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We study a singularly perturbed elliptic second order system in
one space variable as it appears in a stationary quantum drift–
diffusion model of a semiconductor. We prove the existence of
solutions and their uniqueness as minimizers of a certain func-
tional and determine rigorously the principal part of an asymptotic
expansion of a boundary layer of those solutions. We prove analyt-
ical estimates of the remainder terms of this asymptotic expansion,
and confirm by means of numerical simulations that these remain-
der estimates are sharp.
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1. Introduction and known results

The distribution of charged particles in a semiconductor can be described by various systems of
partial differential equations, for instance the drift–diffusion equations. Typically, the relevant particles
are the mobile electrons in the conduction band (which is an energy band at a higher level) and the
so-called holes (which are vacant positions of positive charge in the next lower energy band, called
valence band). Additionally, charged ions may have been placed at certain lattice positions in the
semiconductor crystal, and these doping ions can carry positive or negative charge, depending on the
desired electronical behavior. For small scaled devices, it may be necessary to consider also quantum
effects. Then, in the stationary case, the quantum drift–diffusion model reads (after scaling)
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Fig. 1. A rough schematic sketch of a MOSFET, with horizontal variable x and vertical variable y, and with fictitious boundary
in the bulk at x = 1.

F = V + hn(n) − ε2 �
√

n√
n

, (1.1)

G = −V + hp(p) − ξε2 �
√

p√
p

, (1.2)

div(μnn∇ F ) = R0(n, p)R1(F , G), (1.3)

div(−μp p∇G) = −R0(n, p)R1(F , G), (1.4)

−λ2�V = n − p − C(x), (1.5)

for the unknowns n, p, F , G , V . The functions n and p describe the densities of electrons and holes,
and F , G are the quantum quasi Fermi levels. Finally, V is the electric potential as generated from
the charged particles via (1.5). Here C is the known density of positive ions. The functions hn , hp are
called the enthalpy functions of the electrons and holes; typically they are of the form h(s) = T ln s
with some positive temperature constant T . The positive parameter ε is proportional to the Planck
constant h̄ and describes quantum effects, and the positive constant ξ is related to the quotient of
the effective masses of the electrons and the holes. Next, the functions R0, R1 are known expressions,
which model generation–recombination effects. The constants μn , μp are related to the mobilities of
the particles, and λ is known as the scaled Debye length. Typically, the above system is studied in
a bounded domain with various boundary conditions, for instance Dirichlet boundary conditions of
(n, p, V , F , G) on a boundary part Γ+ (with n, p positive there), homogeneous Neumann boundary
conditions of (n, p, V , F , G) on a boundary part ΓN , and (n, p, V ) = (0,0, V extern + V equil) on a further
boundary part Γ0 (note that the elliptic equations (1.3) and (1.4) degenerate at points where n =
p = 0).

The system (1.1)–(1.5), also known as the density gradient model, goes back to the works of
Ancona [2,1]; and it can be understood as a combination of the Schrödinger and Gauss equations.
Extensive mathematical studies can be found in [11,13,3]; and we also refer to [10,7] for reviews, to
[6] and [9] for the transient case, and to [8] for a numerical scheme. Several results were proved in [3]
under appropriate assumptions: the full system has a solution (n, p, V , F , G) ∈ L∞(Ω)∩ H1(Ω)∩C(Ω)

with non-negative n and p. And if F , G ∈ L∞(Ω) are given, then a solution (n, p, V ) to (1.1), (1.2), (1.5)
exists which is uniquely determined by the condition that a certain functional shall be minimized. Fi-
nally, the semiclassical limit ε → 0 has been performed, under the assumption that the boundary part
Γ0 is empty.

It is one of the goals of this article to remove this restriction on Γ0, for a sub-class of the systems
from [3].

Our studies are related to MOSFET1 devices, whose structure is sketched in Fig. 1. At one end of the
device, there are contacts called source, gate, drain, of which the gate contact is insulated by means
of an oxide, explaining the name of the device. This insulator is quite thin, which then gives rise to
the quantum effects. Depending on an applied voltage V GS between gate and source, the density of

1 Metal–oxide-semiconductor field-effect transistor.
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movable charge carriers changes, and this effect decides whether a current can flow from source to
drain. If such movable particles are available between source and drain in abundance, we say that
an inversion layer has formed. In an opposite situation, when no movable particles are available in a
certain region, we say that this region depleted of particles. Various asymptotic expansions for such
layers have been proposed in [14,15,4]; we also refer to [5] for a model involving quantum effects. The
modifications of [5] to the model (1.1)–(1.5) can be summarized as follows. The holes are supposed
to be in thermal equilibrium, which implies G ≡ 0. In many situations, the parameter ξ from (1.2) is
small, which motivates us to neglect quantum effects for the holes, and then (1.2) turns into

0 = −V + hp(p),

or p = exp(V /T p). Moreover, generation–recombination events are ignored: R0 · R1 ≡ 0. Next we as-
sume that the domain Ω of the device is a square (0,1) × (0,1) ⊂ R2, and we write the spatial
variable as (x, y), with x running from the contacts into the bulk of the crystal. Concerning the
electron density n, we assume thermal equilibrium in direction of the x variable, which makes F
a function of y ∈ (0,1) only, and F is assumed to be known. The quasi 1D approximation is supposed,
which says that all functions depend only weakly on the variable y. Hence we will neglect the deriva-
tives with respect to y from now on, and the system becomes

F = V (x) + Tn lnn(x) − ε2 (
√

n(x) )xx√
n(x)

, 0 < x � 1, (1.6)

−λ2 V xx(x) = n(x) − exp
(

V (x)/T p
) − C(x), 0 � x � 1. (1.7)

The boundary conditions at the fictitious boundary x = 1 in the bulk are

n(1) = nB , V (1) = V B , (1.8)

and to express that quantum effects do not appear there, we assume that

F = V B + Tn lnnB . (1.9)

The boundary conditions at the location of the gate (x = 0) are, with given constants β � 0 and
V GS ∈ R,

n(0) = 0, V x(0) = β
(

V (0) − V GS
)
. (1.10)

The vanishing of the particle density n(x) at x = 0 makes two terms in (1.6) singular, and the
formation of an additional layer inside the inversion layer is to be expected: the quantum layer. In
the classical drift–diffusion model, where ε = 0, this boundary condition n(0) = 0 is not imposed, and
then the number of mobile electrons near the interface is higher in the classical model. A precise
understanding of this loss of electrons near the interface due to quantum effects is of high relevance
for a valid circuit design. (See Fig. 2.)

The objective of this paper is to study this quantum layer with the rigor of analysis. Our model-
ing follows [5], where an asymptotic expansion was conjectured, and our paper gives an analytical
proof of that expansion. The key improvement presented in this article is a precise discussion of the
error terms, which enables us to perform the limit ε → 0 rigorously, even in the presence of a zero
boundary value of the electron density.

