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Abstract

We consider the wave equation in an unbounded conical domain, with initial conditions
and boundary conditions of Dirichlet or Neumann type. We give a uniform decay estimate
of the solution in terms of weighted Sobolev norms of the initial data. The decay rate is the
same as in the full space case.

1 Introduction

The asymptotic behavior of solutions to initial boundary value problems for linear wave equations

(L1) (02 — N)u(t,z) =0, (t,z) e Rx Q,
' Mu(0,2) =u®(z), z€Q, k=01,

with either Dirichlet or Neumann boundary conditions,

(1.2) u(t,z) =0 or %(t,x) =0, (t,z) € R x 09,

for a domain 2 C R™, has been studied widely.

For the Cauchy problem, ie. for Q@ = R", see for example Christodoulou [4], Klainerman
[13, 14, 15, 16, 17], Klainerman and Ponce [18] or Shatah [25, 26]. A thorough presentation of
various approaches can be found in [9].

Also the case of exterior domains, i.e. R™\ € is compact, has been dealt with, see for example
Hayashi [8], Keel, Smith and Sogge [11, 10, 12], Shibata and Tsutsumi [27], and Sogge [28].

Decay rates for solutions in infinite homogeneous waveguides, i.e. domains of the type Q = R!x B,
where B C R"! is bounded, have been investigated by Lesky and Racke [20], and by Metcalfe,
Sogge and Stewart [21].
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2 1 INTRODUCTION

In all these papers also the fully nonlinear version, and in part also Klein-Gordon equations,
have been treated. The knowledge of decay rates for solutions to wave equations always is not
only of interest in itself, but is a useful ingredient of the proof of global existence theorems even
for fully nonlinear wave equations.

Here we study domains €2 which are conical sets,
Q={rweR": 0<r<oo, we N},

where
Qo C SV 1, 00 # () smooth, n > 2.

While the energy E(t) := [q |u¢|* + [Vu|* dz = E(0) of the solution to (1.1) is conserved, the
typical decay of the L°°-norm of the gradient of the solution is for the Cauchy problem and for
the case of an exterior domain like ¢~ (=1)/2,

3C >0 Vi >0: H(ut(tv ')7 Vu(tv ))”LM(Q) < C(l + t)_(n_l)/2 H(ut(07 ')7 VU(O, '))HW"LJ(Q)

for some m = m(n) € N, where C is independent of the initial data. Here, for the case of an
exterior domain, the non-trapping condition is assumed.

For the infinite waveguides with [ unbounded directions and Dirichlet boundary conditions, we
get a decay like t~//2. In particular, in R it is the same for the Cauchy problem and for the
region between two planes (I = n—1 = 2), while it is weaker for infinite cylinders (l =n—2=1).

In the case of a sectorial domain, it seems natural to perform a Fourier decomposition with
respect to the angular variables, similarly to the decomposition given in [20]. The Fourier
coefficients u; = u;(t,r) are solutions to one-dimensional radial wave equations,

—1
<a§-a§- "T a,+%> wi(t,r) =0,  (tr) € R xRy,

where a = )‘3 is the eigenvalue of the Laplace—Beltrami operator on 23 with homogeneous
Dirichlet or Neumann boundary conditions. Solution formulas for this equation are known,
see Lamb [19] or Cheeger and Taylor [2], [3]. Seen from another point of view, these Fourier
coefficients can be construed as radially symmetric solutions to n—dimensional wave equations
with different inverse-square potentials,

(1.3) <a§ — A+ #) vi(t, 1) =0,  (t,z) €R x R",

where v;(t,x) = u;(t,|z|), as studied by Burq, Planchon, Stalker and Tahvildar-Zadeh [22, 23, 1],
who proved a decay rate of t~("1)/2 for such solutions, among other estimates.

The differences between our paper and the papers [22, 23] are twofold: first, in proving pointwise
estimates, we are able to study solutions without radial symmetry, which is made possible by a
technique developed in [20], and by a thorough analysis of the relation between the coefficient
a= )\5 of the inverse-square potential and the decay constant (second).



As an application of our method, we give a pointwise estimate of non-radial solutions to (1.3) in
Corollary 1.3. An open problem is how to exploit our technique for generalizations of the other
estimates from [22, 23] to the non-radial case.

As our main result, we get the decay rate t~("=1)/2 of the L>-norm of the solution to (1.1).

An investigation of the associated nonlinear problems would include, in particular, an interpo-
lation of this estimate with the energy estimate, and decay estimates of the solution to a wave
equation with a right—hand side.

The plan of the paper is as follows: in Section 2, we prove the decay of the Fourier coefficients
of u, by a careful investigation of a certain integral operator. In Section 3, we demonstrate how
these decay estimates of each Fourier coefficient lead to a decay estimate of the solution wu.

The first of our two main theorems is the following:

Theorem 1.1. Putd = [—] the smallest integer greater than or equal to “5=. Let Ag denote
the Laplace-Beltrami operator on the unit sphere S" 1, and call Ag the self adjomt realization
of —Ag on Qg with either Dirichlet or Neumann boundary conditions on 0. Then any enerqy
solution to (1.1) with u©) = 0 and Dirichlet boundary conditions satisfies the decay estimate

- Ed: H(s—2AS)(n—l—k)/26§ (S"T”u(n(s,(p)) HU  (tx) €R, x Q.

u(t,z)| < C
ju(t, ) > o

where (s, ) denote the polar coordinates in Q, and we assume that u)(s,-) € D(A(n 1)/2), and
that the right-hand side is finite.

For the case of Neumann boundary conditions, we have the estimate

s (t,x) €R+ x Q.

lu(t,z)| < Ct™ —ZH 2(1 + Ag))(n1-R)/2gk (s =W (s, @) o)

For n € 2N, n > 4, the assumptions on the regularity of u) can be slightly relaxed. For a
positive real number «, define the power A by the spectral theorem, which can be written as a
differential operator for 2o € N. Additionally, we define fractional radial derivatives as follows:

Let f: Ry — C be a function with bounded support from the Bessel potential space H7P(R ),
v €R,, 1 < p<oo. Then the derivative 93 f of order v is defined as

@2£) () =0l (10177f) (), 0<s<ox,

where _T2_ denotes the fractional integral of order 4:

<_Igof) (s) ::/:;%f(sl)dsl, 0<s<oo, 6>0.

