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Abstract

We study the viscous model of quantum hydrodynamics in a bounded domain of space di-
mension 1, 2, or 3; and in the full one-dimensional space. This model is a mixed order partial
differential system with nonlocal and nonlinear terms for the particle density, current density
and electric potential. By a viscous regularization approach, we show existence and uniqueness
of local in time solutions. We propose a reformulation as an equation of Schrödinger type, and
we prove the inviscid limit.
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1 Introduction

Depending on the size of a semiconductor device and other physical aspects, there are several
different models describing the flow of charged particles. As examples, we mention the (quantum)
drift diffusion model, the (quantum) energy transport model, or the (quantum) hydrodynamic
model. Derivations of such models can be found in, e.g., [15]. The quantum hydrodynamic model
can be derived from the Schrödinger–Poisson system by WKB wave functions ([9]), or from the
Wigner equations via the moment method, together with a closure of the system with the thermal
equilibrium distribution ([6]). Another derivation exploits the entropy minimization principle ([10]).

Taking into account collisions of the charged particles with the background oscillators, one obtains
the viscous quantum hydrodynamic model, as it can be derived from the Wigner equation using the
Fokker-Planck collision operator:































∂tn − div J = ν0 4n,

∂tJ − div

(

J ⊗ J

n

)

− T∇n + n∇V +
ε2

2
n∇

(4√
n√

n

)

= ν0 4 J − J

τ
,

λ2 4V = n − C(x),

(n, J)(0, x) = (n0, J0)(x),

(1.1)
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2 1 INTRODUCTION

where (t, x) ∈ (0,∞) × Ω, and Ω ⊂ R
d (d = 1, 2, 3) is a bounded domain with boundary Γ = ∂Ω

of regularity C4. We also consider the case Ω = R
1. The unknown functions are the particle

density n : R+ × Ω → R+, the current density J : R+ × Ω → R
d, and the electrostatic potential

V : R+ × Ω → R. The function C : Ω → R models the given profile of background charges. The
(scaled) physical constants are the temperature T , the Planck constant ε, the Debye length λ,
and a viscosity constant ν0 as well as the momentum relaxation time τ , which are related to the
collision operator. We emphasize that the terms ν0 4 are not just an ad hoc viscous regularization or
approximation; instead, they come up naturally from the spatial dependency of the Fokker–Planck
collision operator. All these physical constants are supposed to be positive.

The boundary conditions for the unknowns (n, J, V ) are










∂νn(t, x) = 0,

J(t, x) = JΓ(x),

(KV )(t, x) = g(x),

(t, x) ∈ (0,∞) × Γ, (1.2)

where ∂ν denotes the outward normal derivative, and the last line is an abbreviation for mixed
Dirichlet-Neumann conditions as follows: we assume the boundary Γ to be split into two sub-
manifolds, where the boundary part ΓN is allowed to be empty.

Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, ΓD ∩ ΓN = Z,

with Z being a manifold of dimension d − 2 or the empty set. We are given a pair of functions
g = (gD, gN ), and the function V has to satisfy boundary conditions of Zaremba type,

{

V (t, x) = gD(x) : (t, x) ∈ (0,∞) × ΓD,

∂νV (t, x) = gN (x) : (t, x) ∈ (0,∞) × ΓN .

We require the compatibility conditions

∂νn0(x) = 0, J0(x) = JΓ(x), x ∈ Γ, (1.3)

inf
x∈Ω

n0(x) > 0. (1.4)

For transient quantum hydrodynamic models, only a few analytic results are available. We mention
the existence of smooth solutions to the inviscid model (ν0 = 0) and their asymptotic behavior for
large time and small initial data, as investigated in [14, 23].

Concerning the transient viscous model (1.1), the exponential stability of a constant steady state
was proved in [8] for the one-dimensional case, and in [2] for the higher-dimensional case. The local
existence and uniqueness of solutions was shown in [2] for a one-dimensional setting with insulating
boundary conditions, and for the case of higher dimensions with periodic boundary conditions. It
seems that the viscous transient model (1.1) in higher dimensions has been analytically investigated
for the first time in [2].

A few remarks about the strategy of the approach of this paper are in order. Putting U =
(n, J1, . . . , Jd)

T and observing that the quantum correction term (also called Bohm potential term)
can be expressed as

ε2

2
n∇B(n) =

ε2

2
n∇

(4√
n√

n

)

=
ε2

4
∇4n − ε2 div

(

(∇√
n) ⊗ (∇√

n)
)

, (1.5)
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we can reformulate the equations for n and J from (1.1) as

∂tU + A(∂x)U +

(

0
G

)

= 0,

A(∂x) = −ν0 4 Id+1 +

















0 −∂1 −∂2 · · · −∂d
ε2

4 ∂1 4−T∂1 τ−1 0 · · · 0
ε2

4 ∂2 4−T∂2 0 τ−1 · · · 0
...

...
...

. . .
...

ε2

4 ∂d 4−T∂d 0 0 · · · τ−1

















, (1.6)

G = −div

(

J ⊗ J

n

)

+ n∇V − ε2 div
(

(∇√
n) ⊗ (∇√

n)
)

. (1.7)

It turns out that the matrix A is an elliptic differential matrix operator of mixed order in the sense
of Douglis and Nirenberg, see [1] or [7]. This suggests to derive a priori estimates in a similar fashion
as for parabolic systems, after having approximated the system by an introduction of a fourth order
viscous regularization. This leads to the proof of our first main result, Theorem 2.1.

Our second main result, Theorem 2.3, relies on the following observation: for d = 1, the matrix op-
erator A can be easily diagonalized, and we end up with a partial differential equation of Schrödinger
type (modulo some viscous regularization) for the new unknown function u = J + (iε/2)nx. After
one more transformation, we are able to estimate arbitrary higher order norms of the solutions, and
perform rigorously the inviscid limit ν0 → 0.

Acknowledgments. The author has been supported by the Deutsche Forschungsgemeinschaft
(DFG), grant number 446 CHV 113/170, and by a grant from the Ministry of Science, Research and
the Arts of Baden–Württemberg (Az:21-655.042-5-2/1). Moreover, I would like to thank Li Chen
of Tsinghua University, Beijing, for helpful discussions, and the referee for remarks improving an
earlier version of the paper.

2 Main Results

Our notations are standard: Lp denote the usual Lebesgue spaces, and Hk(Ω) := W k
2 (Ω) are the

L2–based Sobolev spaces, for k ∈ N0. The expression 〈·, ·〉 stands for the (real or complex) scalar
product in L2(Ω) as well as in (L2(Ω))d. All physical functions n, J , V , C are real-valued.

Theorem 2.1. Suppose n0 ∈ H3(Ω), J0 ∈ H2(Ω), JΓ ∈ H3/2(Γ), C ∈ L2(Ω), gD ∈ H3/2(ΓD),
gN ∈ H1/2(ΓN ) the compatibility condition (1.3), and (1.4).

Then the system (1.1) with the boundary conditions (1.2) has a unique local solution (n, J, V ) with

n ∈ L∞((0, t∗),H
3(Ω)), J ∈ L∞((0, t∗),H

2(Ω)),

∂tn ∈ L2((0, t∗),H
2(Ω)), ∂tJ ∈ L2((0, t∗),H

1(Ω)),

(n,∇n, J) ∈ C([0, t∗) × Ω),

V ∈ C([0, t∗),H
2
loc(Ω)) ∩ C([0, t∗),H

1(Ω)),

∂tV ∈ L2((0, t∗),H
1(Ω)).
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This solution persists as long as n stays positive and (n,∇n, J) are bounded in L∞(Ω).

Remark 2.2. After slight modifications of the proof, time-dependent boundary conditions can be
treated, too.

It is insightful to study a physical energy of a quantum hydrodynamic system:

E(t) =

∫

Rd

(

ε2

2
(∇√

n)2 + T

(

n

(

n

C0
− 1

)

+ C0

)

+
λ2

2
(∇V )2 +

|J |2
2n

)

dx, (2.1)

where C0 denotes the asymptotic value of the doping profile C(x) for large |x|, and the four items
in the integrand can be understood as the energy of the quantum field, an entropy term, the electric
energy, and the kinetic energy of the particles.

Theorem 2.3. Let Ω = R
1. We suppose that the doping profile C ∈ L2

loc
(R) is constant for large

|x|, i.e., C(x) = C0 > 0 for |x| � 1. Assume n0 − C0 ∈ H3(R), J0 ∈ H2(R), and (1.4). Moreover,
we suppose that n0−C0 and J0 have compact support in R, and that the initial total charge vanishes:

∫

R

(n0(x) − C(x)) dx = 0.

