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Abstract

We consider the wave equation in an unbounded conical domain, with initial conditions
and boundary conditions of Dirichlet or Neumann type. We give a uniform decay estimate
of the solution in terms of weighted Sobolev norms of the initial data. The decay rate is the
same as in the full space case.

1 Introduction

The asymptotic behavior of solutions to initial boundary value problems for linear wave equations

(1.1)

{

(∂2
t −△)u(t, x) = 0, (t, x) ∈ R × Ω,

∂k
t u(0, x) = u(k)(x), x ∈ Ω, k = 0, 1,

with either Dirichlet or Neumann boundary conditions,

(1.2) u(t, x) = 0 or
∂u

∂n
(t, x) = 0, (t, x) ∈ R × ∂Ω,

for a domain Ω ⊂ R
n, has been studied widely.

For the Cauchy problem, i.e. for Ω = R
n, see for example Christodoulou [4], Klainerman

[13, 14, 15, 16, 17], Klainerman and Ponce [18] or Shatah [25, 26]. A thorough presentation of
various approaches can be found in [9].

Also the case of exterior domains, i.e. R
n \ Ω is compact, has been dealt with, see for example

Hayashi [8], Keel, Smith and Sogge [11, 10, 12], Shibata and Tsutsumi [27], and Sogge [28].

Decay rates for solutions in infinite homogeneous waveguides, i.e. domains of the type Ω = R
l×B,

where B ⊂ R
n−l is bounded, have been investigated by Lesky and Racke [20], and by Metcalfe,

Sogge and Stewart [21].
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2 1 INTRODUCTION

In all these papers also the fully nonlinear version, and in part also Klein-Gordon equations,
have been treated. The knowledge of decay rates for solutions to wave equations always is not
only of interest in itself, but is a useful ingredient of the proof of global existence theorems even
for fully nonlinear wave equations.

Here we study domains Ω which are conical sets,

Ω = {rω ∈ R
n : 0 < r <∞, ω ∈ Ω0},

where

Ω0 ⊂ Sn−1, ∂Ω 6= ∅ smooth, n ≥ 2.

While the energy E(t) :=
∫

Ω |ut|2 + |∇u|2 dx = E(0) of the solution to (1.1) is conserved, the
typical decay of the L∞-norm of the gradient of the solution is for the Cauchy problem and for
the case of an exterior domain like t−(n−1)/2,

∃C > 0 ∀ t ≥ 0 : ‖(ut(t, ·),∇u(t, ·))‖L∞(Ω) ≤ C(1 + t)−(n−1)/2 ‖(ut(0, ·),∇u(0, ·))‖W m,1(Ω)

for some m = m(n) ∈ N, where C is independent of the initial data. Here, for the case of an
exterior domain, the non-trapping condition is assumed.

For the infinite waveguides with l unbounded directions and Dirichlet boundary conditions, we
get a decay like t−l/2. In particular, in R

3 it is the same for the Cauchy problem and for the
region between two planes (l = n−1 = 2), while it is weaker for infinite cylinders (l = n−2 = 1).

In the case of a sectorial domain, it seems natural to perform a Fourier decomposition with
respect to the angular variables, similarly to the decomposition given in [20]. The Fourier
coefficients uj = uj(t, r) are solutions to one-dimensional radial wave equations,

(

∂2
t − ∂2

r − n− 1

r
∂r +

a

r2

)

uj(t, r) = 0, (t, r) ∈ R × R+,

where a = λ2
j is the eigenvalue of the Laplace–Beltrami operator on Ω0 with homogeneous

Dirichlet or Neumann boundary conditions. Solution formulas for this equation are known,
see Lamb [19] or Cheeger and Taylor [2], [3]. Seen from another point of view, these Fourier
coefficients can be construed as radially symmetric solutions to n–dimensional wave equations
with different inverse–square potentials,

(1.3)

(

∂2
t −△ +

a

|x|2
)

vj(t, x) = 0, (t, x) ∈ R × R
n,

where vj(t, x) = uj(t, |x|), as studied by Burq, Planchon, Stalker and Tahvildar–Zadeh [22, 23, 1],
who proved a decay rate of t−(n−1)/2 for such solutions, among other estimates.

The differences between our paper and the papers [22, 23] are twofold: first, in proving pointwise
estimates, we are able to study solutions without radial symmetry, which is made possible by a
technique developed in [20], and by a thorough analysis of the relation between the coefficient
a = λ2

j of the inverse–square potential and the decay constant (second).
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As an application of our method, we give a pointwise estimate of non-radial solutions to (1.3) in
Corollary 1.3. An open problem is how to exploit our technique for generalizations of the other
estimates from [22, 23] to the non-radial case.

As our main result, we get the decay rate t−(n−1)/2 of the L∞-norm of the solution to (1.1).

An investigation of the associated nonlinear problems would include, in particular, an interpo-
lation of this estimate with the energy estimate, and decay estimates of the solution to a wave
equation with a right–hand side.

The plan of the paper is as follows: in Section 2, we prove the decay of the Fourier coefficients
of u, by a careful investigation of a certain integral operator. In Section 3, we demonstrate how
these decay estimates of each Fourier coefficient lead to a decay estimate of the solution u.

The first of our two main theorems is the following:

Theorem 1.1. Put d = ⌈n−1
2 ⌉, the smallest integer greater than or equal to n−1

2 . Let △S denote
the Laplace-Beltrami operator on the unit sphere Sn−1, and call AS the self-adjoint realization
of −△S on Ω0 with either Dirichlet or Neumann boundary conditions on ∂Ω0. Then any energy
solution to (1.1) with u(0) ≡ 0 and Dirichlet boundary conditions satisfies the decay estimate

|u(t, x)| ≤ Ct−
n−1

2

d
∑

k=0

∥

∥

∥
(s−2AS)(n−1−k)/2∂k

s

(

s
n−1

2 u(1)(s, ϕ)
)∥

∥

∥

L1(Ω)
, (t, x) ∈ R+ × Ω,

where (s, ϕ) denote the polar coordinates in Ω, and we assume that u(1)(s, ·) ∈ D(A
(n−1)/2
S ), and

that the right-hand side is finite.

For the case of Neumann boundary conditions, we have the estimate

|u(t, x)| ≤ Ct−
n−1

2

d
∑

k=0

∥

∥

∥
(s−2(1 +AS))(n−1−k)/2∂k

s

(

s
n−1

2 u(1)(s, ϕ)
)∥

∥

∥

L1(Ω)
, (t, x) ∈ R+ × Ω.

For n ∈ 2N, n ≥ 4, the assumptions on the regularity of u(1) can be slightly relaxed. For a
positive real number α, define the power Aα

S by the spectral theorem, which can be written as a
differential operator for 2α ∈ N. Additionally, we define fractional radial derivatives as follows:

Let f : R+ → C be a function with bounded support from the Bessel potential space Hγ,p(R+),
γ ∈ R+, 1 < p <∞. Then the derivative ∂γ

s f of order γ is defined as

(∂γ
s f) (s) = ∂⌈γ⌉s

(

−I ⌈γ⌉−γ
∞ f

)

(s), 0 < s <∞,

where −I δ
∞ denotes the fractional integral of order δ:

(

−I δ
∞f
)

(s) :=

∫ ∞

s1=s

(s1 − s)δ−1

Γ(δ)
f(s1) ds1, 0 < s <∞, δ > 0.

The theory of these integration operators of fractional order will be recalled in Appendix B.
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Theorem 1.2. Let n ∈ 2N, n ≥ 4, and 0 < ε ≤ 1
2 . Let u(1) ∈ L2(Ω) be a function with bounded

support and u(1)(s, ·) ∈ D(A
(n−1)/2
S ), for 0 < s < ∞. Then any energy solution u to (1.1) with

u(0) ≡ 0 and Dirichlet boundary conditions satisfies the following decay estimate for 1 ≤ p ≤ ∞,
1/p + 1/p′ = 1:

|u(t, x)| ≤ Ct
−(n−1

2
− n

p′
)

n−1

2
∑

k=0

∥

∥

∥(s−2AS)(n−k−3/2+ε)/2∂k
s

(

s
n−2

2
+εu(1)(s, ϕ)

)∥

∥

∥

Lp(Ω)
,

for (t, x) ∈ R+ × Ω, where we assume that the right-hand side is finite. In case of Neumann
boundary conditions, we have the estimate

|u(t, x)| ≤ Ct
−(n−1

2
− n

p′
)

n−1

2
∑

k=0

∥

∥

∥(s−2(1 +AS))(n−k−3/2+ε)/2∂k
s

(

s
n−2

2
+εu(1)(s, ϕ)

)∥

∥

∥

Lp(Ω)
,

for (t, x) ∈ R+ × Ω.

