
1 WEAKLY HYPERBOLIC EQUATIONS

— A MODERN FIELD

IN THE THEORY OF HYPERBOLIC

EQUATIONS
M. Dreher and M. Reissig

Faculty for Mathematics and Computer Sciences

Freiberg University of Mining and Technology

Bernhard–von–Cotta–Str. 2

09596 Freiberg, Germany

(dreher,reissig)@mathe.tu-freiberg.de

1.1 INTRODUCTION

In this paper we would like to give an overview of problems and new trends in
the theory of weakly hyperbolic equations.

We start with the Cauchy problem

utt − a(t)uxx = 0, u(x, 0) = u0(x), ut(x, 0) = u1(x).

In the strictly hyperbolic theory (a(t) ≥ c > 0) we have the correctness in the
classes of Sobolev spaces and the estimate

sup
[0,T ]

(

‖u(t)‖Hm+1−βt + ‖u′(t)‖Hm−βt

)

≤ C0(1 + eCmT ) (‖u0‖Hm+1 + ‖u1‖Hm)
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for a log–lipschitz coefficient a(t), see [CL95].
In the weakly hyperbolic theory (a(t) ≥ 0) the situation is completely dif-

ferent. C∞–regularity of a(t) is not sufficient for well–posedness of the Cauchy
problem even in the classes of distributions. In [CS82] it was shown that for
any T > 0 a coefficient a(t) ∈ C∞([0,∞)) and C∞ data u0, u1 exist, such that
the solution belongs to C∞([0, T ), C∞(R)), but not to C([0, T ],D′(R)). This
function a(t) is positive for t < T , oscillating for t → T − 0 and identically zero
for t ≥ T .

We list three ways to restrict the influence of oscillations:

One assumes a nonlocal condition of the form

∫ T

0

|a′(τ)|
a(τ) + ε

dτ ≤ C| ln ε|,

see [CJS83].

The coefficient a(t) is assumed to be analytic, see [D’A95].

One supposes a = a(x, t) = σ2(x)λ2(t) with λ(0) = 0, λ′(t) > 0,
see [Ole70].

In opposite to the strictly hyperbolic case, lower order terms have an influ-
ence on the C∞–well–posedness, too. From [Ole70] we know that the Cauchy
problem for

utt − t2lx2nuxx + tkxmux = 0

is C∞– well–posed if k ≥ l − 1, m ≥ n. The necessity of this conditions was
proved in [IP74]. These conditions are called Levi conditions of C∞–type which
are used to ensure the well–posedness in C∞. This example shows that one has
to distinguish between Levi conditions for time degeneracy and Levi conditions
for spatial degeneracy.

One possibility to formulate Levi conditions of C∞–type for the equation

utt − σ2(x)λ2(t)uxx + b(x, t)ux + c(x, t)ut + d(x, t)u = g(x, t) (1.1)

is to assume

|b(x, t)| ≤ C|σ(x)|λ′(t),

compare with σ(x) = xn, λ(t) = tl, b(x, t) = tkxm. Now let us turn to quasi-
linear problems, e.g.

utt − σ2(x)λ2(t)uxx = f(x, t, u, ut, ux). (1.2)

In this case we have the Levi condition of C∞–type

∣

∣

∣

∣

∂f

∂p
(x, t, u, v, p)

∣

∣

∣

∣

≤ C|σ(x)|λ′(t).
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In the case of weakly hyperbolic equations another phenomenon occurs – the
loss of Sobolev regularity, even if the coefficients are smooth and have no oscil-
lations. Let us consider the Cauchy problem

utt − t2uxx = aux, u(x, 0) = ϕ(x), ut(x, 0) = 0.

As it was shown in [Qi 58], the solution can be represented in the form

u(x, t) =

n
∑

k=0

ckt2k∂k
xϕ

(

x +
t2

2

)

if a = 4n + 1, n ∈ N0. In other words, if ϕ ∈ Hs, then u(., t) ∈ Hs−a−1

4 .
Typical problems for the linear equation (1.1) are:

well–posedness of the Cauchy problem in Sobolev spaces, C∞ or Gevrey
spaces; well–posedness means existence and cone of dependence as usual;

propagation of singularities;

construction of parametrix;

influence of oscillations in the coefficients.

Typical problems for the quasilinear equation (1.2) are:

local existence of solutions in Sobolev spaces, C∞ or Gevrey spaces;

uniqueness of solutions of the Cauchy problem and existence of a cone of
dependence;

global regularity of solutions of the Cauchy problem;

stability of solutions.

