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Abstract. Employing variational techniques provided by F. Béthuel et
al. [12], we discuss the existence, asymptotics, and regularity of traveling wave
solutions to the Gross–Pitaevskii equation on infinite cylinders in R3. Subject
to a condition on their decay at infinity, we prove the existence of smooth,
nontrivial traveling waves, which hopefully establish a natural basis for the
study of stability via an infinite dimensional Evans function recently provided
by Y. Latushkin and A. Pogan [61]. Some closing remarks on the possibility
and obstacles of such a construction are made.
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eratur, als Entlehnung kenntlich gemacht. Die Arbeit wurde bisher keiner an-
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Chapter 1

Introduction

In physics, the Gross–Pitaevskii equation appears in a variety of fields, including
non-linear optics, fluid dynamics, and —most prominently perhaps— as a model
for Bose–Einstein condensation. This phenomenon of quantum mechanics was
first predicted by S. Bose and A. Einstein [15, 26] in 1925 and was experimen-
tally verified as recently as 1995, an achievement later rewarded with the Nobel
Prize. Bose–Einstein condensation occurs when specific gases are cooled down
to near absolute zero. At this temperature, all of their particles assume the
same quantum state, which leads to a loss of their individual identity, allowing
for a description as a single macroscopic wave function. One manifestation of
this condensation turns out to be superfluidity. In fact, the Gross–Pitaevskii
equation was first introduced by E. Gross and L. Pitaevskii [49, 64] to de-
scribe hydrodynamics of a superfluid condensate, namely, a weakly interacting
Bose gas. It was derived to describe the time evolution of the macroscopic wave
function of such condensates and takes the form of a nonlinear Schrödinger equa-
tion, the nonlinear part taking into account the interaction between neighboring
particles.

One important and much-studied class of solutions to the Gross–Pitaevskii
equation are traveling waves, that is, functions that move with constant speed
while maintaining their shape. They play a crucial role in the study of long-
time behavior of general solutions and were first investigated by C.A. Jones
et al. [42, 54, 53] in dimensions two and three. For dimension two, they found
a branch of solutions with speeds in the subsonic range and investigated them
both analytically and numerically. On a more rigorous mathematical level, P.
Gravejat [44] proved the nonexistence of traveling waves for supersonic speeds
and, in cooperation with F. Béthuel and J.C. Saut [11, 12, 14], was able to
show the existence of subsonic traveling waves with arbitrary momentum in
dimension two and large momentum in dimension three. For latter dimension,
F. Béthuel et al. [13] were also able to provide a branch of so called vortex
ring solutions, which are cylindrically symmetric with values in a circle.

In the qualitative study of these traveling waves, one is often concerned
with their stability, that is, the behavior of solutions whose initial conditions
are small perturbations of the traveling wave under investigation. If such so-
lutions stay sufficiently close to the original traveling wave, one calls the latter
stable, otherwise one calls it unstable. In nature and even in the most well-
conducted physical experiments, such small perturbations occur constantly and
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2 CHAPTER 1. INTRODUCTION

so the mathematical stability of traveling waves is crucial to their observability
in the natural world. There is a variety of possibilities to study stability, but
one natural way is to linearize the equation about the traveling wave in ques-
tion and examine the spectrum of the linearized differential operator. The part
of the spectrum located on the left complex half-plane, which corresponds to
decreasing Fourier modes, is called the stable spectrum, the one in the right
half-plane the unstable spectrum. The connection of spectral stability of the
linearized operator and stability with respect to the fully nonlinear equation has
been investigated for a variety of equations (see [55, 56, 57, 66] and references
therein).

The Evans function is a tool to detect the point spectrum of such linearized
operators. It was first introduced by J. W. Evans [27, 28, 29, 30] in connection
with nerve impulse equations but has soon been generalized and used in a variety
of fields in physics and mathematics (see [36] for references). One issue is that
the Evans function is a finite dimensional determinant by construction and is
usually applied to study traveling waves of one spatial and one time variable.
For the higher-dimensional Gross–Pitaevskii equation, the finite dimensional
ansatz fails since it depends on more than one spacial variable. Here, traveling
waves are functions that map to some infinite dimensional function space for
any point in time.

A huge step towards an infinite dimensional generalization was made by F.
Gesztesy et al. [36, 37], when they connected the finite-dimensional Evans func-
tion to a modified Fredholm determinant associated with a Birman–Schwinger
type integral operator. This was used by Y. Latushkin and A. Pogan in their
recently published paper [61] to develop an approach for an Evans function on
infinite dimensional spaces. For a very general set of operators, they give a
number of conditions under which they are able to construct such a function.

It is the intention of this survey to prove the existence of traveling wave
solutions to the Gross–Pitaevskii equation in certain function spaces that seem
suitable for the construction of such an infinite dimensional Evans function.
More precisely, we aim to find smooth solutions on the infinite cylinder, that
is, solutions that move in one spatial direction and are periodic in all other
coordinates. We also want to briefly discuss to what extend these traveling
waves already fit in the early framework provided by Y. Latushkin et al. [61],
that is, which conditions they do and which they fail to meet.

1.1 The Gross–Pitaevskii Equation

The dimensionless form of the Gross–Pitaevskii equation is

i∂tφ = ∆φ+ φ
(

1− |φ|2
)

on Ω× R, (GP)

where Ω is some domain —usually Ω = RN— and

φ : Ω× R→ C; (x, t) 7→ φ(x, t)

is the unknown.
It is a common fact (see [7, 8, 12]) that, at least on a formal level, the Gross–

Pitaevskii equation is Hamiltonian with associated Ginzburg–Landau energy

E(φ) ≡ 1

2

∫
Ω

|Dφ|2 +
1

4

∫
Ω

(1− |φ|2)2
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and momentum

P (φ) ≡ 1

2

∫
Ω

〈iDφ, φ− 1〉.

Here, 〈·, ·〉 denotes the canonical scalar product on C ' R2, namely,

〈z1, z2〉 ≡ <(z1)<(z2) + =(z1)=(z2).

Henceforth, the symbol p will be used to denote the first component of the
vector-valued function P .

We will focus on traveling waves u that propagate information in one spatial
dimension. More precisely, performing a change of variables to moving frame
coordinates, one is interested in solutions of the form

u = u(x1 − ct, x⊥, t) with x⊥ ≡ (x2, . . . , xN ).

The coordinates x⊥ are sometimes called transverse coordinates. Plugging this
ansatz in, one obtains

i∂tu = ∆u+ u(1− |u|2)

⇔ i(−c, 0, . . . , 0, 1)Du = ∆u+ u(1− |u|2),

and, setting u = u(ξ, x⊥, t) with ξ ≡ x1 − ct, we get

i∂tu = ic∂1u+ ∆u+ u(1− |u|2). (CT)

A traveling wave u with speed (or velocity) c is a stationary solution to (CT) in
the moving coordinate system; that is, it satisfies

0 = ic∂1u+ ∆u+ u(1− |u|2). (TWc)

Henceforth, we will restrict our investigation exclusively to equation (TWc) and
resume to write x1 for ξ.

1.2 Working on Torus and Cylinder

In the course of this thesis, we will almost permanently work on N -dimensional
tori and cylinders. They are formed by identifying all or all transverse opposite
faces of N -dimensional parallelepipeds, respectively; see figure 1.1.

The ansatz of working on expanding tori, instead of directly considering
(TWc) on unbounded domains like the cylinder, was used in [12, 13] and has
turned out to have several advantages. First, the torus is compact, enabling us
to establish the existence of variational minimizers without greater difficulty.
Second, it has no boundary so that we may mainly withdraw to local elliptic
theory. And finally, one finds that Pohozaev type identities for the torus yield
suitable upper bounds for the Lagrange multipliers, which in turn are closely
linked to the speeds of the solutions; see [12] for details.

Definition 1.1 (Torus). Let n = (n1, . . . , nN ) ∈ NN . We denote by

TNn ≡ R/(2πn1Z)× . . .× R/(2πnNZ)

the (asymmetrical) torus induced by the identification

x ∼ x′ :⇔ ∀j = 1, . . . , N : xj − x′j ∈ 2πnjZ.
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Some of the difficulties that appear when working on the torus stem from
the relation of TNn to associated parallelepipeds in RN . Indeed, for

α = (α1, . . . , αN ) ∈ RN ,

every parallelepiped

Pα ≡
N∏
j=1

[−πnj + αj , πnj + αj)

contains exactly one element of every equivalence class and can hence be iden-
tified with TNn . This gives rise to the notion of unfoldings, which are, in a way,
the converse to the identification of the faces.

Definition 1.2 (Unfolding). Let α ∈ RN . An unfolding τα of the torus TNn is
a one-to-one mapping

τα : TNn → ΩNn ; [(x1 + α1, . . . , xN + αN )]∼ 7→ (x1, . . . , xN ),

where ΩNn ≡ P0 =
∏N
j=1[−πnj , πnj).

For every function f with domain TNn , the unfolding τα induces a periodic
—that is, 2πnj-periodic in the jth component— function fα on ΩNn by

fα(x) ≡ f([x+ α]∼) = f(τ−1
α (x)).

As a consequence, one may define the integral on the torus by setting∫
TNn

f ≡
∫

ΩNn

fα,

which is independent of α. Henceforth, we will no longer distinguish between f
and fα if the meaning is clear from the context. Note that the integration by
parts formula on the torus reduces to∫

TNn
uxivdx = −

∫
TNn

uvxi , i = 1, . . . , N, u, v ∈ C1(TNn ),

since the integrals on opposing faces of ΩNn cancel.
The next elementary lemma from [12, 4.1] provides us with a suitable un-

folding for situations in which we need to estimate boundary integrals that arise
from integration by parts of non-periodic functions.

Lemma 1.3. Assume f ∈ L1(ΩNn ) and A is some measurable proper subset of
[−πnN , πnN ]. Then, there is a constant β ∈ [−πnN , πnN ] \A such that∣∣∣∣∣

∫
[−πn1,πn1]×...×[−πnN−1,πnN−1]×{β}

f(x)dx

∣∣∣∣∣ ≤ 1

2πnN − |A|

∫
ΩNn

|f(x)|dx.

In particular, for any f ∈ L1(TNn ), there is an unfolding τα of the torus TNn
such that ∣∣∣∣∣

∫
[−πn1,πn1]×...×[−πnN−1,πnN−1]×{−πnN ,πnN}

fα(x)dx

∣∣∣∣∣
≤ 2

2πnN − |A|

∫
ΩNn

|f(x)|dx.
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Proof. Set

g(γ) ≡

∣∣∣∣∣
∫

[−πn1,πn1]×...×[−πnN−1,πnN−1]×{γ}
f(x)dx

∣∣∣∣∣ , γ ∈ [−πnN , πnN ].

Then, there is some β ∈ [−πnN , πnN ] \A such that

(2πnN − |A|)g(β) ≤
∫

[−πnN ,πnN ]\A
g(γ)dγ.

This implies∫
ΩNn

|f(x)|dx ≥
∫

[−πnN ,πnN ]\A
g(γ)dγ ≥ (2πnN − |A|)g(β),

which proves the claim.

Ω2
n

T2
n

Figure 1.1: Intuition behind the (un-)folding of the torus.

Similarly, we define the N -dimensional cylinder by identifying all transverse
opposing faces.

Definition 1.4 (Cylinder). Let n = (n1, . . . , nN ) ∈ NN . We denote by

SNn ≡ R× R/(2πn2Z)× . . .× R/(2πnNZ)

the (infinite) cylinder induced by the identification

x ∼ x′ :⇔ ∀j = 2, . . . , N : xj − x′j ∈ 2πnjZ.

In contrast to the torus, the N -dimensional cylinder is isomorphic to the set

SNn = R× TN−1
(n2,...,nN ) ' R×

N∏
j=2

[−πnj , πnj)

so that functions on SNn can be identified with functions that are periodic in the
components j = 2, . . . , N . Note that n1 does not appear in the definition of the
cylinder; we still keep it for ease of notation and to promote the intuition that
a cylinder is an infinitely stretched, partially unfolded torus.

Definition 1.5 (Cylinder Test Functions). The support of a function v on SNn
is defined by

supp(v) ≡
{
x1 ∈ R : ∃x⊥ ∈ TN−1

(n2,...,nN ) : v(x1, x⊥) 6= 0
}
.
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Hence, we denote the space of test functions with compact support on the cylinder
SNn by

C∞c (SNn ) ≡
{
v ∈ C∞(SNn ,C) : supp(v) is compact

}
.

Note that v ∈ C∞c (SNn ) implies v(·, x2, . . . , xN ) ∈ C∞c (R,C) for any fixed
point

(x2, . . . , xN ) ∈ TN−1
(n2,...,nN ).

1.3 Structure and Statement of Results

Let us briefly outline the structure of the thesis. In chapter 2, we review some
elements of functional analysis and differential geometry that are repeatedly
used throughout the survey. These include some strict versions of Sobolev em-
bedding theorems as well as short outlines of difference quotients in Sobolev
spaces, differential forms, and some results on Hilbert–Schmidt operators.

The first step of our proof of existence is a careful analysis of the regular-
ity of solutions on the cylinder. This is the subject of chapter 3. In [43], the
smoothness of finite energy solutions on RN , N ≥ 3, has already been estab-
lished, and similar techniques are used to prove a corresponding result on S3

n.
We show that the regularity of finite energy solutions is closely related to the
asymptotic behavior of the traveling waves. More precisely, we prove that they
converge to the unit circle as x1 →∞.

In chapter 4, we mainly use modified arguments from [12] to establish the
existence of nontrivial traveling waves on S3

n. The proof is divided into several
steps. First, section 4.1 deals with the existence of traveling waves on tori of
fixed geometry. In section 4.2, we bound the speeds of the traveling waves, a step
heavily relying on a Pohozaev type identity, which is introduced in section 4.2.1.
A great deal of time is spent to estimate the differential 2-forms appearing in
this identity, finally allowing us to estimate the speeds by means of the energy of
the solutions in section 4.2.2. This grants us with the necessary compactness in
order to expand the tori and thus create a sequence of functions that converges
to a solution of (TWc) on S3

n; see section 4.3. The rest of the chapter is devoted
to the proof of nontriviality. Here, we finally employ the results of chapter 3 in
order to prove the main result of this survey, namely, the existence of smooth,
nontrivial traveling wave solutions on S3

n under some hypothesis on their decay
at infinity.

The last chapter features some remarks on the feasibility of deducing an
infinite dimensional Evans function to investigate stability of the discovered
traveling waves. We give a short exposition of the results of Y. Latushkin et
al. [61] and prove that many, but not all, assumptions of their paper can be
satisfied. However, the conditions that can not be met are precisely those that
the authors themselves conjecture to be too strong.

1.4 Basic Notation

We review some basic standard notation used throughout the survey. All other
notation will be (or already has been) introduced in place. If unfamiliar with
some required definition, the reader may consult [1] and [31].
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Notation for numbers and sequences. We denote the natural numbers by
N ≡ 1, 2, . . ., starting with 1, the positive reals by R+ ≡ (0,∞), excluding
zero, and

Z2,+ ≡ {(k, j) ∈ Z2 : j ≤ −1, k ≥ j, k 6= 0}
Z2,− ≡ {(k, j) ∈ Z2 : j ≥ 1, k < j, k 6= 0}.

To complex numbers z1, z2 we apply the canonical scalar product of C '
R2, namely,

〈z1, z2〉 ≡ <(z1)<(z2) + =(z1)=(z2),

where <(z) and =(z) denote the real and imaginary part of a complex
number z, respectively.

For two sequences (an)n∈N, (bn)n∈N ⊂ C, we write an ∼ bn if they display
the same asymptotic behavior, that is, if an/bn → 1, as n→∞.

Notation for matrices. For a vector x ∈ CN and a matrix

A = (aij) i=1,...,N
j=1,...,M

∈ CN×M

we define

|x| ≡

(
N∑
i=1

|xi|2
)1/2

and |A| ≡

 N∑
i=1

M∑
j=1

|aij |2
1/2

,

respectively.

Notation for functions. If u is a real function, we denote its positive part by
u+ ≡ max{u, 0} and its support by suppu. For any function u : Ω→ CN ,
we usually write uk and mean the kth component of u, k = 1, . . . , N . The
symbol ≡ always defines the left hand side by the right hand side (and is
also applicable to sets in general).

Notation for derivatives. We define

Dαu ≡ ∂|α|

∂αx1
. . . ∂αxN

u,

using the usual multiindex notation. If k is a nonnegative integer, one
commonly writes Dku ≡ {Dαu : |α| = k} and

|Dku| ≡

∑
|α|=k

|Dαu|2
1/2

for its modulus. Depending on the situation, we sometimes also use uxi ,
∂iu or ∂xiu for ∂u/∂xi for convenience. To avoid confusion, we will refrain
from using the symbol ∇ for the gradient and use D = D1 instead.
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Notation for function spaces. By Lp(Ω, F ) and W k,p(Ω, F ) we denote the
usual Lebesgue and Sobolev spaces of functions on Ω taking values in F .
If F is not specified, we always suppose F = C. Furthermore, we use the
convention Hk(Ω, F ) ≡W k,2(Ω, F ). The usual norms on these spaces are
denoted by ‖ · ‖Lp(Ω,F ), ‖ · ‖Wk,p(Ω,F ) and ‖ · ‖Hk(Ω,F ), respectively. For
local versions, we add the loc subscript.