Our method of proof can be applied to Cauchy problems of wave equations with an inverse-square
potential:

Corollary 1.3. Let AS denote the self-adjoint realization of the Laplace-Beltrami operator −△S

on the unit sphere Sn−1. Then any energy solution v to (1.3) with a > 0 and initial data v(0) ≡ 0
and v(1) satisfies the decay estimate

|v(t, x)| ≤ Ct−
n−1

2

d
∑

k=0

∥

∥

∥
(s−2AS)(n−1−k)/2∂k

s

(

s
n−1

2 v(1)(s, ϕ)
)∥

∥

∥

L1(Rn)
, (t, x) ∈ R+ × R

n,

where we assume that v(1)(s, ·) ∈ D(A
(n−1)/2
S ), and that the right-hand side is finite.

Acknowledgment. The author thanks Prof. Racke of Konstanz University for productive
discussions and the referee for helpful remarks.

2 The radial wave equation

The Laplacian in R
n can be split as △ = △r + r−2△S , where △r = ∂2

r + (n − 1)r−1∂r is the
radial Laplacian, and △S is the Laplace–Beltrami operator on the unit sphere Sn−1.

The eigenvalues of AS , ordered according to multiplicity, are 0 ≤ λ2
1 ≤ λ2

2 ≤ . . . , and the
associated eigenfunctions are denoted by ψj = ψj(ω), normalized by the condition ‖ψj‖L2(Ω0) =
1. We recall the estimates

λj ∼ j
1

n−1 , j → ∞,

sup
ω∈Ω0

∑

0≤λj≤λ

|ψj(ω)|2 ≤ Cλn−1,(2.1)
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cf., for instance, the survey article [7] and the references cited therein.

A solution u = u(t, x) to (1.1) with u(0) = u(0)(x) ≡ 0 can then be written as

u = u(t, r, ω) =
∞
∑

j=1

uj(t, r)ψj(ω), (t, r, ω) ∈ R × R+ × Ω0,

where the Fourier coefficients uj = uj(t, r) solve the radial wave equations

(2.2)

(

∂2
t − ∂2

r − n− 1

r
∂r +

λ2
j

r2

)

uj(t, r) = 0, (t, r) ∈ R × R+, j ∈ N+,

with initial conditions

uj(0, r) = 0, r ∈ R+, j ∈ N+,

uj,t(0, r) = u1,j(r) =
〈

u(1)(r, ·), ψj(·)
〉

L2(Ω0)
, r ∈ R+, j ∈ N+.

The following explicit representation of uj in terms of u1,j can be found in [2]:

uj(t, r) = (Kju1,j)(t, r) =

∫ ∞

s=0
Kj(t, r, s)u1,j(s) ds,(2.3)

Kj(t, r, s) =
1

π

(s

r

)
n−1

2 ℑQνj−1/2

(

r2 + s2 − t2

2rs
− i0

)

,

where Qνj−1/2 is the Legendre function (cf. Appendix A), and

(2.4) νj =

√

λ2
j +

(n− 2)2

4
.

The main result of this section are two Lp − L∞ estimates of the Fourier coefficients uj :

Proposition 2.1. For each j ∈ N+, there are integral operators Kj,0, Kj,1, . . . , Kj,d, such that

Kj =
∑d

k=0 Kj,k and the following estimates hold for all f for which the norms on the right–hand
side are finite, and 0 < ε ≤ 1/2, 0 ≤ k ≤ d, 0 < t <∞:

(2.5) ‖(Kj,kf)(t, ·)‖L∞(R+) ≤ Ct−
n−1

2 λ
−k− 1

2

j

∥

∥

∥
sk− 2n−3

2
−ε∂k

s

(

s
n−2

2
+εf(s)

)∥

∥

∥

L1(R+,sn−1 ds)
.

For even n, the number of derivatives acting on f can be reduced by 1/2, making use of differ-
ential operators of fractional order:

Proposition 2.2. Put d = ⌈n−1
2 ⌉, and assume n ∈ 2N, n ≥ 4. Then there are, for each

j ∈ N+, integral operators Kj,0, Kj,1, . . . , Kj,d−1, Kj,(n−1)/2, such that Kj =
∑(n−1)/2

k=0 Kj,k and
the following estimates hold for all f for which the norms on the right–hand side are finite, and
all 0 < ε ≤ 1/2, p ≥ 1, 1/p + 1/p′ = 1, 0 ≤ k ≤ (n− 1)/2, 0 < t <∞:

(2.6) ‖(Kj,kf)(t, ·)‖L∞(R+) ≤ Ct
−(n−1

2
− n

p′
)
λ
−k− 1

2

j

∥

∥

∥
sk− 2n−3

2
−ε∂k

s

(

s
n−2

2
+εf(s)

)∥

∥

∥

Lp(R+,sn−1 ds)
.
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Remark 2.3. Similar estimates without the factor λ
−k−1/2
j on the right–hand side can be found

in [22].

The proofs of Proposition 2.1 and Proposition 2.2 are based on several lemmas. We start with
some estimates of the Legendre functions Qν on the real axis:

Lemma 2.4. There is a constant C > 0 such that the following estimates hold for all ν ≥ −1/2:

|ℑQν(x± i0)| ≤ C

(ν + 1)1/2

1

|x|ν+1
, −∞ < x ≤ −2,

|ℑQν(x± i0)| ≤ C

(ν + 1)1/2

∣

∣x2 − 1
∣

∣

− 1

4 , − 2 ≤ x ≤ −1 − 1

(ν + 1)2
,

|ℑQν(x± i0)| ≤ C
(∣

∣ln((ν + 1)2|x2 − 1|)
∣

∣+ 1
)

, − 1 − 1

(ν + 1)2
≤ x ≤ −1 +

1

(ν + 1)2
,

|ℑQν(x± i0)| ≤ Cmin

(

1,
1

(ν + 1)1/2

∣

∣x2 − 1
∣

∣

− 1

4

)

, − 1 +
1

(ν + 1)2
≤ x < 1,

ℑQν(x± i0) = 0, 1 < x <∞.

Proof. See Lemma A.2, Lemma A.1, and (A.3). The last relation follows from (A.6).

For m ∈ N with 0 ≤ m < ν + 1, we define the antiderivatives of order m by

Q(0)
ν (z) = Qν(z),

Q(m)
ν (z) =

∫ z

+∞
Q(m−1)

ν (z1) dz1 =

∫ z

−∞±i0
Q(m−1)

ν (z1) dz1, 1 ≤ m < ν + 1,

where z ∈ C \ (−∞, 1] and the path of integration must not cross the half–line (−∞, 1]. The
purpose of the restriction m < ν + 1 is to guarantee the convergence of the integrals.

Lemma 2.5. For each m ∈ N+, there is a constant C = C(m) such that for all ν > m− 1 and
all x ∈ R the following estimates hold:

|ℑQ(m)
ν (x± i0)| ≤ C

νm+1/2

1

|x|ν+1−m
, −∞ < x ≤ −2,

|ℑQ(m)
ν (x± i0)| ≤ C

νm+1/2

(

1

ν2
+ |x2 − 1|

)
m
2
− 1

4

, − 2 ≤ x ≤ 0,

|ℑQ(m)
ν (x± i0)| ≤ C

νm+1/2

∣

∣x2 − 1
∣

∣

m
2
− 1

4 , 0 ≤ x ≤ 1,

ℑQ(m)
ν (x± i0) = 0, 1 ≤ x <∞.

Proof. The antiderivatives Q
(m)
ν (z) are connected to the Legendre functions via

Q(m)
ν (z) = (z2 − 1)

m
2 Q−m

ν (z).
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Then the estimates for |x| > 1 follow from Lemma A.2; whereas the estimates for |x| < 1 follow
from Lemma A.1 and

ℑQ(m)
ν (x± i0) = ℑ

(

(x+ 1 ± i0)m/2(x− 1 ± i0)m/2Q−m
ν (x± i0)

)

= (x+ 1)m/2ℑ
(

(x− 1 ± i0)m/2e−imπe±imπ/2
(

Q−m
ν (x) ∓ i

π

2
P−m

ν (x)
))

= ∓
∣

∣x2 − 1
∣

∣

m
2 exp(±imπ − imπ)

π

2
P−m

ν (x),

see (A.3).

There are three difficulties to overcome in the estimation of Kj :

• the term ( s
r )(n−1)/2 in case of 0 < r ≪ t,

• the logarithmic pole of Qνj−1/2 for r2+s2−t2

2rs = −1,

• the jump discontinuity of ℑQνj−1/2 for r2+s2−t2

2rs = +1. We have ℑQνj−1/2 = O(1) instead

of the desired O(ν
−1/2
j ) there.

The first difficulty will be resolved by ⌈(n− 1)/2⌉ or (n− 1)/2 times partial integration, and the
other two by partial integration once.

The next lemma gives estimates of antiderivatives of a composed function P (X(s)) provided that
estimates of antiderivatives of P and derivatives of X are given. A variation of its reasoning can
also be found in [22].