A natural way to attack the problem to prove the existence of Sobolev solutions
for the Cauchy problem for (1.2) is to linearize the equation and to apply fixed
points arguments. A so–called strictly hyperbolic type estimate for the linearized
equation is essential for this purpose. That means:

It exists a Banach space B such that the following holds:

If f(x,t)
λ′(t) ∈ B, then the solution of

utt − σ2(x)λ2(t)uxx = f(x, t), u(x, 0) = ut(x, 0) = 0

satisfies u
λ
, ut

λ
, σux ∈ B with

∥

∥

∥

u

λ

∥

∥

∥

B
+
∥

∥

∥

ut

λ

∥

∥

∥

B
+ ‖σux‖B ≤ C ‖f‖B .

In the strictly hyperbolic case this property holds with B = C ([0, T ], Hs),
σ(x) = 1 and λ(t) = 1 + t.

If such a strictly hyperbolic type estimate holds for the linear problem, then
one can mostly construct a sequence of approximate solutions of (1.2) in the
usual way which will converge for small t to a solution.

In the case of weakly hyperbolic equations it is not obvious how to derive
such an estimate and how to fix the space B, since we have to expect a loss of
Sobolev regularity.
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1.2 WEAKLY HYPERBOLIC EQUATIONS WITH TIME AND SPATIAL

DEGENERACY, BUT WITHOUT OSCILLATIONS

In this section we consider the model problem with time and spatial degeneracy,
but without oscillations of the coefficients of the main part

utt −
n
∑

i=1

∂xi

(

λ2(t)σ2(x)uxi
(x, t)

)

= f(b1(x, t)ux1
(x, t), . . . , bn(x, t)uxn

(x, t)),

(1.3)

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x)

under the following assumptions:

σ ∈ C∞
b (Rn), ϕ0 ∈ HN+1(Rn), ϕ1 ∈ HN (Rn), (1.4)

∃M > 0 : supp(|ϕ0| + |ϕ1|) ⊂ [−M, M ], (1.5)

bi ∈ C([0, T0], C
∞
b (Rn)), f ∈ C∞(Rn), (1.6)

λ ∈ C1([0, T0]), λ(0) = λ′(0) = 0, λ′(t) > 0 (t > 0), (1.7)

|bi(x, t)| ≤ Cb|σ(x)|λ′(t), (x, t) ∈ R
n × [0, T0], i = 1, . . . , n, (1.8)

∣

∣

∣

∣

∂f

∂pi

(p1, . . . , pn)

∣

∣

∣

∣

≤ Cf , |p1| + · · · + |pn| ≤ δ, i = 1, . . . , n, (1.9)

f(0) = 0. (1.10)

The functions σ and λ are used to formulate the degeneration, which occurs
at the points (x0, t0) with σ(x0) = 0 or λ(t0) = 0. The assumption (1.8)
describes the Levi condition and the assumption (1.7) excludes oscillations with
respect to t in the coefficients.

We want to prove the local existence of a solution in Sobolev spaces and the
finite speed of propagation of this solution. As one can see from the example
of Qi Min-You, we have to expect a loss of regularity, i.e. the solution will
belong to a space C1

(

[0, T ], HN−γ
)

. The number γ of lost derivatives will be
proportional to the product of the constants Cb, Cf from (1.8), (1.9). The
assumption f(0) = 0 will only be used in the proof of the finite speed of
propagation.

Our approach will be divided into the following steps:

reduction of the starting problem (1.3) to a family of Cauchy problems
for ordinary differential equations and for a quasilinear weakly hyperbolic
equation whose right–hand side has a suitable asymptotic behaviour (in
this step we feel the loss of derivatives);

derivation of a strictly hyperbolic type property for the solutions of
the linearized weakly hyperbolic Cauchy problems by using the energy
method, a Gronwall type lemma for differential inequalities with a singu-
lar coefficient and an approximation argument;

using the results from the previous step, a fixed point argument gives a
solution of the auxiliary problem, starting problem, respectively.
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a) We write

u(x, t) = u0(x, t) + · · · + ud(x, t) + v(x, t),

where the functions u1, . . . , un are solutions of ordinary differential equations
in t with the parameter x:

u0
tt = f(0), u0(x, 0) = ϕ0(x), u0

t (x, 0) = ϕ1(x),

. . . ,

u
j
tt = f

(

b1

j−1
∑

l=0

ul
x1

, . . . , bn

j−1
∑

l=0

ul
xn

)

− f

(

b1

j−2
∑

l=0

ul
x1

, . . . , bn

j−2
∑

l=0

ul
xn

)

+

n
∑

i=1

∂xi

(

λ2σ2uj−1
xi

)

,

uj(x, 0) = u
j
t (x, 0) = 0, j = 1, . . . , d,

−1
∑

l=0

= 0.

