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1 Introduction

Let us recall well–known results about linear and semilinear wave equations.
We examine the Cauchy problems

2u = f(u) =

N∑

j=1

fju
j, fj ∈ R,(1.1)

2v = 0,(1.2)

u(x, 0) = v(x, 0) = ϕ(x), ut(x, 0) = vt(x, 0) = ψ(x)

with 2 = ∂tt −4 and (x, t) ∈ R
n
x × Rt. We suppose that the data belong to

ϕ ∈ Hs(Rn) ∩Hs+1(Rn \ {|x| = R}), s >
n

2
+ 1,

ψ ∈ Hs−1(Rn) ∩Hs(Rn \ {|x| = R}).
Then it is obvious that

u, v ∈ C ([0, T ], Hs) ∩ C1
(
[0, T ], Hs−1

)

for small T > 0. Since the singularities of the data propagate with speed 1,
we have v(., t) ∈ Hs+1(Rn \ Sv(t)) and

sing–suppHs+ε v(., t) ⊂ {(x, t) : B(x, |t|) ∩ B(0, R) 6= ∅} =: Sv(t),
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B(x, |t|) denoting the ball around (x, 0) with radius |t| in the initial surface
R
n×{0} and 0 < ε ≤ 1. These singularities are called mild singularities, since

the difference to the Hs+1 regularity is only one Sobolev order.

The solution u of the semilinear problem has the same singularities as v. This
can be seen as follows: we know

2(u− v) = f(u), (u− v)(x, 0) = 0, (u− v)t(x, 0) = 0

and f(u) ∈ C ([0, T ], Hs), since this space is an algebra. Then it is well–known
that u − v ∈ C ([0, T ], Hs+1). Choose some arbitrary 0 < ε ≤ 1. Then we
have sing–suppHs+ε(u− v)(., t) = ∅, hence

sing–suppHs+ε u(., t) = sing–suppHs+ε v(., t).

In other words, the singular support of the solution of the semilinear problem
coincides with the singular support of the solution of some suitably linearized
problem.

The aim of this publication is to prove a similar result for weakly hyperbolic
Cauchy problems whose lower order terms satisfy sharp Levi conditions with
respect to t. To demonstrate the phenomena which may occur in the case of
sharp Levi conditions, we recall a result of Qi Min–You [6]. Let v = v(x, t) be
the solution of

vtt − t2vxx = bvx, v(x, 0) = ϕ(x), vt(x, 0) = 0, x ∈ R.

If b = 4m+ 1, m ∈ N0, we have the explicit representation

v(x, t) =

m∑

j=0

Cjt
2j∂jxϕ

(
x +

1

2
t2
)

with some constants Cj, and Cm does not vanish. If ϕ ∈ Hs, then

v(., t) ∈ Hs−m (t > 0).

This phenomenon is called loss of Sobolev regularity and is a severe difficulty
for the investigation of Cauchy problems with sharp Levi conditions. If m >
s− 5/2, then there is no classical solution v!

Yet, there is also another interesting phenomenon: Namely, the explicit rep-
resentation of v exhibits the surprising fact that propagation of singularities
happens only along the characteristic x + t2/2 = const.

The loss of regularity makes the investigation of semilinear problems of the
type

utt − t2uxx = bux + f(u), u(x, 0) = ϕ(x), ut(x, 0) = 0

difficult, because the standard iteration procedure and fixed point principles
do not work. As far as we know, the following problems are completely open:
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• Does the solution u (if it exists) have the same smoothness as v, i.e.,
u(., t) ∈ Hs−m ? We will give a positive answer for small t.

• How do the mild singularities of the data propagate ? We will show
that the propagation is the same as for v, because we will prove that
(u− v)(., t) ∈ Hs−m+1/2.

The Example of Qi Min–You has been chosen to clarify some results of this
paper. The Cauchy problems to be studied are much more general. Namely,
let us consider

Lu = f(u), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),(1.3)

Lv = 0, v(x, 0) = ϕ(x), vt(x, 0) = ψ(x),(1.4)

L := ∂2
tt +

n∑

j=1

cj(t)λ(t)∂2
xjt

−
n∑

i,j=1

aij(t)λ(t)2∂2
xixj

+

n∑

i=1

bi(t)λ
′(t)∂xi

+ c0(t)∂t,

where λ = λ(t) is an increasing function of time that has a zero of finite or
infinite order at t = 0 and satisfies some additional conditions.

Examples for admissible weight functions are λ(t) = tl (with l ∈ N+) and
λ(t) = ∂t(exp(−1/|t|)). The propagation of singularities for certain linear
one–dimensional Cauchy problems with these two weight functions has been
studied in [10] and [1], respectively. A branching of singularities which depends
in a heavily sensitive way on lower order coefficients could be observed. This
was achieved by explicit representations of the solutions, which will be recalled
in the Subsections 2.2 and 2.3.

If one is interested in propagation of singularities, then it is of great importance
to know the spaces in which the description of singularities makes sense. To
make this point clear, let us consider (1.1), (1.2) with data ϕ ∈ H s, ψ ∈ Hs−1.
It is a true statement to say that u and v belong to, e.g., C ([0, T ], H s−5).
However, it has no sense to investigate singularities in this space, because the
singular support is the empty set. The right function space is C ([0, T ], H s).

It turns out that the right spaces for u(., t) and v(., t) are no Sobolev spaces in
the second special case (λ(t) = ∂t exp(−1/|t|))! It is necessary to generalize
the classes of Sobolev spaces. (The reason is that in the explicit representation
of v̂(ξ, t) a factor ln |ξ| occurs.)

Hence, the following difficulties arise:

• For general and arbitrary λ, the exact loss of regularity is unknown.
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• The sharp spaces of the solutions must be found. It has no sense to
speak about propagation of singularities in non–sharp spaces.

• The structure of these spaces is unknown for general λ. The second
example tells us that the class of Sobolev spaces is too small to describe
the sharp spaces.

We will proceed in the following way: if w(x, t) ∈ C([0, T ], Hs(Rn
x)), then

〈ξ〉sŵ(ξ, t) ∈ C([0, T ], L2(Rn
ξ )). The temperate weight 〈ξ〉s will be replaced by

some suitably chosen temperate weight ϑ(ξ, t), which also depends on some
parameters. Thus, we get a scale of spaces which heavily depends on the
coefficients of the operator L. The idea to assign a weight ϑ(ξ, t) to L and to
estimate a certain norm of the product ϑ(ξ, t)ŵ(ξ, t) goes back to [8].

Using this scale of generalized Sobolev–like spaces we are able to introduce
the framework of optimal spaces assigned to weakly hyperbolic operators:

We call a framework of function spaces Sϕ for ϕ, Sψ for ψ, Sf for a right–hand
side f = f(x, t) and Su for the solution u optimal, if the following conditions
are satisfied:

• There is a general procedure that defines Sϕ, Sψ, Sf , Su if L is given.

• The assumptions ϕ ∈ Sϕ, ψ ∈ Sψ, f ∈ Sf imply the existence and
uniqueness of a solution u ∈ Su. This solution continuously depends on
ϕ, ψ, f in the topology of the given spaces.

• For certain operators L the spaces Sϕ, Sψ, Sf , Su coincide with the
spaces suggested by explicit representations of the solutions.

Let us list the assumptions on λ(t), cj(t), aij(t), bi(t), c0(t) and f(u):

With Λ(t) :=
∫ t
0
λ(τ) dτ we assume that

λ(0) = 0, λ′(t) > 0 (t > 0),(1.5)

d0
λ(t)

Λ(t)
≤ λ′(t)

λ(t)
≤ d1

λ(t)

Λ(t)
, 0 < t ≤ T, d0 ≥

1

2
,(1.6)

|dktλ(t)| ≤ dkλ(t)

(
λ(t)

Λ(t)

)k
, 0 < t ≤ T, k = 2, 3, . . . ,(1.7)

λ, cj, aij, bi, c0 ∈ C∞([0, T ]),(1.8)

α1|ξ|2 ≥
(

n∑

j=1

cj(t)ξj

)2

+ 4
n∑

i,j=1

aij(t)ξiξj ≥ α0|ξ|2(1.9)

∀(t, ξ) ∈ [0, T ] × R
n, α0 > 0,
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f(u) =
∞∑

j=1

fju
j ∀u ∈ R.(1.10)

The central results are the Theorems 6.1 and 6.3 in Section 6.

For the convenience of the reader, we give applications of those theorems to
two simple model equations now. Consider the operators

L1 = ∂2
tt − t2l∂2

xx − htl−1∂x, h ∈ R, l ∈ N+,

L2 = ∂2
tt − λ(t)2∂2

xx − h
λ(t)2

Λ(t)
∂x, h ∈ R, λ(t) = dt exp

(
−1

t

)
.

We assume that f = f(u) is an entire analytic function with f(0) = 0 and
study the Cauchy problems (1.3), (1.4) for L = L1 or L = L2.

Proposition 1.1 (L = L1). Let ϕ ∈ Hs, ψ ∈ Hs−1/(l+1) with some large s.
Then the Cauchy problems (1.3), (1.4) have unique local in time (classical)
solutions u, v with

u, v ∈ C
(
[0, T ], Hs−K) , u− v ∈ C

(
[0, T ], Hs−K+1/(l+1)

)
,

where K = (−l + |h|)/(2(l + 1)). Let us additionally assume that ϕ, ψ ∈
C∞(R \ {x0}). Then the singularity of ϕ and ψ at x0 propagates along the
singularities transporting characteristics starting in (x0, 0). Consequently, the
solution u may have only weaker singularities away from those characteristics
of order 1/(l + 1) (see Remark 1.3).

Proposition 1.2 (L = L2). Let ϕ ∈ Hs, ψ ∈ Hs
ln with some large s, where

Hs
ln = {Ψ ∈ S ′ : 〈ξ〉s(ln〈ξ〉)−1Ψ̂(ξ) ∈ L2(Rξ)}.

Then (1.3), (1.4) possess uniquely determined local in time (classical) solu-
tions u, v with

u, v ∈ C([0, T ], Hs−K
ln ), u− v ∈ C

(
[0, T ], Hs−K) ,

where K = (|h| − 1)/2. Let us additionally assume that ϕ, ψ ∈ C∞(R \
{x0}). Then the singularity of ϕ and ψ at x0 propagates along the singularities
transporting characteristics starting in (x0, 0). Consequently, the solution u
may have only weaker singularities away from those characteristics. These
weaker singularities are described by omitting ln〈ξ〉 in the definition of H s

ln

(see Remark 1.3).