Lemma 2.6. Let I = (a, b) be an interval of R and X = X(σ) a smooth monotone function,
mapping I onto J = (A,B). Suppose that the inverse function σ = σ(X) satisfies

0 < σ′(X) ≤ C0M
2, X ∈ (A,B),

‖∂m
Xσ‖L∞(A,B) +

∥

∥∂m+1
X σ

∥

∥

L1(A,B)
≤ C0M

1+m, m ∈ N0,
∥

∥(σ − a)−1∂m
Xσ
∥

∥

L∞(A,B)
≤ C0M

m, m ∈ N0.

Denote the m-th primitive function of P ∈ L1(A,B) (starting in A) by

P (m)(Y ) = ( +Im
AP ) (Y ), A ≤ Y ≤ B,

and assume the estimates
∥

∥

∥
P (m)

∥

∥

∥

L∞(A,B)
≤ Lm, m ∈ N+.

Then the m–th primitive function of P̃ = P̃ (σ) := (σ − a)γP (X(σ)), γ ≥ 0, (starting in a)
satisfies

∥

∥

∥
P̃ (m)

∥

∥

∥

L∞(a,b)
≤ CmLmM

2m+γ , m ≥ 1.
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Proof. We have the representation

P̃ (m)(σ) =

∫ σ

a

(σ − σ1)
m−1

(m− 1)!
(σ1 − a)γP (X(σ1)) dσ1.

Choose τ ∈ (a, b) and put Y = X(τ). Clearly,

∫ τ

τ1=a
(τ1 − a)γP (X(τ1)) dτ1 =

∫ Y

Y1=A

(

∂σ

∂X
(Y1)

)

(σ(Y1) − σ(A))γP (Y1) dY1(2.7)

=

(

∂σ

∂X
(Y )

)

(σ(Y ) − σ(A))γP (1)(Y )

−
∫ Y

Y1=A

(

∂

∂Y1

(

∂σ

∂X
(Y1)

)

(σ(Y1) − σ(A))γ
)

P (1)(Y1) dY1,

giving us
∥

∥

∥
P̃ (1)

∥

∥

∥

L∞(a,b)
≤ CL1M

2+γ . Similarly,

P̃ (2)(τ) =

∫ τ

τ1=a

(

∂σ

∂X
(Y1)

)

(σ(Y1) − σ(A))γP (1)(Y1) dτ1

−
∫ τ

τ1=a

(
∫ Y

Y2=A

(

∂

∂Y2

(

∂σ

∂X
(Y2)

)

(σ(Y2) − σ(A))γ
)

P (1)(Y2) dY2

)

dτ1

=

∫ Y

Y1=A

(

∂σ

∂X
(Y1)

)2

(σ(Y1) − σ(A))γP (1)(Y1) dY1

−
∫ Y

Y2=A

∫ Y

Y1=Y2

(

∂

∂Y2

(

∂σ

∂X
(Y2)

)

(σ(Y2) − σ(A))γ
)

P (1)(Y2)

(

∂σ

∂X
(Y1)

)

dY1 dY2

=

(

∂σ

∂X
(Y )

)2

(σ(Y ) − σ(A))γP (2)(Y )

−
∫ Y

Y1=A

(

∂

∂Y1

(

∂σ

∂X
(Y1)

)2

(σ(Y1) − σ(A))γ

)

P (2)(Y1) dY1

−
∫ Y

Y1=A

(

∂

∂Y1
(σ(Y ) − σ(Y1))

(

∂

∂Y1

(

∂σ

∂X
(Y1)

)

(σ(Y1) − σ(A))γ
))

P (2)(Y1) dY1,

giving us
∥

∥

∥P̃ (2)
∥

∥

∥

L∞(a,b)
≤ CL2M

4+γ .

Continuing in this fashion by induction, we find an integral with m + 1 derivatives acting on
powers of σ and m + γ factors of σ and its derivatives, when we express P̃ (m). This gives the
desired estimate.

Before we derive estimates of the integral operators Kj , we scale the variable of integration:

θ0(t, r) =
√

|t2 − r2|, (t, r) ∈ R+ × R+, t 6= r,

s = θ0σ, f̃(σ) = s
n−2

2
+εf(s),

(Kjf)(t, r) =
1

π
r−

n−1

2 θ
3

2
−ε

0

∫ ∞

σ=0
f̃(σ)Kj(σ) dσ,(2.8)
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Kj(σ) =















σ
1

2
−εℑQνj−1/2

(

θ0
r
Y (σ) − i0

)

: 0 < r < t <∞,

σ
1

2
−εℑQνj−1/2

(

θ0
r
Z(σ) − i0

)

: 0 < t < r <∞,

where Y = Y (σ) = σ2−1
2σ and Z = Z(σ) = σ2+1

2σ for σ > 0.

Since Qνj−1/2(z) is real for z > 1, the variable σ runs only in the intervals [σ−1
0 , σ0] and [0, σ0]

in the cases of t < r and r < t, respectively, where

σ0 =

√

r + t

|r − t| =
r + t

θ0(t, r)
.

The functions Y and Z are (locally) invertible, with inverse functions

σ = σ(Y ) = Y +
√

Y 2 + 1, Y ∈ R,

σ = σ±(Z) = Z ±
√

Z2 − 1, Z ≥ 1.

Lemma 2.7. We have the equivalences

σ(Y ) ∼
{

1 + |Y | : Y ≥ −1,
1

1+|Y | : Y ≤ +1,
(2.9)

∂σ

∂Y
=

2σ2

σ2 + 1
∼
{

1 : σ ≥ 1
2 ,

σ2 : 0 < σ ≤ 2,

σ±(Z) ∼ Z±1, Z ≥ 1,

and the estimates
∣

∣

∣
∂k

Y σ(Y )
∣

∣

∣
≤ Ck(1 + |Y |)−1−k, Y ∈ R, k ≥ 2,(2.10)

|∂k
Zσ+(Z)| ≤ Ck

√

Z2 − 1(Z − 1)−k, Z > 1, k ≥ 1,(2.11)

|∂k
Zσ−(Z)| ≤ Ck

√

Z2 − 1Z−2(Z − 1)−k, Z > 1, k ≥ 1.(2.12)

Lemma 2.8. Put P (X) = ℑQνj−1/2(
θ0

r X − i0), where X = X(σ) = Y (σ) = σ2−1
2σ for 0 < r < t,

and X = X(σ) = Z(σ) = σ2+1
2σ for 0 < t < r. Then the m-th antiderivative

K
(m)
j (σ) := ( +Im

0 Kj) (σ), 0 < σ <∞,

of Kj(σ) = σ1/2−εP (X(σ)) satisfies the following estimates:

(2.13) |K(m)
j (σ)| ≤ C

(

r

θ0

)m

σ2m+ 1

2
−εν

−m− 1

2

j ,

0 ≤ m− 1, ⌈m⌉ − 1 < νj −
1

2
, 0 ≤ σ ≤ σ0, 0 < r < t,
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(2.14) |K(m)
j (σ)| ≤ C

(

r

θ0

)νj+1/2

σm+νj+1−ε,

0 ≤ m− 1, νj −
1

2
≤ ⌈m⌉ − 1, m ≤ ⌈n− 1

2
⌉, 0 ≤ σ ≤ σ0 ≤ C, 0 < r < t,

(2.15) |K(1)
j (σ)| ≤ C

r

θ0
σ

1

2
−εν

− 3

2

j , 1 ≤ σ ≤ σ0, 0 < r < t,

For the estimate of Kj in case of 0 < t < r <∞, we introduce

Z0 = Z(σ0), Z∗ =
1

2
(Z0 + 1), Z(σ∗) := Z∗, 1 < σ∗ < σ0.

Then the following estimates hold:

(2.16) |K(1)
j (σ)| =

∣

∣

(

+I 1
0Kj

)

(σ)
∣

∣ ≤ C

(

r

θ0

)3

4

|Z0 − Z(σ)| 14σ 1

2
−εZ

− 3

2

0 (Z0 − 1)−
1

2 ν
− 3

2

j ,

0 < σ−1
0 ≤ σ ≤ σ−1

∗ < 1,

(2.17)
∣

∣

(

−I 1
∞Kj

)

(σ)
∣

∣ ≤ C

(

r

θ0

)
3

4

|Z0 − Z(σ)| 14σ 1

2
−εZ

1

2

0 (Z0 − 1)−
1

2 ν
− 3

2

j ,

1 < σ∗ ≤ σ ≤ σ0.

Proof. Estimate (2.13) follows from Lemma 2.5 and Lemma 2.6, with (a, b) = (0, σ), (A,B) =
(−∞, Y (σ)) and γ = 1/2 − ε. From (2.10) and (2.9), we get M = σ, and Lemma 2.5 gives

Lm = C( r
θ0

)mν
−m−1/2
j . First, we obtain (2.13) for integer values of m, and then, by Lemma B.3,

for the intermediate values of m.