We sketch the results presented in this paper. First, we prove the existence of a solution to the
system (1.6), (1.7), (1.8), (1.10), which is unique as a minimizer to a certain functional. Our approach
builds upon [3]; however, the additional nonlinearity in our equation (1.7) which is not present in [3]
requires several changes.
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Fig. 2. Electron and hole densities in case of an inversion layer.

Second, we prove rigorously that the electric potential Vε converges to the corresponding solution
V∗ of the classical model, with an analytic estimate of the error Vε − V∗ . We also determine the
profile of the quantum layer of the electron density, again with several analytical error estimates.

And our third result are numerical simulations which confirm that our analytical error estimates
are sharp.

2. Main results

Our first result is about the existence of solutions (n, V ), which are constructed in such a way that
	 := √

n is the unique non-negative minimizer of a certain functional, see Remark 3.6.

Theorem 2.1. Let us be given positive constants Tn, T p , ε, λ, nB , and real constants F , V GS, and V B , and a
non-negative constant β . Suppose that C = C(x) is continuous and real-valued.

Then the boundary-value problem (1.6), (1.7), (1.8), (1.10) possesses a solution (n, V ) ∈ C2([0,1]) with
n(x) > 0 for 0 < x � 1, such that 	 := √

n is the unique non-negative minimizer to F from (3.8).
And there is a constant C0 , independent of ε and of the solution (n, V ), with

ε2
∥∥(

√
n )′

∥∥2
L2((0,1))

+ ∥∥V ′∥∥2
L2((0,1))

� C0. (2.1)

Our second result will describe the shape of n and V , in particular for small values of ε. The
precise formulation requires some preparations.

By variational methods, we will show in Proposition 3.5 that V∗,n∗ ∈ C2([0,1]) exist uniquely
which solve ⎧⎪⎨

⎪⎩
−λ2 V ′′∗ (x) = n∗(x) − exp

(
V∗(x)/T p

) − C(x), 0 � x � 1,

n∗(x) := exp
((

F − V∗(x)
)
/Tn

)
, 0 � x � 1,

V ′∗(0) = β
(

V∗(0) − V GS
)
, V∗(1) = V B .

(2.2)

Let Z = Z(y) be the unique function from C2([0,∞)) that solves

Z ′′(y) = Z(y) ln Z(y), 0 < y < ∞, Z(0) = 0, lim
y→+∞ Z(y) = 1. (2.3)
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As shown in [5], this function is strictly increasing with Z ′(0) = 1/
√

2, and it approaches the value 1
exponentially for y → +∞, with the asymptotics 1 − Z(y) ≈ exp(C Z − y), C Z ≈ 0.244.

Theorem 2.2. Assume (1.9). Then there is a positive ε0 , such that, for 0 < ε � ε0 , we have

‖n − n(0)‖L2((0,1)) + ‖V − V (0)‖W 1
2 ((0,1)) � Cε,

where the zero-th order approximations (n(0), V (0)) of (n, V ) are defined as follows:

n(0)(x) := n∗(x)Z 2
(√

2Tn · x

ε

)
, V (0)(x) := V∗(x).

Theorem 2.3. The approximations n(0) satisfy the uniform estimates

‖n − n(0)‖L∞((0,1)) � Cε3/4, 0 < ε � ε0,

and in particular, we have

∣∣n(x) − n(0)(x)
∣∣ � Cε3/4 · x

ε
, 0 � x � ε. (2.4)

Our notation is standard. In particular, C is a generic positive constant that is independent of the
unknowns and may change its value from line to line.

3. Existence of solutions

Now we begin to demonstrate Theorem 2.1, and our strategy is as follows. Assuming that n were
known, we then find V as the unique solution to (1.7) using variational methods. This dependence
of V from n will be mainly described by the mapping Φ below. Then (1.6) becomes a differential
equation of n alone, which turns out to be the Euler–Lagrange equation of a certain functional F .
Then it remains to show that F has a unique minimizer; here we will follow the approach of [3].

First we consider the boundary-value problem

⎧⎪⎨
⎪⎩

−λ2U ′′(x) = q(x) − p
(
x, U (x)

)
, 0 � x � 1,

U ′(0) = βU (0), β � 0,

U (1) = 0,

(3.1)

with a given q ∈ C([0,1]), under some assumptions on the nonlinearity p:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p ∈ C1
([0,1] × R

)
,

pU (x, U ) > 0 ∀(x, U ) ∈ [0,1] × R,

P (x, U ) :=
U∫

u=0

p(x, u)du � −C ∀(x, U ) ∈ [0,1] × R.

(3.2)

We start our considerations with the simple observation that solutions U to (3.1) are unique, by the
theory of monotone operators.

To prove the existence of a solution to (3.1), we choose the variational space

XU := {
U ∈ W 1

2

(
(0,1)

)
: U (1) = 0

}
.
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Lemma 3.1. For a fixed function q ∈ C([0,1]), define a functional

F (0)(U ) := λ2

2

1∫
0

(
U ′(x)

)2
dx + λ2

2
β
(
U (0)

)2 +
1∫

0

−q(x)U (x) + P
(
x, U (x)

)
dx. (3.3)

This functional possesses a unique minimizer U0 ∈ XU , and this minimizer is a classical solution to the
boundary-value problem (3.1).

Proof. By Poincaré’s inequality, (3.2), and β � 0, the functional F (0) is coercive:

F (0)(U ) � λ2

4
‖U‖2

W 1
2
− C, ∀U ∈ XU ,

and then the existence of a minimizer U0 ∈ XU follows by standard arguments, and U0 ∈ XU ⊂
C([0,1]) is bounded. Take ϕ ∈ C∞([0,1]) with ϕ(1) = 0. Then

F (0)(U0 + δϕ) =F (0)(U0) − δ

1∫
0

(
λ2U ′′

0 + q − p(x, U0)
)
ϕ dx

+ δλ2(−U ′
0(0) + βU0(0)

)
ϕ(0) +O(

δ2),
and therefore U0 solves −λ2U ′′

0 = q − p(x, U0) in the distributional sense, and it follows that U0 ∈
C2([0,1]), as well as −U ′

0(0) + βU0(0) = 0. �
Next we discuss how this minimizer U0 of F (0) depends on q.

Lemma 3.2. Define a mapping Φ : C([0,1]) → C2
B([0,1]), with C2

B([0,1]) as the vector space of all functions
U from C2([0,1]) with U ′(0) = βU (0) and U (1) = 0, via the relation Φ{q} := U0 , and U0 is defined as the
unique minimizer of the functional F (0) from (3.3). Then Φ is a homeomorphism.