Remark 1.3. In Section 2 we will see that the spaces for v are optimal. Our
results enrich the semilinear weakly hyperbolic theory in the following way:
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• special nonlinear right–hand sides have no additional influence on the
loss of derivatives,

• we are able to characterize the propagation of singularities along the sin-
gularities transporting characteristics (see the discussion of an example
in Section 7).

It is a typical phenomenon of the weakly hyperbolic theory, that singularities
of the data propagate not necessarily along both of the characteristics C1,2 =
{(x, t) : x ± Λ(t) = x0}. This depends on the lower order terms ([1], [10]).
Each of the characteristics along which singularities propagate will be called
singularities transporting characteristics.

2 Examples

Let us list explicit representations of the solutions to special Cauchy problems
in order to find out how to study problems of more general type.

2.1 The Strictly Hyperbolic Case

We consider the problem

vtt − vxx = 0, v(x, 0) = ϕ(x), vt(x, 0) = ψ(x), x ∈ R.

The partial Fourier transform of the solution is

v̂(ξ, t) = cos(tξ)ϕ̂(ξ) + t
sin(tξ)

tξ
ψ̂(ξ).

We fix t > 0 and let |ξ| tend to ∞. Then we have asymptotically

v̂(ξ, t) = O(1)ϕ̂(ξ) +O(|ξ|−1)ψ̂(ξ).

2.2 Weakly Hyperbolic Case with Finite Degeneracy

Let λ(t) := tl with l ∈ N, l ≥ 1. We study the Cauchy problem

vtt − t2lvxx − htl−1vx = 0, v(x, 0) = ϕ(x), vt(x, 0) = ψ(x), x ∈ R.

The number h is a real constant. In [10] and [12] it is shown how to construct
the solution. The partial Fourier transform is given by

v̂(ξ, t) =e−iΛ(t)ξ
1F1

(
l + h

2(l + 1)
,

l

l + 1
, 2iΛ(t)ξ

)
ϕ̂(ξ)

+ te−iΛ(t)ξ
1F1

(
l + 2 + h

2(l + 1)
,
l + 2

l + 1
, 2iΛ(t)ξ

)
ψ̂(ξ)
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and has for t > 0 and |ξ| → ∞ the asymptotic behaviour

v̂(ξ, t) = O
(
|ξ|

−l+|h|
2(l+1)

)
ϕ̂(ξ) +O

(
|ξ|

−l−2+|h|
2(l+1)

)
ψ̂(ξ).

The exponents of |ξ| describe the loss of Sobolev regularity. We emphasize
that the difference of these exponents is not 1 as in the strictly hyperbolic case,
but 1/(l + 1). Appropriate spaces for the data ϕ, ψ and the solution are H s,
Hs−1/(l+1) and C

(
[0, T ], Hs−K) with K = (−l + |h|)/(2(l + 1)), respectively.

2.3 Weakly Hyperbolic Case with Infinite Degeneracy

Let Λ(t) := exp(− 1
t
) and λ(t) := Λ′(t). Then this function λ satisfies all

assumptions (1.5)–(1.7). We reflect upon the Cauchy problem

vtt − λ(t)2vxx − h
λ(t)2

Λ(t)
vx = 0,

v(x, 0) = ϕ(x), vt(x, 0) = ψ(x), x ∈ R.

We note that the coefficient of vx is not λ′(t) times a constant as in the case
of finite degeneracy, but is described by the equivalent term λ(t)2Λ(t)−1, see
(1.6). In [1] and [12] the fundamental solution is constructed; we only list the
results. The solution v̂ has the form

v̂(ξ, t) =

2∑

j=1

cj(ξ)te
−βjΛ(t)ξΨ(αj, 1, 2βjΛ(t)ξ),(2.1)

cj(ξ) = C1,j(ϕ̂(ξ)(ln |ξ| + C2,j) + ψ̂(ξ)), j = 1, 2.

For fixed t > 0 and large |ξ| one can prove the asymptotic behaviour

v̂(ξ, t) = O(|ξ|−1+|h|
2 ln |ξ|)ϕ̂(ξ) +O(|ξ|−1+|h|

2 )ψ̂(ξ).

We point out that the coefficients of ϕ̂ and ψ̂ differ only by the factor ln |ξ|.
This observation leads us to the following sharp spaces for ϕ, ψ and v imme-
diately: For ϕ and ψ we may choose the spaces of all functions Φ, Ψ with

〈ξ〉sΦ̂(ξ) ∈ L2(Rξ), 〈ξ〉s(ln〈ξ〉)−1Ψ̂(ξ) ∈ L2(Rξ).

The space for v consists of all functions V = V (x, t) with

〈ξ〉s−(|h|−1)/2(ln〈ξ〉)−1V̂ (ξ, t) ∈ L2(Rξ) ∀t.
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2.4 Summary and Conclusions

Let us draw some conclusions from the above examples. In the first two cases,
the solution can be written as

v̂(ξ, t) = G1(Λ(t)ξ)ϕ̂(ξ) + tG2(Λ(t)ξ)ψ̂(ξ)

with G1(0) = G2(0) = 1. And in the third example we have the representation

v̂(ξ, t) = tG1(Λ(t)ξ)(ln |ξ| + C)ϕ̂(ξ) + tG2(Λ(t)ξ)ψ̂(ξ)

with Gj(s) = O(ln |s|) for s → 0. It can be observed that the sets {Λ(t)ξ =
const} play a certain role. Furthermore, we have seen that the coefficients G1

and G2 behave differently for |ξ| → ∞, t fixed. Let us give a characterization
of this difference which will work in any of the three examples.

We fix some large number N > 0 and consider the set {(ξ, t) : Λ(t)〈ξ〉 = N}.
Since Λ is strictly increasing, we can define a mapping ξ 7→ tξ by

Λ(tξ)〈ξ〉 := N.

In the first example we have λ(t) ≡ 1, hence Λ(t) = t and tξ = C〈ξ〉−1. In the
second and third examples we have tξ = C〈ξ〉−1/(l+1) and tξ = O((ln |ξ|)−1),
respectively. We observe that the difference in the asymptotic behaviours of
the weights G1 and G2 can be described by these tξ. For ϕ we could choose
the space Hs(Rn) and for ψ the space with the temperate weight 〈ξ〉stξ.
But what is the sharp space for the solution v ? The loss of smoothness is
a severe difficulty. If t = 0, then v = ϕ and the temperate weight ϑ(ξ, t) in
the definition of the v–space should behave like 〈ξ〉s. If t > 0, then the loss
of regularity appears and the weight ϑ(ξ, t) should be ϑ(ξ, t) = O(〈ξ〉s−K),
K ∈ R (at least in the second example). And of course, the weight ϑ(ξ, t)
should be continuous in ξ and t, even for t→ 0.

This difficulty can be overcome by splitting the (ξ, t)–space into two zones,
the pseudodifferential zone Zpd(N) and the hyperbolic zone Zhyp(N):

Zpd(N) = {(ξ, t) ∈ R
n × [0, T ] : |ξ| > 1,Λ(t)〈ξ〉 ≤ N},

Zhyp(N) = {(ξ, t) ∈ R
n × [0, T ] : |ξ| > 1,Λ(t)〈ξ〉 ≥ N}.

It is possible to use a hyperbolic type approach in Zhyp(N), since in this zone
the influence of the principal symbol is dominating. On the other hand, in
Zpd(N) the influence of the subprincipal symbol becomes important and one
has to take a different approach. We will define the temperate weight ϑ(ξ, t)
in both zones in different ways in order to model the loss of regularity. The
splitting into two zones allows us to define a continuous weight ϑ(ξ, t) with
different growth (for |ξ| → ∞) in the two cases t = 0 and t > 0.
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3 A–priori Estimates

In this section we give a point–wise estimate of the partial Fourier transform
of the solution to Lu = f(x, t), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). Obviously,

Dttû(ξ, t) −
(

n∑

i,j=1

aij(t)λ(t)2ξiξj + i

n∑

j=1

bj(t)λ
′(t)ξj

)
û(ξ, t)

+

(
n∑

j=1

cj(t)λ(t)ξj − ic0(t)

)
Dtû(ξ, t) = −f̂(ξ, t),(3.1)

û(ξ, 0) = ϕ̂(ξ), ût(ξ, 0) = ψ̂(ξ).

This is an ODE with parameter ξ ∈ R
n. The factor of the function û(ξ, t) has

two terms:
∑n

i,j=1 aijλ
2ξiξj, which is the dominating term in Zhyp(N), and

i
∑n

j=1 bjλ
′ξj, which dominates in Zpd(N). We transform (3.1) into a system

of ODEs of first order. The vector W of the unknown functions of this system
has two components, w2 = Dtû and w1 = G(ξ, t)û. In this case, G(ξ, t) is a
weight which is chosen differently in the two zones. We take G(ξ, t) = λ(t)|ξ|
in Zhyp(N) and a weight G(ξ, t) = %(ξ, t) =

√
1 + λ(t)2〈ξ〉/Λ(t) is chosen in

Zpd(N).

The idea of splitting the (ξ, t) space into zones can be found, e.g., in [13], [9],
[11] and [12]. Our approach is based on a theory which was used in [7]. All
these steps lead to an estimate for û and Dtû. From this estimate we will
learn how to choose the temperate weight ϑ(ξ, t).

In a next step it is shown that ϑ(ξ, t) is a temperate weight in the sense of [5].
This allows us to apply the general theory developed there.

3.1 Preliminaries

In this subsection our intention is to list some properties of the functions λ(t),
Λ(t), tξ, %(ξ, t) which will be needed later. The proofs can be found in [3] and
use (1.5), (1.6), (1.7) and the definition of zones.

