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Abstract. In this article, finite volume discretizations of hyperbolic conservation
laws are considered, where the usual triangulation is replaced by a partition of unity
on the computational domain. In some sense, the finite volumes in this approach
are not disjoint but are overlapping with their neighbors. This property can be
useful in problems with time dependent geometries: while the movement of grid
nodes can have unpleasant effects on the grid topology, the meshfree partition of
unity approach is more flexible since the finite volumes can arbitrarily move on top
of each other. In the presented approach, the algorithms of classical and meshfree
finite volume method are identical – only the geometrical coefficients (cell volumes,
cell surfaces, cell normal vectors) have to be defined differently. We will discuss two
such definitions which satisfy certain stability conditions.

1 Introduction

The finite volume method (FVM) is a standard approach to construct ap-
proximate solutions of hyperbolic conservation laws [4,8]. The basic idea is to
split the computational domain into small cells - the finite volumes - and to
enforce conservation by prescribing fluxes at the cell interfaces: if a certain
amount of the conserved quantity leaves cell Ci across a common boundary
Γij with cell Cj , it has to reappear in Cj . In this way, the evolution of the
conserved quantities can be approximated if the fluxes are suitable approxi-
mations of the fluxes given by the conservation laws.

At this level, the underlying mesh seems to be very important. However,
if one looks at the finite volume method from a more abstract point of view,
it appears as a system of ODEs with the following ingredients: a numerical
flux function g and parameters Vi and βij . Here, Vi has the interpretation as
volume of cell Ci, |βij | is the surface area of the interface Γij , and βij/|βij |
is the corresponding normal vector, pointing from cell Ci to cell Cj . Now the
question, whether finite volume methods need a mesh, can be reformulated
mathematically: under which conditions on Vi and βij does the finite volume
method produce reliable approximations to solutions of the conservation law?
Is it really necessary that Vi and βij are constructed from a mesh, or do they
just have to satisfy some algebraic relations?

This interesting question naturally arises in connection with the finite
volume particle method (FVPM) which has recently been proposed in [5].
At the core of this method is a partition of unity on the computational
domain where the partition functions are used as test functions in the weak
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formulation of the conservation law. As a result, a system of ODEs is obtained
which looks very much like a finite volume method but the parameters Vi and
βij are given by integrals over the partition functions and not as quantities
derived from a mesh.

Nevertheless, the obtained geometric parameters satisfy all assumptions
which are needed in the convergence proof of classical finite volume methods
and numerical experiments show that FVPM yields reliable results. Hence,
we can say that reasonable geometric parameters Vi, βij in finite volume
methods can be generated without underlying mesh.

In the article, the requirements on the geometric parameters Vi and βij

are explained and numerical examples are presented which show the practical
relevance of these conditions. Moreover, we show that FVPM can easily be
coupled with classical finite volume methods.

Apart from FVPM we introduce a quite similar method called PUMESH.
Starting from a partition of unity on a d-dimensional domain, we build an
associated mesh on a d+ 1 dimensional cylinder with the original geometry
as cross section. On this grid, a classical finite volume ansatz is used which
gives rise to a scheme where the additional dimension is no longer visible
and where the geometric coefficients are defined by integrals of the partition
functions. Also in this case, the geometric parameters satisfy the required
stability conditions.

2 The Finite Volume Method

Let us start by recalling the finite volume discretization of conservation laws
(for a detailed discussion, we refer to [4,8]). As example, we consider the
problem to find u : [0, T ]× R

d → R such that

∂u

∂t
+ divxF (u) = 0, u(0,x) = u0(x). (1)

In order to construct an approximate solution for (1), we split the domain
R

d into small, disjoint, polyhedral volumes C1, C2, . . . such that Ω = ∪iCi.
Integrating (1) over such a cell and using the divergence theorem, we obtain

d

dt

∫

Ci

u dx +
∑

j

∫

Γij

F (u) · nij dS = 0. (2)

Here, Γij is the common cell interface between cell i and cell j (see Fig. 1)
and nij is the associated outer normal vector. If Ci and Cj are not adjacent,
we define Γij = ∅ and nij can be arbitrary. Introducing the cell volumes Vi

and the cell averages ui(t)

Vi =

∫

Ci

dx, ui =
1

Vi

∫

Ci

u dx, (3)
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the first term in (2) can be written as d/dt(uiVi) which we approximate, for
simplicity, with an explicit Euler step

d

dt

∫

Ci

u dx|t=n∆t =
d

dt
(uiVi)|t=n∆t ≈ Vi

un+1
i − un

i

∆t

where un
i = ui(tn), tn = n∆t.