Proof. Clearly, Φ is bijective, and Φ−1 is continuous. It remains to establish the continuity of Φ . To
this end, let q1 ∈ C([0,1]) be given, and q2 ∈ C([0,1]) with ‖q1 −q2‖L∞ � 1. Define Uk := Φ{qk}. Then
−λ2U ′′

k + p(x, Uk) = qk , hence

λ2

1∫
0

(
U ′

1 − U ′
2

)2
dx + λ2β

(
U1(0) − U2(0)

)2 +
1∫

0

(
p(x, U1) − p(x, U2)

)
(U1 − U2)dx

=
1∫

0

(q1 − q2)(U1 − U2)dx,

which implies, using β � 0, the monotonicity of p, and Poincaré’s inequality, that ‖U1 − U2‖W 1
2

�
C‖q1 − q2‖L2 , hence also ‖U1 − U2‖L∞ � C‖q1 − q2‖L2 . Next we have ‖p(·, U1) − p(·, U2)‖L∞ �
C‖q1 − q2‖L2 , and then also ‖U ′′

1 − U ′′
2‖L∞ � C‖q1 − q2‖L∞ . �

For more information, we determine the Fréchet derivative of Φ .
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Lemma 3.3. Fix q0 ∈ C([0,1]). Then there is a C such that we have the expansion

Φ{q} = Φ{q0} + W + R

for all q ∈ C([0,1]) with ‖q − q0‖C([0,1]) � 1, where W ∈ C2([0,1]) is the unique solution to

−λ2W ′′ + pU
(
x,Φ{q0}

)
W = q − q0, W ′(0) = βW (0), W (1) = 0,

with ‖W ‖C2([0,1]) � C‖q − q0‖C([0,1]) , and ‖R‖C2([0,1]) � C‖q − q0‖2
C([0,1]) .

Proof. From Lemma 3.2 we know ‖Φ{q} − Φ{q0}‖C2([0,1]) � C‖q − q0‖C([0,1]) . We define R := Φ{q} −
Φ{q0} − W and have

−λ2 R ′′ = −λ2(Φ{q}′′ − Φ{q0}′′ − W ′′)
= −pU

(
x,Φ{q0}

) · (Φ{q} − Φ{q0} − W
) +O(∥∥Φ{q} − Φ{q0}

∥∥2
C([0,1])

)
= −pU

(
x,Φ{q0}

)
R +O(‖q − q0‖2

C([0,1])
)
.

Note that pU (x,Φ{q0}) > 0, hence we get ‖R‖C2([0,1]) � C‖q − q0‖2
C([0,1]) . �

Lemma 3.4. Define a function K = K (x, U ) := Up(x, U ) − P (x, U ), and set

F (1)(q) := λ2

2

1∫
0

((
Φ{q})′

(x)
)2

dx + λ2

2
β
(
Φ{q}(0)

)2 +
1∫

0

K
(
x,Φ{q}(x)

)
dx.

Then K (x, U ) � 0 for all (x, U ) ∈ [0,1] × R, and the Fréchet derivative of F (1) is given via

F (1)(q) =F (1)(q0) +
1∫

0

Φ{q0} · (q − q0)dx +O(‖q − q0‖2
C([0,1])

)
.

Here the remainder term is positive for q �= q0 , and F (1) is strictly convex.

Proof. Concerning the bound for K , we remark that P (x,0) = 0, pU > 0 and

K (x, U ) =
U∫

u=0

upU (x, u)du.

For the proof of the second claim, we put U0 = Φ{q0} and U := Φ{q}. Then U = U0 + W + R with W
and R as given in Lemma 3.3, and it follows that

F (1)(q) =F (1)(q0) + λ2

1∫
0

U ′
0 · (U − U0)

′ dx + λ2βU0(0) · (U (0) − U0(0)
)

+ λ2

2

1∫
0

(
U ′ − U ′

0

)2
dx + λ2

2
β
(
U (0) − U0(0)

)2 +
1∫

0

K (x, U ) − K (x, U0)dx
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�F (1)(q0) +
1∫

0

U0 · (q − q0)dx

+
1∫

0

−U0 · (p(x, U ) − p(x, U0)
) + K (x, U ) − K (x, U0)dx.

Now we have, with some Ũ between U and U0,

−U0
(

p(x, U ) − p(x, U0)
) + K (x, U ) − K (x, U0) = 1

2
P U U (x, Ũ ) · (U0 − U )2 � 0,

because of P U U = pU > 0. �
Proposition 3.5. Suppose that λ and T p are positive, V GS, V B are real, and n − C is a continuous given
real-valued function on [0,1]. Then there is exactly one solution V ∈ C2([0,1]) to (1.7) with the boundary
conditions V (1) = V B and V ′(0) = β(V (0) − V GS). Moreover, the nonlinear boundary-value problem (2.2)
possesses exactly one solution V∗ ∈ C2([0,1]).

Proof. To find V , we put V = V inh + U with V inh as the unique solution to

{−λ2 V ′′
inh(x) = −C(x), 0 � x � 1,

V ′
inh(0) = β

(
V inh(0) − V GS

)
, V inh(1) = V B .

(3.4)

We then have U = Φ{n}, with Φ as defined in Lemma 3.2, and

p(x, U ) := exp
(

V inh(x)/T p
)

exp(U/T p). (3.5)

The uniqueness of V is proved by monotonicity arguments. The result concerning V∗ solving (2.2) is
proved likewise. �

For n � 0 we may write n = 	2, and then we write (1.6)–(1.8), (1.10) as

{
	F = 	

(
V inh + Φ

{
	2

}) + 2Tn	 ln	 − ε2	′′, 	 � 0, on [0,1],
	(0) = 0, 	(1) = 	B := √

nB ,
(3.6)

with V inh given by (3.4).
Set h(s) = Tn ln s for s > 0 and

H(s) :=
s∫

σ=1

h(σ )dσ = Tn(s ln s − s + 1). (3.7)

Our intuition is to look for 	 as a non-negative minimizer to the functional

F(	) :=
1∫

0

(
ε2

∣∣	′∣∣2 + H
(
	2) + 	2 V inh − 	2 F

)
dx +F (1)

(
	2),

over the set X	 := {	 ∈ W 1
2 ((0,1)): 	(0) = 0, 	(1) = 	B}.
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Remark 3.6. For the convenience of the reader, we collect all information about how to construct F
in one place: for functions 	 from X	 we shall discuss

F(	) :=
1∫

0

(
ε2

∣∣	′∣∣2 + H
(
	2) + 	2 V inh − 	2 F

)
dx + λ2

2

1∫
0

((
Φ

{
	2})′)2

dx

+ λ2

2
β
(
Φ

{
	2}(0)

)2 +
1∫

0

Φ
{
	2}(x) · p

(
x,Φ

{
	2}(x)

) − P
(
x,Φ

{
	2}(x)

)
dx, (3.8)

with V inh as the unique solution to (3.4), p = p(x, U ) defined in (3.5), and P = P (x, U ) from (3.2).
Finally, U = Φ{q} is defined as the unique solution to (3.1). For the definition of F , we take q := 	2.