By Ck(Ω, F ), 0 ≤ k ≤ ∞, we mean the space of functions that are k times
continuously differentiable, equipped with the norm

‖u‖Ck(Ω,F ) ≡
∑
|α|≤k

sup
Ω
|Dαu|, 0 ≤ k <∞.

Slightly abusing notation, we write Ck(Ω, F ) to denote all functions u of
Ck(Ω, F ) for which Dαu, 0 ≤ |α| ≤ k, is bounded and uniformly contin-
uous. Moreover, we denote by Ck,λ(Ω, F ) the Hölder spaces with Hölder
coefficient λ. Again, if F is not specified, we always suppose F = C. The
arrow ⇀ denotes the usual weak convergence in Banach spaces. Finally,
we set

‖u‖X+Y ≡ inf {‖u1‖X + ‖u2‖Y : u = u1 + u2, u1 ∈ X, u2 ∈ Y } (1.1)

for two normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y ). It is well known that
if X and Y are Banach spaces, the space (X + Y, ‖ · ‖X+Y ) is a Banach
space as well.

References

Introduction We relied on [3, 63] for the historical remarks about the Gross–
Pitaevskii equation. The paragraph on traveling waves partly follows [12].
For an introduction to stability of traveling waves, see [66].

Section 1.1 We closely followed [12, 14]. For more information about the
derivation of the equation, we refer to [44] and references therein.

Section 1.2 These definitions and properties of tori and unfoldings can pri-
marily be found in [12]. A deeper treatment of tori and their application
as Lie groups can, e.g., be found in [51].



Chapter 2

Elements of Functional
Analysis

In this chapter, we review some elements of functional analysis and differential
geometry that will be frequently used throughout the whole survey but are
not necessarily part of a graduate course on partial differential equations. The
presented results are mostly standard and will be given without proof.

2.1 Compactness and Embedding Theorems

The following essential general versions of Sobolev embedding and compactness
theorems are crucial to all chapters of this work. Our outline closely follows [1].

Definition 2.1 (Cone). Let v be a nonzero vector in RN . For fixed % > 0 and
κ ∈ (0, π], we define

C ≡ {x ∈ RN : x = 0 or 0 < |x| ≤ %, ∠(x, v) ≤ κ/2}

and call x+ C the cone with vertex x ∈ RN .

Definition 2.2 (Cone Condition). A domain Ω ⊂ RN satisfies the cone condi-
tion if there is a finite cone C such that each point x ∈ Ω is the vertex of a cone
Cx contained in Ω and congruent to C.

Remark. Let n = (n1, . . . , nN ). The domain

ΩNn = [−πn1, πn1]× . . .× [−πnN , πnN ]

satisfies the cone condition. In fact, one may choose v = e1, κ = π/2 and % = 1.

Theorem 2.3 (Sobolev Embedding theorem; [1, 4.12]). Suppose Ω ⊂ RN sat-
isfies the cone condition, assume 1 ≤ p < ∞, and let m ≥ 1 be an integer. If
mp < N , then

Wm,p(Ω) ⊂ Lq(Ω) for p ≤ q ≤ p∗ =
Np

N −mp
.

9
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Definition 2.4 (Local Lipschitz Condition). A domain Ω ⊂ RN satisfies the
local Lipschitz condition if each point x ∈ ∂Ω has a neighborhood Ux such that
Ux ∩ ∂Ω is the graph of a Lipschitz continuous function.

Remark. A domain satisfying the local Lipschitz condition is also called Lipschitz
domain. Examples of Lipschitz domains include polygonal domains in R2 or
polyhedrons in R3.

Theorem 2.5 (Morrey Embedding Theorem; [1, 4.12]). Suppose Ω ⊂ RN is
bounded and satisfies the local Lipschitz condition, assume 1 ≤ p < ∞, and let
m ≥ 1, j ≥ 0 be integers. If mp > N > (m− 1)p, then

W j+m,p(Ω) ⊂ Cj,λ(Ω) for 0 < λ ≤ m− N

p
,

and if N = (m− 1)p, then

W j+m,p(Ω) ⊂ Cj,λ(Ω) for 0 < λ < 1.

Also, if N = m− 1 and p = 1, then the last inclusion holds for λ = 1 as well.

Theorem 2.6 (Rellich–Kondrachov Compactness Theorem; [1, 6.3]). Suppose
Ω ⊂ RN is bounded, j ≥ 0, m ≥ 1, and 1 ≤ p <∞.

(i) If Ω satisfies the cone condition and mp ≤ N , then

W j+m,p(Ω) bW j,q(Ω) for N > mp, 1 ≤ q < Np

N −mp
;

W j+m,p(Ω) bW j,q(Ω) for N = mp, 1 ≤ q <∞.

(ii) If Ω satisfies the cone condition and mp > N , then

W j+m,p(Ω) bW j,q(Ω) for 1 ≤ q <∞.

(iii) If Ω satisfies the local Lipschitz condition, then

W j+m,p(Ω) b Cj(Ω) for N < mp;

W j+m,p(Ω) b Cj,λ(Ω) for (m− 1)p ≤ N < mp, 0 < λ < m− N

p
.

Definition 2.7 (Uniform Equicontinuity). Assume K ⊂ C(Ω). The functions
in K are called uniformly equicontinuous if for any ε > 0 there exists δ > 0 such
that if ϕ ∈ K and x, y ∈ Ω satisfy |x− y| < δ, then |ϕ(x)− ϕ(y)| < ε.

Theorem 2.8 (Ascoli–Arzela Compactness Theorem; [1, 1.33]). Let Ω be a
bounded domain in RN . A set K ⊂ C(Ω) is precompact in C(Ω) if the two
following conditions hold.

(i) There exists a constant M such that |ϕ(x)| ≤M for all ϕ ∈ K and x ∈ Ω;

(ii) The functions in K are uniformly equicontinuous.
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Theorem 2.9 (Weak Compactess Theorem; [31, D.4]). Let X be a reflexive
Banach space and assume the sequence (vk)k∈N ⊂ X is bounded. Then, there is
a subsequence (vkj )j∈N ⊂ (vk)k∈N and v ∈ X such that vkj ⇀ v, as j →∞.

We close this section by stating a standard interpolation result between Lp

spaces.

Theorem 2.10 (Interpolation Inequality; [1, 2.11]). Suppose Ω is some domain
in RN and let 1 ≤ p < q < r ≤ ∞ such that

1

q
=
θ

p
+

1− θ
r

for some θ with 0 < θ < 1. If v ∈ Lp(Ω) ∩ Lr(Ω), then v ∈ Lq(Ω) and

‖v‖Lq(Ω) ≤ ‖v‖θLp(Ω)‖v‖
1−θ
Lr(Ω).

2.2 Hilbert–Schmidt Operators

Hilbert–Schmidt operators are compact operators that have some nice properties
not shared by other compact operators, particularly concerning their eigenfunc-
tions. We closely follow [24].

Definition 2.11. Let H be a Hilbert space with orthonormal basis {e : e ∈ I}
and H ′ a Hilbert space with norm ‖ · ‖. A bounded linear operator T : H → H ′

is said to be a Hilbert–Schmidt operator if the expression

‖T‖B2(H,H′) ≡

(∑
e∈I
‖Te‖2

)1/2

is finite. The norm ‖ · ‖B2(H,H′) is called the Hilbert–Schmidt norm or double-
norm. The parameters (H,H ′) will be omitted whenever the meaning is clear.

If the Hilbert spaces in the definition above happen to be H = H ′ =
L2(Ω,C), the Hilbert–Schmidt operators T are operators of the form

(Tf)(s) =

∫
Ω

k(s, t)f(t)dt,

where ∫
Ω

∫
Ω

|k(s, t)|2dsdt <∞.

Note that the identity map id : H → H is Hilbert–Schmidt if and only if H
is finite dimensional. This is not necessarily true if H 6= H ′. Indeed, it is easy
to see that the identity operator id : Hs(TN ) → L2(TN ) is Hilbert-Schmidt
whenever s > 1/2. This fact turns out to be quite useful in chapter 5.

A first important result removes the dependence of the Hilbert–Schmidt
norm on a specific basis.

Lemma 2.12 ([24, XI]). The Hilbert–Schmidt norm is independent of the or-
thonormal basis used in its definition.
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Furthermore, it turns out, that the set of Hilbert–Schmidt operators has a
nice structure.

Lemma 2.13 ([24, XI]). Every Hilbert–Schmidt operator is compact. The set
of Hilbert–Schmidt operators is a Banach space under the Hilbert–Schmidt norm
and forms a two-sided ideal in the Banach algebra of all bounded operators.

This ideal is sometimes called a Schatten–von–Neumann ideal. Note that not
every compact operator is Hilbert–Schmidt. Indeed, if by (en)n∈N we denote
some orthonormal sequence in a Hilbert space, the operator T determined by
Ten = n−1/2en, n ∈ N, is compact but not Hilbert–Schmidt; see [24, XI.6.7].

2.3 Difference Quotients in Sobolev Spaces

In section 4.4.1, we will make use of an elementary result on the composition of
Lipschitz continuous functions and Sobolev functions of first order. The proof
uses difference quotients of general functions.

Definition 2.14 (Difference quotient). Let Ω ⊂ RN and v : Ω → C be some
function. For x ∈ Ω′ ⊂ Ω, the ith difference quotient is defined by

∆h
i u(x) ≡ u(x+ hei)− u(x)

h
for 0 < h < dist(Ω′, ∂Ω),

where ei denotes the ith standard unit vector.

The two subsequent results, which link the difference quotient and derivative
of Sobolev functions, can be found in [40, 7.11] and will be stated without proof.

Lemma 2.15 ([40, Lem.7.23]). Assume Ω ⊂ RN and v ∈ W 1,q(Ω). For every
Ω′ b Ω satisfying h < dist(Ω′, ∂Ω), we have the inequality

‖∆h
i v‖Lp(Ω′) ≤ ‖∂iv‖Lp(Ω).

Lemma 2.16 ([40, Lem.7.24]). Let Ω ⊂ RN and v ∈ Lp(Ω), 1 < p < ∞.
Assume further that there is a constant K such that ∆h

i v ∈ Lp(Ω′) and

‖∆h
i v‖Lp(Ω′) ≤ K

for all h > 0, i ≤ N , and Ω′ b Ω satisfying h < dist(Ω′, ∂Ω). Then, v is weakly
differentiable with weak derivative Dv in Lp(Ω).

The next result states that Lipschitz continuous functions preserve Sobolev
spaces of first order.

Corollary 2.17. Let Ω ⊂ RN be bounded and v ∈ H1(Ω). If f : v(Ω) → C is
Lipschitz continuous, then f(v) ∈ H1(Ω).

Proof. Since Ω is bounded and f is Lipschitz, we infer that f(v) ∈ L2(Ω). It
follows from the Lipschitz continuity of f that

|∆h
i f(v)| =

∣∣∣∣f(v(x+ hei))− f(v(x))

h

∣∣∣∣ ≤ C|∆h
i v|.

In particular, lemma 2.15 yields∫
Ω′
|∆h

i f(v)|2 ≤ C2

∫
Ω′
|∆h

i v|2 = C2‖∆h
i v‖2L2(Ω′) ≤ C

2‖∂iv‖2L2(Ω)

for Ω′ b Ω, h < dist(Ω′, ∂Ω), and the assertion follows from lemma 2.16.
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2.4 Differential Forms and the Hodge–de–Rham
Decomposition

Differential forms and the Hodge–de–Rham decomposition play a vital role for
finding upper bounds to the speeds c of traveling wave solutions on tori. Among
other things, we employ them to prove the existence of a lifting for functions
on T3

n. This well justifies a short overview of differential forms and a statement
of the Hodge–de–Rham decomposition theorem without proof. The exposition
essentially follows [39, 52] and [9] with minor changes. Henceforth we will denote
by

{e1, . . . , eN} and {e1, . . . , eN}
the standard basis of RN and its dual, respectively.

2.4.1 Multivectors and the Wedge Product

A finite dimensional vector space V can be equipped with the so-called wedge
product. The elements generated by this operation will be called k-vectors.

Definition 2.18 (Wedge product of vectors). Let V by a N -dimensional vector
space over R. The wedge product (or exterior product) of v1, . . . , vk, 1 ≤ k ≤ N ,
is denoted by

v1 ∧ . . . ∧ vk,
where ∧ is multi-linear and alternating, that is,

v1∧ . . . ∧ avi + bwi ∧ . . . ∧ vk
= av1 ∧ . . . vi ∧ . . . ∧ vk + bv1 ∧ . . . ∧ wi ∧ . . . ∧ vk

and
v1 ∧ . . . ∧ vk = 0 if vi = vj for some i 6= j.

For ease of notation, we introduce the set of multiindices of length k with
ordered elements. This will greatly simplify the notation of multivectors.

Definition 2.19 (Ordered multiindex). By I(k,N) we denote the set of ordered
multiindices

I(k,N) ≡ {α = (α1, . . . , αk) : (αi)i=1,...,k ⊂ N, 1 ≤ α1 < . . . < αk ≤ N}

and set I(0, N) ≡ {0} as well as |α| ≡ k if and only if α ∈ I(k,N).

Definition 2.20 (Multivector). Let ξ be given by

ξ =
∑

α∈I(k,N)

ξαeα, (2.1)

where ξα ∈ R and eα ∈ {eα1
∧ . . . ∧ eαN : α ∈ I(k,N)}. Such objects ξ are

called k-vectors. We denote the space of k-vectors over V by ΛkV .

Definition 2.21 (Multicovector). Let V ∗ denote the dual space of V . We define
ΛkV ≡ ΛkV

∗ and call ΛkV the space of k-covectors. In particular, a k-covector
takes the form

ξ =
∑

α∈I(k,N)

ξαeα,

using the notation from above.
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In contrast to the definition of the wedge product for vectors, the one for
multivectors is slightly more involved.

Definition 2.22 (Wedge product of multivectors). Let ξ be a k-vector and ν
be an `-vector with

ξ =
∑

α∈I(k,N)

ξαeα and ν =
∑

β∈I(`,N)

νβeβ .

We define

ξ ∧ ν ≡
∑

α∈I(k,N),β∈I(`,N)

ξανβeα ∧ eβ ,

where

eα ∧ eβ ≡

{
0 α ∩ β 6= ∅
σeα∪β α ∩ β = ∅.

Here, σ denotes the sign of the permutation that resorts (α, β) to an ordered
multiindex α ∪ β.

A canonical scalar product on ΛkRN is given by

(ξ|ν) ≡
∑

α∈I(k,N)

ξανα,

where ξ =
∑
α∈I(k,N) ξ

αeα and ν =
∑
α∈I(k,N) ν

αeα. Both definitions canoni-
cally carry over to multicovectors.

Definition 2.23 (Hodge ? operator). Let ξ ∈ ΛkRN be a k-covector and ν ∈
ΛN−kRN an (N − k)-covector. The Hodge ? operator

? : ΛkRN → ΛN−kRN

is uniquely characterized by the equality

ξ ∧ ν = (?ξ|ν)e1 ∧ . . . ∧ eN .

In particular, one checks that (ξ|ν) = (?ξ| ? ν), and therefore,

ξ ∧ ?ν = (ξ|ν)e1 ∧ . . . ∧ eN

for differential k-covectors ξ and ν.

2.4.2 Differential Forms

For the sake of clarity, we refrain from dealing with the most general case on
manifolds and instead define differential forms on RN only.

Definition 2.24 (Differential form). A differential k-form on an open set U ⊂
RN is a k-covector field

ω : U → ΛkRN = Λk
(
RN
)∗
.
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A typical example of such an 1-differential form is the constant map

dxi : x ∈ RN 7→ ei ∈ Λ1RN =
(
RN
)∗
,

the so-called harmonic 1-form.

Definition 2.25 (Differential of smooth functions). For a sufficiently smooth
function f : U → R, we define the differential df of f by the 1-form df : U →
Λ1RN =

(
RN
)∗

, where

df(x) ≡
N∑
i=1

fxi(x)dxi(x).

The definitions of dxi and df are consistent; indeed, if

f : RN → R, x 7→ xk (2.2)

denotes the kth coordinate map, we compute

df(x) =

N∑
i=1

fxi(x)dxi(x) = δkie
i = ek.

More general, the harmonic α-form dxα is defined by the differential k-form

dxα : x ∈ RN 7→ eα ∈ ΛkRN ,

which can be written as

dxα = dxα1
∧ . . . ∧ dxαk .

In view of (2.1), every differential k-form ω takes the form

ω =
∑

α∈I(k,N)

ωαdxα

with real coefficient functions ωα. The wedge product of two differential forms
is canonically defined as

(ω ∧ δ)(x) ≡ ω(x) ∧ δ(x),

and if f is a function, we set

(f ∧ ω)(x) ≡ (fω)(x) ≡ f(x)ω(x).

In particular, multiplying the N -form dx1 ∧ . . . ∧ dxN by a scalar function f ,
one obtains a new N -form fdx1 ∧ . . . ∧ dxN . For such a form and any open
bounded set Ω ⊂ RN , one defines the integral∫

Ω

fdx1 ∧ . . . ∧ dxN ≡
∫

Ω

f(x)dx,

where the left hand side is the integral of N -forms (with Ω viewed as a N -
dimensional manifold) and the right hand side the Lebesgue integral on RN .