Proposition 3.1. Let 0 < T ≤ t0 with Λ(t0)〈0〉 = N . Then it holds

Λ(t) ≤ tλ(t) ∀t ∈ [0, T ],(3.2)
(

Λ(t)

Λ(T0)

)d0
≥ λ(t)

λ(T0)
≥
(

Λ(t)

Λ(T0)

)d1
∀0 < t ≤ T0 ≤ T,(3.3)
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d0 < 1,(3.4)

dtξ
d〈ξ〉 = − N

λ(tξ)〈ξ〉2
= − Λ(tξ)

λ(tξ)〈ξ〉
∀ξ ∈ R

n,(3.5)

C1〈ξ〉−d0 ≥ λ(tξ) ≥ C2〈ξ〉−d1 ∀ξ ∈ R
n,(3.6)

p(〈ξ〉) := tξ〈ξ〉 is monotonically increasing in 〈ξ〉,(3.7)

C3〈ξ〉d0−1 ≥ tξ ≥ C4〈ξ〉−1 ∀ξ ∈ R
n,(3.8)

∫ tξ

0

%(ξ, t) dt ≤ C ∀ξ ∈ R
n,(3.9)

λ(t)〈ξ〉 ≤
√
N%(ξ, t) ∀(ξ, t) ∈ Zpd(N),(3.10)

1√
N
λ(tξ)〈ξ〉 ≤ %(ξ, tξ) ≤

C√
N
λ(tξ)〈ξ〉 ∀ξ ∈ R

n,(3.11)

∫ t

0

(t− s)2%(ξ, s)2 ds ≤ Ct ∀(ξ, t) ∈ Zpd(N),(3.12)

∂t%(ξ, t) ≥ 0 ∀(ξ, t) ∈ Zpd(N),(3.13)

q(〈ξ〉) := λ(tξ)〈ξ〉d1 is monotonically increasing in 〈ξ〉.(3.14)

The proof of the next lemma is left to the reader.

Lemma 3.2. Let g(t) be a continuous, positive and bounded function and
define

J(s, t) = exp

(∫ t

s

λ′(τ)

λ(τ)
g(τ) dτ

)
.

Then we have

J(s, t)J(t, r) = J(s, r) ∀0 < t, s, r ≤ T,(3.15)

J(s, t) is increasing in t, decreasing in s,(3.16)

1 ≤ J(s, t) ≤
(
λ(t)

λ(s)

)K0

, K0 = sup
[0,T ]

g(τ), 0 < s ≤ t ≤ T.(3.17)

3.2 A–priori Estimates for Solutions of ODEs

We start with the Cauchy problem (3.1). For the investigations we need the
following comparison lemma from the theory of ODEs:

Lemma 3.3. Let g, h ∈ C2([s, T ]) be the solutions of

h′′(t) = B(t)h(t), h(s) = H0 ≥ 0, h′(s) = H1 ≥ 0,

g′′(t) = A(t)g(t), g(s) = G0 ≥ 0, g′(s) = G1 ≥ 0
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with A,B ∈ C([s, T ]) and |A(t)| ≤ B(t), G0 ≤ H0, G1 ≤ H1. Then it holds

|g(t)| ≤ h(t) ∀s ≤ t ≤ T.

3.2.1 The Pseudodifferential Zone

In order to estimate û and Dtû in Zpd(N), we define

W (ξ, t) =

(
w1(ξ, t)
w2(ξ, t)

)
=

(
%(ξ, t)û(ξ, t)
Dtû(ξ, t)

)

and get DtW − AW = F with

A(ξ, t) =

(
Dt%/% %

(
∑n

i,j=1 aijλ
2ξiξj + i

∑n
j=1 bjλ

′ξj)/% −∑n
j=1 cjλξj + ic0

)
,

F (ξ, t) =

(
0

−f̂(ξ, t)

)
.

For the norm of A(ξ, t) (row sum norm or column sum norm) we obtain

‖A(ξ, t)‖ ≤ C%(ξ, t) +
%t(ξ, t)

%(ξ, t)
,

compare (3.13). Now let us devote ourselves to the differential system for the
fundamental matrix X(t, s, ξ):

DtX(t, s, ξ) − A(ξ, t)X(t, s, ξ) = 0, X(s, s, ξ) = I, 0 ≤ s ≤ t ≤ tξ.

Then W allows the representation

W (ξ, t) =

∫ t

0

X(t, s, ξ)F (ξ, s) ds+X(t, 0, ξ)W (ξ, 0).(3.18)

The matrix X(t, s, ξ) can be estimated by

‖X(t, s, ξ)‖ ≤ exp

(∫ t

s

‖A(ξ, τ)‖ dτ
)
, 0 ≤ s ≤ t ≤ tξ,

which gives ‖X(t, s, ξ)‖ ≤ C%(ξ, t)/%(ξ, s), see (3.9). However, this estimate
is not sharp for all components of X. For instance, we get |X12(s, s, ξ)| ≤ C,
but X12(s, s, ξ) = 0. For sharper estimates we have to study the differential
system more carefully. We introduce the notation

A(ξ, t) =

(
A11(ξ, t) A12(ξ, t)
A21(ξ, t) A22(ξ, t)

)
, A21(ξ, t) =

A0
21(ξ, t)

%(ξ, t)
.
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From the definition of Zpd(N) follows that |A0
21(ξ, t)| ≤ Cλ′(t)〈ξ〉. We have

∂tX11(t, s, ξ) =
∂t%(ξ, t)

%(ξ, t)
X11(t, s, ξ) + i%(ξ, t)X21(t, s, ξ),

∂tX21(t, s, ξ) =
iA0

21(ξ, t)

%(ξ, t)
X11(t, s, ξ) − c̃(ξ, t)X21(t, s, ξ),

∂tX12(t, s, ξ) =
∂t%(ξ, t)

%(ξ, t)
X12(t, s, ξ) + i%(ξ, t)X22(t, s, ξ),

∂tX22(t, s, ξ) =
iA0

21(ξ, t)

%(ξ, t)
X12(t, s, ξ) − c̃(ξ, t)X22(t, s, ξ),

c̃(ξ, t) = i

n∑

j=1

cj(t)λ(t)ξj + c0(t),

(
X11(s, s, ξ) X12(s, s, ξ)
X21(s, s, ξ) X22(s, s, ξ)

)
=

(
1 0
0 1

)
.

From the equation for X21 it can be concluded that

X21(t, s, ξ) = i

∫ t

s

exp

(
−
∫ t

τ

c̃(ξ, σ) dσ

)
A0

21(ξ, τ)

%(ξ, τ)
X11(τ, s, ξ) dτ.

From |X11(t, s, ξ)| ≤ C%(ξ, t)/%(ξ, s) and |
∫ t
0
λ(τ)ξjdτ | ≤ N follows that

|X21(t, s, ξ)| ≤ C

∫ t

s

|A0
21(ξ, τ)|
%(ξ, s)

dτ ≤ C
(λ(t) − λ(s))〈ξ〉

%(ξ, s)
,

if 0 ≤ s ≤ t ≤ tξ. From the equation for X12 it can be deduced that

X12(t, s, ξ) = i%(ξ, t)

∫ t

s

X22(τ, s, ξ) dτ.

We set f(t, s) =
∫ t
s
X22(τ, s, ξ) dτ for fixed ξ and have

f(s, s) = 0, ft(t, s) = X22(t, s, ξ), ft(s, s) = 1,

ftt(t, s) = X22,t(t, s, ξ).

Consequently,

ftt(t, s) = −A0
21(ξ, t)f(t, s) − c̃(ξ, t)ft(t, s).

We set g(t, s) := f(t, s)β(t, s) with β(t, s) = exp( 1
2

∫ t
s
c̃(ξ, τ)dτ), resulting in

gtt(t, s) = A0(ξ, t)g(t, s) :=

(
−A0

21(ξ, t) +
c̃(ξ, t)2

4
+
c̃t(ξ, t)

2

)
g(t, s),

g(s, s) = 0, gt(s, s) = 1.

12



From 0 < C−1
1 ≤ β(t, s) ≤ C1 we obtain |f(t, s)| ≤ C1|g(t, s)|. Furthermore,

it holds |A0(ξ, t)| ≤ CA(1 + λ′(t)〈ξ〉). Let h(t, s) be the solution of

htt(t, s) = CA(1 + λ′(t)〈ξ〉)h(t, s), h(s, s) = 0, ht(s, s) = 1.

Then Lemma 3.3 shows that |g(t, s)| ≤ h(t, s). It is easy to see that h(t, s)
and ht(t, s) are positive if t > s. Consequently,

htt(t, s) ≤ CA((t+ λ(t)〈ξ〉)h(t, s))t.

Integration from s to t reveals

ht(t, s) − 1 ≤ CA(t + λ(t)〈ξ〉)h(t, s).

By Gronwall’s Lemma and the definition of zones we conclude that

h(t, s) ≤
∫ t

s

exp

(
CA

∫ t

τ

(σ + λ(σ)〈ξ〉) dσ
)
dτ ≤ C(t− s),

which implies
∣∣∣∣
∫ t

s

X22(τ, s, ξ) dτ

∣∣∣∣ ≤ C(t− s).

Finally, we deduce that

|X12(t, s, ξ)| ≤ C%(ξ, t)(t− s).

The last component X22(t, s, ξ) can be represented by

X22(t, s, ξ) − 1 = i

∫ t

s

exp

(
−
∫ t

τ

c̃(ξ, σ) dσ

)
A0

21(ξ, τ)

%(ξ, τ)
X12(τ, s, ξ) dτ,

which results in

|X22(t, s, ξ) − 1| ≤ C

∫ t

s

λ′(τ)〈ξ〉(τ − s) dτ

≤ C(t− s)(λ(t) − λ(s))〈ξ〉.

