

Φ(t,x,v) = µ(Un(x − (t− tn)v); v).

At the end of the time step, the moment vector Un+1(x) = 〈Φ(tn+1,x,v), 1〉v is used
to reenforce the constraint Φ = µ. Altogether, we can give an inductive definition of
the kinetic scheme which we are going to consider in the following:

Let U 0 : R
d 7→ S be the initial value for problem (3.1) and let tn =

n∆t for some ∆t > 0 and n ∈ N0. If Un is already constructed and
is a function with values in S, we set

Uµ(t,x) = 〈µ(Un(x − (t− tn)v); v), 1〉v , tn ≤ t ≤ tn+1

with the value Un+1(x) = Uµ(tn+1,x) at the end of the time step.
To check that Uµ is an approximation of the solution of (3.1) we use a Taylor expansion
around t0 = 0 which suffices due to the iterative structure of the algorithm. With
(3.3) we have

Uµ(0,x) =
〈

µ(U 0(x); v), 1
〉

v
= U 0(x)

and

∂tUµ(t,x)|t=0 =
〈

−vj∂xj
µ(U 0(x); v), 1

〉

v
= −∂xj

F j(U 0(x))

so that indeed

Uµ(t,x) = U 0(x) − ∂xj
F j(U 0(x))∆t + O(∆t2).
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In other words, the consistency conditions (3.3) guarantee that Uµ is at least a first-
order consistent approximation to the solution of (3.1). The reason why we cannot
expect a higher consistency order in general is due to the neglect of the source term
Q. In fact, whenever Q vanishes only initially, the free-flow equation is just a first-
order consistent approximation to (3.2) which carries over to the hyperbolic system
by taking moments.

For the construction of µ, it is important to note that the consistency conditions
(3.3) do not determine µ uniquely. Hence there should be a selection mechanism to
single out an appropriate constraint function. One possibility is to select a constraint
function which is optimal with respect to a convex functional (entropy) while satis-
fying the consistency conditions. As a by-product, the resulting kinetic scheme also
satisfies an entropy inequality (see [26]). In this work, we pursue a different optimality
condition: we select a constraint function µ

◦

which maximizes the order of consistency
of the semidiscrete kinetic scheme introduced above. This optimality result holds in
the class of constraint functions U 7→ µ(U ) for which each component µi is contained
in K, the set of continuous mappings from S into the space E ′(Rd) of compactly
supported distributions which satisfy an additional locally uniform estimate (see Def-
inition A.4 in the appendix for details). For each µ ∈ Km, the corresponding kinetic
scheme gives rise to the approximation

Uµ(t,x) : =
〈

µ(U 0(x − vt); v), 1
〉

v
,

where U 0 is taken from the set of initial values

J : =
{

V : R
d 7→ S : V ∈ C∞(Rd)m, V (Rd) compact in S

}

.

If U (t,x) is the corresponding classical solution of (3.1) on (−T, T ) × R
d for some

T > 0, we define the consistency as

con(µ) : = inf
{

n− 1 : n ∈ N0, ∂
n
t U |t=0 6= ∂n

t Uµ|t=0 for some U 0 ∈ J
}

.

With this notation, the optimality of the constraint function µ
◦

constructed below can
be formulated as con(µ

◦

) ≥ con(µ) for all µ ∈ Km. It turns out that the maximal
order of consistency obtainable with kinetic schemes of the above type depends on
structural properties of the hyperbolic system related to integrability properties of
products of the Jacobian matrices Aj(u) = ∇F j(u). Before stating the result in the
following theorem, we note that a matrix valued function B : S 7→ R

m×d is called
exact if B = ∇b for some b : S 7→ R

m, or in other words, if B has a primitive.
Theorem 4.1. An explicit expression for the optimal consistency con(µ

◦

) is

con(µ
◦

) = sup

{

n ∈ N : (ξjA
j)n̄−1Ak is exact for all n̄ ≤ n, ξ ∈ R

d, k = 1, . . . , d

}

.

For systems in one space dimension (d = 1), the condition reduces to exactness of
n̄-fold products of the Jacobian A1 for all n̄ ≤ n. In the scalar case (m = 1) and for
linear systems, the maximal consistency order is always infinite. Since con(µ

◦

) ≥ 1 for
any system, the kinetic scheme based on µ

◦

is always consistent. If con(µ) = ∞ for
some µ ∈ Km, then µ is essentially given by µ

◦

, i.e., µ = µ
◦

η+C, where C ∈ [E ′(Rd)]m

is independent of U and satisfies 〈C, 1〉v = 0.
Proofs for the results in this theorem can be found in [20, 21]. We remark that

the infinite order of consistency in the case of linear systems follows from the fact
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that constant matrices can always be viewed as Jacobians of linear functions and thus
are exact. For scalar equations, we note that (ξjA

j)n̄−1Ak is a continuous, scalar
function in the scalar state variable U . Using the fundamental theorem of calculus,
a primitive can be obtained simply by integration with variable upper bound which
shows exactness for any ξ, n̄ and k. Already for systems in one space dimension,
the situation is very different. Even (A1)2 = ∇F 1∇F 1 need not be exact so that the
kinetic scheme will yield only a first-order consistent method in general. In such cases,
the optimality of µ

◦

is only a weak statement because any constraint with con(µ) = 1
will also be optimal. Nevertheless, µ

◦

is singled out by the fact that its construction
principle automatically yields the unique (up to constants) optimal solution in the
case con(µ

◦

) = ∞. Some examples of such cases will be mentioned in sections 9
and 10.

We conclude with the remark that other discretizations of (3.2) can, of course, lead
to kinetic schemes with higher orders of consistency if the term Q is not completely
neglected. The semidiscrete approximation chosen here, however, is very well suited
for the construction of constraint functions which is our main objective.

5. Equivalence of wave and particle approach. To illustrate the similarities
between the particle approach based on a kinetic formulation and the more common
wave approach, let us briefly recollect the case of a linear hyperbolic system, where
the flux functions are of the form F j(U ) = AjU with constant matrices Aj ∈ R

m×m:

(5.1) ∂tU (t,x) +Aj∂xj
U (t,x) = 0, U (0,x) = U 0(x).

Applying the Fourier transform in the space variable, we obtain a system of ordinary
differential equations

∂tÛ (t, ξ) + iξjA
jÛ (t, ξ) = 0, Û (0, ξ) = Û

0
(ξ)

(with i being the imaginary unit) which has the solution

(5.2) Û (t, ξ) = Êt(ξ)Û
0
(ξ), Êt(ξ) = exp(−itξjAj).