PSfrag replacements
Ci

Cj

nij

Γij

Fig. 1. Control volume Ci with interfaces Γij and outer normals nij

If we take the cell averages un
i as our unknowns in the numerical scheme, we

also have to approximate the flux integrals in (2) through these quantities.
One approach is to replace the function u by the piece-wise constant function

ũ(t,x) =
∑

i

un
i 1Ci

(x)1[tn,tn+1)(t), x ∈ R
d, t ∈ [0, T ] (4)

where 1A denotes the characteristic function of a set A. Doing this, we find
the values un

i and un
j on the two sides of Γij and the flux through the interface

should be essentially determined by these values
∫

Γij

F (u) · nij dS|t=n∆t ≈ |Γij |g(u
n
i , u

n
j ,nij), |Γij | =

∫

Γij

dS.

The function g is called numerical flux function. We remark that g(v, w,n)
can be constructed by solving problem (1) (exactly or approximately) with
a particular initial value u0 consisting of two constant values v, w which are
separated by an infinite plane with normal n (Riemann problem). For details,
we again refer to [4,8]. Combining our approximations, we end up with the
classical finite volume method

un+1
i Vi = un

i Vi −∆t
∑

j

|Γij |g(u
n
i , u

n
j ,nij), u0

i =
1

Vi

∫

Ci

u0 dx (5)

Iterating (5), we can construct the piecewise constant function ũ, and, under
suitable assumptions, one can show that for finer and finer discretizations
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of space and time, the approximation ũ converges to the entropy solution of
(1) (see, for example, [8,2,11] and the more recent references [1,12] for (t,x)
dependent fluxes and domains with boundary). The assumptions required
for the convergence proof can be split into conditions on the flux function g
(like consistency, conservativity, Lipschitz continuity and monotonicity) and
into conditions on the underlying mesh. In the following, we are particularly
interested in these geometrical conditions which we formulate in terms of the
quantities Vi and βij = |Γij |nij .

A first requirement is that a cell should not have too many neighbors, i.e.
the number of indices in {j : βij 6= 0} should be uniformly bounded for every
index i

∣

∣{j : βij 6= 0}
∣

∣ ≤ K, ∀i. (6)

Moreover, if h is the largest cell diameter then volumes and surface areas
should satisfy

Vi ≥ αhd, |βij | ≤ Chd−1, ∀i (7)

with h-independent constants α and C. Geometrically, (7) prevents narrow
cells with very small volumes or very large surfaces. Apart from the rather
technical conditions (6) and (7), two algebraic conditions on the coefficients
are needed

βij = −βji, ∀i, j (8)
∑

j

βij = 0, ∀i (9)

Note that (8) is a direct consequence of the fact that Γij = Γji and nij = −nji

in connection with βij = |Γij |nij . The second property (9) follows from the
divergence theorem. Introducing b =

∑

j βij , we have

|b|2 =
∑

j

βij · b =
∑

j

∫

Γij

nij · b dS =

∫

∂Ci

n · b dS =

∫

Ci

divb dx = 0.

We remark that the finite volume method applied to domains with boundaries
contains extra terms due to boundary fluxes. In fact, if we integrate (1) over
a cell Ci whose boundary intersects ∂Ω, then

∫

∂Ci

F (u) · n dS ≈
∑

j

g(ui, uj ,nij) +

∫

∂Ω∩∂Ci

F (u) · n dS.