Lemma 2.5 is no longer applicable for νj − 1/2 ≤ m − 1, m ∈ N+, m ≤ d = ⌈n−1
2 ⌉. This case

can only happen for m = d, since νj ≥ (n − 2)/2, from (2.4). Therefore, we prove (2.14) by
direct computation: as a first sub-case, consider 0 < σ ≤ 1/4. Then −∞ < θ0

r X(σ′) ≤ −2 for
0 < σ′ ≤ σ; and from Lemma 2.5, we deduce that

∣

∣

∣K
(m)
j (σ)

∣

∣

∣ ≤ C

∫ σ

0

(σ − σ′)m−1

Γ(m)
(σ′)1/2−ε

∣

∣

∣

∣

θ0
r
X(σ′)

∣

∣

∣

∣

−(νj+1/2)

dσ′

≤ C

(

r

θ0

)νj+1/2 ∫ σ

0
(σ − σ′)m−1(σ′)νj+1−ε dσ′ = C

(

r

θ0

)νj+1/2

σm+1+νj−ε.

The remaining sub-case is 1/4 ≤ σ ≤ σ0 ≤ C. Define a number σ1 by (θ0/r)X(σ1) = −2. Then
0 < σ0 − σ1 ≤ C(r/θ0), and we can estimate

∣

∣

∣K
(m)
j (σ)

∣

∣

∣ ≤
∫ σ0

0

(σ0 − σ′)m−1

Γ(m)
(σ′)1/2−ε|P (X(σ′))|dσ′

=

∫ σ1

0
. . . dσ′ +

∫ 1

σ1

. . . dσ′ +

∫ σ0

1
. . . dσ′ = I1 + I2 + I3.
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The term I1 can be estimated as in the sub-case of 0 < σ ≤ 1/4. For I2, we use Lemma 2.4 and
obtain

|I2| ≤ C(σ0 − σ1)
m−1

∫ 1

σ1

∣

∣

∣

∣

ln

∣

∣

∣

∣

θ0
r
X(σ′) + 1

∣

∣

∣

∣

∣

∣

∣

∣

dσ′

≤ C

(

r

θ0

)m−1 ∫ 1

σ1

∣

∣

∣

∣

ln

(

θ0
r

∣

∣σ′ − σ−1
0

∣

∣

)∣

∣

∣

∣

dσ′ ≤ C

(

r

θ0

)m

.

The estimate of I3 is trivial, since |Kj(σ)| ≤ const. for 1 ≤ σ ≤ σ0.

The estimate (2.15) follows from Lemma 2.5 and a careful analysis of (2.7). Choose (a, b) =

(0, σ), (A,B) = (−∞, Y (σ)), γ = 1/2 − ε, m = 1, and Lm = C r
θ0
ν
−3/2
j .

Next, we prove (2.16) and (2.17). Observe that Z(σ−1
0 ) = Z(σ0) = r

θ0
and Z(σ−1

∗ ) = Z(σ∗) =
1
2( r

θ0
+ 1). For σ−1

0 ≤ σ ≤ σ−1
∗ , we have σ = σ−(Z(σ)); hence we can write

K
(1)
j (σ) = (∂Zσ−) (Z(σ)) σ

1

2
−ε r

θ0
ℑQ(1)

νj−1/2

(

θ0
r
Z(σ) − i0

)

−
∫ Z(σ)

Z1=Z0

(

∂

∂Z1

(

∂σ−
∂Z

(Z1)

)

(σ−(Z1))
1

2
−ε

)

r

θ0
ℑQ(1)

νj−1/2

(

θ0
r
Z1 − i0

)

dZ1,

compare (2.7). We have the equivalences Z(σ)−1 ∼ Z0−1 ∼ Z∗−1, Z(σ) ∼ Z0 ∼ Z∗, σ−(Z1) ∼
Z−1

1 . From (2.12), we then deduce that |(∂Zσ−)(Z)| ≤ C(Z0 − 1)−
1

2Z
− 3

2

0 , and |(∂2
Zσ−)(Z)| ≤

C(Z0 − 1)−
3

2Z
− 3

2

0 . Finally, Lemma 2.5 implies

∣

∣

∣

∣

ℑQνj−1/2

(

θ0
r
Z1 − i0

)∣

∣

∣

∣

≤ Cν
− 3

2

j

(

θ0
r

)1

4

|Z0 − Z1|
1

4 .

Then the estimate (2.16) follows easily.

The estimate (2.17) can be derived from

(

−I 1
∞Kj

)

(σ) =

∫ σ0

σ′=σ
Kj(σ

′) dσ′ = − (∂Zσ+) (Z(σ)) σ
1

2
−ε r

θ0
ℑQ(1)

νj−1/2

(

θ0
r
Z(σ) − i0

)

−
∫ Z0

Z1=Z(σ)

(

∂

∂Z1

(

∂σ+

∂Z
(Z1)

)

(σ+(Z1))
1

2
−ε

)

r

θ0
ℑQ(1)

νj−1/2

(

θ0
r
Z1 − i0

)

dZ1,

see (2.7). Now we have σ+(Z1) ∼ Z1, and (2.11) gives |(∂Zσ+)(Z)| ≤ C(Z0 − 1)−
1

2Z
1

2

0 , and

|(∂2
Zσ+)(Z)| ≤ C(Z0 − 1)−

3

2Z
1

2

0 . Then (2.17) is easy to show.

Proof of Proposition 2.1. The integration variable σ in (2.8) effectively runs in the interval [0, σ0]
only. Hence we can assume that f̃(σ) vanishes for, e.g., σ ≥ σ0 + 1. And if r > t, then σ runs
in the interval [σ−1

0 , σ0] only, and we can assume that f̃(σ) vanishes for 0 < σ ≤ 1
2σ

−1
0 .

We distinguish 4 cases.
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Case A: 0 < r ≤ 1
2t.

Then we have 0 ≤ σ ≤ σ0 and
√

3

2
t ≤ θ0(t, r) < t, 0 <

r

θ0
≤ 1√

3
, −∞ <

θ0
r
Y (σ) ≤ 1 =:

θ0
r
Y (σ0) =⇒ 1 < σ0 ≤

√
3.

The representation (2.8) of Kj contains a factor r−(n−1)/2 which is delicate if r → 0. However,
each partial integration of the Q function brings out a factor r/θ0. Consequently, we employ
partial integration in (2.8) d = ⌈n−1

2 ⌉ times. The estimate of Kj that we will use is (2.13) with
m = d.

Case B: 1
2t ≤ r < t.

In this case, we have 0 ≤ σ ≤ σ0 and

0 < θ0 ≤
√

3

2
t,

1√
3
≤ r

θ0
<∞, −∞ <

θ0
r
Y (σ) ≤ 1 =:

θ0
r
Y (σ0) =⇒ σ0 ≥

√
3.

Now r ∼ t, and the factor r−(n−1)/2 in (2.8) will give us the expected decay rate. We only
have to take care of the logarithmic pole of the Q function at −1, by partial integration. This
will bring out a factor r/θ0, which is, regrettably, difficult for r ≈ t. Therefore, we stop partial
integration shortly after having passed the logarithmic pole, and we resume it shortly before

σ = σ0. The latter is necessary since ℑQ(x) = O(1) instead of the desired O(ν
−1/2
j ) for x ≈ 1,

but the antiderivative of ℑQ(x) is O(ν
−3/2
j ).

Therefore, we consider three sub-cases:

− 1 ≤ θ0
r
Y (σ) ≤ −1

2
, − 1

2
≤ θ0

r
Y (σ) ≤ 1

2
,

1

2
≤ θ0

r
Y (σ) ≤ 1.

In the first sub-case, we employ (2.13) with m = 1 and obtain

|K(1)
j (σ)| ≤ C

r

θ0
σ

5

2
−εν

− 3

2

j ≤ Cσ
3

2
−εν

− 3

2

j .

In the second sub-case, we directly estimate

|Kj(σ)| ≤ Cσ
1

2
−εν

− 1

2

j .

And in the third sub-case, we use (2.15) with m = 1,

|K(1)
j (σ)| ≤ C

r

θ0
σ

1

2
−εν

− 3

2

j ≤ Cσ
3

2
−εν

− 3

2

j .

Case C: t < r ≤ 2t.

Now we have σ−1
0 ≤ σ ≤ σ0 and

0 < θ0 ≤
√

3t,
2√
3
≤ r

θ0
<∞,

θ0
r

≤ θ0
r
Z(σ) ≤ 1 =:

θ0
r
Z(σ0) =⇒ σ0 ≥

√
3.



13

In this case (and in Case D), the argument of ℑQ is never negative, so we do not feel the
logarithmic pole. But for σ ≈ σ−1

0 or σ ≈ σ0, ℑQν((θ0/r)Z(σ)) is only O(1) instead of O(ν−1/2),
suggesting partial integration. However, we should stop partial integration at some distance from
σ = 1, because Z is not injective near σ = 1, making the antiderivative of ℑQν((θ0/r)Z(σ))
difficult to determine. For this purpose, the number σ∗ has been introduced in Lemma 2.8.