Then the problem (1.1) has a unique local in time solution (n, J, V ) of the following regularity

n − C0 ∈ L∞((0, t∗),H
3(R)), J ∈ L∞((0, t∗),H

2(R)),

∂tn ∈ L2((0, t∗),H
2(R)), ∂tJ ∈ L2((0, t∗),H

1(R)),

(n,∇n, J) ∈ C([0, t∗) × R),

V ∈ C([0, t∗),H
2
loc(R)),

∂tV ∈ L2((0, t∗),H
4
loc(R)).

The solution decays for large |x| exponentially to constant values, and the total charge of the system
is preserved, in the sense of

e〈x〉(n(t, x) − C0), e〈x〉J(t, x), e〈x〉∇V (t, x) ∈ L∞((0, t∗), L
2(R)), 〈x〉 := (1 + |x|2)1/2,

∫

R

(n(t, x) − C(x)) dx = 0.

Assume additionally, that the initial energy E(t = 0) is small (for fixed C0), that C ∈ H2
loc

(R), and
that the initial data ∂xn0 and J0 belong to H3(R). Then the positive life-span t∗ of the solution does
not depend on ν0. For the inviscid limit ν0 → 0, the sequence of solutions (nν0

, Jν0
, Vν0

)ν0
converges

to a limit (n, J, V ) in the following topologies:

nν0
→ n∗ in C([0, t∗],H

3(R)), ∂tnν0
→ ∂tn∗ in C([0, t∗],H

1(R)),

Jν0
→ J∗ in C([0, t∗],H

2(R)), ∂tJν0
→ ∂tJ∗ in C([0, t∗], L

2(R)),

∂xVν → ∂xV∗ in C([0, t∗],H
3(R)),

and the limit is a solution to the system (1.1) with ν0 = 0.
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3 Proof of Theorem 2.1

We introduce a viscous regularization term γ 42 into (1.1). Its purpose is to ensure the existence
of approximate solutions (to be shown in the appendix); we will never use it for a priori estimates:























































∂tnγ + γ 42 nγ − ν0 4nγ − div Jγ = 0,

∂tJγ + γ 42 Jγ − ν0 4Jγ +
ε2

4
∇4nγ

−T∇nγ +
1

τ
Jγ + Gγ = 0,

λ2 4Vγ = nγ − C(x),

(nγ , JΓ)(0, x) = (n0,γ , J0,γ)(x),

(∂νnγ , Jγ ,KVγ)(t, x) = (0, JΓ,γ(x), g(x)) on (0,∞) × Γ,

(3.1)

where 0 < γ < 1 and

Gγ = −div

(

Jγ ⊗ Jγ

nγ

)

+ nγ∇Vγ − ε2 div
(

(∇√
nγ) ⊗ (∇√

nγ)
)

. (3.2)

Additionally, we require the boundary conditions

∂ν 4nγ(t, x) = 0, 4 Jγ(t, x) = 0, (t, x) ∈ (0,∞) × Γ. (3.3)

The given data (n0,γ , J0,γ , JΓ,γ) ∈ H6(Ω)×H6(Ω)×H4(Γ) are suitably constructed approximations
for (n0, J0, JΓ); and, for γ → 0, we have convergence

n0,γ → n0 in H3(Ω), J0,γ → J0 in H2(Ω), JΓ,γ → JΓ in H3/2(Γ).

We define a function JD,γ ∈ H4(Ω) as solution to the elliptic boundary value problem

{

4 JD,γ(x) = 0 : x ∈ Ω,

JD,γ(x) = JΓ,γ(x) : x ∈ Γ,

and get uniform in γ estimates ‖JD,γ‖H2(Ω) ≤ C. Note that 4 JD,γ ∈ C(Ω) due to the continuous

embedding H2(Ω) ⊂ C(Ω), hence 4 JD,γ = 0 on Γ.

According to Proposition A.1, this regularized system has a unique solution (nγ , Jγ , Vγ) with

(nγ , Jγ) ∈ C([0, tγ ],H3(Ω)) ∩ L∞((0, tγ),H4(Ω)),

(∂tnγ , ∂tJγ) ∈ L∞((0, tγ),H2(Ω)) ∩ L2((0, tγ),H4(Ω)),

(Vγ , ∂tVγ) ∈ L∞((0, tγ),H1(Ω)),

and the solution persists as long as (nγ ,∇nγ , Jγ) stay bounded in L∞(Ω). The time derivatives of
nγ and Jγ satisfy the same boundary conditions as nγ , Jγ − JD,γ .

Choose a number δ0 > 0, subject to the conditions

δ0 ≤ 1

2
inf
x∈Ω

n0(x), 2max
(

‖n0‖L∞(Ω) , ‖∇n0‖L∞(Ω) , ‖J0‖L∞(Ω)

)

≤ δ−1
0 .
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By the continuous embedding H3(Ω) ⊂ C1(Ω), we can assume that

δ0 ≤ inf
x∈Ω

nγ(t, x), max
(

‖nγ(t, ·)‖L∞(Ω) , ‖∇nγ(t, ·)‖L∞(Ω) , ‖Jγ(t, ·)‖L∞(Ω)

)

≤ δ−1
0 , (3.4)

for 0 ≤ t ≤ tγ ; otherwise, we shrink the interval [0, tγ ]. In the following, we will prove uniform in
γ estimates of (nγ , Jγ , Vγ), which will imply that the life span tγ can not tend to zero for γ going
to zero. Then we will have a uniform existence interval as well as uniform estimates and can prove
the convergence of a subsequence (nγ , Jγ , Vγ)γ by compactness arguments.

In the sequel, C will denote a generic constant which may change from line to line and is allowed
to depend on δ0 and ‖JD,γ‖H2(Ω), but not γ.

First of all: because of ‖gD‖H3/2(ΓD) ≤ C, ‖gN‖H1/2(ΓN ) ≤ C and ‖nγ(t, ·) − C(·)‖L2(Ω) ≤ C, we
obtain

‖Vγ(t, ·)‖H1(Ω) ≤ C(1 + λ−2), 0 ≤ t ≤ tγ .

For later reference, we remark that the embedding H 1(Ω) ⊂ L4(Ω) then yields a uniform estimate
of ‖Vγ(t, ·)‖L4(Ω). Similarly, we have

‖∂tVγ(t, ·)‖L4(Ω) ≤ C ‖∂tVγ(t, ·)‖H1(Ω) ≤ Cλ−2 ‖∂tnγ‖L2(Ω) .

We multiply the parabolic equation for nγ , Jγ , respectively, with nγ or Jγ − JD,γ , respectively,
integrate over Ω, and perform partial integration where appropriate:

1

2
∂t ‖nγ‖2

L2(Ω) + ν0 ‖∇nγ‖2
L2(Ω) + γ ‖4nγ‖2

L2(Ω) − 〈div Jγ , nγ〉 = 0,

1

2
∂t ‖Jγ − JD,γ‖2

L2(Ω) + ν0 ‖∇(Jγ − JD,γ)‖2
L2(Ω) + γ ‖4 Jγ‖2

L2(Ω) +
1

τ
‖Jγ‖2

L2(Ω)

+ T 〈nγ ,div(Jγ − JD,γ)〉 − ε2

4
〈4nγ ,div(Jγ − JD,γ)〉

− 1

τ
〈Jγ , JD,γ〉 + 〈Gγ , Jγ − JD,γ〉 = 0.

Here, ‖∇Jγ‖L2(Ω) stands for the Frobenius norm: ‖∇Jγ‖2 =
∑

k,l ‖∂kJγ,l‖2.

The linear contribution from the quantum term is handled by means of

〈4nγ ,div Jγ〉 = 〈4nγ , ∂tnγ〉 − 〈4nγ , ν0 4nγ〉 +
〈

4nγ , γ 42 nγ

〉

= −1

2
∂t ‖∇nγ‖2

L2(Ω) − ν0 ‖4nγ‖2
L2(Ω) − γ ‖∇4nγ‖2

L2(Ω) ,

which gives us the identity

1

2
∂t

(

‖Jγ − JD,γ‖2
L2(Ω) + T ‖nγ‖2

L2(Ω) +
ε2

4
‖∇nγ‖2

L2(Ω)

)

(3.5)

+ ν0 ‖∇(Jγ − JD,γ)‖2
L2(Ω) + Tν0 ‖∇nγ‖2

L2(Ω) +
ε2

4
ν0 ‖4nγ‖2

L2(Ω) +
1

τ
‖Jγ‖2

L2(Ω)

+ γ

(

‖4 Jγ‖2
L2(Ω) + T ‖4nγ‖2

L2(Ω) +
ε2

4
‖∇4nγ‖2

L2(Ω)

)

= T 〈nγ ,div JD,γ〉 −
ε2

4
〈4nγ ,div JD,γ〉 +

1

τ
〈Jγ , JD,γ〉 − 〈Gγ , Jγ − JD,γ〉 .
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In system (3.1), we take time derivatives, and define

n′
γ := ∂tnγ , J ′

γ := ∂tJγ , G′
γ := ∂tG(nγ , Jγ , Vγ).