This system can be solved step by step, we get solutions

uj ∈ C2
(

[0, Tj ], H
N−2j

)

.

By Hadamard’s formula and (1.8) we see that

∥

∥uj(t)
∥

∥

HN−2j +
∥

∥

∥
u

j
t(t)
∥

∥

∥

HN−2j
≤ Cλj(t).

The function u is a solution of (1.3), if and only if v solves the Cauchy problem

vtt −
n
∑

i=1

∂xi

(

λ2σ2vxi

)

= f

(

b1

(

d
∑

l=0

ul
x1

+ vx1

)

, . . . , bn

(

d
∑

l=0

ul
xn

+ vxn

))

− f

(

b1

d−1
∑

l=0

ul
x1

, . . . , bn

d−1
∑

l=0

ul
xn

)

+

n
∑

i=1

∂xi

(

λ2σ2ud
xi

)

=: fd(x, t, b1vx1
, . . . , bnvxn

), (1.11)

v(x, 0) = vt(x, 0) = 0.

The right–hand side satisfies

‖fd(., t, 0)‖HN−2d−2 ≤ Cdλ
d(t)λ′(t),

∥

∥

∥

∥

∂fd

∂pi

(., t, p1(., t), . . . , pn(., t))

∥

∥

∥

∥

∞
≤ Cf , |p1| + · · · + |pn| ≤ δ′

for small t. We write N0 := N − 2d − 2 and from Hadamard’s formula we
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deduce that

‖fd(x, t, b1vx1
, . . . , bnvxn

)‖HN0

≤ ‖fd(x, t, b1vx1
, . . . , bnvxn

) − fd(., t, 0)‖HN0
+ ‖fd(., t, 0)‖HN0

≤ Cf

n
∑

i=1

∑

|α|=N0

‖∂α
x (bivxi

)‖2 + Cλ′(t) ‖v‖HN0
+ Cdλ

d(t)λ′(t)

≤ Cf

n
∑

i=1

∑

|α|=N0

‖bi∂
α
x vxi

‖2 + C ′
dλ

′(t) ‖v‖HN0
+ Cdλ

d(t)λ′(t)

for
∑n

i=1 |bi|(
∑d

l=0 |ul
xi
| + |vxi

|) ≤ δ. With a(x, t) := σ2(x)λ2(t) we define the
energies

ej(v)(t)2 =
∑

|α|=j

∫

a(x, t)

n
∑

i=1

(∂α
x ∂xi

v)
2

+ (∂α
x vt)

2
+ (∂α

x v)
2
dx,

EN (v)(t) =

N
∑

j=0

ej(v)(t)

and obtain

‖fd(., t, b1vx1
, . . . , bnvxn

)‖HN0
≤
(√

nCfCb

λ′(t)

λ(t)
+ C ′

dλ
′(t)

)

EN0
(v)(t)

+ Cdλ
d(t)λ′(t).

b) For further considerations we need an estimate for solutions of

wtt −
n
∑

i=1

∂xi

(

λ2σ2wxi

)

= g(x, t), w(x, 0) = wt(x, 0) = 0, (1.12)

‖g(t)‖HN0
≤ Cgλ

d−1(t)λ′(t) + C ′
gλ

d(t)λ′(t). (1.13)

We suppose that the function g ∈ C
(

[0, T0], H
N0

)

has compact support with
respect to x and that there exists a solution w with compact support with
respect to x which satisfies

w, wt, σwx ∈ C
(

[0, T0], H
N0
)

. (1.14)

Differentiating ej(w)(t)2 and using at = 2λ′(t)
λ(t) a and the differential equation

we get

ej(w)(t)ej(w)′(t) =
∑

|α|=j

∫

λ′(t)

λ(t)
a

n
∑

i=1

(∂α
x ∂xi

w)
2

+ a

n
∑

i=1

(∂α
x ∂xi

w) (∂α
x ∂xi

wt)

+ (∂α
x wt) (∂α

x g) + (∂α
x wt)

n
∑

i=1

∂α
x ∂xi

(awxi
) + (∂α

x w) (∂α
x wt) dx.
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By the aid of partial integration and the Leibniz formula we get

∫

(∂α
x wt)

n
∑

i=1

∂α
x ∂xi

(awxi
)dx

=

∫

∑

β≤α,
β 6=0

(

α

β

)

(∂α
x wt)

n
∑

i=1

∂xi

((

∂β
xa
) (

∂α−β
x wxi

))

− (∂α
x ∂xi

wt) a

n
∑

i=1

∂α
x wxi

dx,

which leads to

ej(w)′(t) ≤ λ′(t)

λ(t)
ej(w)(t) +

∑

|α|=j

‖∂α
x g‖2 + Cj

j
∑

k=0

ek(w)(t).