However, some problem occurs here. The pole of h = h(s) at s = 0 and the boundary values of 	
at x = 0 make the functional F irregular, and then the Euler–Lagrange equations cannot be derived.
To overcome this difficulty, we perform a regularization step: for a parameter γ ∈ (0,1), we set

hγ (s) :=
⎧⎨
⎩

h(γ ): 0 � s � γ ,

h(s): γ � s � γ −1,

h(γ −1): γ −1 � s,

and then we put Hγ (s) := ∫ s
σ=1 hγ (σ )dσ . The functional for which we seek a non-negative minimizer

is

Fγ (	) :=
1∫

0

(
ε2

∣∣	′∣∣2 + Hγ

(
	2) + 	2 V inh − 	2 F

)
dx +F (1)

(
	2), (3.9)

where we restrict γ to the interval (0, γ0), and γ0 with 0 < γ0 � 1 is selected by the condition
Hγ (s) − s‖V inh − F‖L∞((0,1)) � s for s � γ −1

0 .

Lemma 3.7. For functions 	 taking only non-negative values, the functionals F and Fγ from (3.8) and (3.9)
are strictly convex functionals of 	2 , in the following sense: if 	1,	2 ∈ X	 with 	1,2 � 0 and 	1 �= 	2 , and if
0 < t < 1, then

F(√
t	2

1 + (1 − t)	2
2

)
< tF(	1) + (1 − t)F(	2),

Fγ

(√
t	2

1 + (1 − t)	2
2

)
< tFγ (	1) + (1 − t)Fγ (	2).

Non-negative minimizers of F or Fγ are unique.

Proof. First, the strict convexity of the functional 	2 �→ ∫ 1
0 |∇	|2 dx was shown in [11]. Second, the

scalar functions H and Hγ are weakly convex functions. And third, we recall the strict convexity of
F (1) from Lemma 3.4. �
Lemma 3.8. For 0 < γ < γ0 , the functional Fγ possesses a non-negative minimizer 	γ ∈ C2([0,1]) ∩ X	 ,
and each such minimizer satisfies the uniform in γ estimate

ε‖	γ ‖W 1
2 ((0,1)) + ∥∥Φ

{
	2

γ

}∥∥
W 1

2 ((0,1))
� C . (3.10)
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Proof. We clearly have Fγ (	) � ε2

2 ‖	‖2
W 1

2 ((0,1))
− C for all 	 ∈ X	 , with some C ∈ R+ depending

only on ‖V inh − F‖L∞((0,1)) , but not on γ . Then mγ := inf{Fγ (	): 	 ∈ X	} exists. Let (	1,	2, . . .) be a
sequence in X	 with lim j→∞Fγ (	 j) = m. Then this sequence is bounded in W 1

2 ((0,1)), hence we can
assume strong convergence in C([0,1]), and weak convergence in W 1

2 ((0,1)) of this sequence to some
limit 	γ ∈ X	 . Then F (1)(	2

j ) has the limit F (1)(	2
γ ) for j → ∞, because Φ : C([0,1]) → C2

B([0,1]) is
continuous, see Lemma 3.2. By classical arguments [12], we conclude that Fγ is weakly sequentially
lower semi-continuous on X	 , and consequently Fγ has a minimizer on X	 . If 	γ ∈ X	 is such a
minimizer, then |	γ | also belongs to X	 , and it has the same value of Fγ . Independent of γ estimates
of such non-negative minimizers 	γ can be found by choosing a non-negative function 	∗ ∈ X	 . Then
Fγ (	γ ) �Fγ (	∗), and the right-hand side is bounded from above independently of γ because Hγ is
uniformly bounded from below. This gives us (3.10). �
Lemma 3.9. Let 	γ ∈ C2([0,1]) ∩ X	 be a non-negative minimizer of Fγ , and Vγ := V inh + Φ{	2

γ }. Then

−ε2	′′
γ + (

hγ

(
	2

γ

) + Vγ − F
)
	γ = 0. (3.11)

Proof. By Lemma 3.4, (3.11) is just the Euler–Lagrange equation for Fγ . �
Proof of Theorem 2.1. By the uniform bound of ‖	γ ‖W 1

2 ((0,1)) and the compact embedding

W 1
2 ((0,1)) ⊂ C([0,1]), we can assume to have a sequence (	γ )γ →0 of non-negative solutions to (3.11)

that converges in C([0,1]) to a non-negative limit 	. Since the function s �→ sh(s2) is continuous on
[0,∞), we deduce that

(
hγ

(
	2

γ

) − Vγ + F
)
	γ → (

h
(
	2) − V + F

)
	, V := V inh + Φ

{
	2},

with convergence in C([0,1]), for γ → 0. Then 	 � 0 is a distribution solution to (3.6), and by elliptic
regularity, 	 ∈ C2([0,1]), and ‖	′′

γ − 	′′‖L∞((0,1)) → 0.
The positivity of 	(x) at all x ∈ (0,1) is shown as in [3, Section 2.4], and from F(σ ) =

limγ →0 Fγ (σ ), with F from (3.8) and any function σ ∈ X	 , we learn that 	 indeed minimizes F .
It remains to show (2.1). Choose any 	∗ ∈ X	 . Then F(	) � F(	∗), which is bounded independently
of ε ∈ (0,1]. Observe that there is a constant C ∈ R+ such that

1∫
0

H
(
ψ2) + ψ2(V inh − F )dx � −C, F (1)

(
ψ2) � −C,

for all ψ ∈ C([0,1]), from which (2.1) quickly follows. �
4. Asymptotics of the solutions

Now we begin to demonstrate Theorem 2.2. From now on, let (nε, Vε) be the solution to (1.6),
(1.7), (1.8), (1.10), as constructed in Theorem 2.1. We introduce the notation 	ε := √

nε . Then the pair
(	ε, Vε) solves

{
ε2	′′

ε = g(	ε) + 	ε · (Vε − F ),

−λ2 V ′′
ε = 	2

ε − p(Vε) − C(x),
(4.1)

with g(s) := 2Tns ln s and p(s) := exp(s/T p). And we have the boundary conditions

{
	ε(0) = 0, 	ε(1) = 	B := √

nB ,

V ′
ε(0) = β

(
Vε(0) − V GS

)
, Vε(1) = V B .

(4.2)
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Since the proof of Theorem 2.2 will span almost the whole Section 4, we present its main steps. First
we prove uniform bounds of Vε , and of 	ε from below (away from x = 0). In Section 4.2, we then
show Vε ≈ V∗ on the whole interval (with an error of ε1/2), and that 	ε ≈ 	∗ for x >

√
ε with an

error of ε1/4. The next step (Proposition 4.5) then is a discussion of 	ε for x ∈ [0,2
√

ε]; here it is
helpful to know the behavior of 	ε for x ∈ [√ε,2

√
ε], as found out in the previous step. Then, in

Section 4.3, a multiplier technique is used to improve the error estimates.

4.1. Properties of the solutions

We begin with some uniform estimates.

Lemma 4.1. There is a constant C1 , independent of ε, such that

‖Vε‖C2([0,1]) + ‖nε‖C([0,1]) � C1.

Proof. By the embedding W 1
2 ((0,1)) ⊂ C([0,1]), (2.1), and Vε(1) = V B , we find ‖Vε‖C([0,1]) � C . Sup-

pose that 	ε takes a local maximum at an inner point x∗ ∈ (0,1). Then 	′′
ε (x∗) � 0, hence h(	2

ε(x∗))+
Vε(x∗)− F � 0. We then have 	2

ε(x∗) � exp((F − Vε(x∗))/Tn), and then also ‖nε‖C([0,1]) � C . Then (1.7)
gives us the remaining bound for ‖Vε‖C2([0,1]) . �

A first information on the graph of n is given by the next result.