The remaining boundary integral has to be approximated using the boundary
conditions and by extrapolating u from the computational domain to the
boundary where no information on u is available. Also, the condition (9)
changes in boundary cells. With the same argument as before, one can show
that

∑

j

βij = −

∫

∂Ω∩∂Ci

n dS (10)

where the right hand side obviously vanishes for all interior cells.
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3 The Finite Volume Particle Method

The finite volume particle method (FVPM) has been developed a few years
ago in an attempt to combine features of SPH (Smoothed Particle Hydro-
dynamics) with finite volume methods [5]. A similar approach has also been
proposed in [3] for a particular equation from petroleum reservoir simulation.

To explain the idea, let us assume that the computational domain R
d is

covered with the supports of “smoothed particles”, i.e.

⋃

i

suppWi = R
d, Wi(x) = W

(

x − xi

h

)

.

Here, W is a Lipschitz continuous, compactly supported function which is
strictly positive on its support, for example, a radially symmetric cubic spline,
or the d-fold tensor product of one-dimensional hat functions (in the first
case, suppWi are d-dimensional balls around the points xi, in the second
case, the supports are axis parallel cubes). Then, using Shephard’s method
[9], a partition of unity is built

ψi(x) =
Wi(x)

σ(x)
, σ(x) =

∑

k

Wk(x), x ∈ R
d

and the partition functions ψi are used as test functions for equation (1).
Multiplying (1) with ψi and integrating over R

d, we obtain after integration
by parts

d

dt

∫

Rd

ψudx −

∫

Rd

F (u) · ∇ψi dx = 0.

In order to split the flux integral into pairwise flux contributions between
particle i and its neighboring particles j, we use the fact that

∑

j ψj = 1 and
∇(

∑

j ψj) = 0 which leads to

d

dt

∫

Rd

ψudx −
∑

j

∫

Rd

F (u) · (ψj∇ψi − ψi∇ψj) dx = 0.

Assuming that u varies only slightly around ū on the intersection of the
supports of ψi and ψj , we have

−
∑

j

∫

Rd

F (u) · (ψj∇ψi − ψi∇ψj) dx ≈ F (ū) · βij ,

where

βij =

∫

Rd

ψi∇ψj − ψj∇ψi dx. (11)

Now, we proceed as in the derivation of the finite volume method. Our discrete
quantities are the averages

un
i =

1

Vi

∫

Rd

ψiu dx|t=tn
, Vi =

∫

Rd

ψi dx (12)
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and the flux

F (ū) · βij = |βij |F (ū) · nij , nij =
βij

|βij |
if |βij | 6= 0

is approximated in terms of the discrete values with the help of a numerical
flux function

F (ū) · nij ≈ g(ui, uj ,nij).

Using again an explicit Euler discretization of the time derivative, the result-
ing scheme has the same structure as the finite volume method (5)

un+1
i Vi = un

i Vi −∆t
∑

j

|βij |g(u
n
i , u

n
j ,nij), u0

i =
1

Vi

∫

Rd

ψiu
0 dx. (13)

A natural reconstruction of a function from the discrete values is given by

ũ(t,x) =
N

∑

i=1

un
i ψi(x)1[tn,tn+1)(t), x ∈ R

d, t ∈ [0, T ]. (14)

We remark that the classical finite volume method (5) can be viewed as
limiting case of (13) for ψi → 1Ci

. Note that the characteristic functions 1Ci

also form a partition of unity and that (3) and (4) are just (12) and (14) with
ψi replaced by 1Ci

. Moreover, if ψi → 1Ci
, then ∇ψi converges to a surface

delta distribution on ∂Ci so that the definition (11) of βij degenerates to a
combination of surface integrals. If, for example, the particlesWi are regularly
arranged on a square grid and possess a tensor product structure, one can
show that βij converges to |Γij |nij where Γij and nij are calculated from
the dual grid of the particle positions.

Instead of considering (5) as a special case of (13), we could also say that
(13) is a generalization of the usual finite volume method where the partition
functions 1Ci

with disjoint supports are replaced by partition functions ψi

with overlapping supports – or in other words – (13) is a finite volume method
with overlapping finite volumes.