Let us summarize these estimates: If 0 ≤ s ≤ t ≤ tξ, then

|X11(t, s, ξ)| ≤ C
%(ξ, t)

%(ξ, s)
,

|X12(t, s, ξ)| ≤ C%(ξ, t)(t− s),

|X21(t, s, ξ)| ≤ C
(λ(t) − λ(s))〈ξ〉

%(ξ, s)
,

|X22(t, s, ξ) − 1| ≤ C(t− s)(λ(t) − λ(s))〈ξ〉.
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Using (3.18) we can estimate %û and Dtû:

|%(ξ, t)û(ξ, t)| ≤ C%(ξ, t)

(∫ t

0

(t− s)|f̂(ξ, s)| ds+ |ϕ̂(ξ)| + t|ψ̂(ξ)|
)
,(3.19)

|Dtû(ξ, t)| ≤ C

∫ t

0

(1 + (t− s)(λ(t) − λ(s))〈ξ〉)|f̂(ξ, s)| ds

+ Cλ(t)〈ξ〉|ϕ̂(ξ)| + C(1 + tλ(t)〈ξ〉)|ψ̂(ξ)|.(3.20)

We immediately get

|û(ξ, t)| ≤ C

∫ t

0

(t− s)|f̂(ξ, s)| ds+ C|ϕ̂(ξ)| + Ct|ψ̂(ξ)|.(3.21)

Thus, we have proved:

Proposition 3.4 (Estimate in Zpd(N)). Let the function û = û(ξ, .) be a
C2–solution of the ODE (3.1). Then the estimates (3.19), (3.20) and (3.21)
hold in Zpd(N). Especially, on the border {(ξ, tξ) : ξ ∈ R

n} of Zpd(N) we have

|λ(tξ)〈ξ〉û(ξ, tξ)|(3.22)

≤ C%(ξ, tξ)

(∫ tξ

0

(tξ − s)|f̂(ξ, s)| ds+ |ϕ̂(ξ)| + tξ|ψ̂(ξ)|
)
,

|Dtû(ξ, tξ)| ≤ C

∫ tξ

0

(1 + (tξ − s)(λ(tξ) − λ(s))〈ξ〉)|f̂(ξ, s)| ds(3.23)

+ Cλ(tξ)〈ξ〉(|ϕ̂(ξ)| + tξ|ψ̂(ξ)|), C = C(N).

For the proof we only note 1 ≤ N = Λ(tξ)〈ξ〉 ≤ λ(tξ)tξ〈ξ〉.
Remark 3.5. The estimates (3.20) and (3.21) are sharp (up to multiplicative
constants) in the cases of the Examples 2.2 and 2.3.

Proof. In the Example 2.2 we could write the solution û in the form

û(ξ, t) = G1(Λ(t)ξ)ϕ̂(ξ) + tG2(Λ(t)ξ)ψ̂(ξ),

where G1(z) and G2(z) are e−iz times a confluent hypergeometric function
with argument 2iz. The arguments of Gj run between 0 and ±N , if (ξ, t) is
in Zpd(N). Hence, the terms Gj(Λ(t)ξ) are bounded factors converging to 1
and Gj(±N), if t approaches 0, tξ, respectively. This shows that at least in
this case (3.21) is sharp.

For the first derivative we get

ût(ξ, t) = G′
1(Λξ)λξϕ̂(ξ) + (G2(Λξ) + tG′

2(Λξ)λξ)ψ̂(ξ)

with non vanishing G′
1(0), G′

2(0). We see again that the estimate (3.20) is
optimal at least in this example.

A more complicated calculation shows that (3.20) and (3.21) are also sharp
in the case of the third example.
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3.2.2 The Hyperbolic Zone

Our aim is to estimate û and Dtû in Zhyp(N). We define

U(ξ, t) =

(
λ(t)|ξ|û(ξ, t)
Dtû(ξ, t)

)

and obtain

DtU(ξ, t) =A(ξ, t)U(ξ, t) + A0(ξ, t)U(ξ, t) + A1(ξ, t)U(ξ, t) + F (ξ, t)

=

(
0 λ(t)|ξ|∑n

i,j=1 aij(t)λ(t)
ξiξj
|ξ| −∑n

j=1 cj(t)λ(t)ξj

)
U(ξ, t)

+
Dtλ(t)

λ(t)

(
1 0

−∑n
j=1 bj(t)

ξj
|ξ| 0

)
U(ξ, t)

+

(
0 0
0 ic0(t)

)
U(ξ, t) −

(
0

f̂(ξ, t)

)
.

The matrix A will be diagonalized. For this purpose we take

M−1(ξ, t) =

(
1 −c(ξ, t) −

√
c(ξ, t)2 + a(ξ, t)

1 −c(ξ, t) +
√
c(ξ, t)2 + a(ξ, t)

)T
,

M(ξ, t) =
1

2
√
c(ξ, t)2 + a(ξ, t)

(
−c(ξ, t) +

√
c(ξ, t)2 + a(ξ, t) −1

c(ξ, t) +
√
c(ξ, t)2 + a(ξ, t) 1

)
,

with a(ξ, t) :=
∑n

i,j=1 aij(t)
ξiξj
|ξ|2 and c(ξ, t) := 1

2

∑n
j=1 cj(t)

ξj
|ξ| , resulting in

MAM−1(ξ, t) = D :=

(
τ1(ξ, t) 0

0 τ2(ξ, t)

)

:=λ(t)|ξ|
(
−c(ξ, t)−

√
c(ξ, t)2 + a(ξ, t) 0

0 −c(ξ, t)+
√
c(ξ, t)2 + a(ξ, t)

)
.

For the matrix A0 we get

MA0M
−1(ξ, t) =

Dtλ(t)

2λ(t)




1 − b(ξ,t)+c(ξ,t)√
c(ξ,t)2+a(ξ,t)

1 − b(ξ,t)+c(ξ,t)√
c(ξ,t)2+a(ξ,t)

1 + b(ξ,t)+c(ξ,t)√
c(ξ,t)2+a(ξ,t)

1 + b(ξ,t)+c(ξ,t)√
c(ξ,t)2+a(ξ,t)




with b(ξ, t) := −∑n
j=1 bj(t)

ξj
|ξ| . Finally, MA1M

−1(ξ, t) has the representation

MA1M
−1(ξ, t) =

ic0(t)

2

(
1 −1
−1 1

)
+

ic0(t)c(ξ, t)

2
√
c(ξ, t)2 + a(ξ, t)

(
1 1
−1 −1

)
.
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Using

(DtM)M−1 = −Dt(c
2 + a)

4(c2 + a)

(
1 −1
−1 1

)
+

Dtc

2
√
c2 + a

(
−1 −1
1 1

)

the system for V := MU can be written in the form

DtV −DV +BV = MF,

B = −Dtλ

2λ

(
1 1
1 1

)
− Dtλ

2λ

b+ c√
c2 + a

(
−1 −1
1 1

)
(3.24)

−
(
ic0
2

− Dt(c
2 + a)

4(c2 + a)

)(
1 −1
−1 1

)
− ic0c−Dtc

2
√
c2 + a

(
1 1
−1 −1

)
.

This is the first step of perfect diagonalization. We will employ further steps
of perfect diagonalization using a theory which was applied in [3], [7] and
[12]. It turns out that the standard symbol classes cannot be used anymore,
we have to choose classes adapted to the weakly hyperbolic theory. Here we
follow the lines of [7] and define the symbol class SN{m1, m2, m3} as the set
of all symbols a(ξ, t) ∈ C∞(Zhyp(N)) with

|Dk
tD

α
ξ a(ξ, t)| ≤ Ck,α〈ξ〉m1−|α|λ(t)m2

(
λ(t)

Λ(t)

)m3+k

∀(ξ, t) ∈ Zhyp(N)

and for all k ≥ 0, α ∈ N
n. The symbols of these classes satisfy

SN{m1, m2, m3} ⊂ SN{m1 + k,m2 + k,m3 − k} ∀k ≥ 0,(3.25)

a(ξ, t) ∈ SN{m1, m2, m3}, b(ξ, t) ∈ SN{k1, k2, k3}(3.26)

=⇒ a(ξ, t)b(ξ, t) ∈ SN{m1 + k1, m2 + k2, m3 + k3},
a(ξ, t) ∈ SN{m1, m2, m3} =⇒ Dta(ξ, t) ∈ SN{m1, m2, m3 + 1},(3.27)

a(ξ, t) ∈ SN{m1, m2, m3} =⇒ Dα
ξ a(ξ, t) ∈ SN{m1 − |α|, m2, m3}.(3.28)

In the above equation for V we have D ∈ SN{1, 1, 0} and B ∈ SN{0, 0, 1}.
After p steps of diagonalization we find

(Dt −D +B)N1N2 . . . Np

= N1N2 . . . Np(Dt −D + F 0
0 + F 0

1 + · · · + F 0
p−1 +Rp),

where F 0
0 is the diagonal part of B, F 0

j are diagonal symbols from
SN{−j,−j, j + 1} and Rp ∈ SN{−p,−p, p + 1}. For V =: N1N2 . . . NpW
and with F̃1 := F 0

1 + · · ·+ F 0
p−1 we get

(Dt −D + F 0
0 + F̃1 +Rp)W = N−1

p . . . N−1
1 MF,(3.29)

‖N1 . . . Np‖ ≤ C,
∥∥N−1

p . . . N−1
1 M

∥∥ ≤ C.
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The last inequality is valid if the constant N , which was used in the definition
of zones, is sufficiently large. Later we will see that the number p depends
only on the functions λ, cj, aij and bj. Let us investigate the fundamental
solution X(t, s, ξ) of the system (3.29). This matrix function satisfies

(Dt −D + F 0
0 + F̃1 +Rp)X(t, s, ξ) = 0, X(s, s, ξ) = I.

Then we have the representation

W (ξ, t) =

∫ t

tξ

X(t, s, ξ)F̃ (ξ, s) ds+X(t, tξ, ξ)W (ξ, tξ).(3.30)

For the fundamental solution X we make the ansatz

X(t, s, ξ) = E(t, s, ξ)Q(t, s, ξ),

E(t, s, ξ) = diag(E11(t, s, ξ), E22(t, s, ξ)),

Ejj(t, s, ξ) = exp

(
i

∫ t

s

(τj − f 0
0,jj − f̃1,jj)(ξ, σ)dσ

)
.

The matrix E satisfies DtE = (D − F 0
0 − F̃1)E, hence

DtX = (D − F 0
0 − F̃1)EQ + EDtQ = (D − F 0

0 − F̃1)EQ− RpEQ.