Lemma 4.2. There is a positive constant g∗ such that

	ε(x) � g∗, ε � x � 1.

And there is a unique x1 ∈ (0,1) with 	ε(x1) = g∗ , and 	′
ε(x) > 0 on [0, x1].

Proof. The function 	ε solves (4.1) and (4.2). Define g∗ as

g∗ := min

{
	B

2
,exp

(−32 − C1

2Tn
− 1

)}
, (4.3)

with C1 from Lemma 4.1 as an upper estimate of ‖Vε − F‖C([0,1]) .
Then it follows that whenever 0 < 	ε(x̃) � g∗ , then

2Tn ln	ε(x̃) + Vε(x̃) − F � −32,

and consequently 	′′
ε(x̃) < 0. Then 	′

ε(x̃) � 0 is impossible because this would imply 	′
ε(x) < 0 for all

x ∈ (x̃,1], contradicting 	ε(1) = 	B > g∗ . Hence there is a uniquely determined number x1 ∈ (0,1)

with

	ε(x)

{
< g∗: 0 � x < x1,

> g∗: x1 < x � 1.

Moreover, on the interval [0, x1], 	ε is strictly increasing. It remains to show that x1 � ε. Define
x2 ∈ (0, x1) by 	ε(x2) = 1

2 g∗ . Then we have x2 � 1
2 x1, by the concavity of 	ε on (0, x1). On the in-

terval [x2, x1], we have 	ε(x) � 1
2 g∗ , hence ε2	′′

ε � −16g∗ . Now we make use of a simple fact: if
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|ψ ′′(x)| � d0 on [a,b] for some ψ ∈ C2([a,b]), then max[a,b] ψ − min[a,b] ψ � d0(b − a)2/8. Hence we
conclude that

1

2
g∗ � 16g∗

ε2
· (x2 − x1)

2

8
,

or x1 − x2 � 1
2 ε, implying x1 � ε as desired. �

The next result is a first step in showing that the quantum term ε2	′′
ε is of less relevance for

x �O(
√

ε).

Lemma 4.3. Assume (1.9). Then there is a constant C , independent of ε ∈ (0,1/8], such that

‖2Tn ln	ε + Vε − F‖L∞((
√

ε,1)) � Cε1/4, (4.4)

‖2Tn ln	ε + Vε − F‖L2((
√

ε,1)) � Cε3/4, (4.5)∥∥	2
ε − exp

(
(F − Vε)/Tn

)∥∥
L2((2ε,1))

� Cε1/2, (4.6)∥∥	′
ε

∥∥
L∞((

√
ε,1))

� Cε−3/4. (4.7)

Proof. Take a function χ ∈ C∞([0,1]) with 0 � χ � 1, χ ′ � 0, and define

χ(x) :=
{

3x: 0 � x � 1/4,

1: 1/3 � x � 1,
χε(x) := χ(x − ε), x ∈ [ε,1].

By (2Tn ln	ε + Vε − F )|x=1 = 0 because of (1.9), we find

1∫
ε

ε2χε

	ε

(
	′′

ε

)2
dx =

1∫
ε

χε	
′′
ε(2Tn ln	ε + Vε − F )dx

= −2Tn

1∫
ε

χε

	ε

(
	′

ε

)2
dx −

1∫
ε

χε	
′
ε V ′

ε dx −
1∫

ε

χ ′
ε	

′
ε(2Tn ln	ε + Vε − F )dx.

Now we estimate

∣∣χε	
′
ε V ′

ε

∣∣ � χεTn
(	′

ε)
2

	ε
+ CTnχε	ε

(
V ′

ε

)2 � Tn
χε

	ε

(
	′

ε

)2 + C
(

V ′
ε

)2
,

1∫
ε

χ ′
ε	

′
ε ln	ε dx = −(

χ ′
ε(	ε ln	ε − 	ε)

)∣∣
x=ε

−
1∫

ε

χ ′′
ε (	ε ln	ε − 	ε)dx,

1∫
ε

χ ′
ε	

′
ε Vε dx = −(

χ ′
ε	ε Vε

)∣∣
x=ε

−
1∫

ε

	ε

(
χ ′′

ε Vε + χ ′
ε V ′

ε

)
dx,
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and consequently we have

1∫
ε

χε

	ε

((
ε	′′

ε

)2 + Tn
(
	′

ε

)2)
dx � C .

Choose a positive σ(ε) � 1/2. Then Lemma 4.2 brings us to

1∫
ε+σ (ε)

(
ε	′′

ε

)2 + Tn
(
	′

ε

)2
dx � C

σ(ε)
.

We easily see ε2	′′′
ε = (	ε(2Tn ln	ε + Vε − F ))′ , hence ε2‖	′′′

ε ‖L2((ε+σ(ε),1)) � Cσ−1/2(ε). Interpo-
lating ‖	ε‖W 3

2
� Cε−2σ−1/2(ε) and ‖	ε‖W 1

2
� Cσ−1/2(ε), we then derive ε2‖	ε‖W 2

2 ((ε+σ(ε),1)) �
Cεσ−1/2(ε), and now the differential equation implies

∥∥	ε(2Tn ln	ε + Vε − F )
∥∥

L2((ε+σ (ε),1))
� Cε

σ 1/2(ε)
,

which is (4.5) and (4.6) for the choices σ(ε) = 1
2

√
ε and σ(ε) = ε. And (4.4) follows with σ(ε) = 1

2

√
ε

and the inequality ‖	ε(2Tn ln	ε + Vε − F )‖W 1
2 ((

√
ε,1)) � Cε−1/4 using interpolation. Finally, (4.7) is

proved by interpolation, too:

∥∥	′
ε

∥∥
L∞ � C

∥∥	′
ε

∥∥1/2
L2

∥∥	′
ε

∥∥1/2
W 1

2
� C

ε1/2σ 1/2(ε)
. �

4.2. First remainder estimates

We continue our preparations for the proof of Theorem 2.2.

Lemma 4.4. The sequence (Vε)ε→0 converges to a limit V∗ ∈ C2([0,1]),

‖Vε − V∗‖W 1
2 ((0,1)) � Cε1/2, (4.8)

and V∗ solves (2.2). Moreover, the sequence (	ε)ε→0 converges uniformly on compact subsets of (0,1) to the
limit 	∗ := √

n∗ in the sense of

‖	ε − 	∗‖L∞((
√

ε,1)) = ∥∥	ε − exp
(
(F − V∗)/(2Tn)

)∥∥
L∞((

√
ε,1))

� Cε1/4. (4.9)

See (2.2) for the definition of n∗ .
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Proof. For parameters 0 < ε2 < ε1 < 1/8, we conclude that

λ2

1∫
0

(
(Vε1 − Vε2)

′)2
dx + λ2β

(
Vε1(0) − Vε2(0)

)2

= −
1∫

0

(
exp(Vε1/T p) − exp(Vε2/T p)

)
(Vε1 − Vε2)dx

+
2ε1∫
0

(
	2

ε1
− 	2

ε2

)
(Vε1 − Vε2)dx +

1∫
2ε1

(
	2

ε1
− 	2

ε2

)
(Vε1 − Vε2)dx.