The theory of these integration operators of fractional order will be recalled in Appendix B.
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Theorem 1.2. Letn € 2N, n >4, and 0 < e < % Let uV) € I?(Q) be a function with bounded

support and u(M(s,-) € D(A(" 1)/2) for 0 < s < oco. Then any energy solution u to (1.1) with
u©) =0 and Dirichlet boundary conditions satisfies the following decay estimate for 1 < p < oo,

1/p+1/p =1:
n 1

lu(t, )| < Ct ("= ZH (572 Ag)n—h=3/2+)/29k <S”T*2+eu(1)(s’(p))Hlp

for (t,x) € Ry x Q, where we assume that the right-hand side is finite. In case of Neumann
boundary conditions, we have the estimate

u(t,2)| < Ot ZH 2(1 + Ag))(n—h=3/2+0)/2} (S"T*%eu(l)(s,@))umm,

for (t,x) € Ry x Q.

Our method of proof can be applied to Cauchy problems of wave equations with an inverse-square
potential:

Corollary 1.3. Let Ag denote the self-adjoint realization of the Laplace-Beltrami operator —/Ag
on the unit sphere S"~'. Then any energy solution v to (1.3) with a > 0 and initial data v® =0
and vV satisfies the decay estimate

d
lo(t,z)| < ct T kZ:O “(3_2143)(”_1_1“)/285 (snTﬂv(l)(s, gp)) HU(R”) ) (t,z) € Ry x R™,

where we assume that v (s, -) € D(Agn_l)ﬂ), and that the right-hand side is finite.

Acknowledgment. The author thanks Prof. Racke of Konstanz University for productive
discussions and the referee for helpful remarks.

2 The radial wave equation

The Laplacian in R™ can be split as A = A, +772Ag, where A, = 92 + (n — 1)r~10, is the
radial Laplacian, and Ag is the Laplace-Beltrami operator on the unit sphere S”~1.

The eigenvalues of Ag, ordered according to multiplicity, are 0 < A2 < A3 < ..., and the
associated eigenfunctions are denoted by 1; = 1;(w), normalized by the condition ||1;l| 12(00) =
1. We recall the estimates
1
\j o~ et j — oo,

(2.1) sup Z [ (w)]? < CA™L

w0 gy <A



cf., for instance, the survey article [7] and the references cited therein.

A solution u = u(t,z) to (1.1) with u(®) = u(%)(z) = 0 can then be written as
u=u(t,r,w) = Zuj(t,r)z/}j(w), (t,r,w) € R x Ry x Q,
j=1

where the Fourier coefficients u; = u;(t,r) solve the radial wave equations

n—1 % .
(2.2) <8t2 R " Or + T—g) uj(t,r) =0, (t,r) e RxR4, jeNg,
with initial conditions
u;(0,r) =0, reRy, jeNy,

wa(0,7) = wr (1) = (u (), 95())

eR € N4
2(9) ) r +5 J +

The following explicit representation of u; in terms of u1 ; can be found in [2]:

(2.3) ui(tr) = (g ) (6r) = [ Kyftors)uni(s)ds,
s=0
1 /s\%* r24 22
Kj(t,r,s) = p (;) SQu;-1/2 (T - 10> ;

where @, _1/2 is the Legendre function (cf. Appendix A), and

(n —2)?

(2.4) vj =/ A+ 1

The main result of this section are two IV — L*° estimates of the Fourier coefficients u;:

Proposition 2.1. For each j € Ny, there are integral operators K;o, Kj1, ..., Kjaq, such that

Kj= ZZZO Kk and the following estimates hold for all f for which the norms on the right-hand
side are finite, and 0 <e <1/2, 0<k<d,0<t < c0:

k— 2n—3

k=T =gk (3”772+€f(3))

1
2

Cno1 -
(2'5) |’(]Cj7kf)(t7 ')|’L°O(R+) <Ct 7z )‘j MRy ,sn—1ds)

For even n, the number of derivatives acting on f can be reduced by 1/2, making use of differ-
ential operators of fractional order:

Proposition 2.2. Put d = VLT_lL and assume n € 2N, n > 4. Then there are, for each
J € Ny, integral operators Kjo, Kj1, ..., Kja-1, Kjmn-1)/2, such that K; = ,(::_01)/2 Kjr and

the following estimates hold for all f for which the norms on the right—-hand side are finite, and
all0<e<1/2,p>1,1/p+1/p=1,0<k<(n—1)/2, 0 <t < oo:

sk_zngg_saf (snT72+€f(s)>H .

IP(Ry,sm—1ds)

1
_ny . k-1

(26) H(K:j,kf)(tv ')“LOO(R+) < Ct_(% 7))\].
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Remark 2.3. Similar estimates without the factor )\j_k_l/z

in [22)].

on the right-hand side can be found

The proofs of Proposition 2.1 and Proposition 2.2 are based on several lemmas. We start with
some estimates of the Legendre functions @), on the real axis:

Lemma 2.4. There is a constant C > 0 such that the following estimates hold for allv > —1/2:

c 1

ISQu(x £10)] < 0T DI [ —o0o < x < =2,

. C 2 —1 1
’%Qy(inO)‘Sm‘x —1‘ 47 —2§Z’§—1—m,

1

. 2,2

_ , 1 , -1 1
]%Q,,(x:l:IO)‘Slen<l,m‘x —1‘ 4>7 —1+m§$<1,
IQ,(x £10) =0, 1<z <o0.

Proof. See Lemma A.2, Lemma A.1, and (A.3). The last relation follows from (A.6). O

For m € N with 0 < m < v + 1, we define the antiderivatives of order m by

QY (2) = Qu(2),

Q,(/m)(z) = Q,(/m_l)(zl) dz1 = / Q,(/m_l)(zl) dz;, 1<m<v+1,
+o0o —o0=£i0

where z € C\ (—o0,1] and the path of integration must not cross the half-line (—oo, 1]. The
purpose of the restriction m < v + 1 is to guarantee the convergence of the integrals.