This gives the initial value problem

DtQ(t, s, ξ) + E(t, s, ξ)−1Rp(ξ, t)E(t, s, ξ)Q(t, s, ξ) = 0,

Q(s, s, ξ) = I

for the matrix Q. In order to estimate X, we find estimates for E and Q.
Since τ1 and τ2 are real, it holds

‖E(t, s, ξ)‖ ≤ max
j=1,2

exp

(∣∣∣∣
∫ t

s

|f 0
0,jj(ξ, σ)|dσ

∣∣∣∣
)

exp

(∣∣∣∣
∫ t

s

|f̃ 0
1,jj(ξ, σ)|dσ

∣∣∣∣
)

for all s, t ∈ [tξ, T ]. For the computation of the first integral, we recall that

f 0
0,jj(ξ, σ) = −Dσλ(σ)

2λ(σ)

(
1 ∓ b(ξ, σ) + c(ξ, σ)√

c(ξ, σ)2 + a(ξ, σ)

)

− ic0(σ)

2
+
Dσ(c(ξ, σ)2 + a(ξ, σ))

4(c(ξ, σ)2 + a(ξ, σ))
∓ ic0(σ)c(ξ, σ) −Dσc(ξ, σ)

2
√
c(ξ, σ)2 + a(ξ, σ)

.

Defining

K0 =
1

2
sup

[0,T ]×Rn

(
1 +

|b(ξ, t) + c(ξ, t)|√
c(ξ, t)2 + a(ξ, t)

)
,
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J(s, t) = exp

(∫ t

s

sup
ζ

λ′(τ)

2λ(τ)

∣∣∣∣∣1 ± b(ζ, τ) + c(ζ, τ)√
c(ζ, τ)2 + a(ζ, τ)

∣∣∣∣∣ dτ
)

(3.31)

we observe that

exp

(∫ t

s

|f 0
0,jj(ξ, σ)|dσ

)
≤ CJ(s, t) ≤ C

(
λ(t)

λ(s)

)K0

, tξ ≤ s ≤ t ≤ T.

It remains to estimate the second integral. From F̃1 ∈ SN{−1,−1, 2} follows

exp

(∫ t

s

|f̃ 0
1,jj(ξ, σ)|dσ

)
≤ C

∫ t

s

〈ξ〉−1 λ(σ)

Λ(σ)2
dσ

≤ C〈ξ〉−1

∫ T

tξ

λ(σ)

Λ(σ)2
dσ = C〈ξ〉−1(Λ(tξ)

−1 − Λ(T )−1) ≤ C

N
,

which results in ‖E(t, s, ξ)‖ ≤ CJ(s, t) ≤ C (λ(t)/λ(s))K0 for tξ ≤ s ≤ t ≤ T .

We come to the estimate of Q(t, s, ξ). For simplicity of notation we introduce

R̃p(t, s, ξ) = E(t, s, ξ)−1Rp(ξ, t)E(t, s, ξ) = E(s, t, ξ)Rp(ξ, t)E(t, s, ξ).

Then we have DtQ(t, s, ξ)+R̃p(t, s, ξ)Q(t, s, ξ) = 0, Q(s, s, ξ) = I, which gives

‖Q(t, s, ξ)‖ ≤ exp

(∫ t

s

∥∥∥R̃p(τ, s, ξ)
∥∥∥ dτ

)
, tξ ≤ s ≤ t ≤ T.

It is known that

∥∥∥R̃p(τ, s, ξ)
∥∥∥ ≤ C

(
λ(τ)

λ(s)

)2K0

‖Rp(ξ, τ)‖ ≤ C

(
λ(τ)

λ(s)

)2K0 λ(τ)

〈ξ〉pΛ(τ)p+1
.

In order to compute the integral I :=
∫ T
tξ
λ(t)2K0 λ(t)

Λ(t)p+1 dt, we employ partial

integration and (1.6) and obtain

I = λ(t)2K0
Λ(t)−p

−p
∣∣∣
T

tξ
−
∫ T

tξ

2K0λ(t)2K0−1λ′(t)
Λ(t)−p

−p dt

≤ 1

p
λ(tξ)

2K0Λ(tξ)
−p +

2K0d1

p
I.

If p is greater than 2K0d1, then I ≤ Cλ(tξ)
2K0Λ(tξ)

−p, hence

∫ T

tξ

∥∥∥R̃p(τ, s, ξ)
∥∥∥ dτ ≤ Cλ(tξ)

−2K0〈ξ〉−pλ(tξ)
2K0Λ(tξ)

−p ≤ C,

‖Q(t, s, ξ)‖ ≤ C, tξ ≤ s ≤ t ≤ T.
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Finally, it follows that

‖X(t, s, ξ)‖ ≤ CJ(s, t) ≤ C

(
λ(t)

λ(s)

)K0

, tξ ≤ s ≤ t ≤ T.

Summarizing these estimates we have the following proposition:

Proposition 3.6 (Estimate in Zhyp(N)). Let û = û(ξ, .) be a C2–solution
of the ODE (3.1). Then the following estimate holds in Zhyp(N):

|λ(t)ξû(ξ, t)| + |Dtû(ξ, t)|

≤ C

∫ t

tξ

J(s, t)|f̂(ξ, s)| ds+ CJ(tξ, t)(|λ(tξ)ξû(ξ, tξ)| + |Dtû(ξ, tξ)|),

where J(s, t) is given by (3.31).

3.2.3 Comparison with the Examples

Let us check whether this estimate of the loss of regularity is sharp. We
compare the results of the Propositions 3.4 and 3.6 with the Examples 2.2
and 2.3.

We assume that the right–hand side vanishes. In Zhyp(N) we get

|λ(t)ξû(ξ, t)| + |Dtû(ξ, t)| ≤ C%(ξ, tξ)J(tξ, t)(|ϕ̂(ξ)| + tξ|ψ̂(ξ)|).
In the case of the first example we have

b(ξ, t) = −h
l

ξ

|ξ| , c(ξ, t) ≡ 0, a(ξ, t) ≡ 1, J(s, t) =

(
λ(t)

λ(s)

)(1+
|h|
l )/2

.

Fix t > 0. Then the loss of ξû and Dtû in comparison to |ϕ̂(ξ)| + |tξψ̂(ξ)| is

%(ξ, tξ)λ(tξ)
−(1+ |h|

l )/2 ∼ λ(tξ)〈ξ〉λ(tξ)
−(1+ |h|

l )/2 ∼ 〈ξ〉 l
2(l+1)(−1+ |h|

l )〈ξ〉.
This shows that the losses of u in comparison with ϕ (for ψ ≡ 0) and in
comparison with ψ (for ϕ ≡ 0) are

〈ξ〉 l
2(l+1)(−1+

|h|
l ), tξ〈ξ〉

l
2(l+1)(−1+

|h|
l ) ∼ 〈ξ〉

−l−2+|h|
2(l+1) ,

respectively. This coincides with Example 2.2.

In the case of the other Example 2.3 we have

b(ξ, t) = − h

λ′(t)

λ(t)2

Λ(t)

ξ

|ξ|, c(ξ, t) ≡ 0, a(ξ, t) ≡ 1,

J(s, t) =

(
λ(t)

λ(s)

)1/2 (
Λ(t)

Λ(s)

)|h|/2
.
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In the hyperbolic zone we get the estimate

|λ(t)ξû(ξ, t)| + |Dtû(ξ, t)|

≤ C%(ξ, tξ)

(
λ(t)

λ(tξ)

)1/2(
Λ(t)

Λ(tξ)

)|h|/2
(|ϕ̂(ξ)| + tξ|ψ̂(ξ)|)

≤ C(t)〈ξ〉〈ξ〉(|h|−1)/2(t−1
ξ |ϕ̂(ξ)| + |ψ̂(ξ)|).

Using tξ = O((ln〈ξ〉)−1) (for fixed t > 0) we regain the estimate from Subsec-
tion 2.3. This shows that the estimates for λ(t)|ξû| and |Dtû| are sharp in the
cases of the two examples.

4 A–priori Estimates in Suitable Spaces

The aim of this section is to derive estimates of certain weighted L2–norms
of the Fourier transform of the solution using the point-wise estimates of the
Fourier transform derived in the previous section. The structure of these
point-wise estimates motivates the following definition.

Definition 4.1 (Spaces with special weight). For L1, L2, M , K1, K2 ≥
0 let ϑL1L2MK1K2 be the function

ϑL1L2MK1K2(ξ, t) =





(
%(ξ,tξ)

%(ξ,t)

)L1

λ(tξ)
L2J(tξ, t0)〈ξ〉MtK1

ξ : 0 ≤ t ≤ tξ,

λ(t)L2J(t, t0)〈ξ〉MtK2
ξ : tξ ≤ t ≤ T,

where J(s, t) is given in (3.31). The number t0 is defined by the formula
Λ(t0)〈0〉 = N . By BL1L2MK1K2 we denote the space

BL1L2MK1K2

:=
{
v ∈ C([0, T ],S ′(Rn)) : ϑL1L2MK1K2 v̂ ∈ C([0, T ], L2(Rn

ξ ))
}
,

‖v‖BL1L2MK1K2
:= sup

[0,T ]

‖ϑL1L2MK1K2(., t)v̂(., t)‖L2(Rn
ξ
) .

We will study the properties of these spaces in the next section. An important
special case is given by L1 = 1, L2 = 0. To simplify the notation, we write

ϑMK1K2(ξ, t) := ϑ10MK1K2(ξ, t), BMK1K2 := B10MK1K2.

We will even have K1 = K2 in most applications.

For the initial data we take the following space:
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Definition 4.2 (Spaces for the data). Let CL1L2MK1 be the space

CL1L2MK1 :=
{
v ∈ S ′(Rn) : ϑL1L2MK1K1(., 0)v̂(.) ∈ L2(Rn

ξ )
}
,

‖v‖CL1L2MK1
:= ‖ϑL1L2MK1K1(., 0)v̂(.)‖L2(Rn

ξ
) .

We introduce the abbreviation CMK1 in the special case L1 = 1, L2 = 0:

CMK1 := C10MK1 .

With these notations, we can now formulate the main energy estimate:

Theorem 4.3 (A–priori estimate). Let H(Dx, t) be a pseudodifferential
operator with the symbol

h(ξ, t) = λ(t)|ξ|χ
(

Λ(t)|ξ|
N

)
+ %(ξ, t)

(
1 − χ

(
Λ(t)|ξ|
N

))
,

χ(s) = 0 (s ≤ 1/2), χ(s) = 1 (s ≥ 2), χ ∈ C∞(R),

and assume H(Dx, 0)ϕ ∈ CMK, H(Dx, 0)ψ ∈ CM(K+1) and f ∈ BMKK. Then
the solution û of (3.1) satisfies

H(Dx, t)u ∈ BMKK, Dtu ∈ BM(K+1)K ,

‖H(Dx, t)u‖BMKK
+ ‖Dtu‖BM(K+1)K

≤ Capr

(
T ‖f‖BMKK

+ ‖H(Dx, 0)ϕ‖CMK
+ ‖H(Dx, 0)ψ‖CM(K+1)

)
.