Before studying the geometric parameters Vi and βij in (13) more closely,
let us remark that the derivation works similarly in the case when the particle
positions xi are time dependent (moving particles). The only difference is that
the test functions ψi and thus also the parameters Vi and βij depend on time.
If we use such functions ψi as test functions, we find an additional term

∫

Rd

ψi

∂u

∂t
dx =

d

dt

∫

Rd

ψiu dx −

∫

Rd

u
∂ψi

∂t
dx.

If particles move along a velocity field a, i.e. ẋi = a(t,xi), then the extra
term

∫

u∂tψi dx can be combined with the flux integral by replacing F (u)
with the Lagrangian flux G(t,x, u) = F (u) − ua(t,x) (for details, we refer
to [6]). Note that during the movement of the particles, one only has to
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take care that the supports always cover the domain. Otherwise, there are
no restrictions on the movement: particles can move arbitrarily ontop of each
other and their “volumes” Vi, “interface areas” |βij |, and “normals” βij/|βij |
are always determined by the formulas (11) and (12).

Let us now investigate these geometrical parameters. In order to show
that they are reasonable, we check the conditions on the parameters that
are needed in the convergence proof of classical finite volume methods. First,
condition (6) can be ensured by setting up the particle positions in such a
way that the points do not cluster too much. Assuming that the maximal
number of overlapping particles is K, we have

σ(x) =
∑

k

Wk(x) ≤ K‖W‖∞, ∀x ∈ R
d

and an estimate of σ(x) ≥ σmin > 0 follows if we assume a certain minimal
overlap of the particles. Then, conditions (7) follow by direct calculation. We
have

Vi =

∫

Rd

ψi dx =

∫

Rd

Wi

σ
dx ≥

1

K‖W‖∞
hd

∫

Rd

W (y) dy = αhd

and since

|βij | ≤

∫

|∇ψi| + |∇ψj | dx, ∇ψi =
∇Wi

σ
− ψi

∑

k ∇Wk

σ
,

we obtain
∫

Rd

|∇ψi| dx ≤
K + 1

hσmin

∫

Rd

|∇W |(x/h) dx =
K + 1

σmin

hd−1

∫

Rd

|∇W (y)| dy

so that |βij | ≤ Chd−1. Next, the algebraic conditions (8) follows directly from
the skew-symmetric definition of βij and (9) is a consequence of the fact that
∑

j ψj = 1, ∇(
∑

j ψj) = 0,
∫

∇ψi dx = 0. More generally, in domains Ω with
boundary, we find

∑

j

βij =
∑

j

∫

Ω

ψi∇ψj − ψj∇ψi dx = −

∫

Ω

∇ψi dx = −

∫

∂Ω

ψin dS

which parallels (10).
Hence, we can adopt the stability proofs from classical finite volume

schemes: if we use a consistent, conservative, Lipschitz continuous, mono-
tone numerical flux function g, a discrete L

∞ estimate, a weak BV estimate
and also a discrete entropy inequality can be shown. We conclude that it is
possible to set up a reasonable finite volume scheme with geometric coeffi-
cients which are not determined form a grid but from a partition of unity, or
in other words,

we can replace grid generation by integration.



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

8 Michael Junk

4 Comparing FVM and FVPM

In this section, we want to investigate whether the generation of geometric
parameters by integration can be a promising alternative to the conventional
grid-based approach. First, we note that in the case of regular grids, the gen-
eration of the parameters practically involves no computational costs at all,
because the parameters can be determined in advance from certain reference
cells. The same is true for the partition of unity approach, if we choose a reg-
ular distribution of points (for example, the cell centers of the regular grid).
Then, all integrals can also be calculated in advance from some reference
configurations of partition functions.

Therefore, let us now concentrate on situations where an irregular point
distribution is given in the computational domain (for example, such a dis-
tribution could result from a particle movement). In order to set up a finite
volume grid where the grid cells are determined by the given points, we use a
Voronoi tessellation, i.e. the cell Ci contains all points x which are closer to
xi than to any other point xj . For the partition of unity, we use Shephard’s
functions W of tensorial structure because the rectangular support of these
functions allows a fast determination of support intersections.

