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M. Dreher

THE KIRCHHOFF EQUATION FOR THE P–LAPLACIAN

Abstract. Employing ideas from the theory of weakly hyperbolic differ-
ential equations, we show the local well–posedness of the Kirchhoff equa-
tion for the p–Laplacian in Sobolev spaces, where p need not be an even
integer.

1. Introduction

We shall seek solutions in Sobolev spaces to nonlinear nonlocal hyperbolic Cauchy
problems, an example of which is given by

wt t (t, x) − (1+ ‖wx (t, ·)‖
p
Lp(R))(|wx (t, x)|p−2wx (t, x))x = 0,(1)

w(0, x) = !(x), wt (0, x) = "(x),

where p is positive and real, not necessarily an even integer.
More general, we will consider the hyperbolic initial value problem

wt t (t, x) − K (‖wx (t, ·)‖
β
Lr (R))a(wx (t, x))wxx (t, x) = 0,(2)

w(0, x) = !(x), wt (0, x) = "(x),

where K is an arbitrary function, sufficiently smooth and taking only positive values;
and a = a(s) behaves like |s|p−2 near s = 0. The detailed assumptions on K , r , β,
and a are given in (3), (4) and Condition 1 below.

For K = K (s) = c1 + c2s (c1, c2 > 0) and p = r = β = 2, we get the
famous Kirchhoff equation, proposed by Kirchhoff [11] for a better description of the
motion of a stretched string. The global existence for real analytic initial data was
proved in [1] and [14], while the global existence of small C∞ and Sobolev solutions
was established in [3] and [6]. The question of global solutions for arbitrary data from
Sobolev spaces is still open.

The situation becomes even more delicate if we replace the Laplacian by a non-
linear differential operator: suppose K = K (s) ≡ 1, and consider the equation

wt t (t, x) − a(wx (t, x))2wxx (t, x) = 0, w(0, x) = !(x), wt (0, x) = "(x),
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where a(wx ) > 0, a′(wx ) &= 0, and !, " have compact support. In [8] it was shown
that the only global solution w ∈ C2(Rt ×Rx ) is w ≡ 0. All other solutions develop a
singularity in finite time.

Moreover, in [4] the Cauchy problem

wt t (t, x) − wx (t, x)2wxx (t, x) = 0,

w(0, x) = !(x), wt (0, x) = "(x)

was investigated, under the assumption that the smooth initial data ! and " be even,
and !′′(0), " ′′(0) be either both positive or both negative. Then the solution w devel-
ops a singularity in finite time.

Hence one should not hope for global in time solutions to (1) or (2).
Another difficulty comes from the fact that the equation (1) is no longer strictly

hyperbolic in the points (t0, x0) where wx (t0, x0) = 0. In [2] it was shown that even a
linear equation

wt t (t, x) − c(t)2wxx (t, x) = 0, c(t) ≥ 0,

with appropriately chosen smooth initial data can have no distribution solution (even
locally) if the smooth coefficient c = c(t) has a zero at t = 0 and oscillates near this
zero. Therefore we have to expect that the standard linearization arguments can not be
applied to (1), because the behavior of |wx |p−2 is not a priori known.

In this paper, we employ a technique developed in [12], which transforms the
second order equation into a two by two second order system. The advantage of this
method is that it will give us more information about wx , which in turn will exclude
oscillations of |wx |p−2.

If one assumes more regularity of the the function a = a(s), then one can
study (2) in spaces of functions with higher regularity. For Gevrey spaces with Gevrey
index between 1 and 2, a different approach than ours is available, and the local well–
posedness and propagation of analyticity can be proved, see [10].

In our situation, the function a = a(s) = |s|p−2 is not smooth at the origin for
p &∈ 2N. To attack (1), we will approximate the function a(s) by functions am(s) ∈ C∞

(preserving the essential properties of a(s)) and solve the approximate Cauchy problem
by Nash–Moser theory. Therefore, it is natural to generalize (1) to (2), where

K ∈ C1([0,∞)), K (s) ≥ K0 > 0, ∀s ∈ [0,∞),(3)

1 < r < ∞, β > 1,(4)

and a = a(s) : [−M,M]→ R is a function which satisfies the following condition.
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Condition 1. For all s ∈ [−M,M] = BM , the following holds:

a(s) ≥ 0, a(s) = 0⇐⇒ s = 0,(5)

a(s) = s2a0(s), a0(s) ≤ Ca,(6)

0 ≤ sa′0(s) ≤ Caa0(s), 0 ≤ sa′(s) ≤ Caa(s).(7)

Additionally, a0 is supposed to be even and a0, a1 ∈ CP (BM ), where a1(s) = a′(s)/s.
Here CP (X) denotes the space of functions whose derivatives up to the order P are
continuous and bounded on X if P ∈ N, and the Hölder space C [P],P−[P](X) if P &∈ N.

REMARK 1. In (1), we have a(s) = (p− 1)|s|p−2, and Condition 1 is satisfied
for p > P + 4, or p ∈ 2N, p ≥ 4, and P ∈ N is arbitrary.

Our main result is the following.

THEOREM 1. Assume that a = a(s) and K = K (s) satisfy Condition 1 and
(3), respectively, and suppose (4). Furthermore, suppose that the Cauchy data !, "

belong to the Sobolev space Hq+2(R) with support in some ball BR, and that they are
to a = a(s) compatible data, i.e., ‖!x‖L∞(BR) < M. Suppose 7/2 < q ≤ P + 1 with
P, q ∈ R. Then the Cauchy problem (2) has a unique local solution u with

u ∈ L∞((0, T ), Hq(R)), ∂2t u ∈ L∞((0, T ), Hq−2(R)).

This solution vanishes outside [0, T ]× supp(!,").

The structure of this paper will be presented at the end of Section 2, after some
explanatory remarks.

2. Transformation into a Second-Order System

To get a priori estimates of the solutionw, we transform (2) into a second order system.
This step will give us more information about the principal part.

Put u(t, x) = ∂xw(t, x), φ(x) = ∂x!(x), ψ(x) = ∂x"(x). If w solves (2),
then u is a solution to

utt (t, x) − K (‖u(t, ·)‖β
Lr (R))∂x (a(u(t, x))∂xu(t, x)) = 0,(8)

u(0, x) = φ(x), ut (0, x) = ψ(x).

In case φ(x0) = ψ(x0) = 0, we have (∂nt u)(0, x0) = 0 for all n ∈ N. Therefore it is
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natural to seek a solution of the form

u(t, x) = φ(x)g(t, x) + ψ(x)h(t, x),

g(0, x) = 1, h(0, x) = 0, gt (0, x) = 0, ht (0, x) = 1.

By direct calculation, we obtain utt = φgtt + ψhtt and

∂x (a(u)ux ) = a(u)(φgxx + ψhxx )

+ a′(u)ux (φgx + ψhx ) + 2a0(u)(φg + ψh)2(φx gx + ψxhx )

+ (φg + ψh)(a0(u)u(φxx g + ψxxh) + a1(u)(φx g + ψxh)2).