We have the equivalence Z0 ∼ Z0 − 1 ∼ r
θ0

. Then (2.16) and (2.17) imply

∣

∣

(

+I 1
0Kj

)

(σ)
∣

∣ ≤ Cσ
3

2
−εν

− 3

2

j , σ−1
0 ≤ σ ≤ σ−1

∗ ,
∣

∣

(

−I 1
∞Kj

)

(σ)
∣

∣ ≤ C
r

θ0
σ

1

2
−εν

− 3

2

j ≤ Cσ
3

2
−εν

− 3

2

j , σ∗ ≤ σ ≤ σ0.

And for σ−1
∗ ≤ σ ≤ σ∗, we can use the direct estimate

|Kj(σ)| ≤ Cσ
1

2
−εν

− 1

2

j .

Case D: 2t ≤ r <∞.

As in the previous case, we now have σ−1
0 ≤ σ ≤ σ0 and

√
3t ≤ θ0 <∞, 1 <

r

θ0
≤ 2√

3
,

θ0
r

≤ θ0
r
Z(σ) ≤ 1 =:

θ0
r
Z(σ0), =⇒ σ0 ≤

√
3.

For such σ we then also have 1 ≤ Z(σ) ≤ 2/
√

3. It is easy to check that

|Z0 − Z(σ)| ≤ |Z0 − 1| ∼ t2

r2
, σ−1

0 ≤ σ ≤ σ0,
∣

∣

∣

∣

θ0
r
Z(σ) − 1

∣

∣

∣

∣

∼ t2

r2
, σ−1

∗ ≤ σ ≤ σ∗.

Then (2.16) and (2.17) yield

∣

∣

(

+I 1
0Kj

)

(σ)
∣

∣ ≤ C
(r

t

)
1

2

σ
3

2
−εν

− 3

2

j , σ−1
0 ≤ σ ≤ σ−1

∗ ,

∣

∣

(

−I 1
∞Kj

)

(σ)
∣

∣ ≤ C
(r

t

)
1

2

σ
3

2
−εν

− 3

2

j , σ∗ ≤ σ ≤ σ0.

And for σ−1
∗ ≤ σ ≤ σ∗, we can make use of Lemma 2.4 and find the estimate

|Kj(σ)| ≤ Cσ
1

2
−εν

− 1

2

j

∣

∣

∣

∣

θ0
r
Z(σ) − 1

∣

∣

∣

∣

− 1

4

≤ C
(r

t

)
1

2

σ
1

2
−εν

− 1

2

j .

Next we show how all these pointwise estimates of Qνj−1/2 and its antiderivatives give us an
estimate of the integral operator Kj . Exemplary, we only consider the cases A and D.
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In case A, put m = d = ⌈n−1
2 ⌉. Since f̃(σ) vanishes for large σ, we have f̃(σ) = (−I d

∞(∂d
σ f̃))(σ),

from which it follows that

|(Kjf)(t, r)| ≤ Cr−
n−1

2 θ
3

2
−ε

0 lim
δ→+0

∣

∣

∣

∣

∫ ∞

σ=0

(

−I d
∞(∂d

σ f̃)
)

(σ) σ
1

2
−εℑQνj−1/2

(

θ0
r
Y (σ) − iδ

)

dσ

∣

∣

∣

∣

= Cr−
n−1

2 θ
3

2
−ε

0

∣

∣

∣

∣

∫ ∞

σ=0

(

∂d
σ f̃
)

(σ)K
(d)
j (σ) dσ

∣

∣

∣

∣

,

by Proposition B.2. All that remains is to apply (2.13), and to scale the variable, σ 7→ s.

For case D, we choose cut–off functions χ1, χ2, χ3 with
∑3

k=1 χk ≡ 1 and

χ1(σ) =

{

1 : 0 ≤ σ ≤ (σ−1
0 + σ−1

∗ )/2,

0 : σ−1
∗ ≤ σ,

χ2(σ) =

{

1 : σ−1
∗ ≤ σ ≤ σ∗,

0 : σ ∈ [0, (σ−1
0 + σ−1

∗ )/2] ∪ [(σ0 + σ∗)/2,∞),

χ3(σ) =

{

1 : (σ0 + σ∗)/2 ≤ σ <∞,

0 : σ ≤ σ∗,

and write (Kjf)(t, r) = I1(t, r) + I2(t, r) + I3(t, r), where Ik(t, r) = (Kjχkf)(t, r).

The estimate of I2 is quite easy:

|I2(t, r)| ≤ Cr−
n−1

2 θ
3

2
−ε

0

∫ ∞

σ=0
χ2(σ)|f̃ (σ)|σ 1

2
−ε
(r

t

)1

2

ν
− 1

2

j dσ

≤ Cr−
n−1

2

(r

t

)1

2

ν
− 1

2

j

∫ r+t

s=r−t
s−

n−1

2 |f(s)|sn−1 ds

≤ Ct−
n−1

2 λ
− 1

2

j

∥

∥

∥
s−

2n−3

2
−ε
(

s
n−2

2
+εf(s)

)∥

∥

∥

L1(R+,sn−1 ds)
.

We demonstrate how to deal with I1 (I3 can be treated in a very similar way). The function f̃
vanishes for large arguments and very small arguments. Then Proposition B.2 on the interval
(0,+∞) gives

|I1(t, r)| =

∣

∣

∣

∣

lim
δ→+0

1

π
r−

n−1

2 θ
3

2
−ε

0

∫ ∞

σ=0

(

−I 1
∞

(

∂σχ1f̃
)

(σ)
)

σ
1

2
−εℑQνj−1/2

(

θ0
r
Z(σ) − iδ

)

dσ

∣

∣

∣

∣

=

∣

∣

∣

∣

1

π
r−

n−1

2 θ
3

2
−ε

0

∫ ∞

σ=0

(

∂σχ1(σ)f̃ (σ)
)

(

+I 1
0Kj

)

(σ) dσ

∣

∣

∣

∣

≤ Cr−
n−1

2 θ
3

2
−ε

0

∫ ∞

σ=0

∣

∣

∣∂σχ1(σ)f̃(σ)
∣

∣

∣

(r

t

)
1

2

σ
3

2
−εν

− 3

2

j dσ

≤ Cr−
n−2

2 t−
1

2 ν
− 3

2

j

∫ t+r

s=t−r
s−

n−1

2 |f(s)|sn−1 ds

+ Cr−
n−2

2 t−
1

2 ν
− 3

2

j

∫ t+r

s=t−r
s1−

2n−3

2
−ε
∣

∣

∣
∂s

(

s
n−2

2
+εf(s)

)∣

∣

∣
sn−1 ds

≤ Ct−
n−1

2

1
∑

k=0

λ
−k− 1

2

j

∥

∥

∥sk− 2n−3

2
−ε∂k

s

(

s
n−2

2
+εf(s)

)∥

∥

∥

L1(R+,sn−1 ds)
.
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This completes the proof.

Proof of Proposition 2.2. We closely follow the proof of Proposition 2.1. The cases B, C, and

D from there can be copied verbatim; and in case A, the antiderivative K
(m)
j of order m = d =

⌈n−1
2 ⌉ has to be replaced by an antiderivative of fractional order n−1

2 . The additional factor

tn/p′ comes from a norm ‖1‖Lp′ ((r−t,r+t),sn−1 ds), via Hölder’s inequality.

3 The estimate in the cone

Proof of Theorem 1.1. The Fourier coefficients uj are given by

uj(r) =
〈

u(1)(r, ·), ψj(·)
〉

L2(Ω0)
, 0 < r <∞,

where we have introduced polar coordinates (r, ω).

Choose a number αk with 2αk ∈ N0 and −2αk − 1/2− k+n− 1 = −ε = −1/2. We have, in the
Dirichlet case, the representation

u(t, r, ω) =

d
∑

k=0

∞
∑

j=1

ψj(ω)

(

Kj,k

〈

u(1), ψj

〉

L2(Ω0)

)

(t, r)

=

d
∑

k=0

∞
∑

j=1

ψj(ω)λ−2αk
j

(

Kj,k

〈

Aαk
S u(1), ψj

〉

L2(Ω0)

)

(t, r)

=

d
∑

k=0

∞
∑

j=1

ψj(ω)λ−2αk
j

〈

Kj,k

(

Aαk
S u(1)

)

(t, r, ·), ψj(·)
〉

L2(Ω0)

=

d
∑

k=0

∞
∑

l=0

2l+1−1
∑

j=2l

ψj(ω)λ−2αk
j

〈

Kj,k

(

Aαk
S u(1)

)

(t, r, ·), ψj(·)
〉

L2(Ω0)

=

d
∑

k=0

∞
∑

l=0

∫

Ω0





2l+1−1
∑

j=2l

λ−2αk
j

(

Kj,k

(

Aαk
S u(1)

))

(t, r, ϕ)ψj(ϕ)ψj(ω)



 dϕ.