Finally we get

EN0
(w)′(t) ≤

(

λ′(t)

λ(t)
+ CN0

)

EN0
(w)(t) + ‖g(t)‖HN0

. (1.15)

We can not use Gronwall’s Lemma here, since the factor λ′(t)
λ(t) + CN0

is un-

bounded. We apply the Lemma of Nersesyan (Gronwall type lemma for differ-
ential inequalities with a singular coefficient) instead:

Lemma 1 (Nersesyan) Let y(t) ∈ C([0, T ]) ∩ C1(0, T ) be a solution of the
differential inequality

y′(t) ≤ K(t)y(t) + f(t), 0 < t < T,

where the functions K(t) and f(t) belong to C(0, T ). We assume that for every
t ∈ (0, T ) and every δ ∈ (0, t)

∫ δ

0

K(τ) dτ = ∞,

∫ T

δ

K(τ) dτ < ∞,

lim
δ→+0

∫ t

δ

exp

(
∫ t

s

K(τ) dτ

)

f(s) ds exists,

lim
δ→+0

y(δ) exp

(
∫ t

δ

K(τ) dτ

)

= 0. (1.16)

Then it holds

y(t) ≤
∫ t

0

exp

(
∫ t

s

K(τ) dτ

)

f(s) ds.

Using this lemma we obtain with (1.13)

EN0
(w)(t) ≤

∫ t

0

exp

(
∫ t

s

λ′(τ)

λ(τ)
+ CN0

dτ

)

‖g(s)‖HN0
ds

≤ Cge
CN0

t 1

d − 1
λd(t) + C ′

ge
CN0

t 1

d
λd+1(t). (1.17)
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During our computations we needed more regularity for w than (1.14). The
existence of a solution w with compact support with respect to x and the fi-
nal estimate (1.17) can be seen as follows: We replace a(x, t) = σ2(x)λ2(t) by
aε(x, t) = (σ2(x)+ε)(λ(t)+ε)2 and replace g by a smooth compactly supported
function gε, such that {gε} converges to g in the norm of C

(

[0, T0], H
N0

)

if ε

tends to 0. This modified problem is strictly hyperbolic and has a smooth so-
lution wε which is compactly supported and fulfils (1.17). The sequence {wεk

}
(εk → 0) converges to a compactly supported solution w of (1.12) satisfy-
ing (1.17).

c) We apply this estimate for w to a linearized version of (1.11): Let {vk}
be a sequence with

v0(x, t) ≡ 0,

vk
tt −

n
∑

i=1

∂xi

(

λ2σ2vk
xi

)

= fd(x, t, b1v
k−1
x1

, . . . , bnvk−1
xn

),

vk(x, 0) = vk
t (x, 0) = 0.

We have EN0
(v0)(t) ≡ 0 ≤ λd(t), hence

∥

∥fd(x, t, b1v
0
x1

, . . . , bnv0
xn

)
∥

∥

HN0
≤ √

nCfCbλ
d−1(t)λ′(t) + (C ′

d + Cd)λ
d(t)λ′(t).

This implies

EN0
(v1)(t) ≤ √

nCfCbe
CN0

t 1

d − 1
λd(t) + (Cd + C ′

d)e
CN0

t 1

d
λd+1(t).

We suppose
2Cf Cb

√
n

d−1 ≤ 1
3 and restrict the interval for t such that

eCN0
t ≤ 2, 2(Cd + C ′

d)
1

d
λ(t) ≤ 1

3

and conclude

EN0
(v1)(t) ≤ 2

3
λd(t) ≤ λd(t).

By induction we get the uniform bound EN0
(vk)(t) ≤ λd(t), k ∈ N. In order

to show the convergence of the sequence {vk} we consider the sequence of
differences wk = vk+1 − vk. The function wk satisfies

wk
tt −

n
∑

i=1

∂xi

(

λ2σ2wk
xi

)

=

n
∑

i=1

gdki(x, t)bi(x, t)wk−1
xi

:= fd(x, t, b1v
k
x1

, . . . , bnvk
xn

) − fd(x, t, b1v
k−1
x1

, . . . , bnvk−1
xn

),

wk(x, 0) = wk
t (x, 0) = 0.

The L2–norm of the right–hand side can be bounded by

√
nCf Cb

λ′(t)

λ(t)
E0(w

k−1)(t).
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From E0(w
0)(t) ≤ λd(t) and the special choice of d we see by induction that

E0(w
k)(t) ≤

(

2

3

)k

λd(t).