Lemma 2.5. For each m € N4, there is a constant C = C(m) such that for allv >m —1 and
all © € R the following estimates hold:

C 1

’%Q,(jm)({[‘ :l: 10)’ S Vm+1/2 ‘Z”V-i_l_m’ —x<x S —27
m 1
. C 1 21
|%Ql(/m)($:|:10)|§m<ﬁ+|$2_l|> , —QSxSO,
. C m_1
’%Q,(/m)(ﬂii10)]§m‘x2—l‘2 4 0<x<1,
SQU™ (z +i0) = 0, 1<z < oo

Proof. The antiderivatives Q,(,m) (z) are connected to the Legendre functions via

Qi (2) = (> —1)2Q,™(2).



Then the estimates for |z| > 1 follow from Lemma A.2; whereas the estimates for |z| < 1 follow
from Lemma A.1 and

QM (x +£10) = S ((a; F140)™2(z — 1+10)™2Q;™(x + 10))

= (@ + 1) (@ — 110y 2eT e ET (Qrm (@) F TP, (2)) )
2
= F |2® — 1] exp(Limm — imﬂ)gP;m(az),

see (A.3). O
There are three difficulties to overcome in the estimation of K;:

e the term (£)"=1D/2 in case of 0 < r < t,

T

r24s2—42 1
2rs - )

e the logarithmic pole of @, 1o for

e the jump discontinuity of IQ,, /> for % = +1. We have 3Q,,_1/2 = O(1) instead
of the desired (9(1/]-_1/ 2) there.

The first difficulty will be resolved by [(n—1)/2] or (n— 1)/2 times partial integration, and the
other two by partial integration once.

The next lemma gives estimates of antiderivatives of a composed function P(X(s)) provided that
estimates of antiderivatives of P and derivatives of X are given. A variation of its reasoning can
also be found in [22].

Lemma 2.6. Let I = (a,b) be an interval of R and X = X (o) a smooth monotone function,
mapping I onto J = (A, B). Suppose that the inverse function o = o(X) satisfies

0 < o'(X) < CoM?, X € (A, B),
0%l e .3y + 10% T | 1 4.5y < CoM ™™, m € No,
(e — a)_lﬁ}"bJHLw(A’B) < CoM™, m € Np.

Denote the m-th primitive function of P € I}(A, B) (starting in A) by
PU(Y) = (,ITP)(Y), A<Y<B,
and assume the estimates

2] e

< Lm, m N+.

Then the m~th primitive function of P = P(o) := (0 — a)YP(X(0)), v > 0, (starting in a)
satisfies

Hp(m)HLoo(a b) < O L M*"7, m 2 1.
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Proof. We have the representation

- (g —oy)m !
P () = / ﬁ(al—a)wo{(al))dm.

Choose 7 € (a,b) and put Y = X (7). Clearly,

T Y o
en [ -aPeee)dn - / (gX(m)> (o(¥1) — o(A)) P(¥) dY;

_ <§_;<Y)> (oY) = a(4)) PO(Y)

[ ; (% (%0) (0() - ot ) PO avi

giving us HP(I)H ) < CLyM**7. Similarly,

> (a,b

15(2)(T) = /T (g; (Y1)> (o(Y1) — U(A))VP(l)(Yl)dn

L G B i) o) e

Y
- <5" <y1>> (o(¥1) = o(4) PO (1) dYy

Yi=
/1/2 /Yl Ly <5Y2 ( (Y )> (o(Ya) — J(A))“/> PO(Yy) <g§(Y1)> 4y, dYs

_ <8X(Y)> (o(¥) = o (A)) P ’(Y)

Y O'

[ (gt ot (a% (500 (00 = o)) ) POvi) ai,

giving us HP(2 H < CLyM*t,
L (a,b)

Continuing in this fashion by induction, we find an integral with m + 1 derivatives acting on
powers of o and m + + factors of o and its derivatives, when we express P(™). This gives the
desired estimate. O

Before we derive estimates of the integral operators K;, we scale the variable of integration:
Oo(t,r) = /|t?2 — 12|, (t,r) e Ry x Ry, t#r,
s =00, f(o )_3 z +€f

(28) (Kif)(t.r) = 768 / (o



0’%_5%@,,]._1/2 <07Y(0) - iO) 0<r<t<oo,
Kj(o) =4 "

o2 ESQVj_1/2< Z(U)—i0> 0<t<r<oo,

r

where Y =Y (0) = 022;1 and Z = Z(o) = % for o > 0.

Since Q,,_1/2(2) is real for z > 1, the variable o runs only in the intervals [o ! o0] and [0, o)
in the cases of t < r and r < t, respectively, where

r+t T+t
og = = .
0 r—t|  Oo(t,r)

The functions Y and Z are (locally) invertible, with inverse functions

o=0Y)=Y+VY2+1, Y eR,
oc=04(2)=2Z+\7Z%?-1, Z > 1.

Lemma 2.7. We have the equivalences

(2.9) o(Y

and the estimates

(2.10) ‘8{30—(1/)‘ < O+ YR, Y €R, k> 2,
(2.11) 050, (Z)| < CpxV/ 22 —1(Z —1)7F, Z>1, kE>1,
(2.12) ko (Z2)| < CpV/ 22— 12722 —1)7F, Z>1, >

Lemma 2.8. Put P(X) = %Q,,j_l/g(@TOX—iO), where X = X(0) =Y (0) = =L for0 <1<t

20
an = o)=4(o)= or0<t<r. en the m-th antiderivative
dX=X Z 4L for 0 Then the m-th antid

K{"(0) == (41§'K;) (0),  0<o0 <o,

of Kj(0) = o'/?>~*P(X(0)) satisfies the following estimates:

m r\" mal_o —m—1
(2.13) |K] )(0)]§C<9—0> R R

1
0<m-—1, [nﬂ—1<yj—§, 0 <o <oy, 0<r<t,
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vj+1/2
(2 14) ’Kj(m)(a')’§0<0£ O,m+l/j—|-1—€7
0
1 —1
0<m—1,  v—5<[ml-1, m<(n2 1, 0<o0<o0o<C, 0<r<t
_3
(215) |KV(0)|<Cr0i v, 2, 1<o<o, 0<r<t,
0