To have an explicit example, we consider a model problem on the unit
square Ω in two space dimensions (see Fig. 2).

PSfrag replacements

u = −1.0u = 1.5

u = 1.5 − 2.5x
(0, 0)

(1, 1)

u0 = 0

∂u

∂t
+

1

2

∂u2

∂x
+
∂u

∂y
= 0

Fig. 2. The model problem with initial and boundary values.

The entropy solution is indicated in Fig. 3 for several instances in time. The
last figure shows the stationary solution with a compression fan and a jump
discontinuity between two constant regions u = 1.5 and u = −1.0.
An example of an irregular point distribution is given in Fig. 4. In our calcu-
lation, we will use 10.000 points in the unit square. A small clipping of the
Voronoi grid is also indicated in Fig. 4.
To get an idea of the computational costs, we note that the generation of the
geometric parameters Vi, βij takes about 25 seconds on a PC by setting up
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Fig. 3. The entropy solution of the model problem for t ∈ {0.3, 0.6, 0.9, 1.2}.
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Fig. 4. Example of an irregular point distribution, a clipping of the Voronoi grid,
and the supports of the particle cover.

a Voronoi grid. The partition of unity uses the product of hat functions

W (x) = w(x1)w(x2), w(x) = (1 − |x|)+.

A clipping of the cover of Ω is also shown in Fig. 4. The corresponding func-
tions ψi are piece-wise rational functions and we use numerical quadrature to
evaluate the parameters Vi and βij (Gauss-Legendre integration on patches
where the integrands are C∞ functions). The time consumption then depends
on the number of integration nodes we use. A coarse integration requires 27
seconds, and thus a little bit more than the grid generation. However, a very
accurate integration easily leads to computation times of 300 seconds. The
stationary solution of our model problem calculated on a Voronoi grid and
with FVPM, using two levels of accuracy for the parameter integration, are
shown in Fig. 5. The values of the left and right most level lines correspond
to the boundary values. Obviously, the coarse integration of the parameters
leads to oscillatory solutions: the values in the constant regions range between
1.4 and 1.6, respectively -1.1 and -0.9, and also the isolines in the compression
region are quite wavy.
To understand the origin of these oscillations, let us consider the case of a
conservation law on R

d with constant initial value u0(x) = c. Then, the
algorithm (13) implies u0

i = c for all i and, using consistency of g, i.e.
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Fig. 5. Stationary solution using Voronoi grid (left), FVPM with coarse integration
(middle), and FVPM with fine integration (right).

g(c, c,nij) = F (c) · nij , we find the first iterates as

u1
i = c−

∆t

Vi

F (c) ·
∑

j

βij , ∀i.

We see that the constant state will, in general, only be preserved if
∑

j βij = 0

which is exactly condition (9). If we determine βij by numerical integration,
the sum

∑

j βij is of the order of the integration error and, if ∆t/Vi is of
order one (such a CFL-type condition is used for stability reasons), exactly
this integration error becomes visible in regions where the solution is constant.

In order to ensure condition (9) also when βij is calculated numerically,
several correction procedures have been proposed. In [10], a coarse integration

yields β̃ij and then conditions (8) and (9) are enforced for β = β̃ + β̂ where

β̂ is determined using a least squares method. A faster correction which does
not require the solution of large linear systems has been developed in [7].
Here, the error in

∑

j βij is subtracted from some non-zero βij0
with j0 > i

(and added to βj0i to keep property (8)). In other words, the error is moved to
a neighboring particle and one can show that it does not accumulate. In [13],
this procedure has been extended to condition (10) which is the counterpart
of (9) in domains with boundary. Using this correction procedure together
with the coarse integration, the computational time for the calculation of
geometric parameters increases from 27 seconds only to 28 seconds but the
result improves drastically (see Fig. 6). In fact, a comparison of the L

1 error
shows that the error is slightly smaller than in the Voronoi-FVM solution.

5 The PUMESH method

In this section, we present another approach how to calculate geometric pa-
rameters based on a partition of unity. The basic idea is to associate a mesh
to the given partition of unity (a PU-mesh) and to use a grid based finite
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Fig. 6. Stationary solution using FVPM with coarse integration and parameter
correction.

volume method on this mesh. The mesh construction is easily explained for
the regular partition of unity shown in Fig. 7.