This implies that {vk} is a Cauchy sequence in C1([0, T ], L2). By interpola-
tion and the uniform estimate of EN0

(vk)(t) we deduce that vk converges in
C1
(

[0, T ], HN0−1
)

. The limit is a solution of (1.11) and satisfies

supp(v(., t)) ⊂ [−M − Ct, M + Ct].

This proves the finite propagation speed of the constructed solution. Thus we
have shown:

Theorem 1 Let the assumptions (1.4) to (1.10) be satisfied. Then the Cauchy
problem (1.3) has a solution u with u, ut, σux ∈ C

(

[0, T ], HN−γ
)

, where

γ = 2d + 2,
2CfCb

√
n

d − 1
≤ 1

3
.

This solution has a finite speed of propagation.

Open problems:

1. Uniqueness of the solution in C1
(

[0, T ], HN−γ
)

;

2. A local existence result in Gevrey spaces under Gevrey–type Levi condi-
tions.

1.3 WEAKLY HYPERBOLIC EQUATIONS WITH TIME DEGENERACY

AND FAST OSCILLATIONS, BUT WITHOUT SPATIAL

DEGENERACY

In this section we consider the model problem with time degeneracy and oscil-
lations in the coefficients of the main part, but without spatial degeneracy

utt − λ2(t)a2(t) 4 u = f(b1(x, t)ux1
(x, t), . . . , bn(x, t)uxn

(x, t)) (1.18)

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x).

The function λ = λ(t) describes the degeneracy with respect to t as in the
previous section. To understand the influence of oscillations which are produced
by the function a = a(t), let us remember a result from [Tar95]. There it was
shown that the Cauchy problem for

utt − exp

(

− 2

tα

)

a2

(

1

t

)

uxx = 0 (1.19)

is C∞–well–posed if and only if α ≥ 1
2 . Here a = a(t) is a non–constant,

1–periodic positive function from C∞. This example shows that the product
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between amplitudes and frequencies of the oscillations is important. An inter-
pretation of this example and a definition of so–called fast oscillations by the
condition

|Dta(t)| ≤ C
λ′(t)

λ(t)
| lnλ(t)|, t ∈ (0, T0] (1.20)

were given in [Yag97]. There it was proved that (1.20) is sufficient for C∞–
well–posedness (necessity for (1.19) is clear). We suppose:

λ = λ(t) ∈ C2([0, T0]) satisfies (1.7);

there exist positive constants d0 ≥ 1
2 and d1 such that

d0
λ(t)

Λ(t)
≤ λ′(t)

λ(t)
≤ d1

λ(t)

Λ(t)
, |λ′′(t)| ≤ d1λ(t)

(

λ(t)

Λ(t)

)2

(1.21)

for all t ∈ (0, T0], where Λ(t) :=
∫ t

0 λ(τ) dτ ;

the function a = a(t) ∈ C1((0, T0]) satisfies (1.20) and

0 < c ≤ a(t) ≤ C, t ∈ (0, T0]. (1.22)

Our approach will be divided into the following steps:

derivation of a strictly hyperbolic type property for the solutions of linear
weakly hyperbolic Cauchy problems by using microlocal considerations
for explicit solutions of linear ordinary differential equations depending
on parameters;

using the a–priori estimate and a fixed point argument to construct a
Sobolev solution of the starting problem (1.18).

a) An essential point to handle quasilinear equations is the strictly hyperbolic
type property for corresponding linear equations (compare with step b) of the
previous section). If we try to follow the reasoning from the previous section,
the conditions (1.20) and (1.22) imply for the energies EN0

an inequality of the
type (compare with (1.15))

EN0
(u)′(t) ≤ C

λ′(t)

λ(t)
| ln λ(t)|EN0

(u)(t) + . . . .

Consequently, Lemma 1 is not applicable and it is not clear how to apply the
energy method.

To obtain a strictly hyperbolic type property for the Cauchy problem

utt − λ2(t)a2(t) 4 u = −λ′(t)f(x, t), u(x, 0) = ut(x, 0) = 0 (1.23)

we need another approach, which was developped in [RY97]. One can prove:
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Lemma 2 There exists a Banach space BM,Q,T such that for every f belonging
to BM,Q,T one has a uniquely determined solution of (1.23) with the property
that u

λ
, ut

λ
and ux belong to BM,Q,T , too. Moreover, the a–priori estimate

∥

∥

∥

u

λ

∥

∥

∥

M,Q,T
+
∥

∥

∥

ut

λ

∥

∥

∥

M,Q,T
+ ‖∇xu‖M,Q,T ≤ Capr ‖f‖M,Q,T (1.24)

holds with a constant Capr independent of T ∈ (0, T0] and f .