This leads us to the equation

φ(gtt − ku(t)∂x (a(u)gx ) − 2ku(t)a0(u)ug(φx gx + ψxhx ) − ku(t)cg)

+ ψ(htt − ku(t)∂x (a(u)hx ) − 2ku(t)a0(u)uh(φx gx + ψxhx ) − ku(t)ch) = 0,

where we have introduced

ku(t) = K (‖u(t, ·)‖β
Lq (R)),

c = c(x, g, h) = a0(u)u(φxx g + ψxxh) + a1(u)(φx g + ψxh)2.

Now we consider the vector U = (g, h)T of unknowns and define

A(x,U ) =

(
a(φ(x)g + ψ(x)h) 0

0 a(φ(x)g + ψ(x)h)

)

,(9)

B(x,U ) = 2a0(φ(x)g + ψ(x)h)(φ(x)g + ψ(x)h)

(
φx (x)g ψx (x)g
φx (x)h ψx (x)h

)

,(10)

C(x,U ) =

(
c(x,U ) 0
0 c(x,U )

)

.(11)

A solution u to (8) is given by u = φg + ψh if U = U (t, x) solves

∂2t U − ku(t)∂x (A(x,U )∂xU ) − ku(t)B(x,U )∂xU − ku(t)C(x,U )U = 0,(12)

U (0, x) = (1, 0)T , Ut (0, x) = (0, 1)T .

This system will be solved in the following sections. The system (12) will turn out to
be equivalent to (8), after we have shown the uniqueness of u.

We consider a linearized version of (12),

∂2t V − k(t)∂x (A(x,U )∂x V ) − k(t)B(x,U )∂x V − k(t)C(x,U )V = F(t, x),(13)
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with one of the following initial conditions:

V (0, x) = V0(x), Vt (0, x) = V1(x),(14)

V (t0, x) = V0(x), Vt (t0, x) = V1(x), 0 < t0 < T0,(15)

where

(16) 0 < k0 ≤ k(t) ∈ C1, k(t) + |k′(t)| ≤ k1, 0 ≤ t ≤ T0,

and U = U (t, x) is some given vector valued function with

(2.17)T
∥∥∥∥U (t, ·) −

(
1
t

)∥∥∥∥
C1([0,T ]×BR)

< ε / 1.

The rest of the paper is organized as follows. Temporarily, we assume a =
a(s) ∈ C∞(R). In the next section, we study a priori estimates of a solution V to (13),
using results of [12] and [4]. The existence of a solution V to (13) will be proved in
Section 4. By means of Nash–Moser–Hamilton theory and an argument of [4], we will
show the existence of a solution U to

∂2t U − k(t)∂x (A(x,U )∂xU ) − k(t)B(x,U )∂xU − k(t)C(x,U )U = 0,(18)

U (0, x) =
(
1
0

)
, Ut (0, x) =

(
0
1

)
,

where k = k(t) satisfies (16). In Section 6, we will get rid of the temporary assumption
a(s) ∈ C∞(R). Finally, we prove existence and uniqueness of a fixed point of the
mapping

k = k(t) 0→ k̃ = k̃(t) = K (‖φ(·)g(t, ·) + ψ(·)h(t, ·)‖β
Lr (R))

with (g, h)T = U as a solution to (18) in Section 7.

3. A Priori Estimates for (13)

Let U = (g, h)T satisfy (2.17)T , and be defined on [0, T ]× BR . For −T ≤ t ≤ 0, we
set U (t, x) = 2U (0, x) − U (−t, x), and get a C1 function defined on [−T, T ]× BR ,
with

∥∥U (t, ·) − (1, t)T
∥∥
C1([−T,T ]×BR)

< ε, modifying ε a bit. The next proposition
describes the behavior of the coefficient

a∗(t, x) = k(t)a(φ(x)g(t, x) + ψ(x)h(t, x))

near t = 0.
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PROPOSITION 1. Let a = a(s) and k = k(t) satisfy Condition 1 and (16), and
assume that φ,ψ ∈ C10(R) are compatible data, i.e., ‖φ‖L∞(BR) < M. Introduce

(φψ = {x ∈ BR : |φ(x)| + |ψ(x)| > 0}.

Then there are constants ε, α, τ > 0 such that for every U = (g, h)T with (2.17)τ
there is a γ ∈ C1((φψ ) such that a∗(t, x) satisfies

αa∗(t, x) − ∂t a∗(t, x) ≥ 0 : t < γ (x), (t, x) ∈ [−τ, τ ]× (φψ ,(19)

αa∗(t, x) + ∂t a∗(t, x) ≥ 0 : t > γ (x), (t, x) ∈ [−τ, τ ]× (φψ ,(20)

a∗(γ (x), x)(γ ′(x))2 ≤
1
4

: x ∈ (φψ .(21)

Moreover, the function γ has the same regularity as φ, ψ , and U; and the constants ε,
τ , α depend only on M, Ca, ‖(φ,ψ)‖C1(R), k0, k1.

Proof. This result has been proved in [12] and [4] in case of k = k(t) ≡ 1. For
k = k(t) satisfying (16), we fix γ = γ (x) as in [4], α = αold + k1/k0, choose τ > 0
sufficiently small, and follow the lines of the proof of Proposition 3.1 in [4].

REMARK 2. The curve {t = γ (x)} separates the (t, x) space into two parts.
The relations (19) and (20) allow to exploit different techniques in both parts in order
to derive a priori estimates of the solution V of (13). Condition (21) means that the
curve {t = γ (x)} is noncharacteristic.

The system (13) can be written in the form

∂2t V − a∗(t, x)∂2x V − B̃(t, x)∂x V − C̃(t, x)V = F(t, x),

where a∗(t, x) = k(t)a(φ(x)g(t, x) + ψ(x)h(t, x)), B̃(t, x) = k(t)B(x,U (t, x)) +
∂xa∗(t, x)I , C̃(t, x) = k(t)C(x,U (t, x)). It is convenient to generalize this system a
bit:

∂2t V − a∗(t, x)∂2x V − B∗(t, x)∂x V − C∗(t, x)V = F(t, x),(22)

V (t0, x) = V0(x), Vt (t0, x) = V1(x),(23)

where the coefficients a∗, B∗, C∗ satisfy the following condition.

Hypothesis 1. (a) a∗(t, x) = k(t)a(φ(x)g(t, x) + ψ(x)h(t, x)), and k = k(t), a =
a(s) satisfy (16), Condition 1, respectively,

(b) |B∗(t, x)|2 ≤ La∗(t, x) for some L ≥ 0 (Levi Condition),
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(c) φ,ψ ∈ C20(R) with supp(φ,ψ) ⊂ BR = {|x | < R}, and ‖φ‖L∞(BR) < M ,

(d) the coefficient a∗ admits a separating curve in the sense of Proposition 1,

(e) the numbers ε and τ from (2.17)τ , (19), (20) are chosen as in Proposition 1.