Then we deduce, by a similar computation as before, that

1

2
∂t

(

∥

∥J ′
γ

∥

∥

2

L2(Ω)
+ T

∥

∥n′
γ

∥

∥

2

L2(Ω)
+

ε2

4

∥

∥∇n′
γ

∥

∥

2

L2(Ω)

)

(3.6)

+ ν0

∥

∥∇J ′
γ

∥

∥

2

L2(Ω)
+ Tν0

∥

∥∇n′
γ

∥

∥

2

L2(Ω)
+

ε2

4
ν0

∥

∥4n′
γ

∥

∥

2

L2(Ω)
+

1

τ

∥

∥J ′
γ

∥

∥

2

L2(Ω)

+ γ

(

∥

∥4 J ′
γ

∥

∥

2

L2(Ω)
+ T

∥

∥4n′
γ

∥

∥

2

L2(Ω)
+

ε2

4

∥

∥∇4n′
γ

∥

∥

2

L2(Ω)

)

= −
〈

G′
γ , J ′

γ

〉

.

The scalar products 〈Gγ , Jγ − JD,γ〉 and
〈

G′
γ , J ′

γ

〉

have the representations

〈Gγ , Jγ − JD,γ,l〉 = I1 + I2 + I3

=
∑

l

∫

Ω

Jγ,l

nγ
Jγ∇(Jγ,l − JD,γ,l) dx +

∫

Ω
nγ(∇Vγ)(Jγ − JD,γ) dx

+ ε2
∑

l

∫

Ω
(∂l

√
nγ)(∇√nγ)∇(Jγ,l − JD,γ,l) dx,

〈

G′
γ , J ′

γ

〉

= I ′1 + I ′2 + I ′3

=
∑

l

∫

Ω

(

∂t
Jγ,l

nγ
Jγ

)

(∇J ′
γ,l) dx +

∫

Ω
(∂tnγ(∇Vγ)) Jγ′ dx

+ ε2
∑

l

∫

Ω

(

∂t(∂l
√

nγ)(∇√nγ)
)

(∇J ′
γ,l) dx,

and the items Ik can be estimated as follows:

|I1| ≤ C ‖∇(Jγ − JD,γ)‖L2(Ω) ≤
ν0

4
‖∇(Jγ − JD,γ)‖2

L2(Ω) + Cν−1
0 ,

|I2| ≤ C ‖Vγ‖H1(Ω) ‖Jγ − JD,γ‖L2(Ω) ≤ C(1 + λ−2) ‖Jγ − JD,γ‖L2(Ω)

≤ C(1 + λ−4) + ‖Jγ − JD,γ‖2
L2(Ω) ,

|I3| ≤ Cε2 ‖∇(Jγ − JD,γ)‖L2(Ω) ≤
ν0

4
‖∇(Jγ − JD,γ)‖2

L2(Ω) + Cε4ν−1
0 .

In treating the other terms I ′
k, note that

∥

∥n′
γ

∥

∥

L4(Ω)
≤ C(1 +

∥

∥∇n′
γ

∥

∥

L2(Ω)
) due to the identity

∫

Ω n′
γ dx =

∫

∂Ω JΓ,γ · ~ν dσ and the Poincare-Sobolev inequality:

|I ′1| ≤
ν0

6

∥

∥∇J ′
γ

∥

∥

2

L2(Ω)
+ Cν−1

0

(

∥

∥J ′
γ

∥

∥

2

L2(Ω)
+

∥

∥n′
γ

∥

∥

2

L2(Ω)

)

,

|I ′2| ≤
∥

∥∇n′
γ

∥

∥

L2(Ω)
‖Vγ‖L4(Ω)

∥

∥J ′
γ

∥

∥

L4(Ω)
+ ‖∇nγ‖L∞(Ω) ‖∂tVγ‖L2(Ω)

∥

∥J ′
γ

∥

∥

L2(Ω)

+
∥

∥n′
γ

∥

∥

L4(Ω)
‖Vγ‖L4(Ω)

∥

∥∇J ′
γ

∥

∥

L2(Ω)
+ ‖nγ‖L∞(Ω) ‖∂tVγ‖L2(Ω)

∥

∥∇J ′
γ

∥

∥

L2(Ω)

≤ C
∥

∥∇n′
γ

∥

∥

L2(Ω)
(1 + λ−2)

∥

∥∇J ′
γ

∥

∥

L2(Ω)
+ Cλ−2

∥

∥n′
γ

∥

∥

L2(Ω)

∥

∥J ′
γ

∥

∥

H1(Ω)

≤ ν0

6

∥

∥∇J ′
γ

∥

∥

2

L2(Ω)
+ C(ν−1

0 + λ−4ν−1
0 )

∥

∥∇n′
γ

∥

∥

2

L2(Ω)

+ C(ν−1
0 + λ−4ν−1

0 + λ−4)
∥

∥n′
γ

∥

∥

2

L2(Ω)
+

∥

∥J ′
γ

∥

∥

2

L2(Ω)
,
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|I ′3| ≤ Cε2
∥

∥∇n′
γ

∥

∥

L2(Ω)

∥

∥∇J ′
γ

∥

∥

L2(Ω)
≤ ν0

6

∥

∥∇J ′
γ

∥

∥

2

L2(Ω)
+ Cε4ν−1

0

∥

∥∇n′
γ

∥

∥

2

L2(Ω)
.

Plugging these estimates into (3.5) and (3.6), we then find

∂t

(

‖Jγ − JD,γ‖2
L2(Ω) + T ‖nγ‖2

L2(Ω) +
ε2

4
‖∇nγ‖2

L2(Ω)

)

+ ν0 ‖∇(Jγ − JD,γ)‖2
L2(Ω) +

ε2ν0

4
‖4nγ‖2

L2(Ω)

≤ C
(

1 + ν−1
0 + λ−4 + ε4ν−1

0 + T + τ−1
)

+ ‖Jγ − JD,γ‖2
L2(Ω) ,

∂t

(

∥

∥J ′
γ

∥

∥

2

L2(Ω)
+ T

∥

∥n′
γ

∥

∥

2

L2(Ω)
+

ε2

4

∥

∥∇n′
γ

∥

∥

2

L2(Ω)

)

+ ν0

∥

∥∇J ′
γ

∥

∥

2

L2(Ω)
+ 2Tν0

∥

∥∇n′
γ

∥

∥

2

L2(Ω)
+

ε2ν0

2

∥

∥4n′
γ

∥

∥

2

L2(Ω)

≤ C
(

ν−1
0 + 1

) ∥

∥J ′
γ

∥

∥

2

L2(Ω)
+ C

(

ν−1
0 + λ−4ν−1

0 + λ−4
) ∥

∥n′
γ

∥

∥

2

L2(Ω)

+ C
(

ν−1
0 + λ−4ν−1

0 + ε4ν−1
0

) ∥

∥∇n′
γ

∥

∥

2

L2(Ω)

≤ C
(

ν−1
0 + 1 + (ν−1

0 + λ−4ν−1
0 + λ−4)T−1 + (ν−1

0 + λ−4ν−1
0 + ε4ν−1

0 )ε−2
)

×

×
(

∥

∥J ′
γ

∥

∥

2

L2(Ω)
+ T

∥

∥n′
γ

∥

∥

2

L2(Ω)
+

ε2

4

∥

∥∇n′
γ

∥

∥

2

L2(Ω)

)

.

We can assume that
(

1 + ν−1
0 + λ−4 + ε4ν−1

0 + T + τ−1
)

tγ ≤ 1,
(

ν−1
0 + 1 + (ν−1

0 + λ−4ν−1
0 + λ−4)T−1 + (ν−1

0 + λ−4ν−1
0 + ε4ν−1

0 )ε−2
)

tγ ≤ 1.