The first integral on the right is non-negative, by monotonicity. The second integral is bounded by
2ε1 · 2C2

1 , see Lemma 4.1. And for the third integral on the right, we exploit (4.6), monotonicity ar-
guments, and the inequalities of Poincaré and Young. The result then is λ2‖(Vε1 − Vε2 )

′‖2
L2((0,1))

�
Cε1, hence there is a limit V∗ ∈ W 1

2 ((0,1)), and (4.8) holds. Combined with the uniform bound
‖Vε‖C2([0,1]) � C from Lemma 4.1, then also limε→0 ‖Vε − V∗‖C1([0,1]) = 0. Now Lemmas 4.1, 4.2, and
(4.4) give us

∥∥	ε − exp
(
(F − Vε)/(2Tn)

)∥∥
L∞((

√
ε,1))

� Cε1/4,

and joining this estimate with (4.8) then yields (4.9). It follows that V∗ is a distributional solution
to (2.2), and then V∗ ∈ C2([0,1]) by elliptic regularity. �

Next we discuss the behavior of 	ε near the boundary x = 0:

Proposition 4.5. Put c0 := g∗/(2
√

Tn	∗(0)). On the interval [0, c0ε], we have the uniform expansion

	ε(x) = 	∗(x)Z

(√
2Tn · x

ε

)
+O

(
ε1/2 · x

ε

)
, (4.10)

∥∥∥∥	ε − 	∗(0)Z

(√
2Tn

ε
·
)∥∥∥∥

L∞((0,c0ε))

� Cε1/2, (4.11)

with Z as in (2.3). And on the middle interval [c0ε,2
√

ε], we uniformly have

	ε(x) = 	∗(x)Z

(√
2Tn · x

ε

)
+O(

ε1/4). (4.12)

Proof. We multiply the first equation of (4.1) by 2	′
ε and integrate on [0, x]:

(
ε	′

ε(x)
)2 − (

ε	′
ε(0)

)2 = Tn	
2
ε(x)

(
2 ln	ε(x) − 1 + Vε(x) − F

Tn

)
− V ′

ε(ξ)

x∫
0

	2
ε(t)dt,

with ξ ∈ (0, x), by partial integration and the mean value theorem of integration. We can re-order this
to
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Tn	
2
ε(x) − (

ε	′
ε(0)

)2 = Rε := 	2
ε(x)

(
2Tn ln	ε(x) + Vε(x) − F

)

− (
ε	′

ε(x)
)2 − V ′

ε(ξ)

x∫
0

	2
ε(t)dt. (4.13)

Now we apply (4.5), (4.7), and then we deduce that ‖Rε‖L2((
√

ε,2
√

ε)) � Cε3/4. If 0 � x � 2
√

ε,

then (4.8) and V∗ ∈ C2([0,1]) imply

Vε(x) = V∗(0) + (
Vε(x) − V∗(x)

) + (
V∗(x) − V∗(0)

) = V∗(0) +O(
ε1/2)

= F − 2Tn ln	∗(0) +O(
ε1/2),

which then yield

∥∥ln	2∗(0) − (F − Vε)/Tn
∥∥

L2((
√

ε,2
√

ε ))
� Cε3/4,∥∥	2∗(0) − exp

(
(F − Vε)/Tn

)∥∥
L2((

√
ε,2

√
ε ))

� Cε3/4.

Now we bring (4.5) into the game:

ε1/4
∣∣Tn	

2∗(0) − (
ε	′

ε(0)
)2∣∣ = ∥∥Tn	

2∗(0) − (
ε	′

ε(0)
)2∥∥

L2((
√

ε,2
√

ε ))

� ‖Rε‖L2((
√

ε,2
√

ε )) + Tn
∥∥	2∗(0) − exp

(
(F − Vε)/Tn

)∥∥
L2((

√
ε,2

√
ε ))

+ Tn
∥∥	2∗(·) − exp

(
(F − Vε)/Tn

)∥∥
L2((

√
ε,2

√
ε ))

� Cε3/4,

and this delivers us an explicit description of the slope 	′
ε(0):

(
ε	′

ε(0)
)2 = Tn	

2∗(0) +O(
ε1/2).

Consequently, for 0 � x � 2
√

ε, the differential equation (4.13) becomes

(
ε	′

ε(x)
)2 = Tn	

2∗(0)

(
	2

ε(x)

	2∗(0)
ln

(
	2

ε(x)

	2∗(0)

)
− 	2

ε(x)

	2∗(0)
+ 1

)
+O(

ε1/2). (4.14)

Recall that x1 ∈ (0, ε] was defined by the condition 	ε(x1) = g∗ , compare Lemma 4.2. The definition
of g∗ in (4.3) guarantees that (	ε(x)/	∗(0))2 � e−1 on [0, x1], hence

(
ε	′

ε(x)
)2 � Tn	

2∗(0)

(
1 − 2

e

)
+O(

ε1/2) � Tn	
2∗(0)

16
, 0 � x � x1. (4.15)

Next we bound x1 from below. By the mean value theorem, a ξ exists with

g∗
x1

= 	ε(x1)

x1
= 	′

ε(ξ) � ε−1
√

Tn	2∗(0) +O(
ε1/2

)
� 2

√
Tn	∗(0)ε−1,

compare (4.14), and therefore x1 � c0ε with c0 := g∗/(2
√

Tn	∗(0)).
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We introduce the scaling

y = x

ε
, 	ε(x) =: 	(I,ε)(y) · 	∗(0),

and then (4.14) turns into the differential equation

(
	′

(I,ε)(y)
)2 = H

(
	2

(I,ε)(y)
) +O(

ε1/2), 0 � y � 2ε−1/2, (4.16)

compare (3.7) for H . Now consider the interval [0, c0]. By (4.15), we have

	′
(I,ε)(y) =

√
H

(
	2

I,ε(y)
) +O(

ε1/2), 0 � y � c0.

Note that 	2
(I,ε)(y) ∈ [0, e−1] for y ∈ [0, c0], which makes the function s �→ √

H(s2) uniformly Lipschitz
continuous on the relevant interval.