Transforming back, we can write the solution as a superposition of plane waves

U (t,x) =
1

(2π)d

∫

Rd

W ξ(t,x) dξ, W ξ(t,x) = exp
(

i(ξ · x) I−itξjAj)
)

Û
0
(ξ).

The reformulation of this wave approach into a particle formulation simply relies on
the property of the Fourier transform to convert products into convolutions. To see
this, we use relation (5.2), denoting the Fourier transform by F :

U (t,x) = F−1
ξ

(

Êt(ξ)Û
0
(ξ)
)∣

∣

∣

x
.

With the abbreviation Et : = F−1Êt we obtain formally U(t,x) = Et ∗ U 0(x), or
more explicitly

(5.3) U (t,x) =
〈

Et(y)U 0(x − y), 1
〉

y
.

(To avoid technicalities at this point we proceed purely formally. Actually, Et has to
be interpreted in the sense of distributions which we do later.) Using the fact that

F−1
ξ φ(tξ)

∣

∣

∣

tv
=

1

(2π)d

∫

Rd

φ(tξ) exp(iξ · tv) dξ =
1

td
1

(2π)d

∫

Rd

φ(η) exp(iη · v) dη
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for any test function φ, we find accordingly Et(vt) = E1(v)/td. Hence the change of
variables y = tv in (5.3) yields

(5.4) U(t,x) =
〈

E1(v)U 0(x − tv), 1
〉

v
.

This result suggests to introduce the vector constraint function

(5.5) µ
◦

lin(U ; v) : = E(v)U , E = E1 = F−1
ξ exp(−iξjAj).

Then the solution (5.4) of the linear hyperbolic system coincides with the approxima-
tion Uµ

◦

lin
obtained with the kinetic scheme defined in section 4

Uµ
◦

lin
(t,x) =

〈

µ
◦

lin(U 0(x − tv); v), 1
〉

v
.

This remarkable result is partly related to our choice of the kinetic scheme, but it
demonstrates that the concept of kinetic formulations is intimately related to hyper-
bolic equations. In particular, the derivation shows that solving the free transport
equation together with velocity averaging is closely connected to convolution.

Since the kinetic scheme based on µ
◦

lin yields the exact solution, it is evident
that the consistency conditions (3.3) are satisfied. This property can also be checked
directly. Translating v-moments of E into ξ-derivatives of the Fourier transform at
ξ = 0, we have

(5.6) 〈E, 1〉v = F(E)(0) = exp(−iξjAj)
∣

∣

ξ=0
= I

and

(5.7) 〈E, vk〉v = F(vkE)(0) = i∂ξk
exp(−iξjAj)

∣

∣

ξ=0
= Ak

so that

〈µ◦ lin(U ), 1〉v = 〈E, 1〉v U = U , 〈µ◦ lin(U ), vk〉v = 〈E, vk〉v U = AkU .

6. General constraint functions. For general linear hyperbolic problems like
(5.1) we have found an optimal constraint function

(6.1) µ
◦

lin(U ; v) : = E(v)U , E = F−1
ξ exp(−iξjAj)

for which the corresponding kinetic scheme even yields the exact solution. In [18],
the same constraint has been derived for the linear case in a single space dimension
(d = 1) if A1 has a complete set of eigenvectors. The authors are able to extend the
construction of µ to nonlinear systems if the flux can be put in the form

F 1(U ) = A1(U )U

with A1(U ) having pointwise the same properties as required for the linear case
(such a representation is possible if the system admits a convex entropy). With
this extension, however, the optimality in the linear case (as far as recovering exact
solutions is concerned) does not carry over to nonlinear problems. We therefore
propose a different generalization of (6.1). First, we rewrite (6.1) as integral over the
matrix E which is constant with respect to U ,

(6.2) µ
◦

lin(U ) =

∫ U

0

E : =

∫ 1

0

E γ̇(s) ds,
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where γ : [0, 1] 7→ R
m is a curve in the state space S = R

m which connects the
origin with U . To obtain an expression similar to (6.2) in the case of general systems,
we assume in the following that 0 ∈ S and F j(0) = 0 for j = 1, . . . , d. This can
always be achieved by selecting some point Ũ ∈ S and going over to the fluxes

F̃
j
(V ) = F j(V + Ũ ) − F j(Ũ ) defined on S̃ = S − Ũ which certainly contains 0.
A straightforward generalization of (6.1) and (6.2) to the nonlinear case is ob-

tained if we replace the constant matricesAj by the flux derivativesAj(U ) = ∇F j(U ).
Obviously, the matrix E then depends on U ∈ S ⊂ R

m

E(U ) = F−1
ξ exp(−iξjAj(U ))

so that the line integral of E in (6.2) is no longer trivial. Since we cannot expect
that the line integrals are independent of the chosen curves in the state space S, we
have to fix properties of the parameterization. If γ(U ; s) is the parameterization of
a curve connecting the origin with U in S, we require that the U -dependence of γ

is reasonably nice and that the integrals of E along the curves are well defined (we
speak of F -admissible curves—for details see Definition A.3 in the appendix). If ΓU

is the graph of the parameterization s 7→ γ(U ; s), we define the line integral of the
matrix E as

∫

ΓU

E : =

∫ 1

0

E(γ(U ; s))γ̇(U ; s) ds,

where γ̇ refers to the s-derivative of γ. Finally, the proposed generalization of (6.2)
to the case of nonlinear hyperbolic systems is given by

(6.3) µ
◦

(U ) : =

∫

ΓU

E, E(U ) = F−1
ξ exp(−iξjAj(U )).

A rigorous description of the mathematical properties of µ
◦

is given in the appendix,
where the approach is generalized to entropy conservation laws related to the hyper-
bolic system.

In section 4, we have already discussed the optimality property of µ
◦

with respect
to the order of consistency. However, consistency alone does not fully describe the
behavior of the scheme. The second important concept besides consistency is stability.
Therefore, in the following section, we consider linear stability of the kinetic scheme
and mention the approach of modified equations. In the remaining sections, we then
give examples where the Fourier transform in (6.3) is calculated explicitly.

7. Some remarks on stability.

7.1. Linear stability. In general, the constraint function U 7→ µ
◦

(U ) depends
nonlinearly on U so that the kinetic scheme based on µ

◦

is also nonlinear. However,
if the initial value varies only slightly around some value Ū ∈ S, one can linearize
the kinetic scheme and study the stability properties of the resulting scheme which
approximates the linearization of (3.1),

(7.1) ∂tW +Aj(Ū )∂xj
W = 0, W |t=0 = W 0 = U0 − Ū .