The definition of the differential can be extended from functions (which are
0-forms) to differential forms themselves.
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Definition 2.26 (Differential of differential forms). Let k ≥ 1 and

ω =
∑

α∈I(k,N)

ωαdxα

be a differential k-form with smooth coefficients. The differential dω of ω is
defined by

dω ≡
∑

α∈I(k,N)

dωα ∧ dxα =
∑

α∈I(k,N),i=1,...,n

ωαxidxi ∧ dxα

It is easy to see that the definitions for the differential of f and ω are consis-
tent. Moreover, df coincides with the ordinary differential if f is a C1 function;
in fact, it holds that (df(x))(v) = Dvf(x). One readily checks the following
properties.

Lemma 2.27 ([39, 2.2]). Let ω and δ be differential forms. Then,

(i) d(ω + δ) = dω + dδ if ω and δ both are differential k-forms;

(ii) d(ω ∧ δ) = dω ∧ δ + (−1)kω ∧ dδ if ω is a differential k-form;

(iii) d(dω) = 0 if ω is a C2 function.

The second item generalizes the product rule, the third one the Schwarz
theorem for C2 functions.

Finally, the Hodge ? operator acts on a differential form ω by

(?ω)(x) = ?ω(x).

In particular,

ω ∧ ?δ = (ω|δ)dx1 ∧ . . . ∧ dxN (2.3)

so that

(ω ∧ ?δ)(x) = (ω(x)|δ(x))e1 ∧ . . . ∧ eN

for all differential k-forms ω and δ.
Note that the range of differential 1-forms is (RN )∗ ' RN so that the state-

ment of the following theorem makes sense.

Theorem 2.28 (Hodge–de–Rham decomposition; [39, 5]). Let X be an N -
dimensional compact submanifold of RN . Any differential 1-form ω ∈ L2(X,R)
that satisfies dω = 0 allows for an unique orthogonal decomposition

ω = σ + dϕ,

where

σ =

N∑
i=1

αidxi, αi ∈ R,

is a differential 1-form of class H1 and ϕ ∈ H1(X,R) is a differential 0-form,
that is, a real function.



2.4. REFERENCES 17

References

Section 2.1 These sharp version of the theorems can be found in [1]. For
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Chapter 3

Asymptotics and Regularity
on the Cylinder

The first objective is to show that finite energy solutions to (TWc) on the
cylinder S3

n are actually smooth and converge to the unit circle. More precisely,
the goal of this chapter is to show that

|u(x1, x⊥)| → 1, as |x1| → ∞. (3.1)

In this context, a finite energy solution is a function for which the functional

E∗(ψ) =
1

2

∫
SNn
|Dψ|2 +

1

4

∫
SNn

(1− |ψ|2)2

takes a finite value. Property (3.1) will later play a key role in the proof of
nontriviality of solutions on S3

n. In [43], P. Gravejat proved a similar result
for solutions on RN and we mainly follow his presentation.

3.1 Regularity

For reasons that will become apparent in the next section, we first prove a result
that is slightly more powerful than what we actually need in order to show (3.1).
The proof is based on [43, 1] and [14, B].

Lemma 3.1. Let v ∈ L1
loc(S3

n) be a finite energy solution to (TWc) on S3
n for

some c ∈ R. Then, v is regular, bounded, and Dv ∈ W k,p(S3
n) for k ∈ N and

p ∈ [2,∞].

Proof. 1. We pick an arbitrary z0 ∈ R and denote by Ω = B(z0, 1) the ball with
center z0 and radius 1. Since the energy of v is finite, one readily checks that
v ∈ L4

loc(S3
n), Dv ∈ L2(S3

n), and consequently v ∈ H1(Ω). Consider solutions
v1, v2 to the problems {

∆v1 = 0 on Ω

v1 = v on ∂Ω

and {
∆v2 = g(v) := v(1− |v|2) + ic∂1v on Ω

v2 = 0 on ∂Ω,

19
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respectively. Such solutions exist according to [38, 3.4.2] after setting v2 ≡ v−v1.
2. From the standard theory of elliptic systems [38, 7.1.3], we infer that

‖v2‖W 2,p(Ω) ≤ C‖g‖Lp(Ω) for 1 < p < 2. (3.2)

Consequently, we need uniform estimates for ‖g‖Lp(Ω). Since v has finite energy,
the estimate ∫

Ω

(1− |v|2)2 ≤ C

holds for a universal constant C ≥ 0 and therefore∫
Ω

|v|4 ≤ C (3.3)

for another constant C. In particular, we estimate∫
Ω

|v(1− |v|2)|4/3 ≤ C

and ∫
Ω

|∂1v|
4/3 ≤

∫
Ω

|Dv|4/3 ≤ C

for yet another constant C ≥ 0. This shows that g is uniformly bounded in
L4/3(Ω), that is, ‖g(v)‖L4/3(Ω) is bounded by a constant that only depends on c

and E(v), not on z0. Putting (3.3) and (3.2) together, we infer that v1 and v2

are uniformly bounded in L4(Ω) and W 2,4/3(Ω), respectively.
3. Let us denote the ball with center z0 and radius 1/2 by Ω′ ≡ B(z0, 1/2).

Using Weyl’s lemma [38, 1.3], we have v1 ∈ C2(Ω), and since v1 is harmonic, it
is easy to see that |Dv1|2 is subharmonic. By the general mean value theorem
[40, 2.1] we infer that

|Dv1(x)|2 ≤ C
∫
B(x,1/4)

v1

for any x ∈ Ω′ with a constant C only depending on N . Hence, |Dv1| is bounded
and harmonic in Ω′ and, using a standard regularity result [40, 2.7], we see that
v1 is uniformly bounded in W 2,4/3(Ω′) and in W 3,12/11(Ω′) making v uniformly
bounded in W 2,4/3(Ω′).

Moreover, we compute

Dg(v) = Dv(1− |v|2)− 2〈v,Dv〉v + ic∂1Dv,

so that Dg(v) is uniformly bounded in L12/11(Ω′). We already saw that v2 ∈
W 2,4/3(Ω′) ⊂ W 2,12/11(Ω′) and by bootstrapping and standard inner regularity
results [38, 7.1.2] we place v2 ∈ W 3,12/11(Ω′) for an even smaller ball —say
B(z0, 1/4)— we again call Ω′. Using Morrey’s embedding theorem 2.5, we finally
infer that v is uniformly bounded in C0,λ(Ω′) for 0 < λ ≤ 1/4. Consequently, v
is continuous and bounded in S3

n.
4. We readily check that the gradient w ≡ Dv satisfies

−∆w − ic∂1w +

(
c2

2
+ 2

)
w = w(1− |v|2)− 2〈v, w〉v +

(
c2

2
+ 2

)
w

≡ h(w).
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As the previous considerations show, h(w) belongs to L2(S3
n). In addition, the

symbol of the left hand side is |ξ|2+cξ1+
(
c2/2 + 2

)
≥ 2, and therefore, w belongs

to H2(S3
n); see, e.g., [33]. By Morrey’s embedding theorem 2.5 we finally infer

that w is continuous and bounded.
Iterating this bootstrap argument ad infinitum, we check that v is smooth,

bounded, and all derivatives belong to L2(S3
n) and L∞(S3

n). The assertion fol-
lows from the interpolation theorem 2.10 applied to all θ ∈ (2,∞).

3.2 Limit at Infinity

Combining the finite energy property and lemma 3.1 allows us to make a strong
statement about the asymptotic behavior of |v|, namely that v converges to the
complex unit circle, as |x1| → ∞. A corresponding result for solutions on RN
was stated by a variety of authors, including [12, 43, 44].

Corollary 3.2. Let v be a finite energy solution to (TWc) on S3
n. Setting

ρ(x) ≡ |v(x)|, we have
ρ(x)→ 1, as |x1| → ∞.

Proof. Set η ≡ 1− ρ2. By lemma 3.1, the function v is bounded and Lipschitz
continuous so that η2 is uniformly continuous. Since v has finite energy, we
infer that

∫
S3n
η2 is finite, and therefore η converges to zero, as |x1| → ∞. The

assertion follows from ρ ∈ R+ ∪ {0}.

In [43], P. Gravejat goes even further and establishes the existence of a
limit point at infinity, that is, for any finite energy solution v ∈ L1

loc(RN ) with
speed 0 < c <

√
2, we have

v(x)→ 1, as |x| → ∞,

up to a constant of modulus 1. To prove an according result one would presum-
ably have to treat the case p ∈ (1, 2) in lemma 3.1.

Indeed, Gravejat’s method uses the fact that, if v can be written as v =
ρ exp(iθ), the functions ρ and θ satisfy{

div(ρ2Dθ) = − c
2∂1ρ

2

−∆ρ+ ρ|Dθ|2 + cρ∂1θ = ρ(1− ρ2).

He then uses Fourier transforms to establish the corresponding statement of
lemma 3.1 for p ∈ (1, 2). The desired asymptotic behavior of v follows from a
subtle technical result, the proof of which involves the construction of the limit
v∞ and gradient estimates from [21].

Proposition 3.3 ([43, Prop.2]). Let v be a regular function in RN , N ≥ 3,
and the gradient Dv belongs to all the spaces W 1,p0(RN ) and W 1,p1(RN ), where
1 < p0 < N − 1 < p1 <∞. Then, there is a constant v∞ ∈ C that satisfies

v(x)→ v∞, as |x| → ∞.

It is conjectured that similar arguments would yield a version of this propo-
sition on S3

n and that combining this with lemma 3.1 would actually result in
the following statement.
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Conjecture 3.4. Let v ∈ L1
loc(S3

n) be a finite energy solution of (TWc) on S3
n

Then,

(i) we have that
v(x)→ 1, as |x1| → ∞,

up to a multiplication with a constant of modulus 1. Without loss of gen-
erality, we will assume that this constant is 1.

(ii) there is another constant K > 0 such that

|=(v(x))| ≤ K

1 + |x|2
, |<(v(x))− 1| ≤ K

1 + |x|3

|D=(v(x))| ≤ K

1 + |x|3
, |D<(v(x))| ≤ K

1 + |x|4

for any x ∈ S3
n.

Versions of this proposition for RN can be found in [43, 44, 45, 47]. Un-
fortunately, proving this conjecture —particularly, the asymptotic estimates—
would go beyond the scope of this discussion.

References

Sections 3.1 and 3.2 Regularity results for traveling waves for the Gross–
Pitaevskii equation can —among other places— be found in [10, 32, 44, 45,
46, 47, 48] and in the appendix of [14]. We mainly used [43] and standard
regularity results for linear elliptic systems, for which [38, 68, 69, 70, 71]
provide good sources.



Chapter 4

Existence of Traveling Wave
Solutions

To prove the existence of traveling waves on the cylinder S3
n, the key idea is

to start by considering the existence of solutions to (TWc) on asymmetrical
tori, and then expand these tori in one spatial direction. The former will be
achieved by a variational rephrasing of the problem in section 4.1 and a number
of regularity results. Once the necessary compactness is gained in section 4.2,
the latter is an easy application of the Ascoli–Arzela compactness theorem in
section 4.3.

4.1 Existence of Traveling Waves of Asymmetric
Periodicity on Three-Dimensional Tori

For fixed n = (n1, . . . , nN ) ∈ NN , we have already seen that the tori can by
identified with N -dimensional parallelepipeds

ΩNn ≡
N∏
i=1

[−πni, πni] ' TNn .

We define the space XN
n by

XN
n ≡ H1(TNn ,C) ' H1

per(Ω
N
n ,C)

and note that, in contrast to the tori in [12], the faces of ΩNn have different sizes,
and so the periods of a function in XN

n may differ for different spacial directions.

For a function v ∈ XN
n , we define the energy En and the momentum pn on

tori as

En(v) ≡ 1

2

∫
TNn
|Dv|2 +

1

4

∫
TNn

(1− |v|2)2 ≡
∫
TNn

e(v)

and

pn(v) ≡ 1

2

∫
TNn
〈i∂1v, v〉,

23
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respectively. Several arguments in section 4.2.2 also rely on the discrepancy
term

Σn(v) ≡
√

2pn(v)− En(v).

The objective of this section is to find minimizers for the energy functional
En while keeping the momentum pn fixed. This procedure is well known and
was used, among others, by F. Béthuel et al. [12], whose presentation we will
largely follow. More precisely, we are looking for solutions to the variational
problem

Enmin(p) ≡ inf
{
En(v) : v ∈ ΓNn (p)

}
(V p
n )

subject to the constraints

ΓNn (p) ≡ {v ∈ XN
n : pn(v) = p},

which are non-void since

u(x) ≡ u(x1) ≡
√
p(2N−1πNn1 · . . . · nN )−

1/2e−ix1

satisfies

pn(u) =
1

2
‖u‖L2(TNn ) = p.

In [12] the authors show the existence of traveling waves with the same
period in all spacial dimension, that is, n1 = . . . = nN . In this sense, the
statements of the following theorems are slightly more general and come with
far more detailed proofs.

Henceforth, we will permanently assume that n = (n1, n2, . . . , nN ) ∈ NN ,
where n1 may vary, and n2, . . . , nN are considered arbitrary but fixed. The first
result yields a minimizer for the variational problem (V p

n ) in any dimension N .
Its proof comprises arguments from [12, 6.1] and [31, 8.2, 8.4].

Proposition 4.1 (Existence of minimizers). Assume p ≥ 0. There is a mini-
mizer unp ∈ ΓNn (p) for (V p

n ), that is,

En(unp ) = Enmin(p).

Proof. 1. Let (wk)k∈N ⊂ ΓNn be a minimizing sequence for (V p
n ), that is,

En(wk)→ m ≡ inf
w∈ΓNn

En(w), as k →∞. (4.1)

For every n ∈ NN , the functional En is obviously coercive; more specifically, for
p ∈ CN , z ∈ C we have

L(p, z) ≡ 1

2
|p|2 +

1

4
(1− |z|2)2 ≥ 1

2
|p|2 +

1

2
|z|2 − 1

so that

En(wk) ≥ 1

2
‖Dwk‖2L2(TNn ) +

1

2
‖wk‖2L2(TNn ) − γ, (4.2)

where γ is some positive constant depending only on n. Since m is finite, we
infer by (4.1) and (4.2) that

sup
k∈N
‖Dwk‖L2(TNn ) <∞ and sup

k∈N
‖wk‖L2(TNn ) <∞
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so that the sequence (wk)k∈N is bounded in XN
n .

2. By the weak compactness theorem 2.9, there is a function unp ∈ XN
n

satisfying {
wk ⇀ unp in XN

n

Dwk ⇀ Dunp in XN
n ,

as k →∞,

possibly up to a subsequence. Applying the Rellich–Kondrachov compactness
theorem 2.6, we infer that{

wk → unp in Lp
∗
(TNn )

Dwk → Dunp in Lp
∗
(TNn ),

as k →∞, (4.3)

where p∗ ∈ N<6; in particular, this holds for p∗ = 1. Therefore, property (4.3)
yields

|pn(unp )− p| = |pn(unp )− pn(wk)|

≤ 1

2

∫
TNn
|〈i∂1u

n
p , u

n
p 〉 − 〈i∂1wk, wk〉| → 0, as k →∞.

3. As L(p, z) is convex in p, the functional En is weakly lower semicontinu-
ous; see [31, 8.2.4] or [4, 2.1]. Therefore, we have

En(unp ) ≤ lim inf
k→∞

(En(wk)) = m,

but, as unp ∈ ΓNn , we infer that

En(up) = Enmin(p)

and unp is indeed a minimizer for (V p
n ).

We proceed to use standard arguments to show that the discovered mini-
mizer unp is indeed a weak solution to (TWc) on the torus TNn . The proof uses
arguments from [12, 6.1] but closely follows [31, 8.4].

Proposition 4.2 (Euler-Langrange equation). Assume p > 0. The minimizer
unp from proposition 4.1 satisfies (TWc) on TNn , that is,

icnp∂1u
n
p + ∆unp + unp (1− |unp |2) = 0 on TNn (4.4)

for some constant cnp ∈ R.

Proof. 1. For v ∈ XN
n , we define the functional J by

J(v) ≡ pn(v)− p =

(
1

2

∫
TNn
〈i∂1v, v〉

)
− p.

Since p > 0, the function unp is not trivial, that is, not constant. This enables

us to pick a function w ∈ XN
n such that∫

TNn
〈i∂1w, u

n
p 〉+ 〈i∂1u

n
p , w〉 6= 0. (4.5)
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Furthermore, we fix some v ∈ XN
n and set

j(τ, σ) ≡ J(unp + τv + σw), τ, σ ∈ R.

Obviously, j(0, 0) = 0,

∂j

∂τ
(τ, σ) =

1

2

∫
TNn
〈i∂1v, u

n
p + τv + σw〉+ 〈i∂1(unp + τv + σw), v〉,

and

∂j

∂σ
(τ, σ) =

1

2

∫
TNn
〈i∂1w, u

n
p + τv + σw〉+ 〈i∂1(unp + τv + σw), w〉.