The function Z = Z(y) defined in (2.3) solves

Z ′(y) = 1√
2Tn

√
H

(
Z 2(y)

)
, 0 � y < ∞, Z(0) = 0. (4.17)

Put W (y) = 	(I,ε)(y) − Z(
√

2Tn y). Then we have, for y ∈ [0, c0],

(
W 2(y)

)′ = 2W (y) ·
(√

H
(
	2

(I,ε)
(y)

) −
√

H
(

Z 2(
√

2Tn y)
) +O(

ε1/2))
� C0W 2(y) +O(ε),

hence |W (y)| � Cε1/2 by Gronwall’s Lemma. From (4.11) we then obtain

	ε(x) = 	∗(0)Z

(√
2Tn · x

ε

)
+O

(
ε1/2 · x

ε

)
, x ∈ [0, c0ε],

which implies (4.10) via the Lipschitz continuity of 	∗ .
Now we come to the proof of the uniform estimate of W on [c0,2ε−1/2], from which then (4.12)

will follow. It is already known from (4.11) and (4.9) that |W (c0)| � Cε1/2 and |W (2ε−1/2)| � Cε1/4.
Assuming that |W | attains its maximal value on y∗ ∈ (c0,2ε−1/2), we then get from (4.16) and (4.17)
that

∣∣H
(
	2

(I,ε)(y∗)
) − H

(
Z 2(

√
2Tn y∗)

)∣∣ � Cε1/2. (4.18)

Note that H is convex with H(1) = H ′(1) = 0 and H ′′(1) = Tn . If 	2
(I,ε)(y∗) � 1 then it follows that

|	2
(I,ε)(y∗)− Z 2(

√
2Tn y∗)| � Cε1/4 with the consequence of |W (y∗)| � Cε1/4, because of Z(

√
2Tn y) �

const > 0 for y ∈ [c0,∞).
The other case, where 	2

(I,ε)(y∗) > 1, is a bit harder. Let y0 denote the point in [c0,2ε−1/2]
where 	(I,ε) attains its maximal value. Then y0 > c0 due to 	′

(I,ε)(c0) > 0. And also 	(I,ε)(2ε−1/2) �
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1+ W (2ε−1/2) � 1+Cε1/4. If y0 < 2ε−1/2, then 	′
(I,ε)(y0) = 0, (4.16), and the convexity of H together

imply

∣∣	(I,ε)(y0) − 1
∣∣2 � C H

(
	2

(I,ε)(y0)
)
� Cε1/2.

The result then is 	(I,ε)(y) � 1 + Cε1/4 for y ∈ [c0,2ε−1/2], which brings us to H(	2
(I,ε)(y∗)) � Cε1/2.

We utilize (4.18) and recall that Z(
√

2Tn y∗) < 1 � 	2
(I,ε)(y∗):

∣∣	2
(I,ε)(y∗) − Z 2(

√
2Tn y∗)

∣∣ = ∣∣	2
(I,ε)(y∗) − 1

∣∣ + ∣∣1 − Z 2(
√

2Tn y∗)
∣∣

� C
(√

H
(
	2

(I,ε)
(y∗)

) +
√

H
(

Z 2(
√

2Tn y∗)
))

� C
√

H
(
	2

(I,ε)
(y∗)

) + ε1/2

� Cε1/4,

and therefore |W (y∗)| � Cε1/4. �
4.3. Proof of Theorem 2.2

The zero-th order approximations are

	(0)(x) := 	∗(x)Z(αx/ε), V (0)(x) := V∗(x),

with α := √
2Tn , and the remainders R0,	 := 	ε − 	(0) , R0,V := Vε − V (0) fulfill

R0,	(0) = 0, R ′
0,	(0) =O(

ε1/2), R ′
0,V (0) = βR0,V (0),

R0,	(1) =O(
e−c/ε), R ′

0,	(1) =O(
ε−3/4), R0,V (1) = 0,

compare (4.7) and (4.11). The estimates of Lemma 4.4 and Proposition 4.5 are

‖R0,	‖L∞((0,1)) � Cε1/4, ‖R0,V ‖L∞((0,1)) � Cε1/2.

The next lemma is proved by direct calculation.

Lemma 4.6. The remainders satisfy the differential equations

ε2 R ′′
0,	 = α2	ε(ln	ε − ln	(0)) + R0,	α2 ln Z + 	ε R0,V − ε2

Z

(
Z 2	′∗

)′
, (4.19)

−λ2 R ′′
0,V = 2	ε R0,	 − R2

0,	 + 	2∗ · (Z 2 − 1
) − p(Vε) + p(V (0)), (4.20)

with p(V ) = exp(V /T p). And (4.19) can be re-ordered to

ε2

Z

(
Z 2

(
R0,	

Z

)′)′
= α2	ε(ln	ε − ln	(0)) + 	ε R0,V − ε2

Z

(
Z 2	′∗

)′
. (4.21)
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Lemma 4.7. For ε0 sufficiently small, we have the estimate

1∫
0

(
εZ

(
R0,	

Z

)′)2

dx + α2‖R0,	‖2
L2((0,1))

+ λ2
∥∥R ′

0,V

∥∥2
L2((0,1))

� Cε2. (4.22)

Proof. We multiply (4.21) by R0,	 and integrate over [0,1]:

ε2

1∫
0

(
Z 2

(
R0,	

Z

)′)′ R0,	

Z
dx = α2

1∫
0

	ε(ln	ε − ln	(0))(	ε − 	(0))dx

+
1∫

0

	ε R0,V R0,	 dx − ε2

1∫
0

(
Z 2	′∗

)′ R0,	

Z
dx.

Now we have 	ε(ln	ε − ln	(0))(	ε − 	(0)) � R2
0,	/2 on [0,1] if 0 < ε � ε0 � 1, and therefore partial

integration brings us to

1

2

1∫
0

(
εZ

(
R0,	

Z

)′)2

dx + α2

2
‖R0,	‖2

L2((0,1))
� −

1∫
0

	ε R0,V R0,	 dx + Cε2. (4.23)

Next we multiply (4.20) by R0,V /2, integrate over [0,1], and then we get

λ2

2

∥∥R ′
0,V

∥∥2
L2((0,1))

+ λ2β

2

(
R0,V (0)

)2 +
1∫

0

(
p(Vε) − p(V (0))

) · (Vε − V (0))dx

=
1∫

0

	ε R0,	 R0,V − R2
0,	 R0,V + 	2∗ · (Z 2 − 1

)
R0,V dx

�
1∫

0

	ε R0,	 R0,V dx + ‖R0,V ‖L∞((0,1))

(‖R0,	‖2
L2((0,1))

+ ‖Z − 1‖L1((0,1))

)
.