A corresponding linearization of the kinetic scheme relies on

µ
◦

(U ; v) ≈ µ
◦

(Ū ; v) + ∇µ
◦

(Ū ; v)W , W = U − Ū ,
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δ(h)

U

U+

Γ

∆
e

U

h

ΓU+

C (U,e)

δ(h)

h

0

Fig. 7.1. Closed curve in state space.

where the gradient of µ
◦

is taken with respect to the state variable U . To calculate
the derivative of µ

◦

into some direction e ∈ R
m, we select a curve δ ∈ C1([0, 1],Rm)

which satisfies δ(0) = 0 and δ̇(0) = e. Then

(7.2) ∇µ
◦

(U )e = lim
h→0

1

h

(

∫

ΓU+δ(h)

E −
∫

ΓU

E

)

.

Introducing the graph ∆h(U , e) = U + δ([0, h]), we set up the oriented closed curve
Ch(U , e) : = ΓU+δ(h) − ∆h(U , e) − ΓU (see Figure 7.1). Hence (7.2) transforms into

∇µ
◦

(U )e = lim
h→0

1

h

∫

∆h(U ,e)

E + lim
h→0

1

h

∮

Ch(U ,e)

E.

Using the mean value theorem, the first integral reduces to E(U )e and the second
one can be rewritten as

(7.3) q(U )e =
d

dh

∮

Ch(U ,e)

E

∣

∣

∣

∣

∣

h=0

.

Altogether, we find ∇µ
◦

(U ) = E(U )+q(U ). In the case U 0 = Ū+W 0 with small W 0,
it is thus reasonable to consider the following approximation of the kinetic scheme:

Ū + W̃ (t,x) =
〈

µ
◦

(U 0(x − tv); v), 1
〉

v(7.4) ≈
〈

µ
◦

(Ū ; v) + (E(Ū ; v) + q(Ū ; v))W 0(x − tv), 1
〉

v
.

According to our investigations in section 5, E(Ū ; v)W is the constraint function
µ
◦

lin(W ; v) for the linearized system (7.1). For the remainder term in (7.4) we intro-
duce µq(W ; v) = q(Ū ; v)W so that the linearized kinetic scheme is clearly seen to be
the superposition of two linear kinetic schemes

W̃ (t,x) ≈
〈

µ
◦

lin(W 0(x − tv); v), 1
〉

v
+
〈

µq(W
0(x − tv); v), 1

〉

v
.

While the first contribution is the exact solution of the linear system (7.1) (and thus
stable), the second one strongly depends on the selected curves and the interplay of
these curves with the matrix E which contains the information about the hyperbolic
system. Stability problems of the scheme can originate only in the term related to
the matrix q defined in (7.3).

At this point it becomes obvious that the kinetic scheme is particularly well suited
for those hyperbolic problems for which closed curve integrals over E vanish. In this
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case, q is identically zero and the linearized kinetic scheme is the optimal kinetic
scheme for the linearized equation.

From the theory of differential one-forms, it is known that vanishing closed curve
integrals are related to exactness. Applied to E = F−1

ξ exp(−iξjAj), the condition
reduces to the requirement that the mapping

U 7→ exp(−iξjAj(U )) =

∞
∑

n=0

(−i)n

n!
(ξjA

j(U ))n

must be exact (i.e., possess a primitive). It can easily be shown [20] that this is just
another way of requiring the exactness of all products U 7→ (ξjA

j(U ))n. Note that
this observation is related to the results of Theorem 4.1. In particular, for all scalar
conservation laws, the proposed constraint function yields a linearly stable scheme.

In case the exactness of all products (ξjA
j)n is not given, the additional term

related to q does not vanish and instabilities can occur if the Fourier transform of q
has amplifying modes.

7.2. The modified equation approach. In general, the kinetic scheme based
on µ

◦

yields a first-order accurate solution to problem (3.1) However, by a simple
Taylor expansion argument, one can check that the approximation obtained with the
kinetic scheme is at least second-order accurate to the so-called modified equation

(7.5) ∂tU + ∂xj
F j(U ) =

1

2
∆t∂xj

[(

∇〈µ◦ (U ; v), vjvi〉v −Aj(U )Ai(U )
)

∂xi
U
]

.

The modified equation (7.5) is a nonlinear advection diffusion equation with diffusion
coefficients Qji = 1

2∆t
(

∇〈µ◦ , vjvi〉v −AjAi
)

. Analogous to the considerations in [3],
we introduce for fixed U ∈ S the linear mapping Q(U) : (Rm)d 7→ (Rm)d according
to

(Q(U )v)j : =

d
∑

i=1

Qji(U )vi, vi ∈ R
m, i, j = 1, . . . , d.

If Q has negative eigenvalues, we expect (7.5) to behave like the ill posed backward
heat equation which roughens the solution during the evolution. Since the kinetic
scheme yields a good approximation to (7.5), a similar behavior is then expected
for the kinetic scheme. This heuristic argument is the motivation for the following
definition of stability.

Definition 7.1. The kinetic scheme based on µ
◦

is called stable (in the sense of
modified equation) if the linear mapping Q(U ) has only nonnegative eigenvalues for
all U ∈ S.

We will check this condition in one-dimensional cases where Q(U ) is an m ×m
matrix. As in (5.6), (5.7), one can show for d = 1 that

〈

E, v2
〉

= (A1)2. Using the
relation ∇µ

◦

(U ) = E(U ) + q(U ), we thus conclude for d = 1

Q(U )e =
〈

q(U ; v)e, v2
〉

v
=

d

dh

∮

Ch(U ,e)

(A)2

∣

∣

∣

∣

∣

h=0

.

In this formulation we see that Q(U ) can be interpreted as a measure of nonexactness
of (A1)2 with respect to the family of curves {ΓU}.
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8. Scalar equations. In the case of a single conservation law (m = 1), the
fluxes F j are scalar functions defined on an interval S ⊂ R and we can combine them
in a vector

F (U) = (F 1(U), . . . , F d(U))t

(note that U and the flux vectors F j are replaced by nonbold symbols U and F j since
they are scalars in this section). Obviously, the U -derivative F ′ of F is then given
by F ′ = (A1, . . . , Ad) and thus ξjA

j = ξ · F ′. Since the inverse Fourier transform of
exp(−iξ ·F ′) is just the delta distribution shifted to F ′, the constraint function (6.3)
turns into

(8.1) µ
◦

(U ; v) =

∫ U

0

δ(v − F ′(s)) ds =

∫

R

X[0,U ](s)δ(v − F ′(s)) ds,

where X[a,b] denotes the indicator function of the interval [a, b] together with the
convention that X[b,a] = −X[a,b] for a < b.