The idea of the construction of BM,Q,T is to describe the elements u = u(x, t)
by the behaviour of its partial Fourier transform û = û(t, ξ) in the cotangent
space. Therefore we study the Cauchy problem

D2
t û − λ2(t)a2(t)|ξ|2û = λ′f̂ , û(0, ξ) = ût(0, ξ) = 0 (1.25)

under the assumptions f̂ ∈ C([0, T ], L∞(Rn)) and λ(t) ∈ C2([0, T0]), (1.21),
(1.22).

In the light of (1.24), it is sufficient to show which properties of f̂ are trans-
ferred to û

λ
, ût

λ
and ξj û. This can be done by following the next steps:

we divide R
n × [0, T ] into the so–called pseudo–differential zone Zpd and

the hyperbolic zone Zhyp ([Yag97]);

we transform the equation from (1.25) to a first order system in each
zone;

we find a fundamental solution X = X(t, s, ξ) for the first order system
in each zone and an estimate of the form ([Yag97])

‖X(t, s, ξ)‖ ≤ exp

(

C

∫ t

s

g(τ, ξ)dτ

)

;

we represent the solution of a suitable Cauchy problem by the aid of the
fundamental solution;

using these explicit representations leads to assumptions for f̂ = f̂(t, ξ)
of the form

|f̂(t, ξ)| ≤ C(ξ) exp

(

Q

∫ t

a(ξ)

g(τ, ξ)dτ

)

,

where C(ξ) appears because ξ is a parameter and a(ξ) depends on the
zone;

the right–hand sides of these estimates determine the weights in the def-
inition of BM,Q,T .

b) Let us go into detail. By tξ we denote the solution of the equation

Λ(tξ)〈ξ〉 = N ln〈ξ〉, where 〈ξ〉 = (c + |ξ|2) 1
2 and N , c are sufficiently large

positive numbers.



12

The pseudo–differential zone Zpd(c, N) is defined by (see [Yag97])

Zpd(c, N) := {(x, t) ∈ R
n × [0, T ] : Λ(t)〈ξ〉 ≤ N ln〈ξ〉} .

Substituting w2 := Dtû, w1 := %(t, ξ)û, where % = %(t, ξ) is the positive root of

%2 − 1 − λ2(t)
Λ(t) 〈ξ〉 ln ξ = 0, (1.25) reads as

DtW − A(t, ξ)W = F, W (0, ξ) = 0, (1.26)

W =

(

w1

w2

)

, F =

(

0

λ′(t)f̂

)

, A(t, ξ) =

(

Dt%
%

%

λ2(t)a2(t)|ξ|2 0

)

.

If X = X(t, s, ξ) is the fundamental matrix, that is, it solves

DtX − A(t, ξ)X = 0, X(s, s, ξ) = I, 0 ≤ s ≤ t ≤ tξ,

then W (t, ξ) =
∫ t

0
X(t, s, ξ)F (s, ξ) dξ solves (1.26).

The assumptions concerning λ, a and the definition of Zpd(c, N) imply

‖A(t, ξ)‖ ≤ Cpdg(t, ξ), where g(t, ξ) = %(t, ξ) + %t(t,ξ)
%(t,ξ) . Consequently, using

the matrizant we obtain

‖X(t, s, ξ)‖ ≤ exp

(
∫ t

s

‖A(τ, ξ)‖ dτ

)

≤ exp

(

Cpd

∫ t

s

g(τ, ξ)dτ

)

.

Thus, on the one hand, we have the representations

%(t, ξ)û(t, ξ) =

∫ t

0

X12(t, s, ξ)λ
′(s)f̂(s, ξ) ds,

Dtû(t, ξ) =

∫ t

0

X22(t, s, ξ)λ
′(s)f̂(s, ξ) ds,

on the other hand it is clear how to estimate |X12(t, s, ξ)|, |X22(t, s, ξ)|. Both
results together yield a strictly hyperbolic type result for the solution of (1.25)
in Zpd(c, N).

Lemma 3 If f̂(t, ξ) ∈ C([0, T ], L∞(Rn)) satisfies the inequality

|f̂(t, ξ)| ≤ A(ξ) exp

(

Q

∫ t

tξ

g(τ, ξ) dτ

)

, Q > Cpd

in Zpd(c, N), then the solution û(t, ξ) of (1.25) satisfies in Zpd(c, N) the esti-
mates

|ξj û(t, ξ)| ≤ C
A(ξ)

Q − Cpd

exp

(

Q

∫ t

tξ

g(τ, ξ) dτ

)

,

|ût(t, ξ)| ≤ CA(ξ)λ(t) exp

(

Q

∫ t

tξ

g(τ, ξ) dτ

)

.
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Remark 1 The Cauchy problem (1.25) feels neither oscillations nor hyperbol-
icity in Zpd(c, N).

c) Now let us devote to the hyperbolic zone ([Yag97]):

Zhyp(c, N) := {(ξ, t) ∈ R
n × [0, T ] : Λ(t)〈ξ〉 ≥ N ln〈ξ〉} .