Making use of Gronwall’s Lemma, we then conclude that

‖Jγ − JD,γ‖2
L∞((0,t),L2(Ω)) + T ‖nγ‖2

L∞((0,t),L2(Ω)) +
ε2

4
‖∇nγ‖2

L∞((0,t),L2(Ω))

+ ν0 ‖∇(Jγ − JD,γ)‖2
L2(Qt)

+
ε2ν0

4
‖4nγ‖2

L2(Qt)

≤ C

(

1 + ‖J0,γ − JD,γ‖2
L2(Ω) + T ‖n0,γ‖2

L2(Ω) +
ε2

4
‖∇n0,γ‖2

L2(Ω)

)

,

∥

∥J ′
γ

∥

∥

2

L∞((0,t),L2(Ω))
+ T

∥

∥n′
γ

∥

∥

2

L∞((0,t),L2(Ω))
+

ε2

4

∥

∥∇n′
γ

∥

∥

2

L∞((0,t),L2(Ω))

+ ν0

∥

∥∇J ′
γ

∥

∥

2

L2(Qt)
+ 2Tν0

∥

∥∇n′
γ

∥

∥

2

L2(Qt)
+

ε2ν0

2

∥

∥4n′
γ

∥

∥

2

L2(Qt)

≤ C

(

∥

∥J ′
γ(0, ·)

∥

∥

2

L2(Ω)
+ T

∥

∥n′
γ(0, ·)

∥

∥

2

L2(Ω)
+

ε2

4

∥

∥∇n′
γ(0, ·)

∥

∥

2

L2(Ω)

)

,

where 0 ≤ t ≤ tγ and Qt := (0, t) × Ω. The time derivatives at t = 0 can be estimated as follows:

∥

∥J ′
γ(0, ·)

∥

∥

L2(Ω)
≤ γ ‖J0,γ‖H4(Ω) + ν0 ‖J0,γ‖H2(Ω) +

ε2

4
‖n0,γ‖H3(Ω) + C(δ0)T

+ C
(

‖J0,γ‖H1(Ω) + ‖n0,γ‖H1(Ω)

)

+ Cλ−2 + Cε2 ‖n0,γ‖H2(Ω) ,
∥

∥n′
γ(0, ·)

∥

∥

H1(Ω)
≤ γ ‖n0,γ‖H5(Ω) + ν0 ‖n0,γ‖H3(Ω) + ‖J0,γ‖H2(Ω) .
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We may assume that the numbers γ are chosen in such a way that

lim
γ→0

(

γ ‖J0,γ‖H4(Ω) + γ ‖n0,γ‖H5(Ω)

)

= 0.

With this choice of γ, the following uniform in γ estimates have been obtained:

‖nγ‖C([0,tγ ]×Ω) + ‖∇nγ‖C([0,tγ ]×Ω) + ‖Jγ‖C([0,tγ ]×Ω) ≤ C0,
∥

∥J ′
γ

∥

∥

L∞((0,tγ ),L2(Ω))
+

∥

∥n′
γ

∥

∥

L∞((0,tγ ),H1(Ω))
≤ C0,

∥

∥J ′
γ

∥

∥

L2((0,tγ ),H1(Ω))
+

∥

∥n′
γ

∥

∥

L2((0,tγ ),H2(Ω))
≤ C0,

where the constant C0 is allowed to depend on all physical constants, δ0, and the norms ‖n0‖H3(Ω),
‖J0‖H2(Ω), ‖JD,γ‖H2(Ω), but not γ. Integrating the last inequality gives

‖Jγ‖L∞((0,tγ ),H1(Ω)) + ‖nγ‖L∞((0,tγ ),H2(Ω)) ≤ C0.

To get more estimates, we consider certain elliptic boundary value problems:

Definition 3.1. For f ∈ L2(Ω) and ν0, γ > 0, let u = Qγf ∈ H2(Ω) be the solution to the problem

{

(ν0 − γ 4)u(x) = f(x) : x ∈ Ω,

∂νu(x) = 0, : x ∈ Γ,

Lemma 3.2. The operator Qγ is a bounded endomorphism on L2(Ω) and on H1(Ω),

‖Qγf‖L2(Ω) ≤
1

ν0
‖f‖L2(Ω) , ‖∇Qγf‖L2(Ω) ≤

1

ν0
‖∇f‖L2(Ω) .

The operator Qγ 4, first defined on H2(Ω), extends to a continuous endomorphism on L2(Ω):

‖Qγ 4 f‖L2(Ω) ≤
1

γ
‖f‖L2(Ω) , f ∈ L2(Ω).

Moreover, Qγ 4 is non-positive:

〈Qγ 4 f, f〉 ≤ 0, f ∈ L2(Ω).

Proof. Write u = Qγf . Taking the L2(Ω) scalar product of the equation (ν0 − γ 4)u = f with
u (with 4u) and performing appropriate integrations by parts gives the first estimate (second
estimate). Decomposing f as a linear combination of the eigenfunctions of the Neumann Laplacian
gives the remaining two assertions.

Then we have, for a.e. t ∈ (0, tγ), the representation

(4nγ)(t, x) = Qγ(∂tnγ − div Jγ)(t, x).

From the parabolic equation for Jγ we deduce that

(ν0 − γ 4)4 Jγ +
ε2

4
∇(Qγ(div Jγ)) = ∂tJγ +

1

τ
Jγ − T∇nγ + Gγ +

ε2

4
∇Qγ(∂tnγ) =: Rγ .
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We take the L2(Ω) scalar product of Rγ with 4 Jγ ∈ H2(Ω) ∩ H1
0 (Ω):

〈Rγ ,4 Jγ〉 = ν0 ‖4 Jγ‖2
L2(Ω) − γ

〈

42 Jγ ,4 Jγ

〉

+
ε2

4
〈∇(Qγ(div Jγ)),4 Jγ〉

= ν0 ‖4 Jγ‖2
L2(Ω) + γ ‖∇4 Jγ‖2

L2(Ω) −
ε2

4
〈div Jγ , Qγ(4div Jγ)〉

≥ ν0 ‖4 Jγ‖2
L2(Ω) + γ ‖∇4 Jγ‖2

L2(Ω) ,

due to Lemma 3.2. Consequently, we arrive at

‖4 Jγ‖L2(Ω) ≤ ν−1
0 ‖Rγ‖L2(Ω) .

A careful analysis of Rγ shows Rγ ∈ L∞((0, tγ), L2(Ω)) with uniform in γ estimate, whence

‖Jγ‖L∞((0,tγ ),H2(Ω)) ≤ C0.

Going back to 4nγ = Qγ(∂tnγ − div Jγ) with (∂tnγ − div Jγ) ∈ L∞((0, tγ),H1(Ω)) we then find

‖nγ‖L∞((0,tγ ),H3(Ω)) ≤ C0,

uniformly in γ.

Eventually, we are in a position to show that tγ can not tend to zero for γ → 0: for 0 ≤ t′ ≤ t′′ ≤ tγ ,
we obtain the Hölder estimates

∥

∥nγ(t′, ·) − nγ(t′′, ·)
∥

∥

H2(Ω)
≤

∫ t′′

t′

∥

∥n′
γ(t, ·)

∥

∥

H2(Ω)
dt ≤ |t′ − t′′|1/2

∥

∥n′
γ

∥

∥

L2((0,tγ ),H2(Ω))
,

which enables us to estimate nγ in C1/2([0, tγ ], C(Ω)). Next, fix a number α with 0 < α < 1
2 . By

Sobolev’s embedding theorem and interpolation,

∥

∥Jγ(t′, ·) − Jγ(t′′, ·)
∥

∥

C(Ω)
≤ C

∥

∥Jγ(t′, ·) − Jγ(t′′, ·)
∥

∥

H2−α(Ω)
(3.7)

≤ C
∥

∥Jγ(t′, ·) − Jγ(t′′, ·)
∥

∥

α/2

L2(Ω)

∥

∥Jγ(t′, ·) − Jγ(t′′, ·)
∥

∥

(2−α)/2

H2(Ω)

≤ C|t′ − t′′|α/2
∥

∥J ′
γ

∥

∥

α/2

L∞((0,tγ ),L2(Ω))
‖Jγ‖(2−α)/2

L∞((0,tγ ),H2(Ω))
,

∥

∥∇nγ(t′, ·) −∇nγ(t′′, ·)
∥

∥

C(Ω)
≤ C|t′ − t′′|α/2

∥

∥n′
γ

∥

∥

α/2

L∞((0,tγ ),H1(Ω))
‖nγ‖(2−α)/2

L∞((0,tγ ),H3(Ω))
.