In general, the constraint function (8.1) cannot be simplified much further. How-
ever, it is possible to simplify the kinetic scheme based on µ

◦

. Setting

Uµ◦ (t,x) =
〈

µ
◦

(U0(x − vt); v), 1
〉

v

we obtain for any test function ψ ∈ D(Rd)
〈

Uµ◦ (t,x), ψ(x)
〉

x
=
〈

µ
◦

(U0(x); v), ψ(x + vt)
〉

(x,v)

and, using the structure of µ
◦

in (8.1), we can evaluate the v-part of the dual pairing

〈

Uµ◦ (t,x), ψ(x)
〉

x
=

∫

R

〈

X[0,U0(x)](s), ψ(x + F ′(s)t)
〉

x
ds.

Going over to the shifted x variable x 7→ x − F ′(s)t, we finally obtain

〈

Uµ◦ (t,x), ψ(x)
〉

x
=

〈∫

R

X[0,U0(x−F ′(s)t)](s) ds, ψ(x)

〉

x

.

In other words, the approximative solution Uµ◦ of the entropy conservation law can be
written as Uµ◦ (t,x) = 〈g(x, s, t), 1〉s, where g(x, s, t) = X[0,U0(x−F ′(s)t)](s) solves the
transport equation

(8.2) ∂tg +Aj(s)∂xj
g = 0, g(x, s, 0) = X[0,U0(x)](s)

with Aj = (F j)′ and s ∈ R. Note that (8.2) is not a free transport equation. Instead,
the flow velocity of the kinetic particles is given by F ′(s). Compared to the original
kinetic formulation (3.2) of the conservation law, the kinetic variable s seems to be
somewhat artificial since its dimension does not match the dimension of x. In view of
the above derivation, however, the relation to the standard kinetic formulation based
on the free transport equation is clarified. In particular, s is related to the state space
integration occurring in the definition of the constraint function (8.1).

In [5, 6] it is shown that a kinetic scheme based on (8.2) (and hence on (8.1))
converges to the unique entropy solution of the Cauchy problem ∂tU +∂xj

F j(U) = 0.
Also in [27] and [24] the relation between a transport equation of type (8.2) and
the conservation law has been analyzed. In particular, it turns out that the kinetic
approximation Uµ◦ is the exact solution of the conservation law for small times, in
accordance with Theorem 4.1.
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9. Systems in one space dimension.

9.1. Strictly hyperbolic systems. Assuming strict hyperbolicity, the first step
in the calculation of µ

◦

is always to diagonalize A = ∇F or, using the notation from
[18], to write

A(U ) =

m
∑

j=1

λj(U )Pj(U ).

Here Pj(U ) is the projection on the jth eigenspace of A(U ). For the exponential of
−iξA we get

exp(−iξA) =

m
∑

j=1

e−iξλjPj

and hence

(9.1) µ
◦

(U ; v) =

∫

ΓU

m
∑

j=1

δ(v − λj)Pj =

∫ 1

0

m
∑

j=1

δ(v − λj(γ))Pj(γ)γ̇ ds.

Obviously, the path integral simplifies a lot if γ̇ is piece-wise parallel to right eigen-
vectors ri of A. In particular, if ri ·∇λi does not change sign along the curve parallel
to ri (i.e., if the ith characteristic field is genuinely nonlinear), the line integral can be
simplified further. It then leads to explicit expressions involving characteristic func-
tions X as primitives of the δ distribution. For example, in the scalar case, genuine
nonlinearity amounts to the condition F ′′ > 0 and we find

(9.2) µ
◦

(U ; v) =
1

F ′′(s)
X[F ′(0),F ′(U)](v), s = (F ′)−1(v)

which is the constraint function obtained with a different approach in [2].
For the other extreme of linear degeneracy of the ith field (i.e., λi is constant along

the ri-curve), the curve integral leads to a contribution proportional to δ(v−λi). We
refer to [20] for further details. Some explicit examples are also given in sections 9.4
and 9.5.

9.2. The one-dimensional Euler system. In this example the state space S
is three-dimensional. The vector of unknowns consists of mass density ρ, momentum
density m, and energy density ρε. Important derived quantities are velocity u = m/ρ,
temperature T = (γ − 1)(ε − u2/2), and pressure p = ρT , where γ > 1 is a material
constant. The state space S is a convex cone S = {ρ(1, u, ε)t|ρ > 0, T > 0}. The
nonlinear flux F is homogeneous of degree one so that its Jacobian A is homogeneous
of degree zero

F =





ρu
ρ(u2 + T )
ρ(ε+ T )u



 , A =





0 1 0
1
2 (γ − 3)u2 (3 − γ)u γ − 1

1
2 (γ − 2)u3 − γ

γ−1Tu ( 3
2 − γ)u2 + γ

γ−1T γu



 .

According to Theorem 4.1, the order of consistency of the kinetic scheme can only
be higher than one if A2 is exact. It turns out that the first row of A2 is exact, the
second row is exact only in the case γ = 3, but then the third row is not exact so
that the kinetic scheme based on µ

◦

is only first-order accurate and depends on the
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selected curves ΓU in state space. A choice which is motivated by the structure of S
and F are straight lines

ΓU : = {sU |s ∈ (0, 1]} U ∈ S.

On these curves, the Jacobian A is constant due to homogeneity of F so that

(9.3) µ
◦

(U ; v) =

∫

ΓU

F−1
ξ exp(−iξA) = F−1

ξ exp(−iξA(U ))U .

To calculate F−1
ξ exp(−iξA) we diagonalizeA which has eigenvalues λ1 = u, λ2 = u−c

and λ3 = u+ c with the sound speed c =
√
γT . In a basis of right eigenvectors, the

matrix exp(−iξA) has the form diag(exp(−iξλk)) so that the inverse Fourier transform
yields a linear superposition of δ(v − λk). Using the abbreviation

f(U ; v) = ρ

(

γ − 1

γ
δ(v − u) +

1

2γ
δ(v − (u− c)) +

1

2γ
δ(v − (u+ c))

)

the resulting constraint function can be written as

µ
◦

(U ; v) =





1
v

1
2v

2



 f(U ; v) +

(

1

γ − 1
− 1

2

)





0
0

|v − u|2



 f(U ; v).

We remark that the same constraint function follows from the approach in [18]. We
also note that, as in our introductory example (3.4), µ

◦

is actually based on a nonneg-
ative, scalar function f .