Remark 4.4. If t > 0 is fixed, then the operator H acts like λ(t)〈Dx〉 and
the above estimate shows that the first derivative of the solution with respect
to x and the right–hand side f are from the same space. In other words, this
result is an estimate of strictly hyperbolic type.

Proof. For fixed t > 0, let R0(t) be the positive real number with

Λ(t)〈R0(t)〉 = N.

In order to estimate ‖Hu‖BMKK
it is sufficient to show that

‖%(ξ, t)û(ξ, t)ϑMKK(ξ, t)‖L2(|ξ|≤R0(t))

+ ‖λ(t)ξû(ξ, t)ϑMKK(ξ, t)‖L2(|ξ|≥R0(t))

≤ C
(
T ‖f‖BMKK

+ ‖H(Dx, 0)ϕ‖CMK
+ ‖H(Dx, 0)ψ‖CM(K+1)

)
.
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Here we used the fact that the computations in Section 3 remain true, if we
replace N by 2N or N/2 (if N is sufficiently large). Let us start with the first
term on the left. Due to (3.19) we have

|%(ξ, t)û(ξ, t)| ≤ C%(ξ, t)

(∫ t

0

(t− s)|f̂(ξ, s)| ds+ |ϕ̂(ξ)| + t|ψ̂(ξ)|
)
.

From (3.12) and the Inequality of Cauchy–Schwarz we conclude that

(∫ t

0

(t− s)|f̂(ξ, s)| ds
)2

≤ Ct

∫ t

0

|f̂(ξ, s)|2
%(ξ, s)2

ds.

It follows that

|%(ξ, t)û(ξ, t)ϑMKK(ξ, t)|2 ≤ C%(ξ, tξ)
2〈ξ〉2M t2Kξ J(tξ, t0)

2

×
(
t

∫ t

0

|f̂(ξ, s)|2
%(ξ, s)2

ds+ |ϕ̂(ξ)|2 + t2ξ|ψ̂(ξ)|2
)
.

Integration over |ξ| ≤ R0(t) gives

‖%(ξ, t)û(ξ, t)ϑMKK(ξ, t)‖2
L2(|ξ|≤R0(t))

≤ Ct

∫ t

0

∫

|ξ|≤R0(t)

|ϑMKK(ξ, s)f̂(ξ, s)|2 dξ ds

+ C ‖%(ξ, 0)ϕ̂(ξ)ϑMKK(ξ, 0)‖2
L2(|ξ|≤R0(t))

+ C
∥∥∥%(ξ, 0)ψ̂(ξ)ϑM(K+1)K(ξ, 0)

∥∥∥
2

L2(|ξ|≤R0(t))

≤ C(T 2 ‖f‖2
BMKK

+ ‖H(Dx, 0)ϕ‖2
CMK

+ ‖H(Dx, 0)ψ‖2
CM(K+1)

).

For the second term we use Proposition 3.6 and (3.22), (3.23):

|λ(t)ξû(ξ, t)| ≤ C

∫ t

tξ

J(s, t)|f̂(ξ, s)| ds

+ CJ(tξ, t)

∫ tξ

0

(1 + (tξ − s)%(ξ, tξ))|f̂(ξ, s)| ds

+ CJ(tξ, t)%(ξ, tξ)(|ϕ̂(ξ)| + tξ|ψ̂(ξ)|).
The second integral on the right can be bounded by

∫ tξ

0

|f̂(ξ, s)| ds+ %(ξ, tξ)

∫ tξ

0

(tξ − s)|f̂(ξ, s)| ds(4.1)

≤ C%(ξ, tξ)

(
tξ

∫ tξ

0

|f̂(ξ, s)|2
%(ξ, s)2

ds

)1/2

,
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see (3.12). As a consequence we obtain

|λ(t)ξû(ξ, t)ϑMKK(ξ, t)|2 ≤ C〈ξ〉2Mt2Kξ t

∫ t

tξ

|f̂(ξ, s)|2J(s, t0)
2 ds

+ C%(ξ, tξ)
2J(tξ, t0)

2〈ξ〉2Mt2Kξ

×
(
tξ

∫ tξ

0

|f̂(ξ, s)|2
%(ξ, s)2

ds+ |ϕ̂(ξ)|2 + t2ξ|ψ̂(ξ)|2
)
.

Integration over |ξ| ≥ R0(t) gives

‖λ(t)ξû(ξ, t)ϑMKK(ξ, t)‖2
L2(|ξ|≥R0(t))

≤ C(T 2 ‖f‖2
BMKK

+ ‖H(Dx, 0)ϕ‖2
CMK

+ ‖H(Dx, 0)ψ‖2
CM(K+1)

).

Then the estimate for ‖Hu‖BMKK
is proved. It remains to consider the term

‖Dtu‖BM(K+1)K
. We have for Dtû and λ(t)|ξ|û the same estimate in Zhyp(N),

see Propositions 3.6 and 3.4. The weights ϑMKK and ϑM(K+1)K coincide in
Zhyp(N). Then we immediately get that

∥∥Dtû(ξ, t)ϑM(K+1)K(ξ, t)
∥∥2

L2(|ξ|≥R0(t))

≤ C(T 2 ‖f‖2
BMKK

+ ‖H(Dx, 0)ϕ‖2
CMK

+ ‖H(Dx, 0)ψ‖2
CM(K+1)

).

So it suffices to study (Dtû)ϑM(K+1)K in Zpd(N). There the estimate (3.20)

holds. The additive term 1 in the coefficient (1+ tλ(t)〈ξ〉) for |ψ̂| causes some
difficulties, therefore we choose a higher tξ–exponent for ϑ in Zpd(N). We
estimate the integral on the right in a similar way as in (4.1) and get

∫ t

0

(1 + (t− s)(λ(t) − λ(s))〈ξ〉)|f̂(ξ, s)| ds

≤ C%(ξ, t)

(
t

∫ t

0

|f̂(ξ, s)|2
%(ξ, s)2

ds

)1/2

,

see (3.10) and (3.12). Then it follows that

|Dtû(ξ, t)ϑM(K+1)K(ξ, t)|2 ≤ C%(ξ, tξ)
2J(tξ, t0)

2〈ξ〉2Mt2K+2
ξ

×
(
t

∫ t

0

|f̂(ξ, s)|2
%(ξ, s)2

ds+ |ϕ̂(ξ)|2 + |ψ̂(ξ)|2
)
.

Integration over |ξ| ≤ R0(t) gives
∥∥Dtû(ξ, t)ϑM(K+1)K(ξ, t)

∥∥2

L2(|ξ|≤R0(t))

≤ C(T 2 ‖f‖2
BM(K+1)K

+ ‖H(Dx, 0)ϕ‖2
CM(K+1)

+ ‖H(Dx, 0)ψ‖2
CM(K+1)

)

≤ C(T 2 ‖f‖2
BMKK

+ ‖H(Dx, 0)ϕ‖2
CMK

+ ‖H(Dx, 0)ψ‖2
CM(K+1)

).
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The theorem is proved.

Corollary 4.5. Under the assumptions of the previous theorem, it holds

‖u‖B01(M+1)KK

≤ C(T ‖f‖BMKK
+ ‖H(Dx, 0)ϕ‖CMK

+ ‖H(Dx, 0)ψ‖CM(K+1)
).

Proof. In the pseudodifferential zone, we have

|û(ξ, t)ϑ01(M+1)KK(ξ, t)| =

∣∣∣∣%(ξ, t)û(ξ, t)
λ(tξ)〈ξ〉J(tξ, t0)

%(ξ, t)
〈ξ〉MtKξ

∣∣∣∣
≤ C|%(ξ, t)û(ξ, t)ϑMKK(ξ, t)|,

see (3.11). And in the hyperbolic zone, it holds

|û(ξ, t)ϑ01(M+1)KK(ξ, t)| =
∣∣λ(t)〈ξ〉û(ξ, t)J(t, t0)〈ξ〉MtKξ

∣∣
≤ C|λ(t)ξû(ξ, t)ϑMKK(ξ, t)|.

5 Properties of the Spaces BL1L2MK1K2

In 5.1 we show that the restrictions of the spaces BL1L2MK1K2 at the sets
{t = const} are spaces with temperate weight (if K1 = K2). In 5.2 we prove
that BL1L2MK1K2 is an algebra, if K1 = K2 and M is large enough. This allows
us to study superposition operators u 7→ f(u), when f is entire analytic.

5.1 Spaces with Temperate Weight

Definition 5.1 (Spaces with temperate weight, [5]). A positive func-
tion ϑ defined in R

n will be called a temperate weight function, if there exist
positive constants C and m such that

ϑ(ξ + η) ≤ (1 + C|ξ|)mϑ(η) ∀ξ, η ∈ R
n.

The set of all such functions will be denoted by K. If ϑ ∈ K and 1 ≤ p ≤ ∞,
we denote by Bp,ϑ the set of all distributions u ∈ S ′ such that û is a function
and

‖u‖p,ϑ :=

(
(2π)−n

∫
|ϑ(ξ)û(ξ)|pdξ

)1/p

<∞.

When p = ∞, we shall interpret ‖u‖p,ϑ as ess-sup|ϑ(ξ)û(ξ)|.
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We want to list some results about weight functions ϑ and spaces Bp,ϑ. For
details see [5].

Lemma 5.2. If ϑ ∈ K, then ϑ is continuous. If ϑ ∈ K with constants C, m,
then

ϑ(0)(1 + C|ξ|)−m ≤ ϑ(ξ) ≤ ϑ(0)(1 + C|ξ|)m.

It holds 〈ξ〉 := (1 + |ξ|2)1/2 ∈ K with C = m = 1.

Proposition 5.3. If ϑ1, ϑ2 ∈ K, then ϑ1 + ϑ2 ∈ K, ϑ1ϑ2 ∈ K, sup(ϑ1, ϑ2) ∈
K, inf(ϑ1, ϑ2) ∈ K. If ϑ ∈ K, then ϑs ∈ K for every real s.