The right-hand sides are bounded uniformly with respect to γ. Then these Hölder estimates give
us an estimate from below for the earliest time t∗ at which the solution (nγ , Jγ) is able to violate
the conditions (3.4). As a consequence, tγ ≥ t∗ > 0, for 0 < γ < 1.

Having secured a uniform existence interval, we can now show the convergence of the sequence
(nγ , Jγ , Vγ)γ for γ → 0. We have the uniform bounds

‖nγ‖L∞((0,t∗),H3(Ω)) ≤ C, ‖∂tnγ‖L2((0,t∗),H2(Ω)) ≤ C,

and the compact embedding H3(Ω) ⊂ H2(Ω). Then Aubin’s Lemma [20, Corollary 4] shows
that a subsequence of (nγ)γ (which we will not relabel) converges to a limit n in the space
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C([0, t∗],H
2(Ω)). Similarly, we can prove the convergence of a subsequence (Jγ)γ to a limit J

in the space C([0, t∗],H
1(Ω)). By interpolation, we then have the convergences

nγ → n in C([0, t∗],H
3−δ(Ω)), δ > 0,

Jγ → J in C([0, t∗],H
2−δ(Ω)), δ > 0.

In particular, there is uniform convergence

(nγ ,∇nγ , Jγ) → (n,∇n, J) in C(Q∗), Q∗ := (0, t∗) × Ω,

which guarantees that the limit functions n and J satisfy the initial conditions from (1.1) and the
boundary conditions from (1.2).

Obviously, we have the following weak convergences, too:

∂tnγ ⇀ ∂tn in L2((0, t∗),H
2(Ω)), ∂tJγ ⇀ ∂tJ in L2((0, t∗),H

1(Ω)),

nγ ⇀∗ n in L∞((0, t∗),H
3(Ω)), Jγ ⇀∗ J in L∞((0, t∗),H

2(Ω)).

Moreover, a sub-sequence (Vγ)γ converges to a limit V in the space C([0, t∗],H
2
loc(Ω)); and this limit

V solves the Poisson equation λ2 4V = n − C(x).

In a next step, we show that (n, J, V ) solves (1.1). We choose a test function ϕ ∈ C∞
0 (Q∗), and it

follows that
∫∫

Q∗

(

−ϕtnγ + γ(42 ϕ)nγ − ν0(4ϕ)nγ + (∇ϕ)Jγ

)

dxdt = 0,

∫∫

Q∗

(

−ϕtJγ + γ(42 ϕ)Jγ − ν0(4ϕ)Jγ − ε2

4
(∇4ϕ)nγ + T (∇ϕ)nγ + ϕGγ

)

dxdt = 0.

Note that Gγ approaches G in the norm of the space C([0, t∗], L
2(Ω)). Sending γ to zero and making

use of the uniform convergence of (nγ , Jγ)γ to (n, J) we deduce that (n, J) are solutions to (1.1).

It only remains to show the uniqueness of the solutions. Let (n1, J1, V 1) and (n2, J2, V 2) be two
solutions of (1.1), (1.2) with regularity as in Theorem 2.1. Define

n∆ = n1 − n2, J∆ = J1 − J2, V∆ = V 1 − V 2, G∆ = G1 − G2,

where G1 and G2 are given in (1.7). Then we get the system






































∂tn∆ − ν0 4n∆ − div J∆ = 0,

∂tJ∆ − ν0 4 J∆ +
ε2

4
∇4n∆ − T∇n∆ +

1

τ
J∆ + G∆ = 0,

λ2 4V∆ = n∆,

(n∆, J∆)(0, x) = 0,

(∂νn∆, J∆(t, x),KV∆)(t, x) = 0, (t, x) ∈ (0, t∗) × Γ.

Similarly as in (3.5), we can prove

1

2
∂t

(

‖J∆‖2
L2(Ω) + T ‖n∆‖2

L2(Ω) +
ε2

4
‖∇n∆‖2

L2(Ω)

)

+ ν0 ‖∇J∆‖2
L2(Ω) + Tν0 ‖∇n∆‖2

L2(Ω) +
ε2

4
ν0 ‖4n∆‖2

L2(Ω) +
1

τ
‖J∆‖2

L2(Ω)

= −〈G∆, J∆〉 ,
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and we estimate, after some calculations,

| 〈G∆, J∆〉 | ≤ C
(

∥

∥J j
∥

∥

L∞(Ω)
,
∥

∥nj
∥

∥

L∞(Ω)
,
∥

∥∇nj
∥

∥

L∞(Ω)
,
∥

∥∇V j
∥

∥

L∞(Ω)

)

×

×
(

‖∇J∆‖L2(Ω) ‖J∆‖L2(Ω) + ‖J∆‖L2(Ω) (‖n∆‖L2(Ω) + ‖∇V∆‖L2(Ω))

+ ‖∇J∆‖L2(Ω) ‖n∆‖H1(Ω)

)

.

By Young’s inequality, we then have

T

2
∂t ‖n∆‖2

L2 +
ε2

2
∂t ‖∇n∆‖2

L2 +
1

2
∂t ‖J∆‖2

L2 ≤ C
(

‖J∆‖2
L2 + ‖n∆‖2

H1

)

.

Now it suffices to exploit Gronwall’s lemma for the conclusion n∆ ≡ 0, J∆ ≡ 0, which completes
the proof of Theorem 2.1.

4 Proof of Theorem 2.3

The existence of a solution (n, J, V ) can be shown in a similar way as for Theorem 2.1; we only
highlight the differences: first, we consider a fourth order parabolic system as in (3.1), but for the
functions (nγ −C0) and Jγ instead of nγ and Jγ . By Proposition A.2, we know that such solutions
exist on the domain (0, tγ) × R, and they are exponentially decaying for |x| → ∞. We rewrite this
system to the unknowns exp(〈x〉)(nγ(t, x)−C0), exp(〈x〉)J(t, x), multiply these equations with the
appropriate unknown functions, integrate over R, and perform suitable integrations by parts. We
obtain a priori estimates (uniformly in γ) of L2 type that allow us to send γ to zero.

For the proof of the inviscid limit ν0 → 0, we need estimates of the solutions constructed just now
that are independent of ν0. To this end, we consider the physical energy from (2.1). Write this
energy as E = E1 + E2 + E3 + E4. Recalling (1.5), we then check that

∂tE1 = −ε2

2

∫

R

B(n)(ν0nxx + Jx) dx

= −ε2ν0

∫

R

(4√
n)2 dx − ε2ν0

48

∫

R

(nx)4

n3
dx − ε2

2

∫

R

B(n)Jx dx,

∂tE2 = −T

∫

R

Jnx

n
dx − 8Tν0

ε2
E1,

∂tE3 =

∫

R

VxJ dx + ν0

∫

R

Vxnx dx =

∫

R

VxJ dx + ν0

∫

R

Vx(n − C)x dx + ν0

∫

R

VxCx dx

=

∫

R

VxJ dx − ν0

λ2

∫

R

(n − C)2 dx + ν0

∫

R

VxCx dx,

∂tE4 = −ν0

∫

R

n

(

∂x

(

J

n

))2

dx − 2

τ
E4 + T

∫

R

Jnx

n
dx −

∫

R

VxJ dx +
ε2

2

∫

R

B(n)Jx dx.

Summing up, we then find

∂tE ≤ ν0

∫

R

VxCx dx ≤ ν0

λ2
E +

ν0

2
‖Cx‖2

L2(R) .
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From Gronwall’s Lemma, we then get a bound for this physical energy which is independent of ν0,
for 0 < ν0 ≤ 1. Now it is elementary to verify

(√
n −

√

C0

)2
≤ n

(

ln
n

C0
− 1

)

+ C0,

from which we deduce that, exploiting Sobolev’s embedding theorem,

∥

∥

∥

√
n(t, ·) −

√

C0

∥

∥

∥

2

L∞(R)
≤ C

(

∥

∥∂x
√

n
∥

∥

2

L2(R)
+

∥

∥

∥

√
n −

√

C0

∥

∥

∥

2

L2(R)

)

≤ CE(t) ≤ C(E(0) + t).

Keeping C0 fixed, we assumed that E(0) is small. Then this inequality enables us to show that
infx∈R n(t, x) ≥ 1

2 infx∈R n0(x), for small t, uniformly in ν0. This is the first key advantage of the
physical energy. The second is an L∞((0, t∗), L

2(R)) estimate of Vx which is uniform in ν0, too.
Having found point-wise estimates of n from above and below, we can compare |n(t, x) − C0|2
against the entropy density in E2, and gain an estimate

‖n(t, ·) − C0‖2
L2(R) ≤ CE(t),

uniformly in ν0, whence also a uniform estimate of Vxx in L∞((0, t∗), L
2(R)).