To analyze stability of the scheme we calculate the diffusion matrix Q(U ) given
in Definition 7.1

Q(U ) =





0 0 0
(γ − 3)Tu (3 − γ)T 0

γ2−9γ+6
2(γ−1) Tu

2 − γ
γ−1T

2 −2γ2+5γ−3
γ−1 Tu γT



 .

The eigenvalues are 0, (3 − γ)T and γT so that the kinetic scheme is stable (in the
sense of Definition 7.1) if 1 < γ ≤ 3.

9.3. A general class of 2 × 2 systems. We consider a class of hyperbolic
systems where U ranges in a simply connected subset S of R

2 and where F : S 7→ R
2

can be written as gradient of a smooth function φ : S 7→ R. Note that ∇F is then
the Hessian of φ and thus symmetric which implies hyperbolicity of the system.

For such systems it is possible to show that the maximal order of consistency of the
kinetic scheme is either one or infinity, or in other words, if con(µ

◦

) > 1, then con(µ
◦

) =
∞. A system leading to infinite order is either decoupled (i.e., ∂2φ/∂U1∂U2 = 0) or
φ is a solution of the linear hyperbolic equation

(9.4)
∂2φ

∂U2
1

+ 2γ
∂2φ

∂U1∂U2
− ∂2φ

∂U2
2

= 0

for some γ ∈ R. This relation for φ follows from the condition that A2 is exact. For
the Jacobian A = ∇F it implies the structure

A(U ) =

(

a(U ) b(U )
b(U ) a(U ) + 2γb(U)

)
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giving rise to

(9.5) exp(−iξA) =
e−iξa

1 + λ2
+

(

e−iξλ+b + λ2
+e

−iξλ−b λ+(e−iξλ+b − e−iξλ−b)
λ+(e−iξλ+b − e−iξλ−b) λ2

+e
−iξλ+b + e−iξλ−b

)

,

where λ± = γ ±
√

1 + γ2. The exactness of (9.5) for arbitrary smooth functions a, b
can then be checked directly by showing

∂

∂Uk
exp(−iξA(U ))nl =

∂

∂Ul
exp(−iξA(U ))nk, k, l, n ∈ {1, 2}.

Altogether, a large class of systems giving rise to infinite order of consistency can be
constructed based on solutions φ of (9.4).

As we will see below, also the examples on the isentropic Euler system in one and
two space dimensions as well as the p-system show that the order of consistency is
either one or infinity. Whether this property holds for general systems remains to be
investigated.

9.4. Isentropic Euler equations in one dimension. Under smooth condi-
tions, the isentropic Euler equations can be derived from the system in section 9.2
because the energy equation can be transformed into an equation for entropy which
decouples from the system if the entropy is initially constant. The pressure p which
appears as source term in the momentum equation depends only on mass density and
the constant value of entropy. As vector of unknowns, we now have U = (ρ,m)t with
S = {(ρ,m)t|ρ > 0,m ∈ R} and

F =

(

ρu
ρu2 + p(ρ)

)

, A =

(

0 1
−u2 + p′ 2u

)

, u =
m

ρ
.

The system is hyperbolic if p′ ≥ 0 and one can show that infinite order of consistency
is obtained if p(ρ)/ρ = p′′(ρ)/2, which singles out the pressure laws p(ρ) = Cρ3 +D.
In all other cases, the kinetic scheme will be first-order consistent.

Since we consider the case of constant pressure p(ρ) = D in detail for the two-
dimensional isentropic Euler system in section 10.2, we just mention here that it leads
to µ

◦

= ρ ( 1
v ) δ(v − u). This constraint function has been used by other authors to

show the relation between the constant pressure system and kinetic theory (see [9]
and the references therein).

In the following, we restrict ourselves to the case c =
√
p′ > 0 and p′′ > 0. The

exponential Ê is given by

(9.6) exp(−iξA) =

(

1
i∂ξ

)

e−iξu

c

(

c cos(cξ) + iu sin(cξ) −i sin(cξ)
)

.

To obtain µ
◦

, we integrate (9.6) over suitable families of curves and take the inverse
Fourier transform with respect to ξ. More precisely, we will investigate different
families of curves. Of course,

(9.7) ΓU = {sU |s ∈ (0, 1]} , U ∈ S

is again a reasonable choice, but we will also consider integral curves of the right
eigenvectors r1 = ρ

2c

(

1
u−c

)

and r2 = ρ
2c

(

1
u+c

)

of A, or equivalently coordinate lines
of the system of Riemann invariants [31]

(

W1

W2

)

=

(

c̃(ρ) − u
c̃(ρ) + u

)

, c̃(ρ) =

∫ ρ

0

c(σ)

σ
dσ.
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For the calculation of µ
◦

along r1-curves we first need a parameterization γ(U , s).
By definition, U ∈ S is located on the r1-curve corresponding to W2 = W2(U ).
Therefore, a simple parameterization is given by

γ(U , s) : =

(

sρ
sρ(W2(U ) − c̃(sρ))

)

s ∈ (0, 1].

Completing the calculation, we obtain

µ
◦

(U ; v) =

(

1
v

)

[

(c̃+ c)−1
]′

(u− v + c̃(ρ))X[−c(ρ),c̃(ρ)](v − u).

Note that the v-support of µ
◦

is in general not symmetric with respect to u. Only in
the case c = c̃, which is equivalent to p = Cρ3, we get symmetry.

Using the r2-curves we obtain in a completely analogous manner

µ
◦

(U ; v) =

(

1
v

)

[

(c̃+ c)−1
]′

(v − u+ c̃(ρ))X[−c̃(ρ),c(ρ)](v − u).

The support is again asymmetric, but the role of c̃ and c has exchanged.
A symmetric distribution is obtained with the curves (9.7) which are in some

sense a compromise between r1 and r2-curves. Indeed, the tangent vector ρ ( 1
u ) is,

up to the factor 1/2c, just the average 1
2 (r1 + r2). We obtain

µ
◦

(U ; v) =

(

1
v

)

[

c−1
]′

(|v − u|)X[0,c(ρ)](|v − u|).

This constraint function has been derived in [22] with a different approach.
We remark that in the particular case γ = 3, all the constraint functions coincide

because the chosen path of integration does not influence the value of the integral.
Also, c(ρ) = c̃(ρ) =

√
3Cρ so that [c−1]′ is a constant and µ

◦

is determined by the
scalar constraint function

f(U ; v) =
1√
3C

X[0,c(ρ)](|v − u|).