From (4.5) we infer that
∂j

∂σ
(0, 0) 6= 0,

and the implicit function theorem yields a C1 function Φ : R→ R with Φ(0) = 0
and some τ0 ∈ R such that

j(τ,Φ(τ)) = 0 for |τ | ≤ τ0. (4.6)

Differentiating j for such τ , one computes

∂j

∂τ
(τ,Φ(τ)) +

∂j

∂σ
(τ,Φ(τ))Φ′(τ) = 0 for |τ | ≤ τ0

so that

Φ′(0) = −

∫
TNn
〈i∂1v, u

n
p 〉+ 〈i∂1u

n
p , v〉∫

TNn
〈i∂1w, unp 〉+ 〈i∂1unp , w〉

.

2. We set
w(τ) ≡ τv + Φ(τ)w for |τ | ≤ τ0

and
i(τ) ≡ En(unp + w(τ)) for |τ | ≤ τ0.

It follows from (4.6) that unp + w(τ) ∈ ΓNn and that i(·) attains its minimum in
the origin. Therefore,

0 =
di

dτ
(0) =

∫
TNn
〈Dunp , Dv〉 − 〈(1− |unp |2)unp , v〉

+ Φ′(0)〈Dunp , Dw〉 − Φ′(0)〈(1− |unp |2)unp , w〉,

and finally,∫
TNn
〈Dunp , Dv〉 − 〈(1− |unp |2)unp , v〉 =

− Φ′(0)

∫
TNn
〈Dunp , Dw〉 − 〈(1− |unp |2)unp , w〉.

Setting

µ ≡
−
∫
TNn
〈Dunp , Dw〉 − 〈(1− |unp |2)unp , w〉∫
TNn
〈i∂1w, unp 〉+ 〈i∂1unp , w〉

, (4.7)
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one obtains∫
TNn
〈Dunp , Dv〉 − 〈(1− |unp |2)unp , v〉 = µ

∫
TNn
〈i∂1v, u

n
p 〉+ 〈i∂1u

n
p , v〉. (4.8)

This is precisely the weak formulation of (4.4) and the assertion follows from
the next lemma.

To complete the chapter, the following results give convenient bounds for the
norms of solutions on T3

n; their proofs contain arguments from [12, 2.1, 4.3, 6.1]
and [32, 2].

Lemma 4.3. Let N = 3. Assume p ≥ 0 and let v be a finite energy solution
to (TWc) on TNn . Then, v is smooth and there are constants K(N) > 0 and
K(k, c,N) > 0 such that

‖1− |v|‖L∞(TNn ) ≤ max
{

1,
c

2

}
, ‖1− |v|2‖L∞(TNn ) ≤ max

{
1,
c2

4

}
,

‖Dv‖L∞(TNn ) ≤ K(N)

(
1 +

c2

4

)3/2

,

and, more generally,

‖v‖Ck(TNn ) ≤ K(k, c,N) for k ∈ N.

Proof. 1. In view of the arguments1 of section 3.1, weak solutions to (TWc)
are smooth and bounded functions. We go on to compute ∆|v|2. One has the
elementary estimates

∆|v|2 = 2〈v,∆v〉+ 2|Dv|2 = 2|Dv|2 − 2c〈i∂1v, v〉 − 2|v|2(1− |v|2)

≥ 2|Dv|2 − 2|∂1v|2 −
c2

2
|v|2 − 2|v|2(1− |v|2)

so that

∆|v|2 + 2|v|2
(

1 +
c2

4
− |v|2

)
≥ 0.

2. Let us define

ψ ≡ |v|2 − θ for θ = 1 +
c2

4
.

Since

∆ψ = ∆|v|2 ≥ 2|v|2(|v|2 − θ),

we infer that

∆ψ+ ≥ 2 sign+(ψ)|v|2(|v|2 − θ)
≥ 2 sign+(ψ)(|v|2 − θ)(|v|2 − θ)
≥ (ψ+)2

1In fact, as T3
n is compact and has no boundary, the regularity theory already is the local

one and the arguments of lemma 3.1 could be simplified accordingly.
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by Kato’s inequality; see [17, A] and [58]. In turn, it readily follows from an old
result by H. Brezis [17, 2] that ψ+ ≡ 0 a.e. on TNn , and so

|v|2 ≤ θ = 1 +
c2

4
a.e. on TNn . (4.9)

In particular, we have

‖1− |v|‖L∞(TNn ) ≤ max

{
1,

√
1 +

c2

4
− 1

}
≤ max

{
1,
c

2

}
and

‖1− |v|2‖L∞(TNn ) ≤ max

{
1, 1 +

c2

4
− 1

}
= max

{
1,
c2

4

}
,

which shows the first two inequality of the assertion.
3. Now, consider the function w defined by

w(x) ≡ v(x) exp
(
i
c

2
x1

)
for x ∈ TNn .

Employing equation (TWc), we see that

∆w + w

(
1 +

c2

4
− |w|2

)
= 0, (4.10)

and from (4.9), it follows that

‖∆w‖L∞(Ω) ≤
(

1 +
c2

4

)3/2

for x0 ∈ TNn and Ω = B(x0, 1). Similar to the proof of lemma 3.1, we write
w = w1 + w2, where w1 is a harmonic function on Ω, which matches w on
the boundary ∂Ω, and w2 satisfies ∆w2 = −w

(
1 + c2/4− |w|2

)
with trivial

boundary values. By the weak maximum principle [31, 6.4], we infer that

sup
Ω
|w1| ≤ sup

Ω
|w|,

and, by the gradient inequality for harmonic functions [40, 2.7],

|Dw1(x0)| ≤ C1 sup
Ω
|w1|.

Using another gradient inequality for the Poisson equation [40, 3.4], we see that

sup
Ω
|Dw2| ≤ C2(sup

Ω
|w2|+ sup

Ω
|∆w|),

where
sup

Ω
|w2| ≤ sup

Ω
|w|+ sup

Ω
|w1| ≤ 2 sup

Ω
|w|

and consequently,

|Dw(x0)| ≤ |Dw1(x0)|+ |Dw2(x0)| ≤ K
(
‖∆w‖L∞(Ω) + ‖w‖L∞(Ω)

)
.
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Since the constants C1 and C2 only depend on N , likewise holds for K. Using
(4.9), we see that Dw satisfies

|Dw(x0)| ≤ 2K

(
1 +

c2

4

)3/2

,

and hence, by the definition of w,

|Dv(x0)| ≤ |Dw(x0)|+ c

2
|v(x0)| ≤ (2K + 1)

(
1 +

c2

4

)3/2

for another constant K.
4. Since v is smooth and bounded, we have that

f ≡ −ic∂1v − v(1− |v|2) ∈W 2,2(T3
n)

and so, by Morrey’s embedding theorem 2.5, we infer that f ∈ C0,λ(T3
n) for

0 < λ ≤ 1/2. Let z0 be an arbitrary point in T3
n and denote by Ω ≡ B(z0, 1)

and Ω′ ≡ B(z0, 1/2) the concentric balls with center z0 with radius 1 and 1/2,
respectively. By standard estimates for the Laplacian (see, e.g., [40, 4.3]), we
infer that

‖v‖C2(Ω′) ≤ C(sup
Ω
|v|+ sup

Ω
|f |+ C ′)

with constants C,C ′ only depending on λ and N , but not on z0. In particular,

‖v‖C2(Ω′) ≤ C
√

1 +
c2

4

(
cK(N)

(
1 +

c2

4

)
+ max

{
1,
c2

4

}
+ C ′

)
,

which proves our claim for k = 1, 2. Since f is even contained in W k,2(T3
n) for

all k ∈ N, and therefore Dkf ∈ C0,λ(T3
n) for any k ∈ N and 0 < λ ≤ 1/2, the

assertion follows by bootstrapping.

4.2 Upper Bounds for the Velocity

Having found traveling wave solutions on the N -dimensional tori, we made an
important step towards our overall goal, namely, finding such solutions on the
infinite cylinder. In this section we concern ourselves with upper bounds for
the speeds cnp from proposition 4.2. In combination with lemma 4.3, these will
ensure the required compactness to extract a subsequence of the solutions (unp )
which converges to a traveling wave up on the three-dimensional cylinder.

4.2.1 A Pohozaev Type Identity

Our method for bounding the velocities heavily relies on a Pohozaev type iden-
tity for (TWc), the derivation of which is the purpose of this section. Unfortu-
nately, this identity contains parts that are not necessarily periodic and have to
be dealt with thoroughly.

Throughout this section and the rest of the chapter, we will frequently
make recourse to the following differential forms. Considering a function u ∈
H1(ΩNn ,C) and recalling section 2.4, we define the Jacobian Ju of u as

Ju ≡ 1

2
d(u× du) =

∑
1≤i<j≤N

(∂iu× ∂ju)dxi ∧ dxj (4.11)
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and the differential form ζ as

ζ ≡ − 2

N − 1

N∑
i=2

xidx1 ∧ dxi. (4.12)

Here, xi denotes the ith coordinate map (2.2) and × the cross product of two
complex variables u, v ∈ C, namely

u× v ≡ <(u)=(v)−=(u)<(v).

Both, J and ζ, are 2-forms with domain ΩNn . If we denote by (·|·) the scalar
product of 2-forms, then (2.3) and lemma 2.27 yield

2(Ju|ζ)dx1 ∧ . . . ∧ dxN = d(u× du) ∧ ?ζ (4.13)

= d((u× du) ∧ ?ζ) + (u× du) ∧ d(?ζ). (4.14)

For N = 3, one easily checks that ?ζ = −x2dx3 + x3dx2,

d(?ζ) = dx3 ∧ dx2 − dx2 ∧ dx3 = −2dx2 ∧ dx3,

and, finally,
(u× du) ∧ d(?ζ) = 2〈i∂1u, u〉dx1 ∧ . . . ∧ dxN . (4.15)

Combining (4.15), (4.14), and integrating on the three-dimensional torus T3
n,

Stokes’s theorem [9, A] yields∫
T3
n

〈i∂1u, u〉 −
∫

Ω3
n

(Ju|ζ) = −1

2

∫
∂Ω3

n

(u× du)> ∧ (?ζ)>. (4.16)

Here, we define

ω> ≡
∑

α∈I(k,N),αj=0

ωαdxα

for a differential k-Form ω, orienting ∂Ω3
n according to the outward normal and

using the convention dx0 ≡ e0 ≡ 0.
We start to deploy the definitions from above. Indeed, the terms J and ζ ex-

plicitly appear in Pohozaev’s identity which is stated in [12, 4.4] for symmetrical
tori; for asymmetrical ones the proof is only slightly more involved.

Lemma 4.4 (Pohozaev Identity). Assume n ∈ NN and let v be a solution to
(TWc) on TNn with speed c. For every unfolding of TNn , we have

N − 2

2

∫
ΩNn

|Dv|2 +
N

4

∫
ΩNn

(1− |v|2)2 − cN − 1

2

∫
ΩNn

(Jv|ζ)

=

N∑
k=1

πnk

∫
Fk

(
|Dv|2

2
+

(1− |v|2)2

4

)
−<

[∫
∂ΩNn

∂νv

(
N∑
k=1

xk∂kv

)]
,

where Jv and ζ are defined in (4.11) and (4.12), respectively, and Fk, k =
1, . . . , N , denote the opposing boundary surfaces

Fk ≡ [−πn1, πn1]× . . .× {−πnk, πnk} × . . .× [−πnN , πnN ].
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Proof. Multiply (TWc) by xk∂kv = xk∂k(v1 − iv2) and integrate the real part.
For ∆v, repeated integration by parts results in

<

[∫
ΩNn

∆vxk∂kv

]
= <

[∫
∂ΩNn

∂νvxk∂kv

]
−
∫

ΩNn

|∂kv|2 +
1

2

∫
ΩNn

|Dv|2

− 1

2

∫
∂ΩNn

νkxk|Dv|2,

where ν denotes the outer normal. Likewise, the term v(1− |v|2) becomes

<

[∫
ΩNn

v(1− |v|2)xk∂kv

]
=

1

4

∫
ΩNn

(1− |v|2)2 − 1

4

∫
∂ΩNn

νkxk(1− |v|2)2.

It remains to consider the term ic∂1v. Indeed,

<

[∫
ΩNn

ci∂1vxk∂kv

]
=

∫
ΩNn

cxk∂1v1∂kv2 − cxk∂1v2∂kv1.

Adding these identities, summing for k, and noting that

νx =

{
πnk x ∈ Fk
0 otherwise

and

(Jv|ζ) = − 2

N − 1

N∑
k=2

(∂1v1∂kv2 − ∂1v2∂kv1)xk

yields the conclusion.

Note that the value of this integrals depends on the specific choice of un-
folding since ζ is not periodic.

4.2.2 Estimation of the 2-Forms

The next step is to estimate the 2-forms appearing in Pohozaev’s formula. As
a matter of fact, we infer from (4.16) that

1

2

∫
ΩNn

(Jv|ζ) = pn(v)

for any function u ∈ H1(ΩNn ,C) that is constant on ∂ΩNn . However, we already
saw that the integrand of the left hand side is not well defined to tori, but choos-
ing suitable unfoldings, it turns out that is reasonably close to pn(v). Before we
proceed and prove this, we need three elementary arguments that can be found
in [12, 2.2, 4.4] and will be given for sake of completeness.

Lemma 4.5. Assume % and ϕ ∈ H1(U,R) are scalar functions on U ⊂ RN
such that % is positive. Defining v ≡ % exp(iϕ), we have the pointwise inequality

|(%2 − 1)∂1ϕ| ≤
√

2

%
e(v).
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Proof. If v can be represented as assumed, one readily checks that

∂jv = (i%∂jϕ+ ∂j%) exp(iϕ)

and so

pn(v) =
1

2

∫
T3
n

−%2∂1ϕ (4.17)

as well as

e(v) =
1

2

(
|D%|2 + %2|Dϕ|2

)
+

1

4
(1− %2)2 (4.18)

≥ 1

2

(
%2|∂1ϕ|2 +

1

2
(1− %2)2

)
. (4.19)

Applying Cauchy’s inequality 2ab ≤ (a2 + b2) to

a =
1√
2

(%2 − 1) and b = %∂1ϕ,

the assertion follows.

Lemma 4.6. Assume I ⊂ R is a real interval satisfying |I| ≥ 1. Given any
δ > 0, there exists a constant µ0(δ) > 0 such that if u ∈ H1(R,C) satisfies∫

I

e(u) ≤ µ0(δ), (4.20)

then

|1− |u|| ≤ δ on I.

Proof. 1. Writing out (4.20) yields

1

2

∫
I

|Du|2 +
1

4

∫
I

(1− |u|2)2 ≤ µ0. (4.21)

We apply Cauchy’s inequality 2ab ≤ (a2 + b2) with

a = 2
1/4|Du| and b = 2−

1/4|1− |u|2|

to estimate∫
I

|Du||1− |u|2| ≤ 1√
2

∫
I

|Du|2 +

√
2

4

∫
I

(1− |u|2)2 ≤
√

2µ0.

Set ξ(t) = t− t3/3 and observe that |Dξ(|u|)| ≤ |Du||1− |u|2| to conclude∫
I

|Dξ(|u|)| ≤
√

2µ0.

2. By (4.21) and |I| ≥ 1, there is some point x0 ∈ I such that

|1− |u(x0)|2| ≤ 2
√
µ0.
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Combining the both previous inequalities and using the fundamental theorem
of calculus yields

sup
x∈I
|ξ(|u(x)|)− ξ(1)| ≤

∫
I

|Dξ(|u|)|+ 1

3
|1− |u(x0)||

∣∣2− |u(x0)| − |u(x0)|2
∣∣

≤
(

8

3
+
√

2

)
µ0.

Finally, we fix δ > 0 and choose µ0 sufficiently small to show that ||u(x)|−1| < δ
for all x ∈ I by elementary computations.

Lemma 4.7. Let I = [a, b] ⊂ R be a real interval satisfying |I| ≥ 1, u ∈
H1(I,C) a function of the form u = % exp(iϕ), and ϕ ∈ H1(I,R) periodic, i.e.,
ϕ(a) = ϕ(b), and % > 0. Additionally, assume that for some 0 ≤ δ < 1/2 the
function u satisfies (4.20). Then,∣∣∣∣∫

I

〈iDu, u〉
∣∣∣∣ ≤ √

2

1− δ

∫
I

e(u). (4.22)

Proof. From the specific form of u we deduce

〈iDu, u〉 = −%2Dϕ and |Du|2 = %2(Dϕ)2 + (D%)2.

Therefore, lemma 4.5 and lemma 4.6 yield∣∣∣∣∫
I

〈iDu, u〉
∣∣∣∣ =

∣∣∣∣∫
I

%2Dϕ

∣∣∣∣ =

∣∣∣∣∫
I

(%2 − 1)Dϕ

∣∣∣∣ ≤ √
2

1− δ

∫
I

e(u).

Unfortunately these simple arguments cannot be applied in dimension two.
We need to find an equivalent result to the one of lemma 4.6 in order to transfer
(4.22) to higher dimensions. This corresponding, yet far more involved, result
for the two-dimensional case can be found in [12, 4.4]. We modify it carefully
to fit in our framework.