The inequality in (b) follows from Condition 1 and Glaeser’s inequality [5],

|e′(x)|2 ≤ 2 ‖e‖C2(R) e(x),

for every function e = e(x) ∈ C2(R) with e(x) ≥ 0 for all x .
Such initial value systems have been studied extensively in [12] and [4], and

a priori estimates for the solution V have been found. The crucial assumption is (d),
which allows to exploit two different methods to estimate the solution in the two zones
{t > γ (x)} and {t < γ (x)}. The final result is the following:

PROPOSITION 2. Let V = V (t, x) with ∂
j
t V ∈ L∞((t0, τ ), H2− j (BR)), j =

0, 1, 2, be a solution of (22), (23) and assume that Hypothesis 1 holds. Then there is a
constant C0 such that for all t ∈ [t0, τ ] we have

‖V (t, ·)‖2L2(BR)
(24)

≤ C0
(
‖V0‖2H1(BR)

+ ‖V1‖2L2(BR)
+

∫ t

t0
‖F(s, ·)‖2L2(BR)

ds
)

.

The constant C0 depends only on τ , α, L, and the norms ‖a∗‖L∞((0,τ ),C2(BR)), ‖B∗‖L∞((0,τ ),C1(BR)),
‖C∗‖L∞((0,τ )×BR).

A proof can be found in [4], see also [12] and [13].
Our final goal is to estimate ‖U‖C2(BR), where U solves (18). To this end, we

will differentiate (18) twice with respect to x , and then apply 〈Dx 〉δ , 1/2 < δ < 1,
which is the pseudodifferential operator with the symbol 〈ξ 〉 = (1 + |ξ |2)1/2. This
leads us to the following proposition.

PROPOSITION 3. Fix δ with 1/2 < δ < 1, and let V = V (t, x) with ∂
j
t V ∈

L∞((t0, τ ), H2+δ− j (BR)) ( j = 0, 1, 2) be a solution to (22), (23), and suppose Hy-
pothesis 1. Assume V0 ≡ V1 ≡ 0, and suppose that a∗, B∗, C∗, F, and V vanish
outside [t0, τ ]× BR′ , for some R′ < R. Then we have the estimate

‖V (t, ·)‖2H δ(BR)
≤ Cδ

∫ t

t0
‖F(s, ·)‖2H δ(BR)

ds,

with a constant Cδ which only depends on the numbers τ , α, L, R, R′, and the norms
‖a∗‖L∞((0,τ ),H5/2+ε(BR)), ‖B∗‖L∞((0,τ ),H3/2+ε(BR)), ‖C∗‖L∞((0,τ ),H δ(BR)), for any small
ε > 0.
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Here we have defined

‖V (t, ·)‖2H δ(BR)
=

∫

Rξ

〈ξ 〉2δ|V̂ (t, ξ)|2 dξ

(and similarly for the other norms), where V̂ (t, ξ) denotes the partial Fourier trans-
form of V = V (t, x), which was tacitly extended by zero outside [t0, τ ]× BR.

Proof. We set V δ = 〈Dx 〉δV and find

∂2t V
δ − a∗∂2x V

δ − B∗∂x V δ = Fδ
1 + Fδ

2 + Fδ
3 + Fδ

4(25)

= 〈Dx 〉δF +
[
〈Dx 〉δ, a∗∂2x

]
〈Dx 〉−δV δ +

[
〈Dx 〉δ, B∗∂x

]
〈Dx 〉−δV δ

+ 〈Dx 〉δ(C∗V ).

The symbol of the pseudodifferential operator in Fδ
2 is

(
〈ξ 〉δ ◦ a∗(t, x) − a∗(t, x)〈ξ 〉δ

)
〈ξ 〉−δξ2

= (∂ξ 〈ξ 〉δ)(Dxa∗)〈ξ 〉−δξ2 +
(
〈ξ 〉δ ◦ a∗ − a∗〈ξ 〉δ − (∂ξ 〈ξ 〉δ)(Dxa∗)

)
〈ξ 〉−δξ2

= δ(Dxa∗)
ξ3

〈ξ 〉2
+

(
〈ξ 〉δ ◦ a∗ − a∗(t, x)〈ξ 〉δ − (∂ξ 〈ξ 〉δ)(Dxa∗)

)
〈ξ 〉−δξ2

= symb(I1 + I2),

where ◦ denotes the Leibniz product. We shift a term δ(Dxa∗)DxV δ to the left of (25),
and Lemma 7 tells us

∥∥(I1 − δ(Dxa∗)Dx + I2)V δ
∥∥
L2(R)

≤ C ‖a∗‖C1(R)

∥∥V δ
∥∥
L2(R)

+ C ‖a∗‖H5/2+ε(R)

∥∥V δ
∥∥
L2(R)

.

Again by Lemma 7,
∥∥Fδ

3
∥∥
L2(R)

≤ C ‖B∗‖H3/2+ε(R)

∥∥V δ
∥∥
L2(R)

.

The space H δ(R) is an algebra under pointwise multiplication, since δ > 1/2. Then
we have ∥∥Fδ

4
∥∥
L2(R)

≤ C ‖C∗‖H δ(R)

∥∥V δ
∥∥
L2(R)

.

Now we apply Proposition 2,

∥∥V δ(t, ·)
∥∥2
L2(BR)

≤ C
∫ t

t0

∥∥Fδ(s, ·) − δ(Dxa∗(s, ·))DxV δ(s, ·)
∥∥2
L2(BR)

ds

≤ C
∫ t

t0
‖F(s, ·)‖2H δ(BR)

+
∥∥V δ(s, ·)

∥∥2
L2(R)

ds.
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Recall that V ≡ 0 outside some subset [t0, τ ] × BR′ ⊂ [t0, τ ] × BR . Then we can
estimate

∥∥V δ(s, ·)
∥∥
L2(R)

≤
∥∥V δ(s, ·)

∥∥
L2(BR)

+
∥∥V δ(s, ·)

∥∥
L2(R\BR)

≤
∥∥V δ(s, ·)

∥∥
L2(BR)

+ C ‖V (s, ·)‖L2(R)

=
∥∥V δ(s, ·)

∥∥
L2(BR)

+ C ‖V (s, ·)‖L2(BR) ≤ C
∥∥V δ(s, ·)

∥∥
L2(BR)

.

An application of Gronwall’s Lemma concludes the proof.

Now we give an estimate of higher order Sobolev norms.