For 2l ≤ j ≤ 2l+1 − 1 we have λj ∼ λ2l ∼ 2
l

n−1 . By Proposition 2.1 and (2.1) we deduce that

|u(t, r, ω)| ≤ Ct−
n−1

2

d
∑

k=0

∞
∑

l=0

λ
−2αk−

1

2
−k

2l

×
∫

Ω0





∥

∥

∥
s−2αk∂k

sA
αk
S

(

s
n−2

2
+εu(1)(s, ϕ)

)∥

∥

∥

L1(R+,sn−1 ds)

2l+1−1
∑

j=2l

|ψj(ϕ)ψj(ω)|



 dϕ

≤ Ct−
n−1

2

d
∑

k=0

∞
∑

l=0

λ−ε
2l

∫

Ω0

(

∥

∥

∥
s−2αk∂k

sA
αk
S

(

s
n−1

2 u(1)(s, ϕ)
)∥

∥

∥

L1(R+,sn−1 ds)

)

dϕ
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≤ Ct−
n−1

2

d
∑

k=0

(
∫

Ω0

∥

∥

∥(s−2AS)αk∂k
s

(

s
n−1

2 u(1)(s, ϕ)
)∥

∥

∥

L1(R+,sn−1 ds)
dϕ

)

.

In case of the Neumann boundary conditions, we write

〈

u(1), ψj

〉

L2(Ω0)
= (1 + λ2

j )
−αk

〈

(1 +AS)αku(1), ψj

〉

L2(Ω0)
,

and continue in a similar manner as in the Dirichlet case.

This completes the proof.

Proof of Theorem 1.2. Choose nonnegative numbers αk by the condition −2αk−1/2−k+n−1 =
−ε. Then we have, in the Dirichlet case,

u(t, r, ω) =

n−1

2
∑

k=0

∞
∑

l=0

∫

Ω0





2l+1−1
∑

j=2l

λ−2αk
j

(

Kj,k

(

Aαk
S u(1)

))

(t, r, ϕ)ψj(ϕ)ψj(ω)



 dϕ.

From Proposition 2.2 and (2.1), it follows that

|u(t, r, ω)| ≤ Ct
−(n−1

2
− n

p′
)

n−1

2
∑

k=0

∞
∑

l=0

λ
−2αk−

1

2
−k

2l

×
∫

Ω0





∥

∥

∥
s−2αk∂k

sA
αk
S

(

s
n−2

2
+εu(1)(s, ϕ)

)∥

∥

∥

Lp(R+,sn−1 ds)

2l+1−1
∑

j=2l

|ψj(ϕ)ψj(ω)|



 dϕ

≤ Ct
−(n−1

2
− n

p′
)

n−1

2
∑

k=0

∞
∑

l=0

λ−ε
2l

∫

Ω0

(

∥

∥

∥s−2αk∂k
sA

αk
S

(

s
n−2

2
+εu(1)(s, ϕ)

)∥

∥

∥

Lp(R+,sn−1 ds)

)

dϕ

≤ Ct
−(n−1

2
− n

p′
)

n−1

2
∑

k=0

(
∫

Ω0

∥

∥

∥
(s−2AS)αk∂k

s

(

s
n−2

2
+εu(1)(s, ϕ)

)∥

∥

∥

p

Lp(R+,sn−1 ds)
dϕ

)1

p

.

The modification for the Neumann case is as in the proof of Theorem 1.1.

A The Legendre functions

A.1 Representations

The Legendre functions Pµ
ν (z) and Qµ

ν (z) are linear independent solutions to the Legendre
differential equation

(1 − z2)w′′(z) − 2zw′(z) +

(

ν(ν + 1) − µ2

1 − z2

)

w(z) = 0,
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and are given by the formulas

Pµ
ν (z) =

1

Γ(1 − µ)

(z + 1)µ/2

(z − 1)µ/2
F

(

−ν, ν + 1; 1 − µ;
1 − z

2

)

,

Qµ
ν (z) =

eiµπ

2ν+1
π1/2 Γ(ν + µ+ 1)

Γ(ν + 3
2 )

z−ν−µ−1(z2 − 1)µ/2F

(

ν

2
+
µ

2
+ 1,

ν

2
+
µ

2
+

1

2
; ν +

3

2
;

1

z2

)

,

where | arg(z ± 1)| < π, | arg z| < π and (z2 − 1)α = (z − 1)α(z + 1)α. See [5]. We set Pν = P 0
ν

and Qν = Q0
ν .

The hypergeometric Function F (a, b; c; ζ) is given as a converging power series for |ζ| < 1, and
can be analytically extended to the set of all ζ with | arg(−ζ)| < π. Then the Legendre functions
Pµ

ν and Qµ
ν are defined by the above formulas for all z ∈ C \ (−∞, 1].

Additionally, we shall need certain real–valued modifications of the Legendre functions on the
cut {x ∈ R : − 1 < x < 1}:

Pµ
ν (x) =

1

2

(

eiµπ/2Pµ
ν (x+ i0) + e−iµπ/2Pµ

ν (x− i0)
)

, [5, (3.4)(1)],(A.1)

Qµ
ν (x) =

1

2
e−iµπ

(

e−iµπ/2Qµ
ν (x+ i0) + eiµπ/2Qµ

ν (x− i0)
)

, [5, (3.4)(2)],(A.2)

Qµ
ν (x± i0) = eiµπe±iµπ/2

(

Qµ
ν (x) ∓ i

π

2
Pµ

ν (x)
)

, [5, (3.4)(9)].(A.3)

The following representations of P are valid for ℜν > −1, ℜµ < 1/2, and ℜ(ν + µ+ 1) > 0:

Pν(z) =
1

π

∫ π

0
(z + (z2 − 1)1/2 cos ζ)ν dζ, ℜz > 0, [5, (3.7)(16)],(A.4)

Pµ
ν (cosα) =

√

2

π

(sinα)µ

Γ(1
2 − µ)

∫ α

0

cos((ν + 1
2 )θ)

(cos θ − cosα)µ+ 1

2

dθ, 0 < α < π, [5, (3.7)(27)].(A.5)

And the functions Q can be written as follows provided that α > 0, z ∈ C \ (−∞, 1], ℜν > −1,
ℜµ < 1/2 and ℜ(ν + µ+ 1) > 0:

Qµ
ν (coshα) =

√

π

2
eiµπ (sinhα)µ

Γ(1
2 − µ)

∫ ∞

α

e−(ν+ 1

2
)t

(cosh t− coshα)µ+ 1

2

dt, [5, (3.7)(4)],(A.6)

Qµ
ν (z) =

eµπi

2ν+1

Γ(ν + µ+ 1)

Γ(ν + 1)
(z2 − 1)−

µ
2

∫ π

0

(sin ζ)2ν+1

(z + cos ζ)ν−µ+1
dζ, [5, (3.7)(5)].(A.7)

A.2 Estimates

We have Pν(1) = 1.
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Lemma A.1 (Estimate of P in (−1, 1)). Suppose ν ≥ −1/2, µ ≤ 0 and ν + µ + 1 > 0. Fix a
small α0 with 0 < α0 < π/2. Then the following estimates hold with a constant C = C(α0, µ):

|Pν(cosα)| ≤ 1, 0 ≤ α ≤ π/2,(A.8)

|Pµ
ν (cosα)| ≤ C

(ν + 1)−µ+1/2

1

(sinα)1/2
, 0 ≤ α ≤ α0,(A.9)

|Pµ
ν (cosα)| ≤ C

(ν + 1)−µ+1/2
, α0 ≤ α ≤ π − α0,(A.10)

|Pµ
ν (cosα)| ≤ C

(ν + 1)−µ+1/2

1

(sinα)1/2
, π − α0 ≤ α ≤ π − 1

ν + 1
,(A.11)

|Pµ
ν (cosα)| ≤ C

(ν + 1)−2µ

1

(sinα)−µ
, π − 1

ν + 1
≤ α < π, µ 6= 0,(A.12)

|Pν(cosα)| ≤ C (| ln((ν + 1)(π − α))| + 1) , π − 1

ν + 1
≤ α < π.(A.13)

Proof. If 0 < z ≤ 1 in (A.4), then |z + (z2 − 1)1/2 cos t| ≤ 1, which implies (A.8). Using the
notation of Lemma A.3, we can write (A.5) as

Pµ
ν (cosα) = Cµ(sinα)µI

−µ−1/2
ν+1/2 (cosα).

Then Lemma A.3 and Lemma A.4 yield (A.9) and (A.11), (A.12), (A.13), respectively. Even-
tually, (A.10) follows from the classical asymptotic expansion [5, (3.9)(2)] of Pµ

ν for fixed µ and
ν → ∞:

Pµ
ν (cosα) =

Γ(ν + µ+ 1)

Γ(ν + 3
2)

(

cos((ν + 1
2)α− π

4 + µπ
2 ) + O(ν−1)

)

(π
2 sinα)1/2

, α0 ≤ α ≤ π − α0.