For the estimate of K; in case of 0 <t <r < 0o, we introduce

1
Z(]:Z(O'()), Z*25(20+1), Z(O'*) =2y, 1< o, <oy.

Then the following estimates hold:

3 . .
216) KW (o) = |( LI K, <o( "N 20— Z(o)ios—272 (2 — 1) 3072
(2.16) | j (o) ‘(+ 0 J)(O_)‘ = o |Zo (0)]102 0 - (Zo ) vy T,

O<oy'<o<ol<l,

(217) |(-ILK;) (o) <C <g—0>Z | Zo — Z(g)ﬁa%—ezoé(zo 1) 2]

Vi )

Nlw

1 <o, <o <oy

Proof. Estimate (2.13) follows from Lemma 2.5 and Lemma 2.6, with (a,b) = (0,0), (4, B) =
(—00,Y(0)) and v = 1/2 —e. From (2.10) and (2.9), we get M = o, and Lemma 2.5 gives
Ly, = C’(%)’”yj_m_l/2. First, we obtain (2.13) for integer values of m, and then, by Lemma B.3,
for the intermediate values of m.

Lemma 2.5 is no longer applicable for v; —1/2 <m —1, m e Ny, m < d = ["7_11 This case
can only happen for m = d, since v; > (n — 2)/2, from (2.4). Therefore, we prove (2.14) by
direct computation: as a first sub-case, consider 0 < o < 1/4. Then —oco < 67°X (¢') < =2 for
0 < ¢/ < 0; and from Lemma 2.5, we deduce that

o m—1 —(vj+1/2)
(m) < (U — OJ) n1/2—e @ / /
‘KJ (U)‘_C/O T (") TX(O’) do
r I/j—|—1/2 o r I/j—|—1/2
<C|— / (0’ _ O_/)m—l(o_/)uj—l—l—s do! =C ( — O’m+1+yj_€,
90 0 90

The remaining sub-case is 1/4 < 0 < 0p < C. Define a number o1 by (6y/r)X(01) = —2. Then
0 <og—o01 <C(r/by), and we can estimate

%0 (o —O'/ m—1
K@) < [ P )

o1 1 g0
:/ ...da’+/...da’+/ oodo' =1 + I, + Is.
0 o1 1
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The term I; can be estimated as in the sub-case of 0 < o < 1/4. For I, we use Lemma 2.4 and
obtain

In

1
|Io| < C(og — O’l)m_l/
o1

m—1 1 m
r 6o\ , 1 , T

< In{ — — < — ) .
C’<90> /Jl n<T|0’ o |>‘d0_0 %

The estimate of I3 is trivial, since |K;(o)| < const. for 1 < o < 0.

%X(a') + 1” do’

The estimate (2.15) follows from Lemma 2.5 and a careful analysis of (2.7). Choose (a,b) =
(0,0), (4, B) = (=00,Y(0)), v =1/2—¢e, m =1, and Ly, = Cg-v; 32

Next, we prove (2.16) and (2.17). Observe that Z(oy ') = Z(0p) = 7. and Z(o Y = Z(oy) =
%(% +1). For 0, <0 < o7, we have 0 = 0_(Z(0)); hence we can write

K(0) = (020) (2(0)) o3 1-3Q!) (L 2(0) ~ 0)

() 0 Oo_ 1 T (1) 90
_ - 7€) & i
/Zl:ZO <8Zl < 82 (Zl)> (O'_(Zl))2 ) QO\SQVj—l/z < Zl 10> le,

compare (2.7). We have the equivalences Z(o0)—1 ~ Zy—1 ~ Z,—1, Z(O’) Zy ~ Zyo_(Z1) ~

Z7'. From (2.12), we then deduce that |(0z0_)(Z)| < C(Zy — 1)_%Z0 , and [(0%0-)(2)] <
_3

C(Zy — 1)_%Z0 ?. Finally, Lemma 2.5 implies

1
0 _3 /fn\1
'%Qw_m (7021 >‘<0 <7°> |Zo — Z4]5.

Then the estimate (2.16) follows easily.

The estimate (2.17) can be derived from

(1855) @) = [ Ki(o) a0’ =~ (0200) (200D * 13010y (2 200) — 0)
Y G ) esor) gotn (81 )

1

see (2.7). Now we have 0, (Z1) ~ Zy, and (2.11) gives |[(0z04)(Z)| < C(Zy — 1)~ %Zg and
1

(0204)(Z)| < C(Zy — 1)"2Z2. Then (2.17) is casy to show. 0

Proof of Proposition 2.1. The integration variable o in (2.8) effectively runs in the interval [0, o]
only. Hence we can assume that f(o) vanishes for, e.g., 0 > 09 + 1. And if r > t then o runs

in the interval [00 ,00] only, and we can assume that f(c) vanishes for 0 < o < o, -1

We distinguish 4 cases.
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Case A: 0 <r< %t.

Then we have 0 < o < 0y and

?tﬁ&o(t,r)<t, 0<— < ! —oo<@Y()§ @Y(ao) = 1<oao9< V3

90 \/§’ r
The representation (2.8) of IC; contains a factor r~ /2 which is delicate if » — 0. However,
each partial integration of the @ function brings out a factor r/6y. Consequently, we employ
partial integration in (2.8) d = [2%51] times. The estimate of K that we will use is (2.13) with
m =d.

(n—1)

Case B: %t§r<t.

In this case, we have 0 < o < g and

3 1 0 0
O<90§£t —<L<oo, —oo<70Y()§ —OY(Uo) = 09> V3.