Adding this to (4.23), ‖R0,V ‖L∞((0,1)) � Cε1/2, ‖Z − 1‖L1((0,1)) = O(ε) and Young’s inequality then
conclude the proof. �
4.4. Proof of Theorem 2.3

For simpler notation, we define R0,	 := R0,	/Z , for which we have, by Proposition 4.5, the auxiliary
estimates

‖R0,	‖L∞((0,1)) � Cε1/4,
∥∥Z R ′

0,	

∥∥
L∞((0,c0ε))

� Cε−1/2,

R0,	(1) =O(
e−c/ε), R ′

0,	(1) =O(
ε−3/4).
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We will also make use of 	ε = (	∗ + R0,	)Z . To (4.21), we choose its left-hand side (without one
factor ε2) as a multiplier, and then we have

1∫
0

(
ε

Z

(
Z 2 R ′

0,	

)′
)2

dx

= α2

1∫
0

R0,	

(
Z 2 R ′

0,	

)′
dx

+ α2

1∫
0

(
(	∗ + R0,	) ln(	∗ + R0,	) − R0,	 − (	∗ + R0,	) ln	∗

) · (Z 2 R ′
0,	

)′
dx

+
1∫

0

(	∗ + R0,	)R0,V
(

Z 2 R ′
0,	

)′
dx −

1∫
0

ε

Z

(
Z 2	′∗

)′ · ε

Z

(
Z 2 R ′

0,	

)′
dx

= −α2
∥∥Z R ′

0,	

∥∥2
L2 +O(

e−c/ε)

− α2

1∫
0

Z

[
	′∗

(
ln

(
1 + R0,	

	∗

)
− R0,	

	∗

)
+ R ′

0,	 ln

(
1 + R0,	

	∗

)]
· Z R ′

0,	 dx

−
1∫

0

Z
(
(	∗ + R0,	)R0,V

)′ · Z R ′
0,	 dx −

1∫
0

ε

Z

(
Z 2	′∗

)′ · ε

Z

(
Z 2 R ′

0,	

)′
dx.

Now we estimate

∥∥∥∥Z

[
	′∗

(
ln

(
1 + R0,	

	∗

)
− R0,	

	∗

)
+ R ′

0,	 ln

(
1 + R0,	

	∗

)]∥∥∥∥
L2

� C
∥∥Z R2

0,	

∥∥
L2 + C

∥∥Z R ′
0,	 R0,	

∥∥
L2

� C‖R0,	‖L∞
(‖R0,	‖L2 + ∥∥Z R ′

0,	

∥∥
L2

)
,∥∥Z

(
(	∗ + R0,	)R0,V

)′∥∥
L2((0,1))

� C‖R0,V ‖W 1
2

(
1 + ∥∥Z R ′

0,	

∥∥
L2

)
,∥∥∥∥ ε

Z

(
Z 2	′∗

)′
∥∥∥∥

L2
� C

√
ε,

and we find (using ‖R0,	‖L∞ � Cε1/4, ‖R0,	‖L2 � Cε and ‖R0,V ‖W 1
2

� Cε)

∥∥∥∥ ε

Z

(
Z 2 R ′

0,	

)′
∥∥∥∥

2

L2((0,1))

+ α2
∥∥Z R ′

0,	

∥∥2
L2((0,1))

� C
(
ε1/4(ε + ∥∥Z R ′

0,	

∥∥
L2

) + ε1/2)∥∥Z R ′
0,	

∥∥
L2 +O(

e−c/ε),
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hence Young’s inequality implies

∥∥∥∥ ε

Z

(
Z 2 R ′

0,	

)′
∥∥∥∥

2

L2((0,1))

+ α2
∥∥Z R ′

0,	

∥∥2
L2((0,1))

� Cε.

Consequently, ‖R ′
0,	‖L2((c0ε,1)) � Cε1/2, and (4.22) gives us ‖R0,	‖L2((c0ε,1)) � Cε. Interpolating these

two estimates, we find ‖R0,	‖L∞((c0ε,1)) � Cε3/4, hence

‖R0,	‖L∞((c0ε,1)) � Cε3/4.

By (4.19) we then have ‖R0,	‖C2([c0ε,1]) � Cε−5/4, hence ‖R ′
0,	‖L∞((c0ε,1)) � Cε−1/4, by interpolation.

Now we go back to (4.13), which we write as

Tn	
2
ε(x) − (

ε	′
ε(0)

)2 = 	2
ε(x)

(
2Tn ln	ε(x) + Vε(x) − F

)

− V ′
ε(ξ)

x∫
0

	2
ε(t)dt − (

ε	′
(0)(x) + εR ′

0,	(x)
)2

.

We choose x ∈ [ε3/4,2ε3/4] and find that then ε2(	′
ε(0))2 = Tn	

2
ε(x) + O(ε3/4), hence also

ε2(	′
ε(0))2 = Tn	

2∗(0) + O(ε3/4). In the same way as during the proof of Proposition 4.5, we then
show (2.4). This completes the proof of Theorem 2.3.

5. Numerical simulations

In this section, we will evaluate the remainder terms R0,	 and R0,V numerically. To find an ap-
proximate solution to (2.2), we apply a finite difference method on an equidistant grid and solve the
resulting nonlinear system by Newton’s method. The obtained zero-th order approximate solution can
be used as initial values when we attack (4.1); and since (4.1) is a singularly perturbed system, we
now choose a grid which is refined near the gate, where the quantum layer and the inversion layer
are to be expected.

We choose the following scaled parameters:

−V GS Tn T p λ β C 	B

1.5 0.04 0.06 1.0 0.75 −2.0
√

0.03

Here we assume that the device is negatively doped (hence C = −2), and therefore the equilibrium
value of the electron density is small (	2

B = 0.03). The scaling we utilize in our paper follows [5] and
goes back to [15]. We refer to Section 2.4 of [5], and in particular, our equations (1.6), (1.7), (1.10)
correspond to Eqs. (2.19), (2.17), (2.20) there. This also motivates the choices of the other parameters
in the table. Then we fix V B from (1.7) by the condition that V ′′(1) shall vanish, and F = −0.0978 is
then given by (1.9).

Results for ε = 0.0032 are in Figs. 3, 4. We see that our zero-th order approximation n(0) matches
the exact solution n everywhere at least as good as the classical solution n∗ . In the interior layer
(0 � x � 0.02), where the quantum effect is to be expected, n(0) approximates n very well (naturally,
n∗ gives the wrong prediction there), and in the intermediate region (0.02 � x � 0.1), the quality of
approximation is reduced, but still acceptable. We have the expectation that a discussion of further
terms of the asymptotic expansion may shed some light on this issue.

The numerically computed errors are as follows. We observe that the numerically computed
values of ‖R0,V ‖L∞ indeed are proportional to ε. On the other hand, the values for ‖R0,	‖L∞



Author's personal copy

376 S. Bian et al. / J. Differential Equations 253 (2012) 356–377

Fig. 3. The electron densities n, n∗ , and n(0) , as given in Theorem 2.1, (2.2), and Theorem 2.2, respectively.

Fig. 4. A zoom into Fig. 3.

are worse, which of course also corresponds to our increased effort in finding an analytical error
bound.

ε ‖n − n(0)‖L2 ‖n − n(0)‖L∞ ‖V − V (0)‖L2 ‖V − V (0)‖L∞

0.0256 0.0840 0.2127 0.02274 0.0548
0.0128 0.1374 0.4381 0.01360 0.0357
0.0064 0.1458 0.5656 0.00738 0.0208
0.0032 0.1166 0.5372 0.00383 0.0113
0.0016 0.0772 0.4114 0.00195 0.0059
0.0008 0.0453 0.2706 0.000987 0.0030
0.0004 0.0247 0.1603 0.000495 0.00154
0.0002 0.0129 0.0886 0.000248 0.00078
0.0001 0.0066 0.0468 0.000123 0.00039
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