Recently, a hierarchy of hyperbolic systems has been derived which includes the isen-
tropic Euler system with γ = 3 as a special case [8]. Other systems in the hierarchy
involve a higher dimensional state space S. By construction, smooth solutions of these
systems can be written in the form of the kinetic scheme with a particular constraint
function. Since exactness of the solution implies infinite order of consistency of the
kinetic scheme, we conclude with Theorem 4.1 that the constraint functions used in
[8] essentially coincide with those introduced here.

To complete the example, we take a look at stability. For each of the chosen
families of curves one can show that the diffusion matrix has the form

Q(U ) =

(

3
p

ρ
− p′

)(

0 0
∗ 1

)

,

where the entry ∗ is equal to −u for the straight lines (9.7), equal to c−u for the r1-
curves, and −(u+ c) for the r2-curves. Consequently, the kinetic schemes are stable
if and only if 3p/ρ− p′ ≥ 0. In the case p = Cργ this is equivalent to γ ≤ 3.
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Fig. 9.1. Curve along characteristic fields.

9.5. The p-system. In this example, we consider the nonlinear wave equation

(9.8) ∂2
t ϕ+ ∂2

xp(ϕ) = 0, p′ < 0, p′′ > 0.

Motivated by the linear case p(ϕ) = −c2ϕ we introduce the wave speed c(ϕ) =
√

−p′(ϕ). As an important example, we mention the isentropic Euler equation in
Lagrangian coordinates. Here ϕ is interpreted as specific volume 1/ρ and p is the
pressure which typically decreases with decreasing ρ. To treat equation (9.8) in our
context we first transform it into a system of first-order equations, the so-called p-
system [31]. Setting U1 = ϕ which ranges in some interval I ⊂ R and U2 = ∂tϕ ∈ R,
we obtain a system with flux vector

F =

(

−U2

p(U1)

)

, U ∈ S = I × R.

For the Jacobian A = ∇F , we find the exponential matrix

exp(−iξA) =

(

1
−i∂ξ

)

(

cos(ξc) 1
c i sin(ξc)

)

which is exact only in the linear case where c is independent of U1. In all other cases,
the kinetic scheme is first-order consistent and properties of µ

◦

are influenced by the
chosen curves ΓU .

In general, the state space S will not possess a distinguished point like the origin in
the previous examples. We thus pick any Ũ1 ∈ I and use Ũ = ( Ũ1

0
) as a starting point

for the family of curves which we again take as integral lines of the right eigenvectors
or, equivalently, as piecewise coordinate lines of a system of Riemann invariants (see
Figure 9.1). As mapping H from the Riemann invariants W to the conservative
variables U we choose

(

W1

W2

)

=

(

U2 + c̄(U1)
U2 − c̄(U1)

)

, c̄ =

∫ U1

Ũ1

c(σ) dσ,

such that the image of the reference state Ũ is just W̃ = 0. The point where the curve

switches from the first to the second field is denoted W̃
1
, respectively, Ũ

1
= H(W̃

1
).

Calculating the curve integral over E = F−1
ξ exp(−iξA), we eventually find

µ
◦

(U ; v) =
[

c−1
]′

(|v|)
(

1
−v

)

(

X[−c(Ũ1
1 ),c(Ũ1)](v) + X[c(Ũ1

1 ),c(U1)]
(v)
)

.

Note that the arbitrary point Ũ decisively determines the support of µ
◦

. In fact, this
arbitrariness can be the reason for instability. To see this, we calculate the diffusion
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matrix

Q(U ) =
(

c(Ũ1
1 ) − c(U1)

)

(

0 0
c(U1) 1

)

which has a negative eigenvalue if U1 < Ũ1
1 (note that c is decreasing due to p′′ > 0).

Consequently, the state space splits into a stable and an unstable region which are
separated by the r2-curve through Ũ .

10. A two-dimensional system. As an example, we consider the isentropic
Euler system in two space dimensions. To get hyperbolicity we restrict ourselves to
pressure functions which satisfy p′ ≥ 0. The vector of unknowns U = (ρ,m1,m2)

t

consists of density ρ and momentum m with S = {(ρ,m1,m2)
t|ρ > 0,m ∈ R

2} being
a convex cone. Using again u = m/ρ, the fluxes are of the form

F 1 =





ρu1

ρu2
1 + p(ρ)
ρu1u2



 , F 2 =





ρu2

ρu1u2

ρu2
2 + p(ρ)





with Jacobians

A1 =





0 1 0
−u2

1 + p′(ρ) 2u1 0
−u1u2 u2 u1



 , A2 =





0 0 1
−u1u2 u2 u1

−u2
2 + p′(ρ) 0 2u2



 .

To see whether the kinetic scheme based on µ
◦

can be second-order accurate we check
the exactness of the products A1A1, A2A2, A1A2, and A2A1. In all cases, the first
rows are exact but in the second and third rows we find nontrivial conditions

p′

ρ
=

1

2
p′′,

p′

ρ
= 0, p′′ = 0.

These conditions are simultaneously only satisfied in the case of constant pressure
and, as we shall see in section 10.2, the kinetic scheme based on µ

◦

then leads to
infinite order of accuracy. For all other pressure laws, the kinetic scheme is always
first-order accurate.

10.1. Nonconstant pressure laws. Choosing again ΓU = {sU |s ∈ (0, 1]}, we
find after transformation to a basis of eigenvectors of ξjA

j and integration

(10.1)

∫

ΓU

exp(−iξjAj) = ρ





1
i∂ξ1

i∂ξ2



 e−iu·ξ

∫ 1

0

cos(c(sρ)|ξ|) ds.

Under the additional assumptions

c(0) = 0, c′ > 0, lim
σ→0

σ

c′(c−1(σ))
= 0,

which are satisfied for the practically relevant pressure laws p(ρ) = Cργ with 1 < γ ≤ 3
we can calculate the Fourier transform of (10.1) and get [20]

µ
◦

(U ; v) =





1
v1
v2



a(ρ, |v − u|)X[0,c(ρ))(|v − u|).
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We remark that the constraint function has again a structure similar to our initial
example (3.4). In fact it consists of a scalar density

(10.2) f(U ; v) = a(ρ, |v − u|)X[0,c(ρ))(|v − u|)

which is multiplied by the vector ( 1
v ). For pressure laws p(ρ) = Cργ , the function a

is of the form

aγ(ρ, |v|) =
ρ

π(γ − 1)c2(ρ)

(

1√
1 − ν2

− 3 − γ

γ − 1

∫ 1

ν

σ
4−2γ
γ−1

√
σ2 − ν2

dσ

)

with ν = |v|/c(ρ). Physically, f in (10.2) is interpreted as particle distribution func-
tion so that a natural property would be f ≥ 0. It turns out, however, that aγ and
thus also f is not always nonnegative. For example, for γ = 7/5 we have

a7/5(ρ, |v|) =
5ρ

2πc2(ρ)

8ν4 − 4ν2 − 1√
1 − ν2

which changes sign at ν = 1
2

√

1 +
√

3. In fact, one can show in this case that any
distribution function of the form (10.2) with |v| support in [0, c(ρ)) has to be negative
for some v [20]. To avoid this behavior, the support has to be larger as for example
in [22].