2 7 \/§ ~ 0
Now r ~ t, and the factor r—(®=1/2 in (2.8) will give us the expected decay rate. We only
have to take care of the logarithmic pole of the () function at —1, by partial integration. This
will bring out a factor r /6y, which is, regrettably, difficult for r ~ t. Therefore, we stop partial
integration shortly after having passed the logarithmic pole, and we resume it shortly before
/2)

o = 0¢. The latter is necessary since 3Q(z) = O(1) instead of the desired O(v; for x = 1,

but the antiderivative of IQ(z) is O(v; 3/ 2)
Therefore, we consider three sub-cases:

0 1 1 0 1 1
~1<2Y(0) < -5, —z <Y <3, 5
T 2 2 T 2’ 2

In the first sub-case, we employ (2.13) with m = 1 and obtain

3 3
) 2 )

W“(N<C%f*» < Cot—cy

In the second sub-case, we directly estimate

()] < Coz~eu,

[NIES

And in the third sub-case, we use (2.15) with m =1,
]K](I)(U)! < Ceiai_suj < CO'%_EVJ-

Case C: t <r < 2t.

Now we have o l<o< oo and

0 < 6y < V3t, — <
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In this case (and in Case D), the argument of J@Q is never negative, so we do not feel the
logarithmic pole. But for o ~ o' or ¢ & 09, IQ,((00/7)Z()) is only O(1) instead of O(v~1/2),
suggesting partial integration. However, we should stop partial integration at some distance from
o = 1, because Z is not injective near 0 = 1, making the antiderivative of IQ,((0y/r)Z(c))
difficult to determine. For this purpose, the number o, has been introduced in Lemma 2.8.

We have the equivalence Zy ~ Zo — 1 ~ g-. Then (2.16) and (2.17) imply

—1 -1
oy <o<o,,

oy < 0 < o0p.

Case D: 2t <r < .

As in the previous case, we now have o, l <5 <oy and

T 2 90 90
< 1 — < — — < =7 <1l=:—7 < .
V3t < 6y < oo, <90_\/§, — < (o) < (00), = o00<V3

For such ¢ we then also have 1 < Z(0) < 2/+/3. It is easy to check that

2

t _
20 = Z(o)| < |20 = 1] ~ —, oyt <o <o,
0 t2
—OZ(O')—l‘N—z, nggaga*.
r T
Then (2.16) and (2.17) yield
3 _3
(T3 (@] < € (F) oF o0, o' <o <ol
L, _3
!(_Iéon) ()| §C<%>2 O'%_EVJ» 2 oy < o < oy.

And for o I < ¢ < 0,, we can make use of Lemma 2.4 and find the estimate

=

: @Z(a)—1‘_

N
Q
VS

| 3
N—
N
Q
(SIS
I
m
~ |
N

r

Next we show how all these pointwise estimates of @, 1/2 and its antiderivatives give us an
estimate of the integral operator K;. Exemplary, we only consider the cases A and D.
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In case A, put m =d = ("7_11 Since f(o) vanishes for large o, we have f(o) = (_I1% (8%f))(0),
from which it follows that

n— §—5 . o0 ~. l_E 0 .
(300 < 050 i | [ (L1008 @) 090y, -1ya BV () ~18) do
= Cr_%ﬁg_e /_0 <8f,lf> (U)K](-d)(O') do|,

by Proposition B.2. All that remains is to apply (2.13), and to scale the variable, o +— s.

For case D, we choose cut—off functions x1, x2, x3 with Zi:l xx =1 and

1 :0<o< (ot +a7h)/2
xi(o) = o
0 0, <o,

()_{1 coTl <o <oy,
X700 coel0, (o5t + 071)/2 U (00 + 04)/2, 00),

1 :(opg+04)/2 <0< 00,
x3(o) =
0 :o0 <oy,

and write (K; f)(t,r) = Ii(t,r) + Io(t,r) + I3(t,7), where I (t,7) = (KKjxrf)(t, 7).

The estimate of I5 is quite easy:

ne1 B3_ e ) _ 1
Bt <O [ @)l (5) 1t ao

=0
1 r+t

n—1 T _1 n—1

<Cr 7z (—)2 2 2 / 572 |f(s)|s" Lds
13 s=r—t

n—1 -1 2n—3 n—2

SCtTz A 2|72 T (ST+€f(S)> .
LNR4,s™—1ds)

We demonstrate how to deal with I; (I3 can be treated in a very similar way). The function f
vanishes for large arguments and very small arguments. Then Proposition B.2 on the interval
(0, 4+00) gives

(L) =

lim —r=*73 / (1% (8317) () 75 75Qy, 1o <9°Z<a> - ia) do

0—+0 T =0 T

0 [ (000 ()) (18K (o) do

s"ds

sk_%_aaf (snTﬁJrEf(s))H .

MRy ,sm—1ds)
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This completes the proof. [l

Proof of Proposition 2.2. We closely follow the proof of Proposition 2.1. The cases B, C, and
m)

D from there can be copied verbatim; and in case A, the antiderivative K ]( of order m =d =

["7_1] has to be replaced by an antiderivative of fractional order "T_l The additional factor

t"/?" comes from a norm ||1|| D7 (r—t,rt),5n-1 ds)» Via HOlder’s inequality. O

3 The estimate in the cone
Proof of Theorem 1.1. The Fourier coefficients u; are given by

uj(r) = <u(1)(r, -),¢j(-)> , 0<r<oo,

2 (Q0)
where we have introduced polar coordinates (r,w).

Choose a number oy, with 2a; € Ng and —2ay, —1/2—k+n—1= —e = —1/2. We have, in the
Dirichlet case, the representation

sz:i _ Wy (@) A7 <’ij’“ (Agk”(l)) (t’r")’wj(')>zﬁ(ﬂo)

- Zd: i/ Z A (ICJV’“ (Agk“(l))) (t, 7 0)0i(0)Y(w) | de.
For 2 < j < 21 — 1 we have \; ~ Ay ~ 27 1. By Proposition 2.1 and (2.1) we deduce that
lu(t,r,w)| < Ct~ 2 ZZ)\—Mk———k
k=0 1=0
MRy ,sm—1ds) Z W’J wa( )] de

X /QO Hs_%‘k(‘)ngk (snT&ﬁu( ) (s, cp)) 2

zz o (lotay (776 0) o)

2l+1_q
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d
_— n—1
< _n—1 —2 ay ok 5 (1) :
< Ct 2 E (/QO (S AS) 85 (3 2 u (87()0)> Ll(R+7S7L71 ds) d(10>

k=0

In case of the Neumann boundary conditions, we write

1 . — 2\—ay ag,, (1) ..
(u ,¢j>mﬂo) (14+22)7% ((1+ Ag)*u ,¢]>B(QO),

and continue in a similar manner as in the Dirichlet case.