More uniform estimates are needed. We get them by diagonalizing the matrix A from (1.6): define
a new unknown function u : (0, t∗) × R → C via

u :=
iε

2
nx + J, nx =

u − u

iε
, J =

u + u

2
.

Then we obtain a differential equation of Schrödinger type with viscous regularization:

∂tu = κuxx + ∂x

(

1

n
uu

)

+
T

iε
(u − u) − nVx − 1

2τ
(u + u),

where κ = ν0 + iε/2, and the function n is to be recovered from u by the identity

n(t, x) =

∫ x

ξ=−∞

u − u

iε
(t, ξ) dξ.

For the limit ν0 → 0, the tricky part are the terms with first order derivatives n−1u∂xu + n−1u∂xu.
Compare [21], [16], [4] for necessary well-posedness conditions for Schrödinger equations in the linear
case. For first order derivatives appearing in quadratic nonlinearities as in our situation, the use of
weighted Sobolev spaces becomes necessary ([17]), and the methods of [3] or [11] can possibly be
used to prove a priori estimates (uniformly in ν0) provided that we can show that the electric force
nVx decays fast enough for |x| → ∞.

To overcome this difficulty, we transform the dependent variables: set

v(t, x) =
u(t, x)

√

n(t, x)
.
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In view of ‖v(t, ·)‖2
L2(R) = 2(E1 + E4), this transformation looks meaningful. Then we obtain the

problem

∂tv = κ∂xxv +
1

2
√

n
(vvx + vvx + vvx) + P (v, v)ν0vx + P (v, v) −√

nVx (4.1)

=: κ∂xxv + A1(v, v, vx, vx) + P (v, v)ν0vx + P (v, v) −√
nVx,

where P denotes a generic term containing products of v, v and (possibly negative) powers of n.
The main advantage of this transformation is the following symmetry relation of A1: for k ∈ N0,
we have, with a constant Ck depending on bounds of ‖v‖L∞ and ‖vx‖L∞ ,

∣

∣

∣
<

〈

∂k
xA1, ∂

k
xv

〉∣

∣

∣
≤ Ck ‖v‖2

Hk(R) +

∣

∣

∣

∣

<
〈

1

2
√

n

(

(v + v)∂k+1
x v + v∂k+1

x v
)

, ∂k
xv

〉∣

∣

∣

∣

,

<
∫

R

v + v

2
√

n
(∂k+1

x v)(∂k
xv) dx = −

∫

R

(

∂x
v + v

4
√

n

)

(∂k
xv)(∂k

xv) dx,

<
∫

R

v

2
√

n
(∂k+1

x v)(∂k
xv) dx = −<

∫

R

(

∂x
v

4
√

n

)

(∂k
xv)2 dx.

Following [22], [12], [13] and [19], we conclude that

∂t

∥

∥

∥∂k
xv

∥

∥

∥

2

L2

= 2<
〈

∂t∂
k
xv, ∂k

xv
〉

L2

≤ −2ν0

∥

∥

∥
∂k+1

x v
∥

∥

∥

2

L2

+ Ck ‖v‖2
Hk + Ckν0

∥

∥

∥
∂k+1

x v
∥

∥

∥

L2

∥

∥

∥
∂k

xv
∥

∥

∥

L2

+ 2
∥

∥

∥
∂k

x(
√

nVx)
∥

∥

∥

L2

∥

∥

∥
∂k

xv
∥

∥

∥

L2

.

We choose k = 0, 1, 2, 3, make use of our above estimates of Vx, and it follows that

sup
t∈[0,t∗]

‖v(t, ·)‖H3(R) ≤ C,

uniformly with respect to ν0. We then also deduce uniform estimates of nx and J in C([0, t∗],H
3(R)).

Now, let (n1, J1, V 1) and (n2, J2, V 2) denote the solutions for the viscosity parameters ν0 = ν1 and
ν0 = ν2, respectively, and define u1, u2, v1, v2 accordingly. From ∂t(n

1 − n2) = (ν1n
1 − ν2n

2)xx +
(J1 − J2)x and partial integration, we get

∂t

∥

∥n1 − n2
∥

∥

2

L2
≤ C(ν1 + ν2) + C

∥

∥J1 − J2
∥

∥

L2

∥

∥(n1 − n2)x
∥

∥

L2

≤ C(ν1 + ν2) + C
∥

∥v1 − v2
∥

∥

2

L2 + C
∥

∥n1 − n2
∥

∥

2

L2 ,

and, via Gronwall’s inequality,

∥

∥(n1 − n2)(t, ·)
∥

∥

2

L2(R)
≤ Ct(ν1 + ν2) + Ctmax

[0,t]

∥

∥(v1 − v2)(t′, ·)
∥

∥

2

L2(R)
.

Here we have used
∥

∥J1 − J2
∥

∥

2

L2 ≤ C
∥

∥v1 − v2
∥

∥

2

L2 + C
∥

∥n1 − n2
∥

∥

2

L2 .

The electrostatic force Vx can be recovered via

Vx(t, x) − Vx(0, x) =
1

λ2

∫ t

t′=0
(ν0nx + J) (t′, x) dt′,
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from which it can be concluded that

∥

∥(V 1
x − V 2

x )(t, ·)
∥

∥

L2 ≤ Ct(ν1 + ν2) + Ctmax
[0,t]

∥

∥(J1 − J2)(t′, ·)
∥

∥

L2

≤ Ct
√

ν1 + ν2 + Ctmax
[0,t]

∥

∥(v1 − v2)(t′, ·)
∥

∥

L2 .

Now we take the equation (4.1) for v1 and v2, subtract, multiply with v1 − v2, integrate over Rx

and by parts, to obtain eventually

∂t

∥

∥v1 − v2
∥

∥

2

L2
≤ C

√
ν1 + ν2 + C

∥

∥v1 − v2
∥

∥

2

L2
+ Ctmax

[0,t]

∥

∥(v1 − v2)(t′, ·)
∥

∥

2

L2
.

This gives us the convergence of v for the viscosity parameter ν = ν0 running to zero:

lim
ν→+0

vν = v∗ in C([0, t∗], L
2(R)).

By interpolation with the uniform bound of vν in C([0, t∗],H
3(R)), we find convergence even in the

space C([0, t∗],H
2(R)). The convergence properties claimed in Theorem 2.3 are then easily shown.

A Fourth Order Parabolic Systems with Nonlocal Nonlinearities

In this appendix, we first prove the following existence result:

Proposition A.1. Let Ω ⊂ R
d, d ≤ 3, be a bounded domain with smooth boundary. Suppose γ > 0

and n0,γ , J0,γ ∈ H6(Ω), JΓ,γ ∈ H4(Γ), with infx∈Ω n0,γ(x) > 0 and the compatibility conditions

∂νn0,γ(x) = 0, J0,γ(x) = JΓ,γ(x), x ∈ Γ.

Let n′
0,γ = ∂tnγ(0, x) and J ′

0,γ = ∂tJγ(0, x) be formally computed from (3.1), and assume

∂νn′
0,γ(x) = 0, J ′

0,γ(x) = 0, x ∈ Γ.

Finally, let g = (gD, gN ) ∈ H3/2(ΓD) × H1/2(ΓN ) be given.

Then the initial boundary value problem (3.1)–(3.3) has a unique local solution (nγ , Jγ , Vγ) with the
regularity

(nγ , Jγ) ∈ W 1
2 ((0, tγ),H4(Ω)) ∩ W 1

∞((0, tγ),H2(Ω)),

Vγ ∈ W 1
∞((0, tγ),H1(Ω)).

The time derivatives satisfy the boundary conditions

∂ν∂tnγ(t, x) = ∂ν 4 ∂tnγ(t, x) = 0,

∂tJγ(t, x) = 4 ∂tJγ(t, x) = 0,

(K∂tVγ)(t, x) = 0.

The solution persists as long as nγ(t, ·) is positive and the norms ‖nγ(t, ·)‖L∞(Ω), ‖∇nγ(t, ·)‖L∞(Ω),

‖Jγ(t, ·)‖L∞(Ω) remain bounded.
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Although the machinery of proof is quite standard, there is a difficulty: due to the Zaremba type
boundary conditions for Vγ , even a smooth boundary Γ and smooth data gD, gN ∈ C∞, nγ−C ∈ C∞

do not guarantee that Vγ ∈ H2(Ω), see [5]. Therefore, we should keep track of the regularity of the
coefficients of parabolic systems.