PROPOSITION 4. Let ε, τ be determined as in Proposition 1, and suppose that
U satisfies (2.17)τ . Let q ∈ N, and V with ∂

j
t V ∈ L∞((t0, τ ), Hq+2− j (BR)), j =

0, 1, 2, be a solution to (13), (15). Then the estimate

‖V (t, ·)‖2Hq (BR) ≤ Cq(1+ ‖U‖2L∞((t0,t),Hq+2(BR))
)×(26)

×
(
‖V0‖2Hq+1(BR)

+ ‖V1‖2Hq (BR) +
∫ t

t0
‖F(s, ·)‖2Hq (BR) ds

)

holds for 0 ≤ t0 ≤ t ≤ τ , where Cq depends only on τ , α, L, k0, k1, and the norms

‖U‖L∞((0,τ ),H3(BR)) , ‖A‖Cq+2(BR×[1−ε,1+ε]×[−ε,τ+ε]) ,

‖B‖Cq (BR×[1−ε,1+ε]×[−ε,τ+ε]) , ‖C‖Cq (BR×[1−ε,1+ε]×[−ε,τ+ε]) .

Proof. The estimate (26) holds for q = 0, see Proposition 2. Assume that (26) is true
for q replaced by q − 1. We set V q(t, x) = ∂

q
x V (t, x) and obtain

∂2t V
q − k(t)A(x,U )∂2x V

q − k(t) ((q + 1)(∂x A(x,U (t, x))) + B(x,U )) ∂x V q

− k(t)
(
(q(q + 1)/2)(∂2x A(x,U (t, x))) + q(∂x B(x,U (t, x))) + C(x,U )

)
V q

= Fq = ∂
q
x F + I1 + I2 + I3 + I4

= ∂
q
x F +

q∑

l=3
Cqlk(t)(∂ lx A(x,U (t, x)))V q+2−l

+
q∑

l=2
Cqlk(t)(∂ l+1x A(x,U (t, x)) + ∂ lx B(x,U (t, x)))V q+1−l

+
q∑

l=1
Cqlk(t)(∂ lxC(x,U (t, x)))V q−l .
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By Proposition 2, we deduce that

∥∥Vq(t, ·)
∥∥2
L2(BR)

≤ C0
(
‖V0‖2Hq+1(BR)

+ ‖V1‖2Hq (BR) +
∫ t

t0

∥∥Fq(s, ·)
∥∥2
L2(BR)

ds
)

.

For the estimate of I1, I2, we have to consider terms of the form (∂mx A)Vq+2−m with
m = 3, . . . , q + 1. From Lemma 5 and Sobolev’s embedding theorem,

∥∥∥(∂mx A(·,U (t, ·)))V q+2−m(t, ·)
∥∥∥
L2(BR)

≤
∥∥∂mx A(·,U (t, ·))

∥∥
L∞(BR)

∥∥∥Vq+2−m(t, ·)
∥∥∥
L2(BR)

≤ C(‖U (t, ·)‖L∞(BR))(1+ ‖U (t, ·)‖Hm+1(BR)) ‖V (t, ·)‖Hq+2−m (BR) .

Here and in the following, C(‖U (t, ·)‖L∞(BR)) denotes a constant that depends in a
nonlinear and continuous way on ‖U (t, ·)‖L∞(BR). The terms I3 and I4 can be esti-
mated similarly. Then it follows that

‖V (t, ·)‖2Hq (BR) ≤ C0
(
‖V0‖2Hq+1(BR)

+ ‖V1‖2Hq (BR)

)

+ C0
∫ t

t0
‖F(s, ·)‖2Hq (BR) + ‖V (s, ·)‖2Hq−1(BR)

ds

+ C(‖U‖L∞((t0,t),C2(BR)))×

×
q+1∑

m=3
(1+ ‖U‖2L∞((t0,t),Hm+1(BR))

)

∫ t

t0
‖V (s, ·)‖2Hq+2−m (BR)

ds.

From the induction assumption,

‖U‖2L∞((t0,t),Hm+1(BR))

∫ t

t0
‖V (s, ·)‖2Hq+2−m (BR)

ds

≤ Cq ‖U‖2L∞((t0,t),Hm+1(BR))

(
1+ ‖U‖2L∞((t0,t),Hq+4−m (BR))

)
×

×
(
‖V0‖2Hq (BR) + ‖V1‖2Hq−1(BR)

+
∫ t

t0
‖F(s, ·)‖2Hq−1(BR)

ds
)

.

Now we interpolate between Hq+2(BR) and H3(BR), in order to estimate the product
of ‖U‖Hm+1(BR) and ‖U‖Hq+4−m (BR), and the proof is complete.

4. Existence of Solutions to (13)

PROPOSITION 5. Let a = a(s) ∈ C∞(R) and k = k(t) satisfy Condition
1 and (16), respectively, and let φ,ψ ∈ C∞

0 (R) be to a(s) compatible data, i.e.,
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‖φ‖L∞(BR) < M. Assume supp(φ,ψ) ⊂ BR. Choose ε, τ as in Proposition 1,
and suppose that U ∈ C2([0, τ ],C∞(BR)) satisfies (2.17)τ . Finally, assume that
F ∈ C([t0, τ ],C∞(BR)), V0, V1 ∈ C∞(BR). Then the problem (13), (15) has a
unique solution V ∈ C2([t0, τ ],C∞(BR)).

This is a generalization of a similar result in [4], where k = k(t) ≡ 1; therefore
we only sketch the proof. We approximate the coefficient a = a(s) by Gevrey functions
am = am(s) ∈ Gd(R), 1 < d < 2, (m → ∞), such that Condition 1 holds uniformly
in m (see Section 6), and approximate the functions φ, ψ , U , F , V0, V1 by Gevrey
functions φm , ψm , Um , Fm , V0,m , V1,m . Then we consider the Cauchy problem

∂2t Vm − k(t)∂x (Am(x,Um)∂x Vm) − k(t)Bm(x,Um)∂x Vm(27)

− k(t)Cm(x,Um)Vm = Fm(t, x),

Vm(t0, x) = V0,m(x), ∂t Vm(t0, x) = V1,m(x),

which has a unique solution Vm ∈ C2([t0, τ ],Gd(BR)), according to [9]. By Propo-
sition 4, we get uniform in m estimates of Vm in Sobolev spaces. Standard arguments
give the convergence of the sequence {Vm}m to a C∞ solution V , which is unique due
to the estimate of Proposition 2.

5. Existence of Solutions to (18)

Generalizing (18), we consider the Cauchy problem

∂2t U − k(t)∂x (A(x,U )∂xU ) − k(t)B(x,U )∂xU − k(t)C(x,U )U = 0,(28)

U (t0, x) = U0(x), Ut (t0, x) = U1(x),
∥∥∥U0(·) − (1, t0)T

∥∥∥
C1(BR)

< ε0,
∥∥∥U1(·) − (0, 1)T

∥∥∥
L∞(BR)

< ε0.(29)

The linearization of this Cauchy problem has the form (13). Proposition 4 tells
us that the solution operator to (13) is a smooth tame map. Then it is standard to
show that (28) has a unique local C∞ solution, by means of Nash–Moser–Hamilton
theory [7]. A detailed proof of the following proposition (for the special case k =
k(t) ≡ 1) has been given in [4] and [12].