Lemma 4.8. Fix 0 < δ < 1/2. There is a constant µ1(δ) > 0 such that the
bound ∫

T2
n

e(u) ≤ µ1(δ) (4.23)

implies ∣∣∣∣∣
∫
T2
n

〈i∂ju, u〉

∣∣∣∣∣ ≤
√

2

1− δ

∫
T2
n

e(u)

for any u ∈ H1(T2
n,C) with n = (n1, n2) ∈ N2 and j = 1, 2.

Proof. 1. Let u ∈ H1(T2
n,C) be an arbitrary function that satisfies (4.23)

and λ > 1 a real number to be determined later. We want to approximate
u by a function uλ to which the proof of lemma 4.7 applies. Thereto, choose
uλ ∈ H1(T2

n,C) to be the solution of the variational system

Fλ(uλ) = inf{Fλ(v) : v ∈ H1(T2
n,C)},

where

Fλ(v) ≡ λ

2

∫
T2
n

|u− v|2 +

∫
T2
n

e(v).
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Such a solution exists according to standard theory of the calculus of variations;
see [31]. Due to the minimality of uλ, we have that

Fλ(uλ) =
λ

2

∫
T2
n

|u− uλ|2 +

∫
T2
n

e(uλ) ≤
∫
T2
n

e(u) = Fλ(u). (4.24)

By writing the functional

L(p, z, x) ≡ λ

2
|u(x)− z|2 +

1

2
|p|2 +

1

4
(1− |z|2)2

as a system of real and imaginary part, we compute the corresponding Euler–
Lagrange equation to obtain

−∆uλ = λ(u− uλ) + uλ(1− |uλ|2) on T2
n. (4.25)

2. Using similar arguments as in section 3.1, one easily sees that uλ ∈
H3(T2

n). Indeed, as in the proof of lemma 3.1, we deduce the uniform bound-
edness of

g(uλ) ≡ λ(uλ − u) + uλ(|uλ|2 − 1)

in L4/3(Ω), where z0 ∈ T2
n and Ω = B(z0, 1). Following the line of arguments

even further but using Morrey’s embedding theorem 2.5 for N = 2 instead of
N = 3, we see that uλ is uniformly bounded in C1,µ(Ω) for 0 < µ ≤ 1/6. In
order to complete the bootstrap argument2, one notes that w ≡ Duλ satisfies

−∆w + λw = λDu+ w(1− |uλ|2)− 2〈uλ, w〉uλ.

The symbol of the left hand operator is |ξ|2 + λ > 1 and the right hand side
belongs to L2(T2

n), which shows that uλ ∈ H3(T2
n).

3. Obviously,

〈i∂juλ, uλ〉 − 〈i∂ju, u〉 = 〈i∂juλ, uλ − u〉+ 〈i∂j(uλ − u), u〉,

and therefore, integration by parts yields∫
T2
n

〈i∂juλ, uλ〉 − 〈i∂ju, u〉 =

∫
T2
n

〈i∂juλ, uλ − u〉+ 〈i(u− uλ), ∂ju〉.

Consequently,∣∣∣∣∣
∫
T2
n

〈i∂juλ, uλ〉 − 〈i∂ju, u〉

∣∣∣∣∣ ≤ ‖u− uλ‖L2(T2
n)

(
‖Du‖L2(T2

n) + ‖Duλ‖L2(T2
n)

)
(4.26)

≤ 4√
λ

∫
T2
n

e(u), (4.27)

where we used (4.24) for the last inequality. We now choose λ = λ(δ) such that

1√
λ

=
1

2
√

2

(
1

1− δ
− 1

1− δ
2

)
(4.28)

2In contrast to lemma 3.1, further bootstrapping is not possible due to the limited regularity
of u.
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and claim that (4.23) and (4.28) already imply

|uλ| ≥ 1− δ

2
on T2

n. (4.29)

4. To prove the previous claim (4.29), we estimate∣∣uλ(1− |uλ|2)
∣∣ ≤ 2

(∣∣1− |uλ|2∣∣1{|uλ|≤2} +
(
|uλ|2 − 1

) 3
2 1{|uλ|≥2}

)
since |uλ| ≥ 2 implies |uλ| ≤ 2

√
|uλ|2 − 1. Recall (1.1) to see that

‖uλ(1− |uλ|2)‖L2+L4/3(T2
n) ≤ 2

(
‖1− |uλ|2‖L2(T2

n) + ‖1− |uλ|2‖
3
2

L2(T2
n)

)
≤ 10

(∫
T2
n

e(u)

)1/2

for any u that satisfies (4.23) with 0 ≤ µ1(δ) ≤ 1. Moreover, (4.24) and our
choice of λ yields

‖λ(u− uλ)‖L2(T2
n) ≤ λδ

(∫
T2
n

e(u)

)1/2

,

so that (4.25) implies

‖∆uλ‖L2+L4/3(T2
n) ≤ 10(λδ + 1)

(∫
T2
n

e(u)

)1/2

.

Combining this with (4.24), we have

‖Duλ‖H1+W 1,4/3(T2
n) ≤ K(λδ + 1)

(∫
T2
n

e(u)

)1/2

,

and so, by Sobolev’s embedding theorem 2.3,

‖Duλ‖L4(B(x,1)) ≤ K(λδ + 1)

(∫
T2
n

e(u)

)1/2

for any x ∈ T2
n and another constant K > 0. Now, we use Morrey’s embedding

theorem 2.5 to see that

|uλ(x)− uλ(y)| ≤ K(λδ + 1)

(∫
T2
n

e(u)

)1/2

|x− y|1/2

≤ K(λδ + 1)µ1(δ)
1/2|x− y|1/2

for some constant K and any |x− y| ≤ 1.
Assume by contradiction that there is a point x0 ∈ T2

n with |uλ(x0)| ≤ 1−δ/2.
Then, |uλ(x)| ≤ 1− δ/4 for any x ∈ B(x0, r0) with

r0 =
δ2

16K2(λδ + 1)2µ1(δ)
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and integration yields∫
B(x0,r0)

(1− |uλ|2)2 ≥ πr2
0δ

2

16
=

πδ6

163K4(λδ + 1)4µ1(δ)2
.

Finally, (4.23) implies
µ1(δ)3 ≥ Kδ10,

which is a contradiction provided µ1(δ) is chosen small enough.
5. In order to complete the proof, note that (4.23) and (4.24) yield∫

T2
n

e(uλ) ≤ µ1(δ).

We will now use lemma 4.14 in advance. Employing our result in (4.29), we
may assume that

uλ(x) = %(x) exp(iϕ(x) + iαx1) on T2
n

with ϕ ∈ H1(T2
n,R) and α ∈ R. Just like in the proof of lemma 4.7, one readily

checks that

e(uλ) =
1

2
%2|∂1ϕ+ α|2 +

1

4
(1− %2)2

and uses Cauchy’s inequality to assert
√

2e(uλ)

%
≥ |∂1ϕ(1− %2)− %2α|

as well as∣∣∣∣∣
∫
T2
n

〈i∂juλ, uλ〉

∣∣∣∣∣ =

∣∣∣∣∣
∫
T2
n

(%2 − 1)∂1ϕ+ %2α

∣∣∣∣∣ ≤
√

2

1− δ
2

∫
T2
n

e(u),

and finally, by (4.27) and our choice of λ,∣∣∣∣∣
∫
T2
n

〈i∂ju, u〉

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
T2
n

〈i∂juλ, uλ〉

∣∣∣∣∣+

∣∣∣∣∣
∫
T2
n

〈i∂juλ, uλ〉 − 〈i∂ju, u〉

∣∣∣∣∣
≤

( √
2

1− δ
2

+
4√
λ

)∫
T2
n

e(u) =

√
2

1− δ

∫
T2
n

e(u).

The previous lemmata finally put us in position to choose a suitable unfolding
of the torus for estimating the 2-forms in Pohozaev’s formula. As previously
announced, their integral turns out to be reasonably close to the momentum if
only the energy is small. The proof resembles the one of proposition 4.1 in [12,
4.4].

Proposition 4.9. Let N = 3 and E0 > 0. For any δ0 > 0, there is a constant
n0, only depending on E0 and δ0, such that if v is a nontrivial finite energy
solution to (TWc) in X3

n with En(v) ≤ E0, then nk ≥ n0, k = 2, 3, already
implies the existence of an unfolding of T3

n such that∣∣∣∣∣pn(v)− 1

2

∫
Ω3
n

(Jv|ζ)

∣∣∣∣∣ ≤ En(v)√
2

+ δ0 (4.30)
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and
3∑
k=1

πnk

∫
Fk
e(v) ≤ KEn(v). (4.31)

Here, Fk denote the boundary surfaces from lemma 4.4 and K is some universal
constant.

Proof. 1. If N = 3, the 2-form ζ defined by (4.12) reduces to

ζ = −x2dx1 ∧ dx2 − x3dx1 ∧ dx3

so that
?ζ = −x2dx3 + x3dx2.

Therefore, (4.16) and orientating ∂Ω3
n towards its outward normal imply∫

T3
n

〈i∂1v, v〉 −
∫

Ω3
n

(Jv|ζ) = −n2π

∫
F2

〈i∂1v, v〉+ n3π

∫
F3

〈i∂1v, v〉, (4.32)

where

F2 = [−πn1, πn1]× {−πn2, πn2} × [−πn3, πn3]

F3 = [−πn1, πn1]× [−πn2, πn2]× {−πn3, πn3}

as in lemma 4.4.
2. Fix 0 < δ < 1/2 such that

2δ − δ2

(1− δ)2
E0 ≤

√
2δ0 (4.33)

and

n0 ≡ max

{(
E0

πµ1(δ)

)4/3

,
1

δ2

}
, (4.34)

where µ1(δ) is provided by lemma 4.8. Consider any nontrivial finite energy
solution v on T3

n with En(v) ≤ E0 and nk ≥ n0, k = 2, 3, and define the sets
A2 ⊂ [−πn2, πn2], A3 ⊂ [−πn3, πn3] by

β ∈ A2 ⇔
∫

[−πn1,πn1]×{β}×[−πn3,πn3]

e(v) ≥ µ1(δ)

2

and

β ∈ A3 ⇔
∫

[−πn1,πn1]×[−πn2,πn2]×{β}
e(v) ≥ µ1(δ)

2
,

respectively. Integrating the left hand side of these inequalities for β yields

|Ak| ≤
2En(v)

µ1(δ)
≤ 2E0

µ1(δ)
for k = 2, 3,

and thus,

|Ak| ≤ 2πn
3/4
k for k = 2, 3 (4.35)

by our choice of n0 in (4.34).
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3. We now apply lemma 1.3 to the sets Ak and the function f ≡ e(v). By
(4.35), this yields an unfolding of T3

n such that ±πnk 6∈ Ak, k = 2, 3,∫
Fk
e(v) ≤ µ1(δ) for k = 2, 3

as well as∫
Fk
e(v) ≤ 2

2πnk − |Ak|
En(v) ≤ 1

π
(
nk − n

3/4
k

)En(v) for k = 2, 3. (4.36)

Fixing this unfolding and applying lemma 4.8, we infer that∣∣∣∣nkπ ∫
Fk
〈i∂1v, v〉

∣∣∣∣ ≤ √
2

1− δ
nk

nk − n
3/4
k

En(v)

≤ 1

2

√
2

1− δ
nk

nk − n
1/2
k

En(v) for k = 2, 3.

Now, set

C(nk) ≡ nk

nk − n
1/2
k

for k = 2, 3,

and note that C(nk) < 2 and C(nk) ≤ (1 − δ)−1 by (4.34). Using (4.33), we
conclude that ∣∣∣∣nkπ ∫

Fk
〈i∂1v, v〉

∣∣∣∣ ≤ 1√
2
En(v) + δ0 for k = 2, 3. (4.37)

Assertion (4.30) follows by combining (4.32) and (4.37).
4. In turn, by (4.36) one estimates

πnk

∫
Fk
e(v) ≤ C(nk)En(v) ≤ 1

1− δ
En(v) for k = 2, 3

and uses lemma 1.3 once more to see that

πn1

∫
{−πn1,πn1}×[−πn2,πn2]×[−πn3,πn3]

e(v) ≤ πn1

πn1
En(v) = En(v),

which yields the conclusion.

The main theorem of this section finally establishes a bound for the speed
c of a solution to (TWc) on T3

n. It requires the energy En of the solution to
be sufficiently small and the discrepancy term Σn to be sufficiently large. The
proof is very similar to the one in [12, 4.4].

Theorem 4.10. Let N = 3, E0 > 0, and Σ0 > 0. Assume v is a nontrivial
finite energy solution to (TWc) in X3

n with pn(v) > 0,

En(v) ≤ E0, and 0 < Σ0 ≤ Σn(v).

Then, we have

|c| ≤ K En(v)

|Σn(v)|
< K

E0

Σ0

for some universal constant K > 0.
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Proof. Fix δ0 > 0. By (4.30) we see that

Σn(v) ≤ 1√
2

∫
Ω3
n

(Jv|ζ) +
√

2δ0

and choosing δ0 such that
√

2δ0 < 1/2Σ0, this leads to

Σn(v) ≤
√

2

∫
ΩNn

(Jv|ζ).

On the other hand, lemma 4.4 states that∣∣∣∣∣N − 2

2

∫
Ω3
n

|Dv|2+
N

4

∫
Ω3
n

(1− |v|2)2 − cN − 1

2

∫
Ω3
n

(Jv|ζ)

∣∣∣∣∣
≤ K

3∑
k=1

πnk

∫
Fk
e(v)

for some constant K > 0, and by (4.31), we infer that

c

∫
Ω3
n

(Jv|ζ) ≤ KEn(v).

Putting it all together, we obtain

cΣn(v) ≤ KEn(v)

for yet another constant K.

Remark. In the previous lemma we implicitly assumed that the cylinder has
the minimum width n2, n3 ≥ n0 postulated by proposition 4.9. Note that this
width stays the same for any sequence of traveling waves which share the same
bounds E0 and Σ0.

4.3 Existence of Traveling Waves on the Three-
Dimensional Cylinder

We are now in position to prove the existence of traveling wave solutions to
(TWc) on the three-dimensional cylinder

SNn = R× TN−1
(n2,...,nN ) ' R× ΩN−1

(n2,...,nN )

by means of the Ascoli–Arzela compactness theorem. Section 4.2 already gave
convenient bounds for the velocities of solutions on T3

n, which are closely related
to the Lagrange multipliers. This just about provides the necessary compactness
to extract a subsequence of (unp ) from theorem 4.2 that converges to a solution
up on the cylinder.

Note that, in contrast to [12], we will not prove the conservation of energy
and momentum. In particular, the function up will not necessarily have mo-
mentum p. Although it is conjectured that this is still true, we choose not to
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look into it. Nevertheless, we still need to work with energy and momentum on
cylinders and define them by

E∗(ψ) ≡ 1

2

∫
SNn
|Dψ|2 +

1

4

∫
SNn

(1− |ψ|2)2

and

p∗(ψ) ≡ 1

2

∫
SNn
〈i∂1ψ,ψ − 1〉,

respectively. Furthermore, we need to find a space on which these functionals
are well-defined and continuous. In lemma 4.20, it is proved that the affine
space W (S3

n) defined by

V (SNn ) ≡ {v : SNn → C : (Dv,<(v)) ∈ L2(SNn )2,

=(v) ∈ L4(SNn ), and D<(v) ∈ L4/3(SNn )}

and
W (SNn ) = {1}+ V (SNn )

satisfies these conditions.
As mentioned above, the conservation of the momentum is not considered in

this survey and therefore no statement can be made, whether up actually solves
the variational problem

E∗min(p) = inf{E∗(v) : v ∈W (SNn ), p∗(v) = p}.

Again, it is conjectured that similar arguments as in [12] would confirm this.
Still, E∗min will turn out to be a suitable upper bound for Enmin as n1 → ∞.
Finally, by Ξ∗ we denote the discrepancy term

Ξ∗(p) ≡
√

2p− E∗min(p).

The first key result is that under certain conditions on E∗min and Ξ∗, namely

lim sup
n1→∞

(Enmin(p)) ≤ E∗min(p) ≤
√

2p, ∀p > 0, (C)

and
Ξ∗(p) > 0 for fixed p > 0, (Cp)

the constant K(k, c,N) from lemma 4.3 is independent of c.

Lemma 4.11. Assume p > 0 and (C) as well as (Cp) are satisfied. Then, the
family of speeds (cnp )n∈NN from proposition 4.1 are uniformly bounded, that is,
there are constants K(p) and n(p) ∈ N such that

|cnp | ≤ K(p) (4.38)

for n1 ≥ n(p).

Proof. 1. Let unp denote the functions from proposition 4.1. By (C) and (Cp)
we infer that

lim inf
n1→∞

(
Σn(unp )

)
= lim inf

n1→∞

√
2pn(unp )− En(unp )

=
√

2p− lim sup
n1→∞

Enmin(p)

≥
√

2p− E∗min(p) = Ξ∗(p) > 0.
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In particular, there are constants n(p) ∈ N and Σ0 > 0 such that

Σn(unp ) ≥ Σ0 for n1 ≥ n(p).

2. Moreover, by (C) there is an integer, we again call n(p), and a constant
E0 > 0 such that

En(unp ) ≤ E0 for n1 ≥ n(p).

Finally, it follows from theorem 4.10 that

|cnp | ≤ K
En(unp )

|Σn(unp )|
≤ KE0

Σ0

for n1 ≥ n(p) and some universal constant K > 0.