10.2. The case of constant pressure. In this particular case, the linear com-
bination ξjA

j can only be transformed into a Jordan matrix and Ê has the form

exp(−iξjAj) = e−i(u,ξ)





1 + i(ξ, u) −iξ1 −iξ2
i(ξ, u)u1 1 − iξ1u1 −iξ2u1

i(ξ, u)u2 −iξ1u2 1 − iξ2u2



 .

An easy but lengthy calculation shows that exp(−iξjAj) is exact for any ξ ∈ R
2.

Consequently, µ
◦

is independent of the chosen path and the resulting kinetic scheme
is linearly stable. To carry out the integration, we choose ΓU = {sU |s ∈ (0, 1]} since
exp(−iξjAj) is constant along these paths. We find

∫

ΓU

exp(−iξjAj) = exp(−iξjAj(U ))U = ρ

(

1
u

)

e−iu·ξ

so that the Fourier transform is given by

(10.3) µ
◦

(U ; v) = ρ





1
v1
v2



 δ(v − u).

In [20] it is shown that for smooth initial values and small times the kinetic scheme
based on (10.3) yields the exact solution of the problem which is in accordance with
the infinite order of consistency.

11. Relation to Brenier’s method. The construction of the constraint func-
tion µ

◦

is based on a curve integral of the matrix E(U ) = F−1
ξ

(

exp(−iξjAj(U ))
)

.

However, if E(U ) is exact, the constraint µ
◦

is independent of the chosen family
of curves γ which motivates a formulation without explicit reference to γ. Such a
reformulation is indeed possible, following the approach for the strictly hyperbolic,
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one-dimensional case in [7]. To avoid the restriction d = 1, we slightly modify the
argument. Also, our considerations here are purely formal for brevity.

Let us assume that U 0 is a smooth initial value which is constant at large x, i.e.,
U 0(x) = U∞ for |x| > R. If the matrix E(U ) is exact, we have ∇µ

◦

= E so that

(11.1) ∇xUµ
◦ (t,x) =

〈

E(U 0(x − tv); v)∇xU 0(x − tv), 1
〉

v
.

Using the fact that δ(y) = div ( y
ωd|y|d

), where ωd is the area of the unit sphere in d

space dimensions, we can write

Uµ
◦ (t,x) = U∞ +

〈

δ(y),Uµ
◦ (t,x − y)

〉

y
= U∞ +

〈

y

ωd|y|d
,∇xUµ

◦ (t,x − y)

〉

y

.

Now (11.1) implies

Uµ
◦ (t,x) = U∞ +

〈

y

ωd|y|d
,
〈

E(U 0(x − y − tv); v)∇xU 0(x − y − tv), 1
〉

v

〉

y

or with the change of variables x − y − tv = ξ

(11.2) Ũµ
◦ (t,x) = U∞ +

〈

x − ξ − tv

ωd|x − ξ − tv|dE(U 0(ξ); v)∇xU 0(ξ), 1

〉

(v,ξ)

.

(We introduce the new notation Ũµ
◦ since (11.2) coincides with the kinetic scheme

only in the case con(µ
◦

) = ∞—otherwise, it is a different approximation). To see
that (11.2) is an extension of Brenier’s method, we apply it to the strictly hyperbolic
case with d = 1, where, according to section 9.1, E =

∑

k δ(v − λk)Pk. Denoting the
projections of the space derivative of the initial value as r̃k, relation (11.2) reduces to

Ũµ
◦ (t, x) = U∞ +

∫

R

m
∑

k=1

1

2
sign(x− ξ − λk(U 0(ξ))t)r̃k(ξ) dξ.

The same expression is obtained if the relation δ(y) = H ′(y) used in the derivation
in [7] is modified to δ(y) = sign′(y)/2. We remark, however, that (11.2) is also
applicable to multidimensional problems and nonstrictly hyperbolic systems. It turns
out that (11.2) is, in general, a first-order consistent approximation to the hyperbolic
system (the consistency can easily be checked with relations (5.6) and (5.7)). Higher
order consistency is only obtained if con(µ

◦

) ≥ 2 or d = 1 (for the latter case see
[23]). Whether the extension (11.2) of Brenier’s method leads to applicable numerical
schemes similar to the case d = 1 (see [7, 11]) remains to be investigated.

12. Conclusion. We have presented a general construction principle for con-
straint functions used in kinetic schemes which opens the approach to general hyper-
bolic systems. The principle extends and generalizes several concepts proposed by
other authors. Moreover, a specific criterion is presented which singles out a certain
class of equations for which the kinetic approach is particularly well suited. This class
includes all linear hyperbolic systems, nonlinear scalar equations, as well as some
nonlinear systems.

Appendix. Structure of the constraint function. The aim of the appendix
is to describe the mathematical structure of the constraint function µ

◦

. At the same



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

1622 MICHAEL JUNK

time, we are going to extend the concept of kinetic formulations to entropy conserva-
tion laws related to the system (3.1). Here a convex scalar function η : S 7→ R is an
entropy function with entropy fluxes ϕj : S 7→ R provided

(A.1) ∇tη∇F j = ∇tϕj , j = 1, . . . , d,

where ∇tη = (∇η)t. Of course, differentiability of η and ϕj is required. We will also
assume that η(0) = 0 as well as ϕj(0) = 0 which can be achieved by subtracting the
value at zero. If U is a smooth solution of (3.1), relation (A.1) implies that η(U )
satisfies an additional conservation law

(A.2) ∂tη(U ) + ∂xj
ϕj(U ) = 0.

A kinetic formulation of the conservation law (A.2) is obtained with an entropy con-
straint function µη(U ; v) which satisfies the consistency condition

(A.3) 〈µη(U ), 1〉
v

= η(U ), 〈µη(U ), vj〉v = ϕj(U ).