We also prove an existence result in the full space:

Proposition A.2. Let Ω = R
1. The doping profile C ∈ L2

loc
(R) is assumed constant for large |x|,

i.e., C(x) = C0 > 0 for |x| � 1. Suppose γ > 0 and n0,γ−C0, J0,γ ∈ H6(R), with infx∈R n0,γ(x) > 0.
Additionally, we assume that J0,γ and n0,γ − C0 have compact support in R, and that the initial
total charge vanishes,

∫

R

(n0,γ(x) − C(x)) dx = 0.

Then the initial value problem (3.1)–(3.2) with Γ = ∅ has a unique local solution (nγ , Jγ , Vγ) with
the regularity

(nγ − C0, Jγ) ∈ W 1
2 ((0, tγ),H4(R)) ∩ W 1

∞((0, tγ),H2(R)),

∇Vγ ∈ W 1
∞((0, tγ), L2(R)).

The total charges remains unaltered:
∫

R

(nγ(t, x) − C(x)) dx = 0, 0 ≤ t < tγ ,

and the solution lives as long as nγ(t, ·) is positive and the norms ‖nγ(t, ·)‖L∞(R), ‖∇nγ(t, ·)‖L∞(R),

‖Jγ(t, ·)‖L∞(R) remain bounded. The functions nγ, Jγ , and ∇Vγ have exponential decay to constant

values for large |x|, in the sense of

e〈x〉(nγ − C0), e〈x〉Jγ ,∈ L∞((0, tγ),H2(R)), e〈x〉∇Vγ ∈ L∞((0, tγ), L2(R)).

Preparing the proofs of the Propositions A.1 and A.2, we start with some known results on the
scalar linear fourth order parabolic problem (γ > 0)











∂tu(t, x) + γ 42 u(t, x) = f(t, x), (t, x) ∈ (0, t∗) × Ω

u(0, x) = u0(x), x ∈ Ω,

(Bu)(t, x) = 0, (t, x) ∈ (0, t∗) × Γ,

(A.1)

where Ω is either a bounded domain with smooth boundary Γ, or Ω = Rd, and B describes a
boundary operator either of Dirichlet type, or of Neumann type:

B = BD =

(

1
4

)

, B = BN =

(

∂ν

∂ν 4

)

.

Write B1 = 1 in the Dirichlet case, and B1 = ∂ν in the Neumann case. Of course, all statements
about boundary conditions are tacitly to be ignored in the sequel if Ω = R

d.

Recalling the boundary regularity Γ ∈ C4, we define an operator A = γ 42 with domain D(A) =
{u ∈ H4(Ω): Bu = 0 on Γ}.
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Lemma A.3. Let Ω be either a bounded domain with smooth boundary, or Ω = R
d. The prob-

lem (A.1) has a unique solution u ∈ L2((0, t∗), D(A)) with ∂tu ∈ L2(Q∗) if and only if f ∈ L2(Q∗)
and u0 ∈ {u ∈ H2(Ω): B1u = 0 on Γ}.
Then this solution u satisfies the a priori estimates

‖4u‖2
L∞((0,t∗),L2(Ω)) + γ

∥

∥42 u
∥

∥

2

L2(Q∗)
≤ ‖4u0‖2

L2(Ω) +
1

γ
‖f‖2

L2(Q∗) , (A.2)

‖∂tu‖2
L2(Q∗) ≤ 2γ ‖4u0‖2

L2(Ω) + 4 ‖f‖2
L2(Q∗) , (A.3)

‖u(t, ·)‖2
L2(Ω) ≤ 2 ‖u0‖2

L2(Ω) + 2t ‖f‖2
L2((0,t)×Ω) , (A.4)

‖u‖2
L2(Q∗) ≤ 2t∗ ‖u0‖2

L2(Ω) + t2∗ ‖f‖2
L2(Q∗) , (A.5)

‖u‖2
L∞((0,t∗),H1(Ω)) ≤ C0

(

‖u0‖2
H2(Ω) + t

1/2
∗ ‖f‖2

L2(Q∗)

)

, (A.6)

‖u‖2
L2((0,t∗),H3(Ω)) ≤ C0

(

t
1/4
∗ ‖u0‖2

H2(Ω) + t
1/2
∗ ‖f‖2

L2(Q∗)

)

, (A.7)

∥

∥u(t′, ·) − u(t′′, ·)
∥

∥

H2−α(Ω)
≤ C0|t′ − t′′|α/4

(

‖u0‖H2(Ω) + ‖f‖L2(Q∗)

)

, (A.8)

where C0 = C0(Ω, γ), 0 ≤ t ≤ t∗, and 0 ≤ α ≤ 2, 0 ≤ t′, t′′ ≤ t∗.

Proof. The existence of a solution with the claimed regularity follows from the maximal regularity
for the operator ∂t + A, compare, for instance, [18, Theorem 3.1]. A solution representation via
spectral theory yields (A.2). A direct consequence then is (A.3). Taking the L2(Ω) scalar product
of ∂tu + Au = f with u gives ∂t ‖u(t, ·)‖L2(Ω) ≤ ‖f(t, ·)‖L2(Ω), from which we quickly deduce (A.4)
and (A.5). We interpolate (A.2) with (A.4), obtaining (A.6); and (A.2) with (A.5), obtaining (A.7).
Finally, (A.8) is proved by interpolation, compare (3.7) for a similar inequality.

Next, we consider linear fourth-order systems for the unknown u = (u1, . . . , uN ) with decoupled
principal part:



























∂tuj(t, x) + γ 42 uj(t, x) +

N
∑

i=1

∑

|α|≤3

ai,α(t, x)∂α
x ui(t, x) = fj(t, x),

uj(0, x) = u0,j(x),

(Buj)(t, x) = 0,

(A.9)

where j = 1, . . . , N , and the boundary operator B is either BD or BN . The choice of the boundary
operator may depend on j.

Lemma A.4. Suppose fj ∈ L2(Q∗) and u0,j ∈ H2(Ω) with B1u0,j = 0 on Γ. Assume aj,α ∈ L∞(Q∗)
and suppose that t∗ is small.

Then any solution u to (A.9) with u ∈ L2((0, t∗),H
4(Ω)) and ∂tu ∈ L2(Q∗) satisfies the a priori

estimates (A.6), (A.7), and (A.8). The constant C0 only depends on Ω, γ, and the norms of the
coefficients aj,α.

The existence and uniqueness of the solution u is standard.
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Proof. Put f̃j = fj −
∑

i,α ai,α∂α
x ui. We employ (A.7) for the system ∂t + γ 42 u = f̃ :

‖u‖2
L2((0,t∗),H3(Ω)) ≤ C0

(

t
1/4
∗ ‖u0‖2

H2(Ω) + t
1/2
∗

∥

∥

∥f̃
∥

∥

∥

2

L2(Q∗)

)

≤ C
(

t
1/4
∗ ‖u0‖2

H2(Ω) + t
1/2
∗ ‖f‖2

L2(Q∗) + t
1/2
∗ ‖u‖2

L2((0,t∗),H3(Ω))

)

,

from which we obtain (A.7), for small t∗, as well as

∥

∥

∥f̃
∥

∥

∥

2

L2(Q∗)
≤ Ct∗

(

‖f‖2
L2(Q∗) + ‖u0‖2

H2(Ω)

)

,

which readily gives (A.6) and (A.8).

Proof of Proposition A.1. For simplicity of notation, we drop the subscript γ.