We now utilize the Ascoli–Arzela compactness theorem to prove the main
result of this section, namely, the existence of traveling wave solutions on the
cylinder. The proof resembles the one in [12, 5].

Theorem 4.12 (Existence of traveling waves). Let N = 3 and p > 0. Assume
(C) and (Cp) are satisfied. Then, there is a (potentially trivial) solution up to
(TWc) on S3

n, that is, for some cp, the function up satisfies

icp∂1up + ∆up + up(1− |up|2) = 0 on S3
n. (4.39)

Moreover, there is a subsequence of (unp )n1∈N from proposition 4.1 (denoted by
the same symbol) such that

unp → up in Ck
(
K × TN−1

(n2,n3)

)
, as n1 →∞,

for all k ∈ N and every compact set K b R.

Proof. 1. By lemma 4.3 and lemma 4.11 we know that for every k ∈ N there is
a constant K(k) such that

‖unp‖Ck(T3
n) ≤ K(k) ∀n ∈ NN

if only n1 is large enough. We use the mean value theorem and the Cauchy–
Schwarz inequality to show that the sequence (unp )n1∈N is uniformly equicontin-
uous. Indeed, for all x, y ∈ T3

n there is a z ∈ T3
n satisfying

|unp (x)− unp (y)| ≤ |Dunp (z)||x− y| ≤ K(1)|x− y|.

2. Define
Kj ≡ [−j, j]× T2

(n2,n3) ⊂ S3
n,

for j ∈ N. By the Ascoli–Arzela compactness theorem 2.8, there is a continuous
function uj on Kj (possibly depending on j) such that

unp → uj uniformly in C(Kj), as n1 →∞,

possibly after passing to a subsequence we again denote by (unp )n1∈N. Since
all partial derivatives of unp exist by lemma 4.3 and converge uniformly by an
analogous argument, we even have that

unp → uj uniformly in Ck(Kj), as n1 →∞, k ∈ N.
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Passing to the limits in (TWc), we may infer that uj is a solution on Kj , where
the speed cp is the limit of the speeds (cnp )n∈N, possibly after passing to yet
another subsequence.

3. Let us use a diagonal argument to show the independence of the limits
uj from j. Thereto, let (xj)j∈N be a dense subset of S3

n. Our considerations
above yield a sequence

(n
(1)
1 (`))`∈N ⊂ N

such that

u
(n

(1)
1 (`),n2,n3)

p (x1)→ u1(x1), as `→∞.

This subsequence, again, is uniformly bounded in Ck, and thus we may pick a

subsequence (n
(2)
1 ) of (n

(1)
1 ) satisfying

u
(n

(2)
1 (`),n2,n3)

p (x2)→ u2(x2) and u
(n

(2)
1 (`),n2,n3)

p (x1)→ u2(x1), as `→∞.

We iterate this argument ad infinitum and pick the diagonal sequence m(`) =

n
(`)
1 (`), which is a subsequence of every sequence n

(r)
1 , r ∈ N, and so u

(m(`),n2,n3)
p

converges at any xj , j ∈ N. This shows that the limits uj = u are de facto
independent of the compact sets Kj and the assertion holds.

4.4 Nontriviality

Note that theorem 4.12 makes no statement about the behavior of the solution
up. In particular, it could be trivial, that is, constant. This section is dedicated
to the removal of this flaw. By corollary 3.2, it suffices to show that the solution
up from theorem 4.12 admits a value with modulus smaller than one.

4.4.1 A Lifting on Tori

We start by giving an upper bound for the minima of the functions unp from
proposition 4.2, which we will later carry over to the solutions up on S3

n. The
first technical result is the existence of a lifting for functions in H1(T3

n) that
stay away from zero. We state it for both dimensions, N = 2 and N = 3. The
two subsequent proofs follow ideas from [12, 4.2].

Lemma 4.13 (Lifting on 3-tori). Let N = 3 and E > 0. There is a constant
n0 ∈ N such that n1 ≥ n0, v ∈ H1(T3

n,C),

|v(x)| ≥ 1

2
∀x ∈ T3

n and En(v) ≤ E (4.40)

imply that v = |v| exp(iϕ+ iα1x1) with ϕ ∈ H1(T3
n,R) and α1 ∈ R.

Proof. 1. We employ the first property in (4.40) and write v = |v|w, where
the function w, satisfying |w| = 1, is uniquely determined by v. Since the map
z 7→ z/|z| is Lipschitz continuous on {z ∈ C : |z| ≥ 1/2} and w = v/|v|, corollary
2.17 shows that w ∈ H1(T3

n,C).
2. From |w| = 1 we infer that d(w × dw) = 0 since, identifying C ' R2, the

2×3-matrix of partial derivatives of w has at most rank one so that ∂iw×∂jw =
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∂iw1∂jw2 − ∂iw2∂jw1 = 0 for i 6= j. By the Hodge–de–Rham decomposition
theorem 2.28, the 2-form w × dw uniquely decomposes as

w × dw = dϕ+

3∑
j=1

αjdxj ,

where αj ∈ R, j = 1, . . . , 3, and ϕ ∈ H1(T3
n,R). One easily shows that

w(x) = exp

iϕ(x) + i

3∑
j=1

αjxj + iθ


for some constant θ ∈ R. The periodicity of w implies

αj = kj/nj, kj ∈ Z, j = 1, . . . , 3,

and the L2-orthogonality of the Hodge–de–Rham decomposition yields

‖w × dw‖2L2(T3
n) = ‖dϕ‖2L2(T3

n) + 8π3n1n2n3

3∑
j=1

k2
j

n2
j

.

Consequently,
3∑
j=1

k2
j

n2
j

≤ 1

8π3n1n2n3
‖Dw‖2L2(T3

n)

and therefore

k2
j ≤

n2
j

8π3n1n2n3
‖Dw‖2L2(T3

n) ≤
En2

j

π3n1n2n3
, j = 1, 2, 3.

For j = 2, 3, we may choose n1 such that

n2
j

n1n2n3
<
π3

E
, namely, n1 >

n2
jE

π3n2n3
.

At last, we set

n0 ≡ max
j=2,3

{⌈
n2
jE

2π3n2n3

⌉}
+ 1

to conclude that kj = 0 for all n1 ≥ n0 and j = 2, 3.

Lemma 4.14 (Lifting on 2-tori). Let N = 2 and E > 0. There is a constant
n0 ∈ N such that n1 ≥ n0, v ∈ H1(T3

n,C),

|v(x)| ≥ 1

2
∀x ∈ T2

n and En(v) ≤ E (4.41)

imply that v = |v| exp(iϕ+ iα1x1) with ϕ ∈ H1(T2
n,R) and α1 ∈ R.

Proof. We proceed analogously to the proof of lemma 4.13. For N = 2 the
decomposition yields

‖w × dw‖2L2(T2
n) = ‖dϕ‖2L2(T2

n) + 4π2n1n2

2∑
j=1

k2
j

n2
j

,

and so the assertion follows for n0 ≡ dEn2π
−2e+ 1.

Remark. Henceforth, we will always implicitly assume that n1 ≥ n0 for the
integer n0 from the two foregoing theorems.
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4.4.2 Upper Bounds for Minima

We will need to impose the following assumptions on the constant α1 from
lemma 4.13.

Hypothesis 4.15. In the setting of lemma 4.13, we either assume that

(i) α1 ≥ 0, or that

(ii) α1 < 0 and that E∗min(p) < 2−3/2p for the p from assumption (Cp).

Remark. Hypothesis 4.15 (ii) imposes a new conjecture on E∗min. We actually
believe that this is not a real constraint since it has already been conjectured in
[12, 3.1] that Emin(p) ∼ 2π ln(p). Still, we don’t have a proof for it.

We now show under which circumstances any solution on the torus admits
a value whose modulus is smaller or equal to one. The proofs use arguments
from [12, 1.2].

Lemma 4.16. Assume hypothesis 4.15 (i). Let v ∈ C1(T3
n)∩X3

n and pn(v) > 0.
Then,

inf
x∈T3

n

|v(x)| ≤ max

{
1

2
, 1− Σn(v)√

2pn(v)

}
. (4.42)

Proof. 1. Set
δ ≡ inf

x∈T3
n

|v(x)|.

If δ ≤ 1/2 there is nothing to show. If instead δ > 1/2, then lemma 4.13 provides
us with a lifting, that is, we may write v = % exp(iϕ+ iα1x1) with ϕ ∈ H1(T3

n),.
Similar to (4.17), we compute

pn(v) =
1

2

∫
T3
n

−%2(∂1ϕ+ α1),

and since ϕ ∈ H1(T3
n,R), we obtain

∫
T3
n
∂1ϕ = 0 so that

pn(v) ≤ 1

2

∫
T3
n

(1− %2)(∂1ϕ+ α1).

By the arguments from (4.18), we see that

En(v) =
1

2

∫
T3
n

|D%|2 + %2|Dϕ+ α1e1|2 +
1

4

∫
T3
n

(1− %2)2.

Just as in lemma 4.5, we use Cauchy’s inequality 2ab ≤ (a2 + b2) with

a = 2−
1/4|1− %2| and b = 2

1/4|%||∂1ϕ+ α1|

to estimate

|pn(v)| ≤ 1√
2δ

(
1

2

∫
T3
n

%2|Dϕ+ α1e1|2 + |D%|2 +
1

4

∫
T3
n

|1− %2|2
)

=
En(v)√

2δ
.

2. The previous considerations show that
√

2δpn(v) =
√

2δ|pn(v)| ≤ En(v) =
√

2pn(v)− Σn(v),
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and therefore,

1− δ ≥ Σn(v)√
2pn(v)

,

which readily yields the assertion.

Lemma 4.17. Assume hypothesis 4.15 (ii). Let v ∈ C1(T3
n)∩X3

n and pn(v) > 0.
Then,

inf
x∈T3

n

|v(x)| ≤ max

{
1

2
, 4− 23/2Σn(v)

pn(v)

}
. (4.43)

Proof. If α1 < 0, we see from the proof of lemma 4.13 that

α2
1 ≤

En(v)

π3n1n2n3
.

Using similar arguments as in the previous proof, we infer that

|pn(v)| ≤ 1√
2δ

(
1

2

∫
T3
n

%2|Dϕ+ α1e1|2 + |%|2 +
1

4

∫
T3
n

|1− %2|2 + |α1|2
)

≤ 4En(v)√
2δ

and therefore

4− δ ≥ 4Σn(v)√
2pn(v)

,

which yields the assertion.

We are now in position to find an upper bound for the minimum of up
and, hence, show the nontriviality thereof. The proof is similar to the one of
proposition 3 in [12, 1.2].

Lemma 4.18. Let N = 3, p > 0, and assume (C), (Cp) and hypothesis 4.15
are satisfied. Then, the solution up from theorem 4.12 is nontrivial, that is, not
constant.

Proof. 1. By invariance of translation on TNn , we may assume, without loss of
generality, that

|unp (0)| = min
x∈TNn

|unp (x)|.

Combining this with (4.42), we estimate

|up(0)| = lim sup
n1→∞

(|unp (0)|) ≤ lim sup
n1→∞

(
max

{
1

2
, 1−

Σn(unp )
√

2pn(unp )

})

= lim sup
n1→∞

(
max

{
1

2
, 1−

√
2p− Enmin(p)√

2p

})

≤ max

{
1

2
, 1−

√
2p− E∗min(p)√

2p

}

≤ max

{
1

2
, 1− Ξ∗(p)√

2p

}
< 1,
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or similarly

|up(0)| = lim sup
n1→∞

(|unp (0)|) ≤ lim sup
n1→∞

(
max

{
1

2
, 4−

4Σn(unp )
√

2pn(unp )

})

≤ max

{
1

2
, 4− 4Ξ∗(p)√

2p

}
< 1,

using hypotheses 4.15 (i) and (ii), respectively.
2. On the other hand, it holds, up to another subsequence, that

En(unp ) = Enmin(p)→ lim sup
n1→∞

Enmin(p) ≤ E∗min(p) ≤
√

2p, as n1 →∞,

where we used (C) for the two inequalities. The assertion follows from the
uniform convergence of unp on the compact sets Kj (cf. theorem 4.12) and from
corollary 3.2.

Remark. Please note that, for α1 ≥ 0, the previous proofs holds without assum-
ing hypothesis 4.15 (ii). Verifying this condition, would render the conjecture
therein completely redundant. We will henceforth assume the hypothesis to
hold.

4.5 The Variational Problem on the Cylinder

The two previous sections already prove the existence of nontrivial solutions on
S3
n provided we are able to verify the conditions (C) and (Cp). We first tackle

the former and —in order to do so— thoroughly investigate some properties
of the functions E∗min and Ξ∗. Throughout the section, we will assume that
conjecture 3.4 holds to give sense to our choice of W (S3

n). In fact, the following
lemma, taken from [12, 2.3], is a direct consequence of the decay estimates given
therein.

Lemma 4.19. Let v be a finite energy solution to (TWc) on S3
n. Then, v

belongs to W (S3
n).

The opposite conclusion holds for any N ≤ 4 provided we equip the affine
space W (SNn ) with the norm of V (SNn ), more precisely, we set

‖w‖W (SNn ) ≡ ‖Dv‖L2(SNn ) + ‖<(v)‖L2(SNn ) + ‖=(v)‖L4(SNn ) + ‖D<(v)‖L4/3(SNn )

for functions w = 1 + v ∈ W (S3
n). A sketch of the proof can be found in [12,

3.1] and is modified accordingly hereinafter.

Lemma 4.20. Let N ≤ 4. The space W (SNn ) is contained in the energy space

E ≡ {v : RN → C : E(v) <∞}.

Moreover, the functionals E∗ and p∗ are well-defined and continuous on W (SNn ).

Proof. 1. For any v ∈ V (SNn ), one easily computes

(1− |1 + v|2)2 = (1− (1 + <(v))2 −=(v)2)2 (4.44)

= (2<(v) + |v|2)2 (4.45)

= 4<(v)2 + 4<(v)|v|2 + |v|4 (4.46)
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and uses Cauchy’s inequality to obtain

(1− |1 + v|2)2 ≤ 8<(v)2 + 4<(v)4 + 4=(v)4. (4.47)

Since <(v) and D<(v) belong to L2(SNn ), we infer that <(v) ∈ W 1,2(SNn ), and
by the Sobolev embedding theorem 2.3 for N ≤ 4, we also have <(v) ∈ L4(SNn ).
Therefore, the left hand side of inequality (4.47) belongs to L1(SNn ) if v ∈ V (SNn ).
As D(1 + v) = Dv ∈ L2(SNn ), we conclude that W (SNn ) ⊂ E(SNn ).

2. Considering v, u ∈ V (SNn ) and using the reverse triangle inequality, one
obtains

‖v − u‖2V (SNn ) ≥ ‖Dv −Du‖
2
L2(SNn ) ≥

∣∣∣∣∣
∫
SNn
|Dv|2 − |Du|2

∣∣∣∣∣ (4.48)

and, therefore, the continuity of the map v 7→
∫
|Dv|2 in V (SNn ).

Similarly, we check that the L1-norm of (4.46) is continuous in V (RN ) due to
various Hölder inequalities and the same reasoning as in (4.48). Indeed, setting
f ≡ v 7→

∫
SNn
|1− |1 + v|2|, we estimate

|f(v)− f(u)| ≤ 4

∣∣∣∣∣
∫
SNn
<(v)2 −<(u)2

∣∣∣∣∣+ 4

∣∣∣∣∣
∫
SNn
|<(v)||v|2 − |<(u)||u|2

∣∣∣∣∣
+

∣∣∣∣∣
∫
SNn
|v|4 − |u|4

∣∣∣∣∣ .
The first and the last summand can be estimated as above. To the remaining
addend we apply Hölder’s inequality to see that

4

∣∣∣∣∣
∫
SNn
|<(v)||v|2 − |<(u)||u|2

∣∣∣∣∣ ≤ C1δ + C2δ
2 for C1, C2 > 0,

whenever
‖v − u‖2V (SNn ) ≤ δ.

Consequently, E is continuous in W (SNn ).
3. It remains to consider p∗. First, we obviously have

〈i∂1w,w − 1〉 = ∂1(<(w))=(w)− ∂1(=(w))(<(w)− 1),

for any w ∈W (SNn ). Therefore, by Hölder’s inequality,

|p∗(w)| ≤ 1

2

∫
SNn
|〈i∂1w,w − 1〉|

≤ 1

2
‖∂1<(w)‖L4/3(SNn )‖=(w)‖L4(SNn )

+
1

2
‖∂1=(w)‖L2(SNn )‖<(w)− 1‖L2(SNn ) <∞.

Again, continuity follows from various Hölder inequalities and similar reasoning
as in (4.48).

The next lemma yields an useful alternative definition of the momentum on
S3
n, which corresponds to (4.17). The proof is inspired by [12, Prop.2.2].
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Lemma 4.21. Assume v = % exp(iϕ) ∈ {1} + C∞c (SNn ) with ϕ ∈ C∞c (SNn ,R).
Then, we have

p∗(v) =
1

2

∫
S3n

(1− %2)∂1ϕ.