PROPOSITION 6. Let a = a(s) ∈ C∞(R) and k = k(t) satisfy Condition
1, (16), respectively, and let (φ,ψ) ∈ C∞

0 (R) with supp(φ,ψ) ⊂ BR be to a(s)
compatible data, i.e., ‖φ‖L∞(BR) < M.

Then there is an ε0, depending only on M, Ca, ‖(φ,ψ)‖C1(BR), such that:
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For every U0, U1 ∈ C∞(BR) with (29) there is some T1 > t0 and a unique local
solution U ∈ C2([t0, T1],C∞(BR)) to the Cauchy problem (28).

Unfortunately, this result gives us no information on the life–span of the solution
U . This gap is closed in the next result.

PROPOSITION 7. Under the assumptions of Proposition 6, there is a constant
T0 > 0 depending only on the numbers M, R, k0, k1, and the norms ‖(a0, a1)‖C5/2+ε(BM ),
‖(φ,ψ)‖H9/2+ε(BR); and there is a unique solution U ∈ C2([0, T0],C∞(BR)) to (28)
with t0 = 0.

This will follow easily from the Lemmas 1 and 3.

LEMMA 1. Choose the constants ε, τ as in Proposition 1, and let the as-
sumptions of Proposition 6 hold. Let 0 < T < τ , and U ∈ C2([0, T ),C∞(BR)),
0 < T < τ , be a solution to (18) fulfilling (2.17)T . Then there are continuous and
increasing functions .q : R+ → R+, (independent of T ) such that the estimates

‖U (t, ·)‖2Hq (BR) ≤ Cq.q
(
‖U‖L∞((0,t),C2(BR))

)
, q ∈ N+,(30)

max
[0,t]

∥∥∥U (s, ·) − (1, s)T
∥∥∥
2

C2(BR)
≤ tC5/2+ε.5/2+ε(‖U‖2L∞((0,t),C2(BR))

)(31)

hold for all 0 ≤ t < T , where the constants Cq only depend on ‖(a0, a1)‖Cq (BM ),
‖(φ,ψ)‖Hq+2(BR), and R.

The proof is based on an a priori estimate similar to that of Proposition 4 for
the Cauchy problem (13), but now we take advantage from the fact U ≡ V .

LEMMA 2. The following estimates hold for all functionsw for which the right–
hand side is bounded. Here X ⊂ R is a bounded domain.

‖w‖Cm (X) ‖w‖Hn(X) ≤ C ‖w‖H2(X) ‖w‖Hm+n−1(X) , m ≥ 1, n ≥ 2,

‖w‖Cm (X) ‖w‖Hn(X) ≤ C ‖w‖H3(X) ‖w‖Hm+n−2(X) , m ≥ 2, n ≥ 3.

Proof. We only show the first estimate, the second is proved analogously. With certain
positive θ1, θ2, θ1 + θ2 = 1, we can interpolate

Hm+1(X) =
[
H2(X), Hm+n−1(X)

]

θ1
, Hn(X) =

[
H2(X), Hm+n−1(X)

]

θ2
.

It remains to apply Sobolev’s embedding theorem, ‖w‖Cm (X) ≤ C ‖w‖Hm+1(X).
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Proof of Lemma 1. We introduce the notation (ξ, η)U for the R2 scalar product ξg +
ηh, and Ax (x,U ) = a′(u)((φx ,ψx )U )I , AU (x,U ) = a′(u)(φ,ψ). Then (18) gets the
form

∂2t U − k(t)A(x,U )∂2xU

− k(t)Ax (x,U )Ux − k(t)(AU (x,U )Ux + B(x,U ))Ux

− k(t)C(x,U )U = 0.

For q ∈ N, q ≥ 1, Uq = ∂
q
x U solves the equation

∂2t U
q − k(t)A(x,U )∂2xU

q(32)

− k(t)((q + 1)(∂x A(x,U )) + B(x,U ))∂xUq − k(t)AU (x,U )(∂xUq)Ux

= Fq = I1 + I2 + I3 + I4

=
q∑

l=2
Cqlk(t)(∂ lx A(x,U ))Uq+2−l

+
q∑

l=1
Cqlk(t)(∂ lx (Ax (x,U ) + B(x,U )))Uq+1−l

+
q−1∑

l+m=0
Cqlmk(t)(∂

q−l−m
x AU (x,U ))Ul+1Um+1 + k(t)∂qx (C(x,U )U ).

From (7) we get |a′(s)|2 ≤ C3aa(s); hence Hypothesis 1 is valid, and we are allowed to
apply Proposition 2, and obtain

∥∥Uq(t, ·)
∥∥2
L2(BR)

≤ C0
∫ t

0

∥∥Fq(s, ·)
∥∥2
L2(BR)

ds.

Now we estimate I1 and I3 (the other two terms are easier to handle and left to the
reader). Obviously,

‖I1‖L2(BR)

≤





C(‖a‖C2(BM ) , ‖(φ,ψ)‖C2(BR) , ‖U‖C2(BR)) ‖U‖2Hq (BR) : q = 2,

C(‖a‖C3(BM ) , ‖(φ,ψ)‖C3(BR) , ‖U‖C2(BR))(1+ ‖U‖2Hq (BR)) : q = 3.

For q ≥ 4 and l = 2, we have
∥∥∥(∂x A(x,U ))Uq+2−l

∥∥∥
2

L2(BR)

≤ C(‖a‖C2(BM ) , ‖(φ,ψ)‖C2(BR) , ‖U‖C2(BR)) ‖U‖2Hq (BR) .
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If 3 ≤ l ≤ q and q ≥ 4, we employ the Lemmas 2 and 5:
∥∥∥(∂x A(x,U ))Uq+2−l

∥∥∥
2

L2(BR)
≤ C(‖a(u(t, ·))‖Hl (BR)) ‖U‖2Cq+2−l (BR)

≤ C(‖a‖Cl (BM ) , ‖U‖L∞(BR) , ‖(φ,ψ)‖Hl (BR))(1+ ‖U‖2H3(BR)
) ‖U‖2Hq (BR) .

Concerning I3, suppose 0 ≤ l + m ≤ q − 2. Then Lemma 5 gives
∥∥∥(∂

q−l−m
x AU (x,U ))Ul+1Um+1

∥∥∥
2

L2(BR)

≤ C(‖a‖Cq+1(BM ) , ‖U‖L∞(BR) , ‖(φ,ψ)‖Hq (BR))(1+ ‖U‖2Hq−l−m (BR)
)×

×
∥∥∥Ul+1

∥∥∥
2

L∞(BR)

∥∥∥Um+1
∥∥∥
2

L∞(BR)
.

Applying Lemma 2 twice, we find

‖U‖Hq−l−m (BR) ‖U‖Cl+1(BR) ‖U‖Cm+1(BR) ≤ C ‖U‖2H2(BR)
‖U‖Hq (BR) .