Let us denote the characteristic roots by

τi(t, ξ) := (−1)iλ(t)a(t)|ξ|.

There exists a well–known approach for the construction of fundamental solu-
tions in the strictly hyperbolic case. One knows how to apply the perfect diag-
onalizer. It is not clear how to use this tool for equations with fast oscillations.
Nevertheless in [Yag97] it was done only the first step of perfect diagonalization
to derive C∞–well–posedness for linear weakly hyperbolic equations with fast
oscillations. One can use this idea to derive a corresponding result to Lemma
1.19 in Zhyp(c, N). Using suitable transformations, diagonalization and one
step of perfect diagonalization transforms (1.25) to

DtW −
(

τ1 0
0 τ2

)

W + FW + BW = N−1 λ′(t)f̂

2a(t)

(

−1
1

)

(1.27)

in Zhyp(c, N), where F := 1
2

Dta(t)
a(t) I , N is the diagonalizer and B satisfies

‖B(t, ξ)‖ ≤ C

(

λ(t)

Λ(t)
+

λ(t)| ln λ(t)|2
〈ξ〉Λ2(t)

)

=: K(t, ξ),

see [Yag97]. If X(t, s, ξ) is a fundamental solution of (1.27), then

W (t, ξ) =

∫ t

tξ

X(t, s, ξ)F (s, ξ) ds + X(t, tξ, ξ)W (tξ , ξ)

solves (1.27) with a Cauchy condition on t = tξ. Using the ansatz X(t, s, ξ) =
E(t, s, ξ)Q(t, s, ξ), where E is the fundamental matrix of the left–hand side
of (1.27) without BW , the norms of Q(t, s, ξ), X(t, s, ξ), respectively, can be

estimated by C exp(Chyp

∫ t

s
K(τ, ξ)dτ), tξ ≤ s ≤ t. This is exactly what we

need to prove a strictly hyperbolic type estimate in Zhyp(c, N).

Lemma 4 . If f̂ ∈ C([0, T ], L∞(Rn)) satisfies the inequality

|f̂(t, ξ)| ≤ C〈ξ〉−M exp

(

Q

∫ t

T0

K(τ, ξ) dτ

)

, Q > Chyp,

in Zhyp(c, N), then

|ξj û(t, ξ)| ≤ C〈ξ〉−M exp

(

Q

∫ t

T0

K(τ, ξ) dτ

)

,

|ût(t, ξ)| ≤ C〈ξ〉−M λ(t) exp

(

Q

∫ t

T0

K(τ, ξ) dτ

)

.
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Remark 2 In opposite to Zpd(c, N) the Cauchy problem (1.25) feels oscilla-
tions as well as hyperbolicity in Zhyp(c, N).

d) Now we are able to construct BM,Q,T . Therefore we introduce the weight
function ((ξ, t) ∈ R

n × [0, T ])

NQ,M (t, ξ) :=







〈ξ〉M exp
(

Q
∫ T0

t
K(τ, ξ) dτ

)

: t ∈ [tξ, T0],

〈ξ〉M exp
(

Q
∫ T0

tξ
K(τ, ξ) dτ + Q

∫ tξ

t
g(τ, ξ) dτ

)

: t ∈ [0, tξ].

For a given positive number M we denote by BM the normed linear space

BM =

{

u ∈ S ′(Rn) : û ∈ L∞
loc is a function with sup

ξ∈Rn

〈ξ〉M |û(ξ)| < ∞
}

.

For given positive numbers M , Q and T , T ≤ T0, we denote by BM,Q,T the
linear space

BM,Q,T =
{

u ∈ C([0, T ], BM ) : û(ξ, t) satisfies NQ,M (t, ξ)|û(ξ, t)| ≤ C

∀(ξ, t) ∈ R
n × [0, T ]

}

.

One can show that BM,Q,T is a Banach space with the norm

‖u‖M,Q,T := max
[0,T ]

sup
ξ∈Rn

NQ,M (t, ξ)|û(ξ, t)|.

All results of this section together make it possible to prove Lemma 2.
e) In the last point let us study (1.18) by the aid of the spaces BM,Q,T .

To have a reasonable space for the data we can use the imbedding
C([0, T ], W r

1 (Rn)) ⊂ BM,Q,T if r ≥ r0, where r0 depends on the given
M and Q.