Proof. Set

g(v) ≡ (1− %2)∂1ϕ,

which is just another way of writing g(v) = 〈i∂1v, v〉+ ∂1ϕ according to (4.17).
Defining

B(R) ≡ (−R,R)× TN−1
(n2,...,nN ), ∂B(R) ≡ {−R,R} × TN−1

(n2,...,nN )

and integrating by parts with respect to x1, we find∫
B(R)

〈i∂1v, 1〉 = − 1

R

∫
∂B(R)

=(v)x1 and

∫
B(R)

∂1ϕ =
1

R

∫
∂B(R)

ϕx1

so that ∫
B(R)

(〈i∂1v, v − 1〉 − g(v)) =
1

R

∫
∂B(R)

(=(v)− ϕ)x1.

Finally, we infer that∣∣∣∣∣
∫
B(R)

〈i∂1v, v − 1〉 − g(v)

∣∣∣∣∣ ≤
∫
∂B(R)

|=(v)− ϕ| |x1|.

Letting R→∞, the conclusion follows from the compactness of the support of
=(v) and ϕ, respectively.

The proof of the next technical lemma mainly corresponds to the one given
in [12, 3.1].

Lemma 4.22. Let N = 3 and s > 0. There exists a sequence of non-constant
maps (γk)k∈N ⊂ {1}+ C∞c (S3

n) such that

p∗(γk) = s, γk ∈W (S3
n),

and

E∗(γk)→
√

2s, as k →∞. (4.49)

Proof. 1. We choose λ, µ > 0, 0 6≡ ϕ = ϕ(x1) ∈ C∞c (S3
n,R), and set

Γλ,µ ≡ ρ exp(iΦ),

where

Φ(x) =
√

2µϕ
(x1

λ

)
and ρ(x) = 1− µ

λ
∂1ϕ

(x1

λ

)
.

Hence, obviously ∫
S3n
|D⊥Γλ,µ|2 = 0. (4.50)
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Taking the derivative of Γλ,µ and substituting t 7→ x1

λ , yields∫
S3n
|∂1Γλ,µ|2 =

µ2

λ

∫
S3n

2
(

1− µ

λ
∂1ϕ

)2

(∂1ϕ)2 +
1

λ2
(∂2

1ϕ)2, (4.51)∫
S3n

(1− ρ2)2 =
4µ2

λ

∫
S3n

(
1− µ

2λ
∂1ϕ

)2

(∂1ϕ)2, (4.52)

and, by lemma 4.21, we infer that

p∗(Γλ,µ) =
1

2

∫
S3n

(1− ρ2)∂1Φ =

√
2µ2

λ

∫
S3n

(
1− µ

2λ
∂1ϕ

)
(∂1ϕ)2.

Pick the sequence λ = λ(k) ≡ k and choose µ = µ(k) such that p∗(Γλ,µ) = s to
see that

µ(k) ∼
√
s
√
k

2
1
4 ‖∂1ϕ‖L2(S3n)

, as k →∞. (4.53)

Moreover, setting γk ≡ Γλ(k),µ(k), k ∈ N, with γ(k) and µ(k) as above, we infer
from (4.51), (4.52), and (4.53) that

p∗(γk) = s and E∗(γk) ∼ 2µ2

λ

∫
S3n

(∂1ϕ)2 ∼
√

2s, as k →∞,

which is the first part of the assertion.
2. It remains to show that the functions γk, k ∈ N, belong to W (S3

n). By
(4.50) and (4.51) we have that Dγk ∈ L2(S3

n), and by

γk(x) = 1 for
x

k
6∈ supp(ϕ)

one obtains <(γk)− 1 ∈ L2(S3
n), =(γk) ∈ L4(S3

n), as well as D<(γk) ∈ L4/3(S3
n).

This completes the proof.

A first elementary property of the function Ξ∗ is a rather direct consequence
of lemma 4.22.

Corollary 4.23. Let N = 3. The function p 7→ Ξ∗(p) is nonnegative on R+.

Proof. From (4.49), it follows in particular that

E∗min(p) ≤
√

2p, (4.54)

which already proves the assertion.

Using lemma 4.20 and the density of test functions in V , we may rewrite the
function E∗min in a more convenient way; again, we follow [12, 3.1].

Lemma 4.24. Let N = 3, w = 1 + v ∈ W (S3
n), and p∗(w) > 0. There is a

sequence (vk)k∈N ⊂ C∞c (S3
n) such that for any wk = 1 + vk, we have

p∗(wk) = p∗(w) for k ∈ N,

and
E∗(wk)→ E∗(w), as k →∞.
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In particular, for any p > 0, there is a sequence (vk)k∈N ⊂ C∞c (S3
n) such that

p∗(1 + vk) = p for n ∈ N, (4.55)

and

E∗(1 + vk)→ E∗min(p), as k →∞. (4.56)

Consequently,

E∗min(p) = inf{E∗(1 + v) : v ∈ C∞c (SNn ), p∗(1 + v) = p}. (4.57)

Proof. By lemma 4.20 and the density of C∞c (SNn ) in V (SNn ), there is a sequence
(ṽk)k∈N ⊂ C∞c (SNn ) such that

p∗(w̃k)→ p∗(w), as k →∞,

and

E∗(w̃k)→ E∗(w), as k →∞,

where w̃k = 1+ ṽk. Since p∗(w) > 0, it also holds that p∗(w̃k) > 0 if only k ≥ k0

with k0 ∈ N large enough. For such k, we set

vk ≡

√
p∗(w)

p∗(w̃k)
ṽk and wk ≡ 1 + vk.

Hence,

p∗(wk) =
1

2

∫
SNn
〈i∂1wk, wk − 1〉 =

p∗(w)

p∗(w̃k)

1

2

∫
SNn
〈i∂1ṽk, ṽk〉 = p∗(w)

and, by lemma 4.22, the set

ΓN (p) = {w ∈W (SNn ) : p(w) = p}

is non-empty so that assertions (4.55), (4.56) follow. Equation (4.57) is, in turn,
a trivial consequence thereof.

The previous lemma and equation (4.54) enable us to verify condition (C).
We closely follow the corresponding proof in [12, 3.1].

Corollary 4.25. Let N = 3 and p > 0. Then,

lim sup
n1→∞

Enmin(p) ≤ E∗min(p).

Proof. From (4.57), we infer that for every δ > 0 there is a map w = 1 + v ∈
{1}+ C∞c (S3

n) such that

E∗min(p) ≤ E∗(w) ≤ E∗min(p) + δ

and p∗(w) = p. Since v ∈ C∞c (S3
n), we know that

supp(v) ⊂ B(R) = (−R,R)× TN−1
(n2,...,nN )
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for some R > 0. Therefore, v can canonically be regarded as a map in H1(TNn )
if only n1π > R, and consequently, w ∈ H1(TNn ). This yields

Enmin(p) ≤ E∗(w) for n1 >
R

π
.

Finally, we infer that
Enmin(p) ≤ E∗min(p) + δ.

Letting δ → 0, our claim follows.

To prove condition (Cp), we will need another result, which can be found —
almost word-for-word— in [12, 3.1] provided one carefully modifies the support
of the used test functions. We give the proof for sake of completeness.

Lemma 4.26. Let N = 3. The function p 7→ E∗min(p) is Lipschitz continuous
on R+ with Lipschitz constant

√
2.

Proof. 1. Fix p, q ∈ R+. Without loss of generality, we may assume q ≥ p. Just
as in the proof of corollary 4.25, for any δ > 0 there is a function wδ = 1 + vδ
with vδ ∈ C∞c (S3

n),

p∗(wδ) = p, and E∗(wδ) ≤ E∗min(p) +
δ

2
.

Define s ≡ q− p ≥ 0 and choose fδ ∈ C∞c (S3
n) such that

p∗(1 + fδ) = s and E∗(1 + fδ) ≤
√

2s +
δ

2
.

Such a function exists as a consequence of lemma 4.22. Finally, we set

w ≡ 1 + vδ + fδ(· − aδ, ·, ·) = wδ + fδ(· − aδ, ·, ·),

where we choose aδ ∈ R such that the supports of fδ and vδ are disjoint. Hence,

p∗(w) =
1

2

∫
S3n
〈i∂1(1 + vδ + fδ(· − aδ, ·, ·)), vδ + fδ(· − aδ, ·, ·)〉

=
1

2

∫
S3n
〈i∂1(1 + vδ), vδ〉

+
1

2

∫
S3n
〈i∂1(1 + fδ(· − aδ, ·, ·)), fδ(· − aδ, ·, ·)〉

= p∗(wδ) + p∗(1 + fδ) = p + s = q,

and similarly
E∗(w) = E∗(wδ) + E∗(1 + fδ).

Therefore,

E∗min(q) ≤ E∗(w) ≤ E∗(wδ) +
√

2s +
δ

2
≤ E∗min(p) +

√
2s + δ,

and, by taking the limit δ → 0,

E∗min(q) ≤ E∗min(p) +
√

2(q− p). (4.58)
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2. As in the first part of the proof, we choose w̃δ = 1+ ṽδ with ṽδ ∈ C∞c (S3
n),

p∗(w̃δ) = q, and E∗(w̃δ) ≤ E∗min(q) +
δ

2
.

Again, we set f̃δ(x1, x⊥) ≡ fδ(−x1, x⊥) and choose ãδ ∈ R such that the sup-
ports of f̃δ(· − ãδ, ·, ·) and ṽδ are disjoint. Then,

p∗(1 + f̃δ(· − ãδ, ·, ·)) = −p∗(1 + fδ) = −s

as well as

E∗(1 + f̃δ(· − ãδ, ·, ·)) = E∗(1 + fδ) ≤
√

2s +
δ

2
.

For
w̃ ≡ 1 + ṽδ + f̃δ(· − ãδ, ·, ·) = w̃δ + f̃δ(· − ãδ, ·, ·)

we have that

p∗(w̃) = p∗(w̃δ)− s = p, E∗(w̃) ≤ E∗(w̃δ) +
√

2s +
δ

2
,

and therefore,

E∗min(p) ≤ E∗(w̃) ≤ E∗(w̃δ) +
√

2s +
δ

2
≤ E∗min(q) +

√
2s + δ.

Taking the limit δ → 0, we come upon the equivalent of equation (4.58)

E∗min(p) ≤ E∗min(q) +
√

2(q− p). (4.59)

3. The assertion

|E∗min(p)− E∗min(q)| ≤
√

2|p− q|

follows from (4.58) and (4.59).

The crucial —but direct— consequence of the previous lemma is the conti-
nuity of the function Ξ∗.

Corollary 4.27. The function p→ Ξ∗(p) is continuous on R+.

Lemma 4.28. There is a real interval I ⊂ R+ such that Ξ∗(p) > 0 for all p ∈ I.

Proof. Choosing v ≡ exp(iϕ) with some function ϕ(x) = ϕ(x1) ∈ H1(S3
n) yields

E∗(v) =
1

2

∫
S3n

(∂1ϕ)2 and p∗(v) =
1

2

∫
S3n
∂1ϕ(cos(ϕ)− 1).

The function ϕ(x) ≡ ϕ(x1) ≡ −x11(1,2)(x1) can be regarded as a function in

H1(S3
n). One easily checks that

√
2p∗(v) > E∗(v) = 2πn2n3. The assertion

follows from corollary 4.27.

Combining theorem 4.12, lemma 4.18, corollary 4.25, and lemma 4.28 yields
the main theorem of this chapter.

Theorem 4.29. Assume N = 3 and conjecture 3.4 as well as hypothesis 4.15.
Then, there exists a nontrivial solution u of (TWc) on S3

n, that is, u is non-
constant and satisfies (4.39).

Proof. Lemma 4.28 yields a p > 0 such that Ξ∗(p) > 0. Such a p satisfies
condition (Cp) and condition (C) by corollary 4.25. From theorem 4.12 we
infer the existence of a solution to (TWc) on S3

n, which is nontrivial by lemma
4.18.
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Chapter 5

Remarks on the Stability of
Traveling Wave Solutions

The initial motivation to study the existence of traveling waves on the cylinder
was to provide a framework that made it possible to employ the theory of
infinite dimensional Evans functions, which was only recently presented by Y.
Latushkin and A. Pogan [61]. We already mentioned that a natural way
to study the stability of a traveling wave q is to analyze the spectrum of the
linearization L of the differential operator about q. This usually provides enough
information to make statements about the stability with respect to the fully
nonlinear problem; we refer to [66] for instance. The infinite dimensional Evans
function provides a tool for such an investigation. In fact, the authors of [61]
give a very general framework of differential operators L and a set of seven
conditions, for which they are able to show the existence of an Evans function
E whose zeros are the eigenvalues of L.

It turns out that our solutions to the Gross–Pitaevskii equation fit in this
general framework (that is, the linearization L of (CT) takes the form postulated
in [61]), but do not meet some of the necessary conditions. The intention of this
chapter is to review these conditions and show were exactly and to what extend
the ansatz fails. We hope that this provides a basis for a further study of
stability1 via the Evans function.

5.1 An Infinite Dimensional Evans Function

In this section, we will quickly revise the parts of Y. Latushkin’s and A.
Pogan’s paper [61] that are of interest for our purpose.

It is well known (see [66], for instance) that an eigenvalue problem Lu = λu
for a linear differential operator L can often be written as an ordinary differential

1I would like to thank the University of Konstanz for sponsoring a trip to the Les Houches
winter school on nonlinear dispersive waves in February 2014. During my stay (and after
the completion of this thesis), I learned that there exists a currently unpublished result by
D. Chiron and M. Mariş [20] that shows the existence of traveling waves for nonlinear
Schrödinger equations with very general non-linearity on the whole space RN . Not only do
their results imply the ones by F. Béthuel et al. [12] but also the orbital stability of the set
of minimizers.
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equation on a Hilbert space H. This equation usually takes the form of the
perturbed differential equation

u′(t) = (A(λ) +B(t))u(t), t ∈ R, (5.1)

with u(t) ∈ H and λ ∈ C. One way to define an infinite dimensional Evans
function for L was exemplified by Y. Latushkin and A. Pogan [61], who set

E(λ) ≡ det
2,H

(Y+(λ)− Y−(λ)), (5.2)

where det2,H denotes the 2-modified Fredholm determinant [36, 37, 67] and Y±
are generalized operator valued Jost solutions to equation (5.1). We refer to
[61] for their construction and more details.

The set of linear operators for which the authors are able to address the
spectral problem Lu = λu via these methods are given by

L : H2(R,dom(A0))→ L2(R, X0); (5.3)

L = Γ−1∂2
t +

(
B1(t)Γ−1 − c

)
∂t + (A0 +B0(t)) . (5.4)

Here, X0 denotes a separable Hilbert space with basis {ek : k ∈ N}, c ∈ R,
and the operators A0,Γ, B0, B1 satisfy

A0 : dom(A0) ⊂ X0 → X0,

Γ : dom(Γ) ⊂ X0 → X0,

B0 : R→ B2(dom(|A0Γ−1| 12 , X0),

B1 : R→ B2(X0).

Furthermore, A0 and Γ are closed and densely defined and we impose the sub-
sequent hypotheses.

Hypothesis 5.1 ([61, Hyp.6.1]). The linear operators A0 and Γ satisfy the
following assumptions.

(A1) A0ek = αkek,Γek = γkek, for some αk, γk ∈ C, for all k ∈ N;

(A2) Γ is boundedly invertible on X0;

(A3) |αk/γk| = O(kν), as k →∞, for some ν > 0, and αkγk < 0 for all k ∈ N.

The second set of hypotheses are imposed on the perturbation terms B0 and
B1. For the notation we recall section 2.2.

Hypothesis 5.2 ([61, Hyp.6.2; 6.7]). The operator valued functions B0 and B1

satisfy the following assumptions.

(B0) B0 : R→ B2(dom(|A0Γ−1| 12 ), X0) is bounded and strongly continuous;

(B1) B1 : R→ B2(X0) is bounded and strongly continuous;

(B2)
∫
R ‖B0(t)‖B2

dt+
∫
R ‖B1(t)‖B2

dt < 1.
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We reutilize the notation from hypothesis 5.1 and define the discrete se-
quence (ãk)k∈Z\{0} as

ãk ≡

{
(−αkγk)1/2 + <

(
cγk
2

)
k ≥ 1

−(−α−kγ−k)1/2 + <
( cγ−k

2

)
k ≤ −1.

(5.5)

Note that ãk → ±∞, as k → ±∞. One may now cluster together equal terms
and rearrange them to form an increasing sequence (κ̃k)k∈Z\{0}.

Hypothesis 5.3 ([61, Hyp.6.6]). The sequence (κ̃j)j∈Z\{0} satisfies

(S)
∑

(k,j)∈Z2,±
(κ̃j − κ̃k)−2 <∞.

Using the notation from hypothesis 5.1 once more, we define

S1(L) ≡ {αn − c2γn/4 + s : n ∈ N, s ∈ R−},
S2(L) ≡ {αn − ciξ − γ−1

n ξ2 : n ∈ N, ξ ∈ R},
Ω(L) ≡ C \ (S1(L) ∪ S2(L)).

The following theorem constitutes the outstanding result of Y. Latushkin and
A. Pogan in [61].

Theorem 5.4 ([61, Thm.6.13]). Define the Evans function E by (5.2), where
H = L2(R, X0). Assume hypotheses 5.1, 5.2, and 5.3. Then, the following
assertions are true.