In case of l + m = q − 1, we suppose m ≤ l and can estimate
∥∥∥(∂

q−l−m
x AU (x,U ))Ul+1Um+1

∥∥∥
2

L2(BR)

≤ C(‖a‖C2(BM ) , ‖U‖C1(BR) , ‖(φ,ψ)‖C1(BR))
∥∥∥Ul+1

∥∥∥
2

L2(BR)

∥∥∥Um+1
∥∥∥
2

L∞(BR)

≤ C(‖a‖C2(BM ) , ‖U‖C1(BR) , ‖(φ,ψ)‖C1(BR)) ‖U‖2H2(BR)
‖U‖2Hq (BR) .

Summing up we find
∥∥Fq

∥∥2
L2(BR)

≤ C(‖(a0, a1)‖Cq (BM ) , ‖(φ,ψ)‖Hq+2(BR)).̃q(‖U‖C2(BR))(1+ ‖U‖2Hq (BR))

for q = 3, and
∥∥Fq

∥∥2
L2(BR)

≤ C(‖(a0, a1)‖Cq (BM ) , ‖(φ,ψ)‖Hq+2(BR)).̃q(‖U‖H3(BR))(1+ ‖U‖2Hq (BR))

in case q ≥ 4. This proves (30). For the proof of (31), we remark that φ ≡ ψ ≡ 0
near the boundary ∂B(R); hence ∂2t U ≡ 0 and U (t, x) = (1, t)T for such x . Then
Poincaré’s inequality yields

∥∥∥U (t, ·) − (1, t)T
∥∥∥
2

L2(BR)
≤ CR ‖∂xU (t, ·)‖2L2(BR)

.

Now we consider (32) with q = 2 and apply Proposition 3. This gives us an esti-
mate of

∥∥U (t, ·) − (1, t)T
∥∥
H5/2+ε(R)

. An application of Sobolev’s embedding theorem
completes the proof.
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LEMMA 3. Let the assumptions of Proposition 6 be satisfied. Assume that U ∈
C2([0, T ),C∞(BR)), 0 < T < τ , is a solution to (18) which fulfills

∥∥∥U (t, ·) − (1, t)T
∥∥∥
C1([0,T )×BR)

< ε0,(33)

sup
[0,T )

‖U (t, ·)‖C2(BR) < ∞,(34)

where ε0 is from Proposition 6. Then U can be extended to some function Ũ ∈
C2([0, T ′],C∞(BR)), T < T ′ < τ , which solves (18) for (t, x) ∈ [0, T ′]× BR.

Proof. According to Lemma 1, ‖U (t, ·)‖Hq (BR) ≤ Cq for 0 ≤ t < T and all q ∈ N.
The equation (18) then gives

∥∥∂2t U (t, ·)
∥∥
Hq (BR)

≤ Cq for 0 ≤ t < T and all q.
Therefore,U can be smoothly extended in a unique way up to t = T . Now we consider
the Cauchy problem

∂2t W − ∂x (A(x,W )∂xW ) − B(x,W )∂xW − C(x,W )W = 0,

W (T, x) = U (T, x), Wt (T, x) = Ut (T, x).

By Proposition 6, this problem has a solution W ∈ C2([T, T1],C∞(BR)), extending
U onto the interval [0, T1].

Proof of Proposition 7. From Proposition 6 we conclude that there is a local solution
U ∈ C2([0, T1],C∞(BR)) to (18) which satisfies (31). By Lemma 3, this solution can
be extended as long as (33) and (34) are satisfied. A lower estimate T0 > 0 of the life
span of U can then be derived from (31).

6. Solutions to (18) in Sobolev spaces

In the above calculations, we always supposed a = a(s) ∈ C∞(R). Now we get rid of
this assumption, using an approximation argument.

PROPOSITION 8. Let a = a(s) and k = k(t) satisfy Condition 1 with P >

5/2, (16), respectively, and suppose (φ,ψ) ∈ Hq+2(BR) with 5/2 < q ≤ P, and
supp(φ,ψ) ⊂ BR, and ‖φ‖L∞(BR) < M.

Then there is a T0 > 0, depending only on M, R, ‖(a0, a1)‖C5/2+ε(BM ), and
‖(φ,ψ)‖H9/2+ε(BR), such that the Cauchy problem (18) has a unique solution U with

(35) U ∈ L∞((0, T0), Hq(BR)), ∂2t U ∈ L∞((0, T0), Hq−2(BR)).

Proof. We choose an even function . = .(s) from the Gevrey space Gd
0 ,

|∂ks .(s)| ≤ Ck+1k!d , k ∈ N, s ∈ R, 1 < d < 2,
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such that supp. ⊂ (−1, 1), s.′(s) ≤ 0 ≤ .(s),
∫ ∞
−∞ .(s) ds = 1; and fix the mollifiers

.m(s) = m.(ms) for large m ∈ N. Then we put

a0,m(s) = (a0 ∗ .m)(s) =
∫ ∞

−∞
a0(r).m(s − r) dr,

am(s) = s2a0,m(s), a1,m(s) = a′m(s)/s.

It is straight–forward to check that Condition 1 continues to hold for these am , allowing
some (independent of m) modification in Ca , and replacing M by M ′ < M . The
assumption that a0 be even is used to prove (7) for a0,m . We have the estimate

∥∥a0,m
∥∥
CP (BM ′ )

≤ C ‖a0‖CP (BM ) , ∀m ≥ m0(M ′), 0 < M ′ < M.

From sa′0(s) = a1(s) − 2a0(s), |mr | ≤ 1 on supp.′(mr) and the representation

sa′0,m(s) = s
∫
a′0(s − r)m.(mr) dr =

∫
(s − r)a′0(s − r)m.(rm) dr

+
∫
a0(s − r)m.(rm) dr +

∫
a0(s − r)rm2.′(rm) dr

we then obtain
∥∥a1,m

∥∥
CP (BM ′ )

≤ C ‖(a0, a1)‖CP (BM ) for all m ≥ m0(M ′).
Similarly, we put φm(x) = (φ ∗ .m)(x), ψm(x) = (ψ ∗ .m)(x), and get the

estimates

‖(φm,ψm)‖Hq+2(BR) ≤ C ‖(φ,ψ)‖Hq+2(BR) , m ≥ m1(R, supp(φ,ψ)).