Proposition 5.4. For each fixed t > 0, ϑL1L2MKK(., t) is a temperate weight
in the sense of Definition 5.1. The constants C and m are independent of t.

Proof. We can write

ϑL1L2MKK(ξ, t) = max

((
%(ξ, tξ)

%(ξ, t)

)L1

, 1

)
max (λ(tξ), λ(t))L2

× min(J(tξ, t0), J(t, t0))〈ξ〉MtKξ .

If we are able to show that

%(ξ, tξ), %(ξ, t), λ(tξ), J(tξ, t0), tξ ∈ K,

then the proposition is proved. Let us start with λ(tξ). From (3.3) it can be
deduced that

λ(tξ+η)

λ(tη)
≤
(

Λ(tξ+η)

Λ(tη)

)d0
=

( 〈η〉
〈ξ + η〉

)d0
≤ (1 + |ξ|)d0, tξ+η ≤ tη,

λ(tξ+η)

λ(tη)
≤
(

Λ(tξ+η)

Λ(tη)

)d1
=

( 〈η〉
〈ξ + η〉

)d1
≤ (1 + |ξ|)d1, tη ≤ tξ+η.(5.1)

Hence we conclude that λ(tξ) ∈ K with C = 1, m = d1. We know that 〈ξ〉 ∈ K
with C = m = 1. Then it follows that

%(ξ, tξ) =

(
1 +

1

N
λ(tξ)

2〈ξ〉2
)1/2

∈ K,

with constants C andm independent of t. We also know that 1, λ(t)2/Λ(t) ∈ K
with C = m = 0. Hence %(., t) ∈ K and again the constants C and m do not
depend on t. By (3.15), (3.16), (3.17) and (5.1) we have

J(tξ+η, t0)

J(tη, t0)
= J(tξ+η, tη) ≤

(
λ(tη)

λ(t|ξ|+|η|)

)K0

≤ (1 + |ξ|)d1K0.
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This gives J(tξ, t0) ∈ K. It remains to verify that tξ ∈ K. In order to prove
this, we show that tξ〈ξ〉 ∈ K. From (3.7) and the mean value theorem we
deduce that

tξ+η〈ξ + η〉 ≤ t|ξ|+|η|〈|ξ| + |η|〉
= t|η|〈η〉 + (t|ζ|〈|ζ|〉)′|ξ| (|η| < |ζ| < |η| + |ξ|)

= t|η|〈η〉 +

(−Λ(t|ζ|)

λ(t|ζ|)
+ t|ζ|

) |ζ|
〈ζ〉|ξ|

≤ t|η|〈η〉 + t|ζ||ξ| ≤ t|η|〈η〉 + t|η||ξ| ≤ (tη〈η〉)(1 + |ξ|).

Hence we obtain tξ〈ξ〉 ∈ K with C = m = 1.

Thus, we can conclude that the space with temperate weight ϑL1L2MKK =
ϑL1L2MKK(., t) is a Banach space for each frozen t ≥ 0. It is easy to see that
then BL1L2MKK is a Banach space, too.

Let us list some embedding results of the BL1L2MKK–spaces into the usual
spaces C ([0, T ], Hs) (and vice versa). The auxiliary results of Subsection 3.1
allow to estimate ϑ(ξ, t) and ϑ(ξ, 0) from above and below by certain powers
of 〈ξ〉. These estimates imply

C
(
[0, T ], HM−K(1−d0)+L1+d1|L1−K0|) ⊂ BL1L2MKK

⊂ C
(
[0, T ], HM−K−d1L2

)
,

HM−K(1−d0)+L1+d1|L1−K0| ⊂ CL1L2MK ⊂ HM−K+L1/2−d1(L1+L2).

5.2 The Algebra Property

The aim of this subsection is to show that BL1L2MKK is an algebra, if M is
sufficiently large. We split the proof into three lemmata.

Lemma 5.5. Let B2,ϑ(t) be a space with temperate weight ϑ(ξ, t). If

sup
[0,T ]×Rn

ξ

∫

Rn
η

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
dη =: C2

ϑ <∞,

then B2,ϑ(t) is an algebra and it holds

‖uv‖B2,ϑ(t)
≤ Cϑ ‖u‖B2,ϑ(t)

‖v‖B2,ϑ(t)
.

Proof. The proof can be found in [2].
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Lemma 5.6. Let the temperate weight ϑ(ξ, t) fulfil the conditions

sup
[0,T ]

∫

Rn
η

ϑ(η, t)−2 dη =: C1 <∞,

ϑ(ξ, t) ≤ C2ϑ(ξ/2, t) ∀(t, ξ) ∈ [0, T ] × R
n,

ϑ(ξ, t) = ϑ(|ξ|, t) is monotonically increasing in |ξ| for each fixed t.

Then a constant Cϑ exists with

sup
[0,T ]×R

n
ξ

∫

Rn
η

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
dη =: C2

ϑ <∞.

Proof. Let ξ ∈ R
n be fixed. We split R

n
η into three parts:

A = {η ∈ R
n : |η| ≥ 2|ξ|},

B = {η ∈ R
n : |η| ≤ 2|ξ|, |ξ − η| ≤ |η|},

C = {η ∈ R
n : |η| ≤ 2|ξ|, |ξ − η| ≥ |η|}.

In A we have |ξ| ≤ |η|/2 ≤ |ξ − η| ≤ 3|η|/2. This gives

∫

A

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
dη ≤

∫

A

ϑ(ξ, t)2

ϑ(η, t)2ϑ(η/2, t)2
dη

≤
∫

A

dη

ϑ(η, t)2
≤ C1.

In B it holds |η| ≥ |ξ|/2, hence

∫

B

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
dη ≤

∫

B

ϑ(ξ, t)2

ϑ(ξ/2, t)2ϑ(ξ − η, t)2
dη

≤ C2
2

∫

B

dη

ϑ(ξ − η, t)2
≤ C1C

2
2 .

And in C we have |ξ − η| ≥ |ξ|/2, which similarly gives

∫

C

ϑ(ξ, t)2

ϑ(η, t)2ϑ(ξ − η, t)2
dη ≤ C1C

2
2 .

The lemma is proved.

Lemma 5.7. If M is sufficiently large, then ϑL1L2MKK fulfils the conditions
mentioned in the previous lemma.

27



Proof. The estimate ϑL1L2MKK(ξ, t) ≥ C〈ξ〉M−K−d1L2 has been proved above.
If M > K + d1L2 + n/2, then

sup
[0,T ]

∫

Rn
η

ϑL1L2MKK(η, t)−2 dη <∞.

To consider the second assertion, we distinguish three cases. If (ξ, t) ∈ Zhyp(N)
and (ξ/2, t) ∈ Zhyp(N), then it is clear that

λ(t)L2J(t, t0)〈ξ〉MtMξ ≤ Cλ(t)L2J(t, t0)〈ξ/2〉MtMξ/2.

Now let (ξ, t) ∈ Zpd(N) and (ξ/2, t) ∈ Zpd(N). Then it is to show that

(
%(ξ, tξ)

%(ξ, t)

)L1

λ(tξ)
L2J(tξ, t0)〈ξ〉MtMξ(5.2)

≤ C

(
%(ξ/2, tξ/2)

%(ξ/2, t)

)L1

λ(tξ/2)
L2J(tξ/2, t0)〈ξ/2〉MtMξ/2.

We have %(ξ/2, t) ≤ %(ξ, t) ≤
√

2%(ξ/2, t). From (3.3) we get

(〈ξ/2〉
〈ξ〉

)d1
≤ λ(tξ)

λ(tξ/2)
≤
(〈ξ/2〉

〈ξ〉

)d0
,

hence C1λ(tξ/2) ≤ λ(tξ) ≤ C2λ(tξ/2). From this result and (3.11) follows

C ′
1%(ξ/2, tξ/2) ≤ %(ξ, tξ) ≤ C ′

2%(ξ/2, tξ/2).

Furthermore, due to (3.3) it holds

J(tξ, t0)

J(tξ/2, t0)
= J(tξ, tξ/2) ≤

(
λ(tξ/2)

λ(tξ)

)K0

≤
(

Λ(tξ/2)

Λ(tξ)

)d1K0

≤ C.

Finally, tξ ≤ tξ/2. Thus, (5.2) is proved. In the last case we have (ξ/2, t) ∈
Zpd(N) and (ξ, t) ∈ Zhyp(N). Then tξ ≤ t ≤ tξ/2 and, consequently,

λ(t)L2 ≤ λ(tξ/2)
L2 ≤ λ(tξ/2)

L2

(
%(ξ/2, tξ/2)

%(ξ/2, t)

)L1

.

With 〈ξ〉M ≤ C〈ξ/2〉M , J(tξ, t0) ≤ CJ(tξ/2, t0) and tξ ≤ tξ/2 we get
ϑL1L2MKK(ξ, t) ≤ ϑL1L2MKK(ξ/2, t) in this case, too.

Finally, we prove that ϑL1L2MKK(ξ, t) is monotonically increasing in |ξ|. In
the hyperbolic zone, the weight can be written as

λ(t)L2〈ξ〉M−K(〈ξ〉tξ)K.
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Because 〈ξ〉tξ is increasing in 〈ξ〉 (see (3.7)), we have the assertion, if M ≥ K.
Now let us consider Zpd(N). We can write the weight in the form

(
%(ξ, tξ)〈ξ〉d1

)L1
(λ(tξ)〈ξ〉d1)L2J(tξ, t0) (〈ξ〉tξ)K

× 〈ξ〉M−K−d1L1−d1L2%(ξ, t)−L1.

From (3.14) we gain the monotonicity of the first two factors. The term
J(tξ, t0) is obviously increasing in 〈ξ〉. Due to (3.7) we know that (〈ξ〉tξ)K
is increasing, too. It remains to show that the last factor r(〈ξ〉, t) :=
〈ξ〉M ′

%(ξ, t)−L1 increases in 〈ξ〉, M ′ := M − K − d1L1 − d1L2. Computing
the derivative gives

r〈ξ〉(〈ξ〉, t) ≥ M ′r(〈ξ〉, t)〈ξ〉−1 − L1

2
r(〈ξ〉, t)〈ξ〉−1 > 0,

if M > K + (d1 + 1/2)L1 + d1L2.