Lemma A.2 (Estimate ofQ outside (−1, 1)). The functions Qµ
ν satisfy for µ < 1/2, ν+µ+1 > 0,

ν > −1/2, the following estimates:

|Qµ
ν (x± i0)| ≤ C

(ν + 1)−µ+1/2

1

|x|ν+1
, 2 ≤ |x|,

|Qµ
ν (x± i0)| ≤ C

(ν + 1)−µ+1/2

∣

∣x2 − 1
∣

∣

− 1

4

(

1

(ν + 1)2(x2 − 1)
+ 1

)−µ
2
− 1

4

, 1 < |x| ≤ 2, µ 6= 0,

|Qν(x± i0)| ≤ C

(ν + 1)1/2

∣

∣x2 − 1
∣

∣

− 1

4 , 1 +
1

(ν + 1)2
≤ |x| ≤ 2,

|Qν(x± i0)| ≤ C
(

| ln((ν + 1)2(x2 − 1))| + 1
)

, 1 < |x| ≤ 1 +
1

(ν + 1)2
.

where x ∈ R and C = C(µ). These inequalities also hold for ν = −1
2 , µ = 0.

Proof. The reflection formula,

Qµ
ν (−z) = −e±iνπQµ

ν (z), +,− : ℑz > 0, ℑz < 0, [5, (3.3)(12)],
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allows to assume x ≥ 0.

In Frenzen [6] we find: if µ < 1/2, ν + µ+ 1 > 0, ν > −1/2 and ζ ≥ 0, then

e−iµπQµ
ν (cosh ζ) =

(

ζ

sinh ζ

)1/2(K−µ((ν + 1/2)ζ)

(ν + 1/2)−µ
+ ε1(ζ, ν + 1/2)

)

,

where K−µ is the modified Bessel function, and the remainder term ε1 satisfies the estimate

|ε1(ζ, ν + 1/2)| ≤ Cµ
2ζ

2 + ζ

K−µ+1((ν + 1/2)ζ)

(ν + 1 + µ)−µ+1
.

The modified Bessel function has the asymptotic expansions

K−µ(w) =

√

π

2w
e−w

(

1 + Oµ(w−1)
)

, w → +∞, −µ ≥ 0,

K−µ(w) ∼ 1

2
Γ(−µ)

(w

2

)µ
, w → +0, −µ > 0,

K0(w) ∼ − lnw, w → +0.

Then it is easy to show that that there is a ν0 > 0 such that, for all ν ≥ ν0 and 0 < ζ <∞,

|ε1(ζ, ν + 1/2)| ≤ 1

2

K−µ((ν + 1/2)ζ)

(ν + 1/2)−µ
,

which implies, for µ > 0,

|Qµ
ν (cosh ζ)| ≤ C

(

ζ

sinh ζ

)1/2 K−µ((ν + 1/2)ζ)

(ν + 1/2)−µ

≤







C
(ν+1/2)−µ+1/2

1
4
√

(cosh ζ)2−1
e−(ν+1/2)ζ : C

ν < ζ,

C
(ν+1/2)−µ+1/2

1
4
√

(cosh ζ)2−1
(νζ)µ+1/2, : 0 < ζ < C

ν .

The remaining cases of ν ≤ ν0 or µ = 0 can be treated similarly. Eventually, the estimates in
case of ν = −1

2 and µ = 0 follow from a discussion of (A.7).

Lemma A.3 (Auxiliary lemma for the estimate of P ). Let 0 < α < ε < π/2, κ ≥ 0, λ ∈ R,
where λ > −1 and λ 6∈ Z. Then the integral

(A.14) Iλ
κ (cosα) =

∫ α

0
cos(κθ)(cos θ − cosα)λ dθ

fulfills the estimate

|Iλ
κ (cosα)| ≤ C

(sinα)λ

(κ+ 1)λ+1
, C = C(λ).
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Proof. The estimate holds trivially in the case of 0 ≤ κ ≤ 1, and in the case of 1 ≤ κ < ∞
and 0 < α ≤ π/(4κ). Suppose therefore that κ ≥ 1 and α > π/(4κ). We fix a cut-off function
χ ∈ C∞(R; R) with χ(s) = 1 for s ≤ −1/2 and χ(s) = 0 for s ≥ −1/4, and split

Iλ
κ (cosα) = Iλ

κ,1(cosα) + Iλ
κ,2(cosα)

=

∫ α

0
(1 − χ(κ(θ − α))) cos(κθ)(cos θ − cosα)λ dθ

+

∫ α

0
χ(κ(θ − α)) cos(κθ)(cos θ − cosα)λ dθ.

For 0 ≤ θ ≤ α < π/2, we have cos θ−cosα ∼ (α−θ) sinα. Concerning Iλ
κ,1, we have α−1/(2κ) ≤

θ ≤ α in the support of the integrand, which gives us the desired estimate directly.

For the consideration of Iλ
κ,2, put uk(θ) = κ−k cos(κθ − k π

2 ), and

vk(θ, α) = ∂k
θ (χ(κ(θ − α))(cos θ − cosα)λ).

By partial integration,

Iλ
κ,2(cosα) = (−1)n

(

∫ α− 1

2κ

0
un(θ)vn(θ, α) dθ +

∫ α− 1

4κ

α− 1

2κ

un(θ)vn(θ, α) dθ

)

.

Call the two integrals Iλ
κ,21 and Iλ

κ,22. In the interval [0, α − 1/(2κ)], we have χ(κ(θ − α)) = 1.
Then Faa di Bruno’s formula and elementary combinatorics show that

vk(θ, α) = (cos θ − cosα)λ−kRk(θ, α), |Rk(θ, α)| ≤ C(λ, k)(sinα)k.

We choose n so large that −2 < λ − n < −1, and the estimate |Iλ
κ,21(cosα)| ≤ C(sinα)λκ−λ−1

follows.

And in the interval [α − 1/(2κ), α − 1/(4κ)], we have make use of cos θ − cosα ∼ (α − θ) sinα
and |vn(θ, α)| ≤ C

∑n
k=0(cos θ − cosα)λ−k(sinα)kκn−k, which completes the proof.

Lemma A.4 (Auxiliary lemma for the estimate of P ). Let λ ≥ −1/2, κ ≥ 0 and π − 1/100 <
α < π. Then the integral Iλ

κ (cosα) from (A.14) satisfies the estimates

|Iλ
κ (cosα)| ≤ C

(sinα)λ

(κ+ 1)λ+1
, π − 1

100
≤ α ≤ π − 1

κ+ 1
, λ ≥ −1

2
,

|Iλ
κ (cosα)| ≤ C(λ)

(κ+ 1)2λ+1
, π − 1

κ+ 1
≤ α < π, λ > −1

2
,

|Iλ
κ (cosα)| ≤ C |ln ((κ+ 1)(π − α))| +C, π − 1

κ+ 1
≤ α < π, λ = −1

2
.

Note that, for λ = −1/2, we can weaken the last estimate to

|Iλ
κ (cosα)| ≤ C

(sinα)λ

(κ+ 1)λ+1
.
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Proof. The estimates hold trivially for 0 ≤ κ ≤ 100. Suppose therefore that κ > 100. A Taylor
expansion of cos θ at the point α shows

cos θ − cosα = (α− θ)

(− cosα

2
(α − θ) + sinα

)

(1 +R(α, θ)),

where both terms in the second factor have the same sign and R = O((α−θ)2), |R(α, θ)| ≤ 1/10
if |α − θ| ≤ 1/10. It is crucial to know which term in the second factor dominates. Therefore,
we define a number θ1 by

− cosα

2
(α− θ1) = sinα,

and we distinguish two cases.

Case A: θ1 < α− 2/κ. This implies π − α ≥ C/κ, i.e., α is separated from the bad point π.

Case B: θ1 ≥ α− 2/κ. In this case, we have π − α ≤ 1/κ and will feel the pole.

We fix a cut-off function χ ∈ C∞(R; R) with χ(s) = 1 for s ≤ −2 and χ(s) = 0 for s ≥ −1.

The estimate in Case A We split

Iλ
κ (cosα) = Iλ

κ,1(cosα) + Iλ
κ,2(cosα)

=

∫ α

0
(1 − χ(κ(θ − α))) cos(κθ)(cos θ − cosα)λ dθ

+

∫ α

0
χ(κ(θ − α)) cos(κθ)(cos θ − cosα)λ dθ.

For Iλ
κ,1, we have α− 2/κ ≤ θ ≤ α, hence sinα ≥ C(α− θ) and

|Iλ
κ,1(cosα)| ≤ C

∫ α

α−2/κ
(α− θ)λ

(− cosα

2
(α− θ) + sinα

)λ

dθ ≤ C
(sinα)λ

κλ+1
.