PSfrag replacements
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Fig. 7. A regular partition of unity with hat functions on [0, 1].

If the partition functions are denoted ψi, we now set up the functions (see
Fig. 8)

Φ1 = ψ1, Φ2 = ψ1 + ψ2, . . . , Φk =
∑

i≤k

ψi.

If we plot all functions Φk together, we eventually obtain a structure as shown
in Fig. 9 which can be considered as a mesh on Ω × (0, 1) where Ω = (0, 1)
is the domain where the partition of unity is given.
The grid cells are naturally defined by

Ck = {(x, y) : Φk−1(x) < y < Φk(x)}. (15)

In particular, upper and lower boundary of Ck are the graphs of Φk−1 and
Φk = Φk−1 + ψk

∂Ck = {(x, Φk−1(x)) : x ∈ suppψk} ∪ {(x, Φk(x)) : x ∈ suppψk}. (16)

Applying this construction to a partition of unity with irregularly distributed
partition functions and either uniform or varying support size, we find grids
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Fig. 9. A grid (PU-mesh) associated to the partition of unity from Fig. 7.

as shown in Fig. 10. We remark that the numbering of the partition functions
obviously influences the form of the grid: if we count the partition functions
in Fig. 11 from left to right we get one possible grid - another possibility is
obtained if we renumber by first taking the particles with even index from
left to right and then the particles with odd index from right to left. Finally,
a typical random permutation of the indices leads to grids which resemble
the lower right situation in Fig. 11.

Now let us come back to the original goal to construct a finite volume type
method for equation (1) on the domain Ω. First, we lift this equation to the
extended domain Ωe = Ω × (0, 1) by introducing the extended flux function
F e(u) = (F (u), 0) and the extended initial value u0

e(x, y) = u0(x). Then, the
problem

∂ue

∂t
+ div(x,y)F e(ue) = 0, ue(0,x, y) = u0

e(x, y). (17)

is obviously equivalent to (1) and our idea is to approximate (17) using a
finite volume approach on a PU-mesh. This plan requires the calculation
of cell volumes, cell surface areas, and cell normals. To begin with, let us
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Fig. 10. Partitions of unity constructed from irregular point distributions and hat
functions with uniform (upper left) and non-uniform (lower left) support sizes. The
corresponding PU-meshes are shown in the right columns.
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Fig. 11. Several PU-meshes constructed from the regular partition of unity shown
in the upper left diagram. Counting the functions from left to right, the upper right
PU-mesh is obtained. A renumbering by first taking even indices in increasing and
then odd indices in decreasing order leads to the lower left PU-mesh. A random
permutation of the indices yields the lower right mesh.
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determine the volume Vk of cell Ck defined in (15). We have

Vk =

∫

Ck

dydx =

∫

Rd

∫ Φk(x)

Φk−1(x)

dy dx =

∫

Rd

ψk dx

which is also used in (12) for the FVPM approach. Next, we calculate the
cell averages of the initial value u0

e

u0
ek =

1

Vk

∫

Ck

u0
e(x, y) dydx

=
1

Vk

∫

Rd

u0(x)

∫ Φk(x)

Φk−1(x)

dy dx =
1

Vk

∫

Rd

u0(x)ψk(x) dx

which is again the same as in FVPM.
In order to determine the interface Γkj between two cells Ck and Cj , we

note that the boundary of Ck is given by (16). In particular, a cell Cj with
a larger index j > k can only touch the upper boundary

∂+Ck = {(x, Φk(x)) : x ∈ suppψk}

with parts of its lower boundary

∂−Cj = {(x, Φj−1(x)) : x ∈ suppψj}

if Φj−1(x) coincides with Φk(x) for at least one point x ∈ suppψk ∩ suppψj .
Hence, the (relative interior of the) interface is given by

Γkj = {(x, Φk(x)) : x ∈ Dkj}, j > k

where

Dkj =

∫

{x : Φk−1(x) < Φk(x) = Φj−1(x) < Φj(x)}.