This completes the proof. [l

Proof of Theorem 1.2. Choose nonnegative numbers oy by the condition —2a;—1/2—k+n—1=
—e. Then we have, in the Dirichlet case,

I o 2l+1_1
u(trw) =3 > / >0 (K (A3 ™)) (@) ()5 (@) | de.
k=0 1=0 720 \ ;o

From Proposition 2.2 and (2.1), it follows that

k=0 1=0
2+l
—2ay, gk ga n-2 1
></QO [s2enofag: (7 +eu(>(37¢))HU(R+’snilds) > Wilops(w)l | de
j=2!
2 o
(2t -2 - “2ay, ok qak (2524, (1) H
<Ct V2w Z)\ZE/Q (HS ROy A (3 T Ty (s,go)) PRy 571 ds) dp
k=0 1=0 0
n—1
<o TS (/ (s2Ag)*f <Sn772+€u(1)(8790)>up dw)p
- — \Ja, s IP(Ry,sn—1 ds)
The modification for the Neumann case is as in the proof of Theorem 1.1. O

A The Legendre functions

A.1 Representations

The Legendre functions P/'(z) and Q}(z) are linear independent solutions to the Legendre
differential equation

2
(1—22)w"(z) — 220 (2) + <1/(1/ +1)— K > w(z) =0,
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and are given by the formulas

1 (2412 11—z

Ph(z) = F(- 11—y —=

A e P AL R R
M P +p+l)

1 3 1
B ) — 2 _pywl2p (Y R YR z.
Q4 (2) ST F(V—I—%) z (z ) <2+2+ ,2+2+2,V+27Z2 )

where |arg(z £ 1)| < 7, |argz| < 7 and (22 — 1)® = (2 — 1)®(z + 1)®. See [5]. We set P, = P?
and Q, = QB
The hypergeometric Function F'(a,b;c;() is given as a converging power series for || < 1, and

can be analytically extended to the set of all ¢ with |arg(—()| < w. Then the Legendre functions
P} and QY are defined by the above formulas for all z € C\ (—oo, 1].

Additionally, we shall need certain real-valued modifications of the Legendre functions on the
cut {reR: —1<z<1}:

(A1) Ph(z) = % (/2 Pl +10) + 2 Bz~ 10) ) 5, (3.4)(1)],
(A.2) Q) = %e—iw (e‘i““/zQﬁj(x +10) + eHT/2QH (1 — 10)) , 5, (3.4)(2)],
(A3)  QUlwi0) = e/ (Qh(a) FiTPL@)) 5. (3.4)(9)].

The following representations of P are valid for Rv > —1, Ru < 1/2, and R(v + p+ 1) > 0:

(A4) P,(2)= %/Ow(z + (22 = 1D)Y2cosC)dC, Rz >0, [5, (3.7)(16)],
i @ cos((v+ 2
(A5)  Phlcosa) = %F(?l%nf):) /0 (cosH(E C;Z))?ﬁ 4, 0<a<m [5 3727

And the functions @ can be written as follows provided that a > 0, z € C\ (—o0, 1], Rv > —1,
Ru<1/2and R(v+p+1) > 0:

T .. (sinha o e~ (o)t
(A.6) Q4 (cosh @) :\/;e””( h )u/ ( . dt, 5, (3.7)(4)],

F(% — ) cosh t — cosh oz)“+%
pi T 1 u T : 2v+1
(D) Q) = g p R - [ s 06

A.2 Estimates

We have P,(1) = 1.
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Lemma A.1 (Estimate of P in (—1,1)). Suppose v > —1/2, p <0 andv+pu+1>0. Fiz a
small oy with 0 < ag < 7/2. Then the following estimates hold with a constant C' = C(«g, p):

(A.8) |P,(cosa)| <1, 0<a<m/2,

(A.9) |PE(cos a)| < o 1)C_u+1/2 (sin(lx)l/?’ 0<a<a,

(A.10) |PE(cos a)| < (V‘i‘l)#ﬂ/y ap <a<m-—ag,

(A-11) [Py (cos )] < v+ 1§J—u+1/2 (siniv)l/y TTOSASToE
(A.12) |PE(cos ar)| < v +(i)—2ﬂ (sinix)—“’ T <a<m, wp#0,
(A.13) |Py(cosa)| < C(|In((v+1)(m—a))|+ 1), T — <a<m.

v+1

Proof. If 0 < z < 1in (A.4), then |z + (22 — 1)Y/2 cost| < 1, which implies (A.8). Using the
notation of Lemma A.3, we can write (A.5) as

PY(cos a) = Cy(sin oz)“[lj_fl_/;p (cos ).

Then Lemma A.3 and Lemma A.4 yield (A.9) and (A.11), (A.12), (A.13), respectively. Even-
tually, (A.10) follows from the classical asymptotic expansion [5, (3.9)(2)] of P4 for fixed u and
v — 00:

D + 1) (cos((v + Ja— § + 4) + 0())

P , o< a<lmT—ag.
F(v+3) (Z sina)l/?

PE(cosa) =

0

Lemma A.2 (Estimate of Q outside (—1,1)). The functions Qi satisfy for u < 1/2, v+u+1 >0,
v > —1/2, the following estimates:

C 1
" .
Q) (x £10) < (v + 1) P12 [T 2 <zl
Kz £i0)| < ¢ 2_ 4|7 ! 1_%_% 1 <2 0
Q) (> 1)|_(y—|-1)——#+1/2‘$_ | (V+1)2($2_1)+ ;o I<z| <2, p#0,
C 9 -1 1
i0) < —— |22 1|71 T <2l <
’QV(I'ZEIO)‘ — (V+ 1)1/2 ‘.Z' 1‘ ’ 1+ (l/+1)2 — ‘.Z" —= 27
. 2/ 2
1Qu(z £i0)] < C (|In((v +1)*(z* — 1))+ 1), 1<|z] <1+ OESVER
where x € R and C' = C(u). These inequalities also hold for v = —%, w=0.
Proof. The reflection formula,
Qi (—z) = =" QM(2),  4,—:S2>0, Iz <0, [5, (3.3)(12)],
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allows to assume x > 0.