Next we consider Iλ
κ,2. Define, for n ∈ N0, functions un and vn as in the proof of Lemma A.3.

Since v0(θ, α) is even in θ, partial integration does not produce boundary terms:

Iλ
κ,2(cosα) = (−1)n

∫ α

0
un(θ)vn(θ, α) dθ.

We choose an n ∈ N with n > λ+ 1 as well as n > 2λ+ 1, and split

Iλ
κ,2(cosα) = (−1)n

(

∫ π− 1

10

0
. . . dθ +

∫ θ1

π− 1

10

. . . dθ +

∫ α− 2

κ

θ1

. . . dθ +

∫ α− 1

κ

α− 2

κ

. . . dθ

)

.

Call the integrals Iλ
κ,21, . . . , Iλ

κ,24. Concerning Iλ
κ,21, we have θ ≤ π − 1/10 and α ≥ π − 1/100

which assures that vn is smooth, leading to |vn| ≤ Cn and |Iλ
κ,21(cosα)| ≤ Cnκ

−n for any n ∈ N.
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In the remaining three integrals, we are allowed to write

vn(θ, α) = ∂n
θ

(

(α− θ)λ(((− cosα)/2)(α − θ) + sinα)λ(1 +R(α, θ))λχ(κ(θ − α))
)

=
∑

n1+···+n4=n

Cnj

(

(α− θ)λ−n1

)(

(((− cosα)/2)(α − θ) + sinα)λ−n2(− cosα)n2

)

×

×
(

∂n3

θ (1 +R(α, θ))λ
)

κn4χ(n4)(κ(θ − α))

= (α− θ)λ
(− cosα

2
(α− θ) + sinα

)λ
∑

nj

(

Cnj

κn4χ(n4)(κ(θ − α))

(α− θ)n1

∂n3

θ (1 +R)λ
(

α−θ
2 − tanα

)n2

)

.

In Iλ
κ,22, we have (α − θ) ≥ C sinα and n4 = 0, whence |vn(θ, α)| ≤ Cn(α − θ)2λ−n. Then we

conclude, using 2λ − n < −1 and sinα ≥ Cκ−1, that |Iλ
κ,22(cosα)| ≤ Cκ−n(α − θ1)

2λ−n+1 ≤
C(sinα)λκ−λ−1.

In Iλ
κ,23, we have sinα ≥ C(α− θ) and n4 = 0, which implies |vn(θ, α)| ≤ Cn(α− θ)λ−n(sinα)λ.

From this estimate and n > λ+ 1 we then get |Iλ
κ,23(cosα)| ≤ C(sinα)λκ−λ−1.

Finally, in Iλ
κ,24, we have sinα ≥ C(α − θ) and 0 ≤ n4 ≤ n, which gives us |vn(θ, α)| ≤

C(α− θ)λ(sinα)λκn and |Iλ
κ,24(cosα)| ≤ C(sinα)λκ−λ−1.

The estimate in Case B This is the harder case. We begin by splitting the integral,

Iλ
κ (cosα) = Iλ

κ,1(cosα) + Iλ
κ,2(cosα)

=

∫ α

0
(1 − χ(κ(θ − α)/2)) cos(κθ)(cos θ − cosα)λ dθ

+

∫ α

0
χ(κ(θ − α)/2) cos(κθ)(cos θ − cosα)λ dθ.

Concerning Iλ
κ,1, we have α − 4/κ ≤ θ ≤ α. Then we obtain, focusing our attention to the case

λ > −1/2,

|Iλ
κ,1(cosα)| ≤ C

∫ α

α− 4

κ

(α− θ)λ
(− cosα

2
(α− θ) + sinα

)λ

dθ ≤ C

κ2λ+1
.

And in case of λ = −1/2, we get |Iλ
κ,1(cosα)| ≤ C| ln(κ(π − α))| + C.

Partial integration is applicable to Iλ
κ,2 in the same manner as in Case A above:

Iλ
κ,2(cosα) = (−1)n

(

∫ π− 1

10

0
. . . dθ +

∫ α− 4

κ

π− 1

10

. . . dθ +

∫ α− 2

κ

α− 4

κ

. . . dθ

)

.

The first integral Iλ
κ,21 can be estimated by the same method as in Case A.

For the second integral Iλ
κ,22, we have n4 = 0 and sinα ≤ C(α − θ), therefore |vn(θ, α)| ≤

C(α− θ)2λ−n, which gives

|Iλ
κ,22(cosα)| ≤ C

κn

∫ α− 4

κ

π− 1

10

(α− θ)2λ−n dθ ≤ C

κ2λ+1
.
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Finally, in the integrand of the last integral Iλ
κ,23, we have 0 ≤ n4 ≤ n and sinα ≤ C(α − θ),

hence |vn(θ, α)| ≤ C(α− θ)2λκn, and therefore

|Iλ
κ,23(cosα)| ≤ C

∫ α− 2

κ

α− 4

κ

(α− θ)2λ dθ ≤ C

κ2λ+1
,

where λ ≥ −1/2.

B Fractional Calculus

The theory and applications of the fractional calculus are expounded in [24].

Definition B.1. Let γ > 0, −∞ ≤ a < b ≤ +∞ and f ∈ L1(a, b). Then we define the forward
(or backward) fractional integral of order γ (starting in a (or b)) by

( +I γ
af)(x) =

∫ x

a

(x− x1)
γ−1

Γ(γ)
f(x1) dx1, a ≤ x ≤ b,

(−I γ
b f)(x) =

∫ b

x

(x1 − x)γ−1

Γ(γ)
f(x1) dx1, a ≤ x ≤ b.

Proposition B.2. 1. The operators +I γ
a and −I γ

b are continuous endomorphisms on L1(a, b)
and L∞(a, b).

2. For γ, δ > 0 we have +I γ
a ◦ +I δ

a = +I γ+δ
a and −I γ

b ◦ −I δ
b = −I γ+δ

b .

3. For γ > 0 and f ∈W 1,1(a, b) we have

∂x (( +I γ
af)(x)) =

(x− a)γ−1

Γ(γ)
f(a) +

(

+I γ
af

′
)

(x), a < x ≤ b,

∂x

(

(−I γ
b f)(x)

)

= −(b− x)γ−1

Γ(γ)
f(b) +

(

−I γ
b f

′
)

(x), a ≤ x < b.

4. For f ∈ Lp(a, b), g ∈ Lp′(a, b) we have

∫ b

a
( +I γ

af) (x)g(x) dx =

∫ b

a
f(x)

(

−I γ
b g
)

(x) dx.

Proof. The first claim is trivial, the second is a consequence of the definition of the Beta function.
The third follows from partial integration in the definition of +I , −I . Fubini’s theorem gives 4.

For a function f ∈ Lp(a, b), let f0 ∈ Lp(R) denote its zero extension. Then we have ( +I γ
af)(x) =

(Kγ ∗ f0)(x), a ≤ x ≤ b, where Kγ is positive homogeneous of order γ − 1, hence its Fourier
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transform K̂γ = K̂γ(ξ) is a positive homogeneous Fourier multiplier of order −γ, which implies
the continuity of +I γ

a as a mapping between homogeneous Bessel potential spaces

+I γ
a ∈ L

(

Ḣs
p,comp(a, b), Ḣ

s+γ
p (a, b)

)

, s ∈ R, 1 < p <∞.

Combined with +I γ
a ∈ L(Lp(a, b), Lp(a, b)) we then get

+I γ
a ∈ L

(

Hs
p,comp(a, b), H

s+γ
p (a, b)

)

, s ≥ 0, 1 < p <∞.

Proposition B.2 tells us that the subscript “comp”, denoting compact support in (a, b), can not
be dropped.

We can get estimates of fractional integrals by interpolation:

Lemma B.3. Let 0 < γ < 1. Then there is a constant C = C(γ) such that for each function
f ∈ L∞(a, b) and any antiderivative F = F (x) of f the following estimate holds:

‖+I γ
af‖L∞(a,b) ≤ C ‖F‖γ

L∞(a,b) ‖f‖
1−γ
L∞(a,b) .

Proof. Let f0 denote the zero extension of f to R. Put K0 = ‖f‖L∞ , K1 = ‖F‖L∞ and fix
M = K1/K0 > 0. Then we can split

( +I γ
af)(x) =

∫ x−M

−∞

(x− x1)
γ−1

Γ(γ)
f0(x1) dx1 +

∫ x

x−M

(x− x1)
γ−1

Γ(γ)
f0(x1) dx1 = T1(M) + T2(M).

We can treat T1 using the following simple result: if f = F ′ and g is smooth and monotone,
then |

∫ d
c g(x)f(x) dx| ≤ 4 ‖g‖L∞ ‖F‖L∞ . Therefore |T1(M)| ≤ CγM

γ−1K1. Trivially we have
|T2(M)| ≤ CγM

γK0. The assertion follows by the special choice of M .
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