Then (A.2) follows from the constrained evolution

∂tΦ + vj∂xj
Φ = q, Φ(t,x,v) = µη(U (t,x); v), 〈q, 1〉v = 0.

Note that our original considerations are included in this approach by choosing special
linear entropy-entropy flux pairs

(A.4) η(U ) = Ui, ϕj(U ) = F j
i (U ), i ∈ {1, . . . , d}.

With this choice, which clearly satisfies relation (A.1), the conservation law (A.2)
is just the ith member of the system of conservation laws (3.1). This observation
enables us to investigate the constraint functions for the system (3.1) and the entropy
constraint functions for (A.2) simultaneously.

As an entropy constraint function, we propose

(A.5) µ
◦

η(U ) =

∫

ΓU

∇tηE, E(U ) = F−1
ξ exp

(

−iξjAj(U )
)

which reduces to (6.3) for the entropies (A.4) and satisfies (A.3). Indeed, using the
fact that 〈E, 1〉 = I and 〈E, vk〉 = Ak(U ) for every U ∈ S, we get

〈µ◦ η(U ), 1〉
v

=

∫

ΓU

∇tη 〈E, 1〉 =

∫

ΓU

∇tη = η(U )

and

〈µ◦ η(U ), vk〉v =

∫

ΓU

∇tη 〈E, vk〉 =

∫

ΓU

∇tηAk =

∫

ΓU

∇ϕk = ϕk(U ).

To describe the mathematical structure of (A.5), we begin with some remarks on the
function

Ê(U ; ξ) = exp
(

−iξjAj(U )
)

, Aj = ∇F j

(for details and proofs we refer to [20]). At the core of the investigations is a result from
the theory of linear hyperbolic systems which is based on the following lemma [32].
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Lemma A.1. Let M be any m ×m matrix. There is a constant Cm depending
only on m such that

‖ exp(iM)‖ ≤ Cm (1 + ‖M‖)m
exp(I(M)),

where I(M) is the largest absolute value of the imaginary parts of the eigenvalues
of M .

If we take in particular M = ξjA
j(U ), hyperbolicity implies that all eigenvalues

of M are real so that I(M) = 0. This leads to the estimate

‖Ê(U ; ξ)‖ ≤ CU (1 + |ξ|)m,

where CU depends on maxm
j=1 ‖Aj(U )‖. In particular, each component of the matrix

Ê(U ; ξ) grows at most polynomially in |ξ|. Thus Ê(U ) can be interpreted as a matrix
of regular, tempered distributions on R

d, i.e., Ê(U ) ∈ S ′(Rd)m×m. Moreover, U 7→
Ê(U ) is continuous as a mapping from S to [S ′]m×m. Since the ξ dependence of Ê is
analytic, the Paley–Wiener theorem implies that for each U ∈ S the inverse Fourier
transform E(U ) = F−1Ê(U ) is a matrix of compactly supported distributions. The
mapping U 7→ E(U ) from S to [E ′]m×m is also continuous.

Our basic assumptions on the curves ΓU ⊂ S which appear in the definition of the
constraint functions (A.5) are listed in the following definition. The requirements are
satisfied, for example, by curves which consist of piecewise constant segments along
the coordinate axes or smooth transformations thereof.

Definition A.2 (admissible family of curves). Let S ⊂ R
m be open with 0 ∈ S̄.

A function γ : S× [0, 1] 7→ S̄ is called an admissible family of curves in S if γ(U , 0) =
0, and γ(U , 1) = U , if γ : S × [0, 1] 7→ S̄ is continuous, and γ(U , ·) : [0, 1] 7→ S̄ is
piecewise C1, if γ̇ ∈ L

∞
loc

(S × [0, 1],Rm), and ∇γ̇ ∈ L
∞
loc

(S × [0, 1],Rm), where ∇
refers to the U -derivative and the dot to the s-derivative. The image of γ(U , ·) is
denoted ΓU .

Since our main interest is to integrate ∇tηE along the curves ΓU , we introduce
suitable families of curves for this purpose.

Definition A.3 (F -admissible family). Let γ be an admissible family in S. A
measurable function f : S 7→ R

m′

is called locally bounded on γ if for any compact
set K ⊂ S

‖f(γ)‖L∞(K×[0,1]) <∞.

The family γ is called F -admissible if the derivatives Aj = ∇F j are locally bounded
on γ.

We remark that Definition A.3 is only necessary if we want to include cases where
the curves ΓU touch ∂S. Otherwise, the F -admissibility is an immediate consequence
of continuity of the matrices Aj .

In the following, we always assume that η is an entropy which is locally bounded
on the F -admissible family γ. Then the linear mapping

φ 7→
∫ 1

0

〈∇tη(γ(U , s))E(γ(U , s); v)γ̇(U , s), φ(v)〉v ds, φ ∈ E(Rd)

defines a compactly supported distribution µ
◦

η(U ) ∈ E ′(Rd) which depends continu-
ously on U . This result, which is proved in [20], justifies the notation (A.5). A careful
analysis of the continuity properties of the mapping U 7→ µ

◦

η(U ) ∈ E ′(Rd) motivates
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the following definition of a larger set of constraint functions which contains µ
◦

η as a
special case.

Definition A.4. By K we denote the set of all continuous E ′(Rd) valued func-
tions µ on S which satisfy for any compact K ⊂ S and any φ ∈ E(Rd)

| 〈µ(U ; v), φ(v)〉v | ≤ CK

∑

|α|≤N

sup
|v|≤rK

|Dαφ(v)| for all U ∈ K,

where N ∈ N depends only on µ and CK , rK > 0 are constants depending on µ
and K.

For µ ∈ K, the operations that typically appear in the framework of kinetic
schemes are justified. Under certain conditions on U 0, for example, the expression

(A.6) ηµ(t,x) : =
〈

µ(U 0(x − vt); v), 1
〉

v

defines a C∞-smooth function t 7→ ηµ(t, ·) which maps R into the set of generalized
functions D′(Rd). More precisely, we assume that the range of the measurable initial
value U0 is a compact subset of S, i.e., U 0(Rd) ⊂⊂ S. This implies that U 0 is
bounded and stays away from ∂S. Then for a given φ ∈ E(Rd) and µ ∈ K,

ψ 7→
〈

µ(U 0(x − vt); v), ψ(x)φ(v)
〉

(x,v)
, ψ ∈ D(Rd)

defines a distribution in x which we denote
〈

µ(U 0(x − vt); v), φ(v)
〉

v
. Choosing

φ ≡ 1, we see that for each t ∈ R the approximation (A.6) is an element of D′(Rd)
and the dependence on t is C∞.
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