We apply the a priori estimates from Lemma A.4 to the linear part of (3.1),







































∂tn + γ 42 n − ν0 4n − div(J − JD) = div JD,

∂t(J − JD) + γ 42(J − JD) − ν0 4(J − JD)

+
ε2

4
∇4n − T∇n +

1

τ
(J − JD) = f,

(n, J − JD)(0, x) = (n0, J0 − JD)(x),

(BNn,BD(J − JD))(t, x) = 0, (t, x) ∈ (0, t∗) × Γ,

(A.10)

Write this system in the form ∂tU + γ 42 U + AlowerU = F , where U = (n, J − JD). Then we have
shown:

There are positive constants tmax and C0, depending only on Ω, γ, ν0, ε and T such that, for every
0 < t∗ ≤ tmax, the solution U satisfies the following a priori estimates:

‖U‖2
L∞((0,t∗),H2(Ω)) + ‖U‖2

L2((0,t∗),H4(Ω)) ≤ C0

(

‖F‖2
L2(Q∗)

+ ‖U0‖2
H2(Ω)

)

, (A.11)

‖∂tU‖2
L2(Q∗) ≤ C0

(

‖F‖2
L2(Q∗)

+ ‖U0‖2
H2(Ω)

)

, (A.12)

‖U‖2
L∞((0,t∗),H1(Ω)) ≤ C0

(

t
1/2
∗ ‖F‖2

L2(Q∗)
+ ‖U0‖2

H2(Ω)

)

, (A.13)

‖U‖2
L2((0,t∗),H3(Ω)) ≤ C0

(

t
1/2
∗ ‖F‖2

L2(Q∗)
+ t

1/4
∗ ‖U0‖2

H2(Ω)

)

, (A.14)

∥

∥U(t′, ·) − U(t′′, ·)
∥

∥

H2−α(Ω)
≤ C0|t′ − t′′|α/4

(

‖F‖L2(Q∗) + ‖U0‖H2(Ω)

)

. (A.15)

We prove the existence of local solutions to (3.1) by an iteration scheme: set

n0(t, x) = n0(x), J0(t, x) = J0(x), (t, x) ∈ [0, tmax] × Ω,

and define Uk = (nk, Jk − JD) as the solution to the linear system











∂tU
k + γ 42 Uk + AlowerU

k = F k−1,

Uk(0, x) = U0(x),

(BNnk, BD(Jk − JD))(t, x) = 0, (t, x) ∈ (0, t∗) × Γ,
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where F k−1 = (div JD, fk−1)T and

fk−1 = −1

τ
JD + div

(

Jk−1 ⊗ Jk−1

nk−1

)

− nk−1∇V k−1

+ ε2 div
(

(∇
√

nk−1) ⊗ (∇
√

nk−1)
)

,

λ2 4V k−1 = nk−1 − C,

(KV k−1)(t, x) = g(x), (t, x) ∈ (0, t∗) × Γ.

As usual, we can assume nk(t, x) ≥ δ0 and
∥

∥nk(t, ·)
∥

∥

L∞(Ω)
≤ δ−1

0 ,
∥

∥Jk(t, ·)
∥

∥

L∞(Ω)
≤ δ−1

0 , at least

for small t, due to (A.15) and the embedding H2−α(Ω) ⊂ L∞(Ω) for 0 < α < 1/2. Then we have
∥

∥V k−1(t, ·)
∥

∥

H1(Ω)
≤ C, for such t.

Suppose that
∥

∥F k−2
∥

∥

L2(Q∗)
≤ 1. For k = 2, this is possible by choosing t∗ sufficiently small. Then

we get estimates for U k−1 via (A.11)–(A.15). Moreover, we can assume t∗ ≤ 1. In the following, C
will denote a constant independent of k, but dependent on δ0:

∥

∥

∥
F k−1(t, ·)

∥

∥

∥

L2(Ω)
≤ C

(

1 +
∥

∥

∥
Jk−1

∥

∥

∥

H1(Ω)
+

∥

∥

∥
nk−1

∥

∥

∥

H1(Ω)
+

∥

∥

∥
∇V k−1

∥

∥

∥

L2(Ω)

)

+ C

(

∥

∥

∥∇nk−1
∥

∥

∥

3

L6(Ω)
+

∥

∥

∥∇nk−1
∥

∥

∥

L∞(Ω)

∥

∥

∥∇2nk−1
∥

∥

∥

L2(Ω)

)

,

∥

∥

∥
F k−1

∥

∥

∥

2

L2(Q∗)
≤ Ct∗

(

1 + (C0(1 + ‖U0‖2
H2(Ω)))

3
)

+ C
∥

∥

∥Uk−1
∥

∥

∥

2

L2((0,t∗),H3(Ω))
C0(1 + ‖U0‖2

H2(Ω))

≤ Ct∗ (. . .) + Ct
1/4
∗ (C0(1 + ‖U0‖2

H2(Ω)))
2.

From this estimate, we learn how to fix a positive number t∗ with the property that the esti-
mate

∥

∥F k−2
∥

∥

L2((0,t∗)×Ω)
≤ 1 implies

∥

∥F k−1
∥

∥

L2((0,t∗)×Ω)
≤ 1. Then we gain a sequence (U k)k ⊂

L2((0, t∗),H
4(Ω)), with uniform in k estimates as in (A.11)–(A.15). By a similar reasoning, we can

show
∥

∥

∥
F k − F k−1

∥

∥

∥

2

L2(Q∗)
≤ Ct

1/4
∗

∥

∥

∥
F k−1 − F k−2

∥

∥

∥

2

L2(Q∗)
,

from which the convergence of the sequence (U k)k to a limit U ,

Uk → U in L∞((0, t∗),H
2(Ω)) ∩ L2((0, t∗),H

4(Ω))

can be deduced provided that t∗ has been chosen sufficiently small. We also have the convergence
∂tUk → U in L2(Q∗).

The uniqueness of the solution U can be shown similarly as the contraction.

Having found this solution U , we next show better regularity properties by an investigation of the
time derivative Ut. Taking a formal derivative of (A.10), we obtain a system of the form

∂tUt + γ 42 Ut + AlowerUt =
∑

|α|≤2

Fα(J,∇J, n,∇n,∇2n,∇V )∂α
x Ut −

(

0
n∇Vt

)

.
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We know that the initial values n′
0(x) := (∂tn)(0, x), J ′

0(x) := (∂tJ)(0, x), computed via (A.10),
satisfy ∂νn

′
0(x) = 0, J ′

0(x) = 0 on Γ. Then we consider the initial-boundary value problem























∂tW + γ 42 W + AlowerW =
∑

|α|≤2

Fα(J,∇J, n,∇n,∇2n,∇V )∂α
x W −

(

0
nΦ(W1)

)

,

(BNW1, BDW2,...,d) = 0,

W (0, x) = (n′
0, J

′
0)(x),

where Φ denotes the mapping nt 7→ ∇Vt via the Poisson equation λ2 4Vt = nt with homogeneous
Zaremba boundary conditions. By a variation of Lemma A.4, we see that this problem has a
unique solution W ∈ L2((0, t∗),H

4(Ω))∩L∞((0, t∗),H
2(Ω)), and standard arguments show U(t, x) =

U0(x) +
∫ t
0 W (t′, x) dt′. As a consequence, we have

U ∈ W 1
2 ((0, t∗),H

4(Ω)) ∩ W 1
∞((0, t∗),H

2(Ω)).

The persistence of the solution U is shown by standard Moser type estimates.

Proof of Proposition A.2. We proceed in a way very similar to the previous proof and only highlight
the differences. Putting U = (n−C0, J) we wish to solve a system ∂tU + γ 42 U + AlowerU = F by
a Picard style iteration ∂tU

k + γ 42 Uk + AlowerU
k = F k−1, with a first approximation U 0(t, x) =

(n0(x) − C0, J0(x)). Solving the Poisson equation is a bit delicate, so we introduce exponential
weights and wish to solve the equivalent system

∂t

(

e〈x〉Uk
)

+ γ 42
(

e〈x〉Uk
)

+ Ãlower

(

e〈x〉Uk
)

= e〈x〉F k−1,

where Ãlower is a third order differential operator with bounded coefficients. We can suppose that
exp(〈x〉)Uk−1 ∈ L∞((0, t∗),H

2(R)) and

∫

R

(

nk−1(t, x) − C(x)
)

dx = 0. (A.16)

Now it is easy to check that the unique solution y of the boundary value problem

{

y′(x) = f(x) : x ∈ R,

y(−∞) = y(+∞) = 0,

under the compatibility condition
∫

R
f(x) dx = 0, satisfies the estimates

‖exp(α|x|)y(x)‖Lp(R) ≤
1

α
‖exp(α|x|)f(x)‖Lp(R) , 1 ≤ p ≤ ∞, α > 0,

from which we deduce that exp(〈x〉)∇V k−1 ∈ L∞((0, t∗), L
2(R)). Then we are in a position to

assume that
∥

∥exp(〈x〉)F k−1
∥

∥

L2(Q∗)
≤ 1 and find estimates of exp(〈x〉)U k as in the previous proof.

Integrating the equation ∂tn
k+. . . over [0, t]×R then gives (A.16) with k instead of k−1. By choosing

t∗ in a similar way as in the proof of Proposition A.1, we can arrange that
∥

∥exp(〈x〉)F k
∥

∥

L2(Q∗)
≤ 1.

The convergence is then shown as usual.
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