(i) If λ ∈ Ω(L), then λ ∈ σd(L) if and only if E(λ) = 0;

(ii) E is holomorphic on Ω(L).

Here, σd(L) denotes the point spectrum of the operator L.

5.2 The Eigenvalue Problem on the Cylinder

The first important step is to construct the linearization operator L for the
Gross–Pitaevskii equation and to check whether it takes the form of operators
in (5.4). Henceforth we will assume that n = (n2, n3) ∈ N2.

To linearize equation (CT) about a traveling wave solution q, we write it as
a system of real- and imaginary part. Let u = u1 + iu2 be a complex function
with u1 = u1(ξ, x⊥, t), u2 = u2(ξ, x⊥, t). Multiplying (CT) by −i yields

∂tu1 + i∂tu2 = c∂1u1 + ic∂1u2 − i∆u1 + ∆u2

+ (u2 − iu1)(1− u2
1 − u2

2),

and, written as a system for u = (u1, u2)T ,(
∂tu1

∂tu2

)
= c

[
∂1 0
0 ∂1

](
u1

u2

)
+

[
0 ∆− 1

−∆ + 1 0

](
u1

u2

)
+

(
2u2 − u2

1u2 − u3
2

−2u1 + u3
1 + u1u

2
2

)
. (CTS)
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We need to the define the space X0 and the operators A, Γ, B0, and B1 such
that they describe the linearization of (CTS). One starts by choosing

X0 ≡ L2
(
TN−1
n

)
× L2

(
TN−1
n

)
' L2

per

(
ΩN−1
n

)
× L2

per

(
ΩN−1
n

)
equipped with the canonical scalar product 〈·, ·〉X0

, i.e., for functions u =
(u1, u2), v = (v1, v2) ∈ X0, we define

〈u, v〉X0
≡ 〈u1, v1〉L2(TN−1

n ) + 〈u2, v2〉L2(TN−1
n ) .

The operator A0 : dom(A0)→ X0 is defined by

dom(A0) ≡ H2
(
TN−1
n

)
×H2

(
TN−1
n

)
⊂ X0 (5.6)

and

A0u ≡
[

0 ∆x⊥ − 1
−∆x⊥ + 1 0

]
u for u ∈ dom(A0); (5.7)

the spin operator Γ : dom(Γ)→ X0 by dom(Γ) = X0 and

Γu ≡
[

0 −I
I 0

]
u for u ∈ dom(Γ), (5.8)

where I denotes the identity map on X0. Finally, we fix ξ ∈ R and introduce the
linearization of the last term in (CTS) to obtain the operator B0(ξ). Namely,
we set

dom (B0(ξ)) ≡ H2
(
TN−1
n

)
×H2

(
TN−1
n

)
⊂ X0 (5.9)

and

(B0(ξ)u)(x⊥) ≡
[
b1(ξ, x⊥) b2(ξ, x⊥)
b3(ξ, x⊥) b4(ξ, x⊥)

]
u(x⊥), (5.10)

where

b1 ≡ −2q1q2, (5.11)

b2 ≡ 2− q2
1 − 3q2

2 , (5.12)

b3 ≡ −2 + 3q2
1 + q2

2 , (5.13)

b4 ≡ 2q1q2 (5.14)

for an arbitrary traveling wave solution q = q1 + iq2 to (GP), e.g., the ones
we found in chapter 4. Putting it all together, it follows that the linearization
operator

L : H2(R,dom(A0))→ L2(R, X0)

of (CTS) is defined by

L ≡ Γ−1∂2
ξ + c∂ξ + (A0 +B0 (ξ)) . (5.15)

This is exactly the form of operators in (5.3), (5.4). Naturally, our point of view
is that

u : R→ dom(A0) ⊂ X0

with
[u(ξ)](x⊥) ≡ u(ξ, x⊥) for ξ ∈ R, x⊥ ∈ TN−1

n .
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The eigenvalue problem on the cylinder becomes

Lu = λu. (EWλ)

We rewrite it to take the form of equations in (5.1). Splitting u = (u1, u2)T in
its real and imaginary part, we transform the eigenvalue problem to a system
of first order by substituting (v1, v2)T = Γ−1(u′1, u

′
2)T . This yields

u′1 = −v2

u′2 = v1

v′1 = u′′2 = λu1 + cv2 −∆x⊥u2 + u2 − b1u1 − b2u2

v′2 = −u′′1 = λu2 − cv1 + ∆x⊥u1 − u1 − b3u1 − b4u2,

(′= ∂1),

and setting U(ξ) = (u1(ξ), u2(ξ), v1(ξ), v2(ξ))T , the eigenvalue problem becomes

U ′(ξ) = (A(λ) +B(ξ))U(ξ), (5.16)

where

A(λ) ≡


0 0 0 −I
0 0 I 0
λ −∆x⊥ + 1 0 cI

∆x⊥ − 1 λ −cI 0

 =

[
0 Γ

λ−A0 −cΓ

]
(5.17)

and

B(x1) ≡


0 0 0 0
0 0 0 0

−b1(ξ) −b2(ξ) 0 0
−b3(ξ) −b4(ξ) 0 0

 =

[
0 0

−B0(ξ) 0

]
. (5.18)

Note that this is exactly the form of (5.1), so that the construction of the Jost
solutions is meaningful.

5.3 Towards an Evans Function for the Gross–
Pitaevskii Equation

Now that we established the rough framework to treat stability of the traveling
wave solutions, we need to check whether the operator L satisfies the hypotheses
5.1-5.3 in order to employ the results from [61]. As it turns out, assumptions
(A1)-(A3), (B0)-(B1) can be satisfied, (B2) and (S) cannot. Still, we point out
that the latter are exactly those hypotheses that Y. Latushkin and A. Pogan
themselves conjecture to be too strong.

Lemma 5.5. Let N = 3. There is a basis {ek : k ∈ N} of X0 such that the
operators A0 and Γ from (5.7) and (5.8) satisfy the assumptions (A1), (A2),
and (A3).

Proof. 1. Let {ψk : k ∈ N} be any eigenbasis of ∆x⊥ in L2(T2
n) with corre-

sponding eigenvalues
0 ≥ ζ1 ≥ ζ2 ≥ . . .

Such a basis exists; see, e.g., [72, 4.1]. Set

e±k ≡
1√
2

(
ψk
±iψk

)
, k ∈ N,
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which constitutes a basis of X0. Consequently, setting βk ≡ ζk − 1, k ∈ N, we
see that

A0e
±
k =

[
0 ∆x⊥ − 1

−∆x⊥ + 1 0

]
1√
2

(
ψk
±iψk

)
=

1√
2

(
±i(ζk − 1)ψk
−(ζk − 1)ψk

)
= ±i(ζk − 1)

1√
2

(
ψk
±iψk

)
= ±iβke±k

and

Γe±k =

[
0 −I
I 0

]
1√
2

(
ψk
±iψk

)
=

1√
2

(
∓iψk
ψk

)
= ∓i 1√

2

(
ψk
±iψk

)
= ∓ie±k .

Corresponding to the postulated form, we set α±k ≡ ±iβk, γ±k ≡ ∓i, and sort
them to obtain

αk ≡

α
+
k+1
2

k odd

α−k
2

k even,
and γk ≡

{
−i k odd

i k even,
k ∈ N, (5.19)

as well as

ek ≡

e
+
k+1
2

k odd

e−k
2

k even,
k ∈ N. (5.20)

This shows that the operators A0 and Γ satisfy assumption (A1), while assump-
tion (A2) instantly follows from the specific form of Γ.

2. It remains to consider (A3). First, note that

αkγk =

{
β k+1

2
k odd

β k
2

k even
< 0 (5.21)

if and only if βk ∈ R−. The latter is true since βk = ζk − 1 < 0 for k ∈ N.
Moreover, ∣∣∣∣αkγk

∣∣∣∣ =

{
|β k+1

2
| k odd

|β k
2
| k even

= O(kν), as k →∞,

if only |βk| = O(kν), i.e., |ζk| = O(kν) as k → ∞. This is true due to Weyl’s
asymptotic formula [18, 1]. Indeed, |ζk| ∼ k/π and so the assumption holds for
ν = 1.

Assumption (B1) is trivial since B1 is the trivial operator; we go on to
consider assumption (B0). For the sake of simplicity, we henceforth assume
that n = (n2, n3) = (1, 1). Otherwise, one has to deal with slightly more
complicated norms and needs to employ several elementary estimates, involving
max{n2, n3}, to see that the results still hold.

Lemma 5.6. Let N = 3. Then, if

(i) bi(ξ, ·) ∈ L2(T2
n),
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(ii) ξ ∈ R 7→ bi(ξ, ·) ∈ L2(T2
n) is bounded and continuous

for i = 1, . . . , 4, the operator B0 from (5.10) satisfies assumption (B0).

Proof. 1. By lemma 2.12, the Hilbert–Schmidt norm of an operator is indepen-
dent of the choice of basis. Therefore, we may choose the standard Fourier basis
of L2(T2

n) and renormalize it to form an orthonormal basis of H2(T2
n). More

precisely, we choose {ψjk ∈ H2(T2
n) : j, k ∈ Z} with

ψjk(x, y) ≡ ei(jx+ky)

2π
√
j4 + k4 + j2 + k2 + 2j2k2 + 1

for j, k ∈ Z, (x, y) ∈ T2
n.

Then, the system

S ≡ S1 ∪ S2 ≡
{

(ψjk, 0)T : j, k ∈ Z
}
∪
{

(0, ψjk)T : j, k ∈ Z
}

forms an orthonormal basis of H2(T2
n)×H2(T2

n) = dom(B0(ξ)).
2. For fixed ξ ∈ R, we have that

‖B0(ξ)‖2B2
=
∑
e∈S
‖B0(ξ)e‖2X0

=
∑
e∈S

∥∥∥∥[ b1(ξ, ·) b2(ξ, ·)
b3(ξ, ·) b4(ξ, ·)

]
e

∥∥∥∥2

X0

=
∑
j,k∈Z

4∑
i=1

‖bi(ξ, ·)ψjk‖2L2(T2
n)

with

‖bi(ξ, ·)ψjk‖2L2(T2
n) =

1

4π2
·

‖bi(ξ, ·)‖2L2(T2
n)

j4 + k4 + j2 + k2 + 2j2k2 + 1
, j, k ∈ Z.

Setting

C(ξ) ≡
4∑
i=1

‖bi(ξ, ·)‖2L2(T2
n),

we are lead to

‖B0(ξ)‖2B2
=
C(ξ)

4π2

∑
j,k∈Z

1

j4 + k4 + j2 + k2 + 2j2k2 + 1
(5.22)

≤ C(ξ)

4π2

(
π4

10
+ 1

)
< C(ξ) (5.23)

using unsubtle estimates, Cauchy’s inequality, and the generalized harmonic
series. Therefore, B0(ξ) ∈ B2(dom(B0(ξ)), X0) for all ξ ∈ R.

3. Since ξ 7→ bi(ξ, ·) is bounded, we obtain C(ξ) ≤ K for some K > 0, and
therefore

‖B0(ξ)‖B2
≤ K

for another constant K. The continuity of ξ 7→ B0(ξ) follows from the continuity
of ξ 7→ bi(ξ, ·), i = 1, . . . , 4, since the term

‖B0(ξ1)−B0(ξ2)‖2B2
=
∑
j,k∈Z

4∑
i=1

‖(bi(ξ1, ·)− bi(ξ2, ·))ψjk‖2L2(T2
n)

gets arbitrary small.
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1− c2

4

2− c2

4

1− c2

4

Figure 5.1: The thick lines show S1(L) and S2(L) in the complex plane for the
Gross–Pitaevskii equation. If c ≤

√
2, the interval on the imaginary axis, in

which eigenvalues can be detected by the Evans function, is not in smaller than
(−1/2, 1/2)i. Unstable eigenvalues with positive real part can always be detected.

A direct corollary to the bounds for B0 in (5.22) treats hypothesis (B2).

Corollary 5.7. Let N = 3 and bi(ξ, ·) ∈ L2(T2
n) for i = 1, . . . , 4. Then, the

operator B0 from (5.10) satisfies (B2) if and only if∫
R

√
C(ξ)dξ <

4π2∑
j,k∈Z(j4 + k4 + j2 + k2 + 2j2k2 + 1)−1

. (5.24)

Remark. However, from the definitions of bi in (5.11)-(5.14), we infer that

C(ξ) =

∫ kπ

−kπ
2|2q1(ξ, x⊥)q2(ξ, x⊥)|2 + |2− q1(ξ, x⊥)2 − 3q2(ξ, x⊥)2|2

+ | − 2 + 3q1(ξ, x⊥)2 + q2(ξ, x⊥)2|2dx⊥

=

∫ kπ

−kπ
7|q(ξ, x⊥)|4 − 13|q(ξ, x⊥)|2 + 8dx⊥.

Keeping corollary 3.2 in mind, this shows that assumption (B2) does not hold.
In fact, we can not even hope for

‖B0(·)‖B2
∈ L1(R),

which Y. Latushkin and A. Pogan conjecture to suffice for theorem 5.4 to
hold (see [61, 3]). This problem is obviously connected to our choice of the
domain X0. Considering conjecture 3.4, it seems more natural to choose the
affine space {1}+X0. Needless to say, this would require subtle changes to the
theory developed in [61] as well as a proof of conjecture 3.4, which goes beyond
the scope of this discussion.

Finally, we return to hypothesis (S). Recall from the proof of lemma 5.5 that

ãk =


(−ζ(k+1)/2 + 1)1/2 k ≥ 1 odd

(−ζk/2 + 1)1/2 k ≥ 1 even

−(−ζ(1−k)/2 + 1)1/2 k ≤ −1 odd

−(−ζ−k/2 + 1)1/2 k ≤ −1 even,

where (ζk)k∈N denote the eigenvalues of ∆x⊥ in L2(T2
n).
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Lemma 5.8. Employing the notation from (5.5), we have that∑
(j,k)∈Z2,±

(κ̃j − κ̃k)
−2

=∞.

Proof. 1. Similar to the proof of lemma 5.6, the system{
ei(rx+sy)

2π
: r, s ∈ Z

}
constitutes an orthonormal basis of L2(T2

n). It is easy to compute the corre-
sponding eigenvalues of ∆x⊥ in this space, namely

−(r2 + s2), r, s ∈ Z.

Consequently, the sequence (ζk)k∈N consists of solutions to Gauss’s circle prob-
lem (see e.g. [50])

ζk = −(r2
k + s2

k), k ∈ N, rk, sk ∈ Z.

One readily checks that for any k ∈ N, there are rk, sk ∈ Z such that

κ̃k =
√
r2
k + s2

k + 1 =
√
|rk|2 + |sk|2 + 1.

Without loss of generality, we assume that |rk| ≥ |sk| to obtain

κ̃k−1 =
√
|rk|2 + (|sk| − 1)2 + 1,

and therefore,

κ̃k − κ̃k−1 =
√
|rk|2 + |sk|2 + 1−

√
|rk|2 + |sk|2 − 2|sk|+ 2 ≤ 1.

2. We complete the proof by estimating

∑
(j,k)∈Z2,±

(κ̃k − κ̃j)−2 ≥
∞∑
k=1

k−1∑
j=−∞
j 6=0

(κ̃k − κ̃j)−2

≥
∞∑
k=2

(κ̃k − κ̃k−1)
−2

≥
∞∑
k=2

1 =∞.

The previous lemma shows that assumption (S) is not satisfied. This second
negative result is connected to the rank of the Laplace operator, which deter-
mines the power (and distance) of the eigenvalues ζk. The hypothesis originates
in rather strong assumptions on the gaps between the eigenvalues of the opera-
tor A, which play a key role in the arguments of [61]. Yet again, it is conjectured
in [61, 1] that this assumption can be relaxed.
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References

Section 5.1 For the derivation of the infinite dimensional Evans function see
[61]. Additional to the sources given in the introduction, see [2, 5, 6, 36,
37, 59, 60, 62] for further references on the construction thereof.

Section 5.3 Further literature on spectral theory of elliptic and compact op-
erators can be found in [22, 25].
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equation. I. Ann. Inst. H. Poincaré Phys. Théor., 70(2):147–238, 1999,
ISSN 0246-0211.

[15] Bose, S. N.: Plancks Gesetz und Lichtquantenhypothese. Z. Phys.,
26(1):178–181, 1924, ISSN 1434-6001.

[16] Bracken, P.: The Hodge-de Rham decomposition theorem and an application
to a partial differential equation. Acta Math. Hungar., 133(4):332–341,
2011, ISSN 0236-5294.

[17] Brezis, H.: Semilinear equations in RN without condition at infinity. Appl.
Math. Optim., 12(3):271–282, 1984, ISSN 0095-4616.

[18] Chavel, I.: Eigenvalues in Riemannian geometry, volume 115 of Pure
and Applied Mathematics. Academic Press Inc., Orlando, FL, 1984,
ISBN 0-12-170640-0. Including a chapter by Burton Randol, With an ap-
pendix by Jozef Dodziuk.

[19] Chiron, D.: Travelling waves for the Gross–Pitaevskii equation in dimension
larger than two. Nonlinear Anal., 58(1-2):175–204, 2004, ISSN 0362-546X.
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