Since the interface Γkj is part of the graph of Φk, we immediately find the
normal vector (pointing out of Ck) and the surface measure in terms of Φk

as
nkj = (−∇Φk, 1)/

√

1 + |∇Φk |2, dS =
√

1 + |∇Φk|2dx. (18)

Using (18), we introduce an average interface area and an average normal
vector, by setting for j > k

|Γ̄kj |n̄kj =

∫

Γkj

nkj dS =

∫

Dkj

(−∇Φk, 1) dx

and |Γ̄jk | = |Γ̄kj |, n̄jk = n̄kj , |Γ̄kk | = 0. Finally, we have to specify a nu-
merical flux function ge corresponding to F e which we also obtain by lifting
a suitable flux function g for the original flux F . If n = (nx, ny) is a unit
vector with nx 6= 0, we define

ge(v, w,n) = |nx|g(v, w,nx/|nx|)
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and set ge(v, w,n) = 0 if nx = 0. (This construction reflects the fact that
there is no flux in y-direction, i.e. (F e)y = 0). Then, the classical finite volume
ansatz (5)

un+1
i Vi = un

i Vi −∆t
∑

j

|Γ̄ij |g(u
n
i , u

n
j , n̄ij), u0

i =
1

Vi

∫

Ci

u0
e dydx

reduces to

un+1
i Vi = un

i Vi −∆t
∑

j

|βij |g(u
n
i , u

n
j ,nij), u0

i =
1

Vi

∫

Rd

ψiu
0 dx (19)

with nij = βij/|βij | and

Vi =

∫

Rd

ψi dx, βij = −

∫

Dij

∇Φi dx, βji = −βij , j > i, βii = 0.

We remark that (19) has precisely the form of the FVPM algorithm (13) –
only the definition of βij is different. In particular, the extra dimension of the
PU-mesh is no longer visible in the method. Only the fact that integration
has to be carried out to determine Vi and βij can be viewed as remnant
of the additional dimension. However, if we reconstruct a function from the
discrete values un

i , the natural choice is, according to our derivation,

ũe(t,x, y) =

N
∑

i=1

un
i 1Ci

(x, y)1[tn,tn+1)(t).

Since the solution ue of (17) is independent of y, it is reasonable to suppress
the additional dimension also in the reconstruction. This can be achieved by
using the local y-average of ũe which, in view of (15), can be written as

ũ(t,x) =

∫ 1

0

ũe(t,x, y) dy =
∑

i

un
i ψi(x)1[tn,tn+1)(t).

Note that this is the same reconstruction formula as (14) for FVPM. In Fig.
12, we compare the stationary FVPM solution of our model problem with
the PUMESH solution. The partition functions are numbered according to
the lexicographical ordering of the given points xi. The parameter integrals
in the PUMESH method can be carried out similar to the FVPM case.
One can see that FVPM has a better shock resolution than PUMESH, where
the resolution appears to be dependent on the chosen numbering. However,
PUMESH has the advantage that the number of relevant neighbors is smaller
than in FVPM which leads to an increase in speed. Moreover, the calculation
βij can be carried out in such a way that the stability conditions (8) and (9)
are satisfied on a discrete level without additional correction.
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Fig. 12. Stationary solution using FVPM (left) and PUMESH (right).

6 Conclusion

We have presented two finite volume type schemes (FVPM and PUMESH)
which are based on a partition of unity instead of a grid on the computational
domain. The geometrical parameters (cell volumes, cell surface areas, and
cell normal vectors) used in grid based finite volume methods (FVM) are
replaced by integrals over partition functions and their derivatives. For the
case of FVPM, we have shown that these geometrical parameters satisfy
the conditions used in convergence proofs for classical FVM and a similar
proof can be given for the PUMESH parameters. Since the numerical results
obtained with both partition of unity methods are reliable and robust, we
can conclude that finite volume methods do not necessarily require a grid -
reasonable geometrical parameters can also be defined differently. In future
works, advantages of FVPM and PUMESH over classical FVM due to the
possible overlap of finite volumes will be investigated.
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