In Frenzen [6] we find: if p <1/2, v+ p+1>0,v>—1/2 and ¢ > 0, then

¢ >1/2 <K_u<<u+ 1/2)¢)

e—iHﬂ'Qﬁ(COSh C) = (m (I/ T 1/2)‘#

+ 51(C7V + 1/2)> 9
where K_, is the modified Bessel function, and the remainder term e; satisfies the estimate

2% K- 1/2
le1(C,v +1/2)] < C“2+<< (vﬂrf(—i :)_L)IC)

The modified Bessel function has the asymptotic expansions

Kop(w) = [g0e ™ (14 0u(w™)). w— oo, —p >0,
1 w\ H
K—H(w) ~ §F(_M) (5) ’ w— +07 —H > 07
Ko(w) ~ —lnw, w — +0.

Then it is easy to show that that there is a vy > 0 such that, for all v > vy and 0 < { < oo,

1K (v + 1/2)C)

(G +172) < = ),

which implies, for p > 0,

1/2 y
e < 0 (5. ) Kol 1209

sinh ¢ (v+1/2)—#
C 1 —(v+1/2 . C
(v+1/2)—#+1/2 ‘{/(cosh()2—1e (vr1/2)¢ v < <’

- C 1
(v+1/2)=rH1/2 ‘{/(cosh ¢)2-1

(VOM2 L 0< (< %

The remaining cases of v < vy or u = 0 can be treated similarly. Eventually, the estimates in
case of v = —3 and p = 0 follow from a discussion of (A.7). O

Lemma A.3 (Auxiliary lemma for the estimate of P). Let 0 < a < e < 7/2, k > 0, A € R,
where A > —1 and A € Z. Then the integral

(A.14) IMcos o) = / cos(kf)(cos f — cos )™ df
0

fulfills the estimate
(sin a)*

A
|IR(COSOZ)| S Cm,

C=C).
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Proof. The estimate holds trivially in the case of 0 < x < 1, and in the case of 1 < Kk <
and 0 < a < w/(4k). Suppose therefore that k > 1 and a > 7/(4k). We fix a cut-off function
x € C®(R;R) with x(s) =1 for s < —1/2 and x(s) = 0 for s > —1/4, and split

IMcosa)) = ,’;1(005 a) + I,i‘,g(cos @)

= /Oa(l — x(K(8 — ))) cos(kB)(cos § — cos a)* db
: #(0 — @)) cos(x0)(cos @ — cos )™ db.
+ [0 = ) cos(t) 050 — cos ) oo

For 0 < 6 < a < 7/2, we have cos § —cos o ~ (a—0) sin . Concerning IH 1, we have a—1/(2k) <
0 < « in the support of the integrand, which gives us the desired estimate directly.

For the consideration of 1,2‘72, put uy(0) = k% cos(kf — k%), and
vr(0, @) = OF (x(K(0 — ))(cos 6 — cos a)?).

By partial integration,

e L
1,2\,2(00504) = (=" </ ’ un(0)vn (6, a) / ) 0)vn (8, ) d9> )
0 a2k

Call the two integrals I 21 and [ 22 In the interval [0, — 1/(2k)], we have x(k(0 — «)) = 1.
Then Faa di Bruno’s formula and elementary combinatorics show that

vi(0, @) = (cos @ — cos ) FRi(0,a), |Ri(h, )| < C(\ k)(sina)*.
We choose n so large that —2 < A —n < —1, and the estimate ‘[,2‘721((308 a)| < C(sina) A1
follows.
And in the interval [ — 1/(2k), a0 — 1/(4k)], we have make use of cos — cosa ~ (o — 0)sin«
and |v,, (0, )| < CS°}_y(cos § — cos a)**(sin a)*k"~*, which completes the proof. O

Lemma A.4 (Auxiliary lemma for the estimate of P). Let A > —1/2, k > 0 and 7 — 1/100 <
o < . Then the integral I} cos ) from (A.14) satisfies the estimates

S A
\I,i‘(cosa)]ﬁ()’%, W—ﬁ<a< —%_’_1, )\2_%7
\I,i‘(cosa)lg(ﬂfg%, W—Ki1§a<7r, )\>—%,
Teosa)| < C((x+ D —a)| +C, 71— ——<a<r, A= —%.
Note that, for A = —1/2, we can weaken the last estimate to
(sin o)

A
|17 (cosa)| < Cm.
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Proof. The estimates hold trivially for 0 < x < 100. Suppose therefore that x > 100. A Taylor
expansion of cos 6 at the point a shows

— COoOs

cose—cosa:(a—9)< (a—0)+sina> (1+ R(a, 0)),

where both terms in the second factor have the same sign and R = O((a—0)?), |R(c, 0)| < 1/10
if | — 6| < 1/10. It is crucial to know which term in the second factor dominates. Therefore,

we define a number 61 by
—Ccos

2

(o — 61) =sina,

and we distinguish two cases.

Case A: 0; < a —2/k. This implies 7 — a > C/k, i.e., « is separated from the bad point 7.

Case B: 0; > a — 2/k. In this case, we have m — o < 1/k and will feel the pole.
We fix a cut-off function y € C*°(R;R) with x(s) =1 for s < —2 and x(s) =0 for s > —1.
The estimate in Case A We split
IMcos o) = 271((308 a) + 12,2(005 Q)
= / (1 — x(k(8 — @))) cos(kB)(cos @ — cos a)* dd
0

+ /Oa X (K(0 — a)) cos(kB)(cos § — cos a)* db.