Define Am , Bm , Cm as in (9), (10), (11), using am , φm , ψm instead of a, φ, ψ . Accord-
ing to Proposition 7, the Cauchy problem

∂2t Um − k(t)∂x (Am(x,Um)∂xUm)

− k(t)Bm(x,Um)∂xUm − k(t)Cm(x,Um)Um = 0,

Um(0, x) =
(
1
0

)
, Um,t (0, x) =

(
0
1

)

has a unique solutionUm ∈ C2([0, T0],C∞(BR)), where T0 does not depend onm; and
we get uniform inm estimates for the norms ‖Um(t, ·)‖Hq (BR) and

∥∥∂2t Um(t, ·)
∥∥
Hq−2(BR)

.
Then the Arzela–Ascoli theorem gives us a sequence {Um′} converging in the space
C1([0, T0], Hq−2−ε(BR)) to some limitU . Interpolation implies convergence inC([0, T0], Hq−ε(BR)),
in particular, convergence in C([0, T0],C2(BR)), since q > 5/2. Therefore, the
limit U is a classical solution, and the weak compactness of the unit ball in Hilbert
spaces yields (35). The uniqueness of U follows from Proposition 2 and Gronwall’s
Lemma.
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7. Proof of Theorem 1

Now we have all tools to consider (12), using fixed point arguments. First, let us define
some sets for the coefficient ku(t) and the vector U (t, x).

DEFINITION 1. Let Xk0,k1,T be the in C1([0, T ]) closed set

Xk0,k1,T = {k ∈ C1([0, T ]) : k0 ≤ k(t), k(t) + |k′(t)| ≤ k1}.

DEFINITION 2. Let Yε,T be the set

Yε,T = {∂ jt U ∈ L∞((0, T ), Hq− j (BR)), j = 0, 2,

U (0, x) = (1, 0)T , Ut (0, x) = (0, 1)T , U satisfies (2.17)T with ε}.

We choose k0 = K0 from (3), and fix k1 > k0 in such a way that a small
C1–neighborhood of the function k(t) = K (‖φ + tψ‖β

Lr (R)) belongs to Xk0,k1,T . For
these k0, k1, we fix ε as in Proposition 1. Restricting T if necessary, we have shown in
Lemma 1 and Proposition 8 that the mapping

P : k = k(t) 0→ U = U (t, x) solves (18)

maps Xk0,k1,T into Yε,T .

LEMMA 4. P is Lipschitz continuous in the following sense:
∥∥(Pk)(t, ·) − (Pk∗)(t, ·)

∥∥
L2(BR)

≤ Ct
∥∥k − k∗

∥∥
L∞((0,t)) .

Proof. Set U = Pk, U∗ = Pk∗. Then the difference Z = U −U∗ solves

∂2t Z − k(t)∂x (A(x,U )∂x Z) − k(t)B(x,U )∂x Z − k(t)C(x,U )Z

= k(t)∂x ((A(x,U ) − A(x,U∗))∂xU∗) + k(t)(B(x,U ) − B(x,U∗))∂xU∗

+ k(t)(C(x,U ) − C(x,U∗))U∗

+ (k∗ − k)∂x (A(x,U∗)∂xU∗) + (k∗ − k)B(x,U∗)∂xU∗

+ (k∗ − k)C(x,U∗)∂xU∗.

Exploiting Z(0, x) = Zt (0, x) = 0 and the identity

∂x ((A(x,U ) − A(x,U∗))∂xU∗) = .(x,U,U∗)Z∂2xU
∗ + η(x,U,U∗)Z∂xU∗

+ AU (x,U )(∂x Z)∂xU∗ + (AU (x,U ) − AU (x,U∗))(∂xU∗)∂xU∗

as well as Proposition 2 we get the desired estimate.
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Next, we consider the map

Q : U = U (t, x) 0→ k = K (‖φ(·)g(t, ·) + ψ(·)h(t, ·)‖β
Lr (R)).

The map Q transfers Yε,T into a subset of Xk0,k1,T if T is small enough, and ε has been
chosen appropriately. Furthermore, Q is Lipschitz continuous in the sense of

∥∥QU − QU∗∥∥
L∞((0,T ))

≤ C
∥∥U −U∗∥∥

L∞((0,T )×BR)
,

since r > 1 and β > 1. Then the composition S = Q ◦ P maps Xk0,k1,T into itself and
contracts in the C0 norm,

∥∥Sk − Sk∗
∥∥
C0([0,T ]) ≤

1
2

∥∥k − k∗
∥∥
C0([0,T ]) ,

for small T .
Now we define a sequence {kn} ⊂ Xk0,k1,T by

k0(t) = K (‖φ(·) + tψ(·)‖β
Lr (R)), kn(t) = Qnk0(t),

which converges in C0([0, T ]) to some limit k∗. By Lemma 4, the functionsUn = Pkn
converge in L∞((0, T ), L2(BR)) to some limit U∗. The functions Un are uniformly
bounded in L∞((0, T ), Hq(BR)), according to Lemma 1; hence (by interpolation) they
converge in L∞((0, T ), Hq−γ (BR)) to U∗, for any γ > 0. It is then standard to show
that

(36) U∗ ∈ L∞((0, T ), Hq(BR)), ∂2t U
∗ ∈ L∞((0, T ), Hq−2(BR),

andU∗ is a classical solution to (12). Obviously,U∗ is unique in the space of functions
which satisfy (36) with q replaced by 3.

8. Appendix

The following technical lemma is proved by Nirenberg–Gagliardo interpolation.

LEMMA 5. Let f = f (x, u) : ( × M → R be some Cq function, where
( ⊂ Rn, M ⊂ RN are domains with smooth boundary, and ( is bounded. Assume
q > n/2. Then there is some continuous function .q : R+ → R+ depending on
‖ f ‖Cq ((×M) such that

‖ f (x, u(x))‖Hq (() ≤ .q(‖u‖L∞(())(1+ ‖u‖Hq (())

for all functions u ∈ Hq(() taking values inM.
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LEMMA 6. Let ( ⊂ Rn be a bounded domain with sufficiently smooth bound-
ary, and M ⊂ R be an arbitrary domain. Let 1 < p < ∞, k ∈ N with k > n/p,
0 < γ < γ ′ < 1, and take a function f = f (x, u) : ( × M → R with f ∈
Ck,γ ′

(( ×M) ⊂ C2(( ×M). Then there is a continuous function .p,k,γ such that

‖ f (·, u(·))‖Wk,γ
p (()

≤ .p,k,γ (‖u‖Wk,γ
p (()

, ‖u‖C1(())

for all functions u ∈ Wk,γ
p (() ∩ C1(() that take values inM.

Proof. We use the following facts:

‖u‖p
Wk,γ
p (()

=
∑

|α|≤k

∥∥∂α
x u

∥∥p
Lp(()

+
∑

|α|=k

∫∫

(2

|∂α
x u(x) − ∂α

y u(y)|p

|x − y|n+pγ dx dy,(37)

∂ax f (x, u(x)) =
|α|∑

i=0

∑

|β|=i

∑

α′+α′′=α−β

f (α′,i)(x, u)×(38)

×
∑

β1+···+βi=β+α′′,|β j |>0
(∂β1
x u) · · · (∂βi

x u)Cα′α′′β j ,

Wk,γ
p (() ⊂ Wl,λ

q (() if k + γ ≥ l + λ,
1
p
≥
1
q

>
1
p
−

(k + γ ) − (l + λ)

n
,

∫∫

(2

|u1(x) · · · ui (x)|p|ui+1(y) · · · u j (y)|p|w(x) − w(y)|p

|x − y|n+pγ dx dy(39)

≤ Cε ‖u1‖
p
Lpq1 (() · · ·

∥∥u j
∥∥p
Lpq j (()

‖w‖p
W 0,γ+ε
pq j+1 (()

,
∑ 1

q j
= 1.