To have a reasonable space for the solution we can use the imbedding
BM,Q,T ⊂ C([0, T ], H l(Rn)) if M − l > n

2 , l > 0 and Q > 0.

Up to now we are not able to study superposition operators in BM,Q,T .

The only way for us to include nonlinearities is to prove that BM,Q,T is
even a Banach algebra (see [RY97]).

Thus one can suppose that f depends on bi(x, t)uxi
(x, t) analytically. To

simplify the calculations in [RY97] we restricted ourselves to the assump-
tion that f be entire.

Now we can use the approach of the previous section to construct a uniquely
determined solution of (1.18). We do not need a reduction process, we only use
successive approximation and the a–priori estimate (1.24). To obtain a Cauchy
sequence in a suitable space BM,Q,T we have to suppose a Levi condition which
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is close to the sharp Levi condition O(λ′(t)). Let us formulate a final result,
where we renounce to represent the most general version.

Theorem 2 Let us consider the Cauchy problem

utt − λ2(t)a2(t) 4 u = f(b1(x, t)ux1
(x, t), . . . , bn(x, t)uxn

(x, t)),

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x)

under the assumptions λ ∈ C2([0, T ]), (1.7), (1.21) and (1.22) and the assump-
tions for f

f is polynomial in its arguments,

bk = bk(x, t) ∈ C([0, T0], W
s
1 (Rn)) for every given s ∈ N, where

‖bk(., t)‖W s
1
(Rn) ≤ o(λ′(t)), t ∈ (0, T0], (Levi condition).

Then there exists a (in general sufficiently large) constant r such that for ar-
bitrary data ϕ0, ϕ1 belonging to W r

1 (Rn), W r−1
1 (Rn), respectively, we have a

locally defined solution

u ∈ C([0, T ], H [ n
2
]+3(Rn)) ∩ C1([0, T ], H [n

2
]+2(Rn)) ∩ C2([0, T ], H [n

2
]+1(Rn)).

The solution is uniquely determined in BM,Q,T .

Open problems:

1. Is it possible to apply the energy method to (1.18) under the assumptions
of this section ?

2. Find a strictly hyperbolic type result for the Cauchy problems for

utt − λ2(t)a2(t) 4 u +

n
∑

i=1

bi(x, t)uxi
= f

under the Levi condition

‖bi(x, t)‖W s
1
(Rn) ≤ O(λ′(t)), t ∈ (0, T0]

and

utt − λ2(t)a2(t)σ2(x) 4 u = f.

Remark 3 We omit a long list of references. But each interested reader can
have a list of publications concerning the subject of this paper after contacting
one of the authors.



16

References

[CJS83] Colombini, F., Jannelli, E., and Spagnolo, S. Well–posedness in the
Gevrey classes of the Cauchy problem for a non–strictly hyperbolic
equation with coefficients depending on time. Ann. Sc. Norm. Sup.
Pisa, 10:291–312, 1983.

[CL95] Colombini, F. and Lerner, N. Hyperbolic operators with non–Lipschitz
coefficients. Duke Math. J., 77:657–698, 1995.

[CS82] Colombini, F. and Spagnolo, S. An example of a weakly hyperbolic
Cauchy problem not well posed in C∞. Acta Math., 148:243–253, 1982.

[D’A95] D’Ancona, P. A note on a theorem of Jörgens. Math. Z., 218:239–252,
1995.

[IP74] Ivrii, V.Ya. and Petkov, V.M. Necessary conditions for the well–
posedness of the Cauchy problem for non–strictly hyperbolic equations
(in Russian). Usp. Mat. Nauk, 29(5):3–70, 1974. English translation:
Russ. Math. Surv. 29(5):1-70, 1974.

[Ole70] Oleinik, O.A. On the Cauchy problem for weakly hyperbolic equations.
Comm. pure appl. math., 23:569–586, 1970.

[Qi 58] Qi Min–you. On the Cauchy problem for a class of hyperbolic equa-
tions with initial data on the parabolic degenerating line. Acta Math.
Sinica, 8:521–529, 1958.

[RY97] Reissig, M. and Yagdjian, K. Weakly hyperbolic equations with fast os-
cillating coefficients. Preprint 7, Technische Universität Bergakademie
Freiberg, 1997.

[Tar95] Tarama, S. On the second order hyperbolic equations degenerating in
the infinite order. Math. Japonica, 42:523–534, 1995.

[Yag97] Yagdjian, K. The Cauchy Problem for Hyperbolic Operators. Multi-
ple Characteristics, Micro-Local Approach. Akademie Verlag, Berlin,
1997.