For I}

K,1

we have a —2/k < 0 < a, hence sina > C(a — 6) and

Racosa = [* @-op(
a—2/k

Next we consider I 9 Define, for n € Ny, functions u,, and v, as in the proof of Lemma A.3.
Since vp(f, a) is even in 6, partial integration does not produce boundary terms:

A

—cos« sin @)

PREs]

A
(a—@)—l—sina) d9<C’(

A =(-1)" au v o .
1 y(cosa) = (1) /0 (0)vn (0, @) O

We choose an n € N with n > A+ 1 as well as n > 2\ + 1, and split
7'('—1—10 01
I25(cosa) = (—1)" / ...d9+/ 1...d9+/ d9+/ e do ).
0 T—15 a—=

Call the integrals 12’21, ce 1,2‘724. Concerning 12’21, we have § < 7 —1/10 and o > 7 — 1/100
which assures that v, is smooth, leading to |v,| < C,, and \I,i‘zl(cos a)| < Cpr™" for any n € N.
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In the remaining three integrals, we are allowed to write
(0, 0) = O ((a — 0)M((— cos @) /2)(a — 0) + sina)* (1 + Ra, 0)) x(k(0 — a)))
= Z Ch; <(a - H)A_"l) ((((— cos a)/2)(ar — ) + sin @) ~"2 (— cos oz)"2> X

ni+--+ng=n

X (833(1 + R(a, 9)))‘) KM (5(0 — a))
A N4, (N4 _ 3
~ (a0 (5@~ 0) +sma) Z(cnf X"((0 — ) 05 (1+ R) )

(a—0)m (%52 — tan )™

nj

In 12’22, we have (o — ) > C'sina and ny = 0, whence |v, (0, a)| < Cp(a — 6)2*~". Then we
conclude, using 2\ —n < —1 and sina > Cx™!, that |I,i‘722(cos a)| < Cr™™(a — )2+ <
C(sina) =1,

In 1,3723, we have sina > C(a — 6) and ny = 0, which implies |v,, (8, a)| < Cp (o — 8)* " (sin o).

From this estimate and n > A+ 1 we then get |I£‘723(cos a)| < C(sina) s 1

Finally, in 12724, we have sina > C(a — 6) and 0 < ny < n, which gives us |v,(0,a)| <
C(a — ) sina) k™ and |I,i‘724(cos a)| < Csina) w1

The estimate in Case B This is the harder case. We begin by splitting the integral,
IMcosa) = ,i‘,l(cos a) + I,/;Q(cos a)
= /Oa(l — x(k(0 — @)/2)) cos(kB)(cos O — cos )™ df
+ /Oa x(k(0 — @) /2) cos(kB)(cos @ — cos a)* d6.
Concerning I,’;l, we have a — 4/k < 6 < . Then we obtain, focusing our attention to the case

A>—1/2

67

—cos A C
(a—@))‘< 5 (a—0)+sina> df < ——

Rieosa)| < |

o—

4 K2A+LT
K

And in case of A = —1/2, we get |I,g\71(cos a)] < Clln(k(r — )| + C.

Partial integration is applicable to [ 2‘72 in the same manner as in Case A above:
2

r—-L a—*4 a—2
sy - (v [ [T )
’ 0 - a—=

10

The first integral I 2‘,21 can be estimated by the same method as in Case A.

For the second integral 12’22, we have ngy = 0 and sina < C(a — 6), therefore |v,(0,a)] <
C(a— 6)?*~" which gives

4
C [*x n C
Roleosa)| < o [ -0 s <
T10
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Finally, in the integrand of the last integral [ 2"23, we have 0 < ngy < n and sina < C(a —6),
hence |v,(6, )| < C(a — 0)**«", and therefore

XN

o C
Rasteose) <€ [ Ma-0a0< o

o—

RPN

where A\ > —1/2. O

B Fractional Calculus

The theory and applications of the fractional calculus are expounded in [24].

Definition B.1. Let v > 0, —oo < a < b < +o0 and f € I}(a,b). Then we define the forward
(or backward) fractional integral of order ~ (starting in a (or b)) by

T _ y—1

17 :/ (z— 1) x1)dry, a<z<b,

(+ af)( ) ; F(’V) f( 1) 1

b _ \7—1

_I7 :L':/(:El 2) x1)dzq, a<z<b

Proposition B.2. 1. The operators 1) and _1; are continuous endomorphisms on L'(a,b)
and L*(a,b).
2. For 7,8 >0 we have 1o (10 = ,17% and 170 1= 177,

3. Fory >0 and f € Wh'(a,b) we have

r—a)!
0, (+11)(e) = S —f@) + (4127) o) a<a<b
— )1
0. ((-139(@) =~ T 1) + (-118) (@) a<w<b

4. For f € IP(a,b), g € IF (a,b) we have
b b
[ un @@ s = [ 1@ (-19) @)

Proof. The first claim is trivial, the second is a consequence of the definition of the Beta function.
The third follows from partial integration in the definition of (I, _I. Fubini’s theorem gives 4.
O

For a function f € IP(a,b), let fo € IP(R) denote its zero extension. Then we have (417 f)(z) =
(K5 * fo)(x), a < & < b, where K, is positive homogeneous of order v — 1, hence its Fourier
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transform IA(V = K’V(f ) is a positive homogeneous Fourier multiplier of order —v, which implies
the continuity of I} as a mapping between homogeneous Bessel potential spaces
dlec (H s

p,comp

(a,b), H;J”/(a, b)) , s €R, 1<p<oo.
Combined with 117 € L£(IP(a,b), IF(a,b)) we then get

) el (H;

p,comp

(a,b), H;+'Y(a, b)) ) s >0, 1< p<oo.
Proposition B.2 tells us that the subscript “comp”, denoting compact support in (a,b), can not
be dropped.

We can get estimates of fractional integrals by interpolation:

Lemma B.3. Let 0 < v < 1. Then there is a constant C' = C(v) such that for each function
f € I*(a,b) and any antiderivative F' = F(x) of f the following estimate holds:

1T e oy < CIF ey 1 1 s -

Proof. Let fo denote the zero extension of f to R. Put Ko = |||, K1 = ||F||;~ and fix
M = Ky/Ky > 0. Then we can split

x—M (

x —xp)7!
(pe = [

We can treat T using the following simple result: if f = F’ and g is smooth and monotone,
then ]fcdg(x)f(a:) dz| < 4|9l | F |l - Therefore |Ty(M)| < C,M7~1K;. Trivially we have
|To(M)| < C,M7Kjy. The assertion follows by the special choice of M. O

ﬁﬁxl)dx1+—J/m (@—z)t

ey T() fo(z1) day = Ty (M) + To(M).
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