We omit the proof that
∑

|α|≤k

∥∥∂α
x f (x, u(x))

∥∥p
Lp(()

≤ .k(‖u‖Wk
p(())

since it is quite analogous to the following considerations.
To discuss the double integral in (37), we have to deal with terms of the follow-

ing two types (the notations are related to (38)):

I1 =
∫∫

(2

| f (α′,i)(x, u(x)) − f (α′,i)(y, u(y))|p|∂β1
x u(x)|p · · · |∂βi

x u(x)|p

|x − y|n+pγ dx dy,

I2 =
∫∫

(2

| f (α′,i)(y, u(y))|p|∂β1
x u(x) · · · ∂βi

x u(x) − ∂
β1
y u(y) · · · ∂βi

y u(y)|p

|x − y|n+pγ dx dy.

We distinguish 4 cases:
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Case A: |α′′| ≥ 1 and i ≥ 2 In this case, f (α′,i) is Lipschitz continuous, and

| f (α′,i)(x, u(x)) − f (α′,i)(y, u(y))| ≤ C(1+ ‖u‖C1)|x − y|.

We choose q−1j = |β j |/|α − α′| for j = 1,. . . ,i . Since i ≥ 2, we get |β j | ≤
|α − α′| − 1; hence

|β j |
(

|α − α′| −
n
p

)
< |α − α′|

(
k −

n
p

)
,

1
q j

(
n
p
− |α − α′|

)
>

n
p
− k,

1
pq j

>
1
p
−
k − |β j |

n
,

therefore ∂
β j
x u ∈ W 0,γ+ε

pq j (() ∩ Lpq j ((). Then Hölder’s inequality and repeated
application of (39) give

|I1| + |I2| ≤ C(1+ ‖u‖pC1(()
) ‖u‖i p

Wk,γ
p (()

.

Case B: |α′′| ≥ 1 and i = 1 In this case, β1 = α − α′. We continue as in Case A,
except that we do not need neither Hölder’s inequality nor (39).

Case C: |α′′| = 0 and i ≥ 1 Now all |β j | = 1, but f (α′,i) is merely γ ′–Hölder con-
tinuous. Then we deduce that

|I1| ≤ C ‖u‖i pC1(()

∫∫

(2

(1+ ‖u‖pC1)|x − y|pγ ′

|x − y|n+pγ dx dy.

The same reasoning as in Case A shows

|I2| ≤ C ‖ f ‖pCk (()
‖u‖i p

Wk,γ
p (()

.

Case D: |α′′| = 0 and i = 0 In this case, α = α′, and I2 disappears. We continue as
in Case C.

LEMMA 7. Let a = a(x) ∈ H5/2+ε(R), b = b(x) ∈ H3/2+ε(R), for some
small ε > 0, and fix 0 < δ < 1. Let P(Dx ) and P ′(Dx ) be the pseudodifferential
operators with the symbols 〈ξ 〉δ , ∂ξ 〈ξ 〉δ , respectively. Then we have the estimates

∥∥∥(P ◦ a − aP − (Dxa)P ′)〈Dx 〉−δ∂2x v
∥∥∥
L2(R)

≤ C ‖a‖H5/2+ε(R) ‖v‖L2(R) ,

∥∥(P ◦ b − bP)〈Dx 〉−δ∂xv
∥∥
L2(R)

≤ C ‖b‖H3/2+ε(R) ‖v‖L2(R) ,

for all v ∈ L2(R).
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Proof. We only prove the first estimate, the second is proved similarly. Let Q(Dx ) be
the pseudodifferential operator with the symbol 〈ξ 〉−δξ2, and

R = (P ◦ a − aP − (Dxa)P ′)Q.

For arbitrary w ∈ L2(R), we then have from Parseval’s identity

∣∣(Rv,w)L2(R)

∣∣

=
∣∣∣∣

∫
ŵ(ξ)

∫
â(ξ − η)(P(ξ) − P(η) − P ′(η)(ξ − η))Q(η)v̂(η) dη dξ

∣∣∣∣

≤

(∫ ∫
|ŵ(ξ)|2

|(P(ξ) − P(η) − P ′(η)(ξ − η))Q(η)|2

〈ξ − η〉5+2ε
dη dξ

)1/2
×

×
(∫ ∫

〈ξ − η〉5+2ε|â(ξ − η)|2|v̂(η)|2 dη dξ

)1/2

≤

(

sup
ξ

∫

Rη

|(P(ξ) − P(η) − P ′(η)(ξ − η))Q(η)|2

〈ξ − η〉5+2ε
dη dξ

)1/2
×

× ‖w‖L2(R) ‖v‖L2(R) ‖a‖H5/2+ε(R) .

Denote the numerator in the integrand of the first factor by I (ξ, η). We distinguish
three cases.

Case A: |ξ − η| ≤ |ξ |/2 Then we have (2/3)|η| ≤ |ξ | ≤ 2|η|, and

|P(ξ) − P(η) − P ′(η)(ξ − η)| = |P ′′(ζ )(ξ − η)2| ≤ C〈η〉δ−2〈ξ − η〉2,

|Q(η)| ≤ C〈η〉2−δ.

Hence |I (ξ, η)| ≤ C〈ξ − η〉2.

Case B: |ξ − η| ≥ |ξ |/2 and |η| ≤ |ξ | Each of the terms P(ξ)Q(η), P(η)Q(η), and
P ′(η)Q(η)(ξ − η) can be estimated by C〈ξ − η〉2.

Case C: |ξ − η| ≥ |ξ |/2 and |η| ≥ |ξ | Then we have (2/3)|η| ≤ |ξ − η| ≤ 2|η|, and
we continue as in B.

The proof is complete.
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[5] GLAESER G., Racine carrée d’une fonction différentiable, Ann. Inst. Fourier (Grenoble) 13 (1963),
203–210.

[6] GREENBERG J.H. AND HU S.C., The initial value problem for a stretched string, Quart. Appl. Math.
38 (1980), 289–311.

[7] HAMILTON R.S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7
(1982), 65–222.

[8] JOHN F., Nonlinear wave equations, formation of singularities, University lecture series, American
Mathematical Society, Lehigh University 1989.

[9] KAJITANI K., Cauchy problem for nonstrictly hyperbolic systems in Gevrey classes, J. Math. Kyoto
Univ. 23 (1983), 599–616.

[10] KAJITANI K., Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equa-
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