From these lemmata we immediately get:

Theorem 5.8 (Algebra). Let M > max(K+d1L2 +n/2, K+(d1+1/2)L1 +
d1L2), then BL1L2MKK is an algebra and it holds

‖uv‖BL1L2MKK
≤ Calg ‖u‖BL1L2MKK

‖v‖BL1L2MKK

for all functions u, v from BL1L2MKK.

Corollary 5.9 (Compositions). Let the assumptions of the previous theo-
rem be satisfied and let f(u) =

∑∞
j=1 fju

j be an entire analytic function with
f(0) = 0. Then f maps bounded sets from BL1L2MKK into bounded sets from
BL1L2MKK and it holds

‖f(u)‖BL1L2MKK
≤ C(‖u‖BL1L2MKK

) ‖u‖BL1L2MKK
.

6 Existence of Solutions and Regularity

In Section 4 we have proved an energy estimate for the solutions to Lu =
f(x, t), cf. Theorem 4.3 and Corollary 4.5. The following theorem is devoted
to the semilinear case.

Theorem 6.1 (Semilinear case). Let f(u) be an entire analytic function
with f(0) = 0 and let H(Dx, 0)ϕ ∈ CMK, H(Dx, 0)ψ ∈ CM(K+1). If T > 0 is
small enough and M is sufficiently large, then a unique local solution u of

Lu = f(u), u(x, 0) = ϕ(x), ut(x, 0) = ψ(x)
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exists. This solution (and its first derivatives) lie in the same spaces as the
solution v (and its first derivatives, respectively) of the linear problem

Lv = 0, v(x, 0) = ϕ(x), vt(x, 0) = ψ(x) :

Hu ∈ BMKK, ut ∈ BM(K+1)K , u ∈ B01(M+1)KK .

Remark 6.2. It is possible to prove the same result, if the right–hand side
f(u) is replaced by f(u,Hu).

Proof. In the Banach space B := BMKK×BM(K+1)K we choose the closed set

MD ={(u1, u2) : u1(x, 0) = H(Dx, 0)ϕ(x), u2(x, 0) = ψ(x),

‖u1‖BMKK
+ ‖u2‖BM(K+1)K

≤ D}.

If the constant D is large enough, then MD is not empty. Then we consider
the mapping T : MD → B, T : (v1, v2) 7→ (u1, u2) = (Hu, ut) with

Lu = f(v), v = H(Dx, t)
−1v1,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x).

From % ≥ 1 and λ(t)〈ξ〉 ≥ λ(tξ)〈ξ〉 ≥
√
N%(ξ, tξ)/C ≥ C ′ we deduce that

0 < h(ξ, t)−1 ≤ C ′′, which results in v ∈ BMKK, hence f(v) ∈ BMKK

and ‖f(v)‖BMKK
≤ C(D) ‖v‖BMKK

. The estimate from Theorem 4.3 implies
(u1, u2) ∈ MD if T is small enough and D is sufficiently large. Hence, T maps
MD into itself. If V, V ′ ∈ MD, V = (v1, v2), V

′ = (v′1, v
′
2) and v = H−1v1,

v′ = H−1v′1, then

‖f(v) − f(v′)‖BMKK
≤ C(D)′ ‖v − v′‖BMKK

≤ C(D)′′ ‖V − V ′‖B ,

since BMKK is an algebra and f is an entire analytic function. If T V = (u1, u2)
and T V ′ = (u′1, u

′
2), then Theorem 4.3 implies

‖u1 − u′1‖BMKK
+ ‖u2 − u′2‖BM(K+1)K

≤ CaprTC(D)′′ ‖V − V ′‖B .

If T is sufficiently small, then the mapping T is contractive. The fixed point
theorem of Banach gives the assertion.

Finally, let us study the difference u− v. It satisfies

L(u− v) = f(u), (u− v)(x, 0) = 0, (u− v)t(x, 0) = 0.

Theorem 6.3. Under the assumptions of Theorem 6.1 it holds

H(u− v) ∈ BM(K−1)(K−1), (u− v)t ∈ BM(K−1)(K−1),

u− v ∈ B01(M+1)(K−1)(K−1).
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Proof. Corollary 4.5 gives u ∈ B01(M+1)KK . Since this space is an algebra, we
have f(u) ∈ B01(M+1)KK . Similar to the proof of Theorem 4.3, we estimate
‖H(u− v)‖BM(K−1)(K−1)

and ‖(u− v)t‖BM(K−1)(K−1)
. In Zpd(N) it holds

|%(ξ, t)(û− v̂)(ξ, t)| ≤ C

∫ t

0

%(ξ, t)(t− s)|(f ◦ u) (̂ξ, s)| ds

≤ C%(ξ, t)tξ
√
t

(∫ t

0

|(f ◦ u) (̂ξ, s)|2 ds
)1/2

.

From (3.11) it can be concluded that

∥∥%(ξ, t)(û− v̂)(ξ, t)ϑM(K−1)(K−1)

∥∥2

L2(|ξ|≤R0(t))

≤ Ct

∫ t

0

∫

|ξ|≤R0(t)

|(f ◦ u) (̂ξ, s)|2J(tξ, t0)
2λ(tξ)

2〈ξ〉2〈ξ〉2Mt2Kξ dξ ds

≤ Ct2 ‖f(u)‖2
B01(M+1)KK

.

The derivative Dt(u− v) fulfils the estimate

|Dt(û− v̂)(ξ, t)| ≤ C

∫ t

0

(1 + (λ(t) − λ(s))(t− s)〈ξ〉)|(f ◦ u) (̂ξ, s)| ds

≤ C
√
t

(∫ t

0

|(f ◦ u) (̂ξ, s)|2 ds
)1/2

+ C%(ξ, t)t
√
t

(∫ t

0

|(f ◦ u) (̂ξ, s)|2 ds
)1/2

in the pseudodifferential zone. From (3.11) we obtain

∥∥Dt(û− v̂)ϑM(K−1)(K−1)

∥∥2

L2(|ξ|≤R0(t))
≤ C ‖f‖2

BMKK

+ Ct

∫ t

0

∫

|ξ|≤R0(t)

|(f ◦ u) (̂ξ, s)|2t2λ(tξ)
2〈ξ〉2J(tξ, t0)

2〈ξ〉2Mt2K−2
ξ dξ ds

≤ C ‖f‖2
BMKK

+ Ct2 ‖f‖B01(M+1)KK
.

In the hyperbolic zone we have

|λ(t)ξ(û− v̂)(ξ, t)| + |(û− v̂)t(ξ, t)|

≤ C

∫ t

tξ

J(s, t)|(f ◦ u) (̂ξ, s)| ds

+ CJ(tξ, t)

∫ tξ

0

(1 + %(ξ, tξ)(tξ − s))|(f ◦ u) (̂ξ, s)| ds
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≤ C
√
t

(∫ t

tξ

|(f ◦ u) (̂ξ, s)|2J(s, t)2 ds

)1/2

+ CJ(tξ, t)
√
tξ

(∫ tξ

0

|(f ◦ u) (̂ξ, s)|2 ds
)1/2

+ CJ(tξ, t)%(ξ, tξ)tξ
√
tξ

(∫ tξ

0

|(f ◦ u) (̂ξ, s)|2 ds
)1/2

.

Making use of

1 ≤ N = Λ(tξ)〈ξ〉 ≤ λ(tξ)tξ〈ξ〉 ≤
√
N%(ξ, tξ)tξ

we can drop the second term on the right. Then it follows that
∥∥λ(t)ξ(û− v̂)ϑM(K−1)(K−1)

∥∥2

L2(|ξ|≥R0(t))

+
∥∥(û− v̂)tϑM(K−1)(K−1)

∥∥2

L2(|ξ|≥R0(t))

≤ Ct

∫

|ξ|≥R0(t)

∫ t

tξ

|(f ◦ u) (̂ξ, s)|2
λ(s)2J(s, t)2〈ξ〉2(M+1)t2Kξ

λ(s)2〈ξ〉2t2ξ
ds dξ

+ Ct

∫

|ξ|≥R0(t)

∫ tξ

0

|(f ◦ u) (̂ξ, s)|2λ(tξ)
2J(tξ, t)

2〈ξ〉2(M+1)t2Kξ ds dξ

≤ Ct

∫ t

0

∫

|ξ|≥R0(t)

|(f ◦ u) (̂ξ, s)|2ϑ01(M+1)KK(ξ, s)2 dξ ds

≤ Ct2 ‖f‖2
B01(M+1)KK

,

since λ(s)〈ξ〉tξ ≥ λ(tξ)〈ξ〉tξ ≥ Λ(tξ)〈ξ〉 = N in Zhyp(N). Using the ideas from
the proof of Corollary 4.5 we deduce that u− v ∈ B01(M+1)(K−1)(K−1).

7 An Example

In the Propositions 1.1 and 1.2, possible applications of our general approach
to special weakly hyperbolic Cauchy problems have been explained. Let us
now illustrate in detail the results of this paper by an example. In [4] the
Example of Qi Min-You has been extended to Cauchy problems of the type

Lv = vtt + ctlvxt − at2lvxx − bltl−1vx = 0, l ∈ N, l ≥ 1,

v(x, 0) = ϕ(x), vt(x, 0) = 0.

The ansatz v(x, t) =
∑m

k=0Ckt
(l+1)k∂kxϕ(x+ µtl+1) leads to

m =
−l(l + 1)µ+ bl

2(l + 1)2µ+ (l + 1)c
, µ1,2 = − 1

2(l + 1)

(
c∓

√
c2 + 4a

)
.
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This gives

m1,2 =
l

2(l + 1)

(
−1 ± 2b+ c√

c2 + 4a

)
.

Let us assume that the constants l, a, b and c are chosen in such a way that m1

is a positive integer and that m1 > m2. It is not possible that both numbers
m1 and m2 are positive integers, because m1 + m2 = −l/(l + 1). Under this
assumption, singularities of the datum ϕ propagate along one characteristic
only and the loss of Sobolev regularity is m1; that is, ϕ ∈ Hs(R) implies
v ∈ C(R, Hs−m1(R)) and these are the sharp spaces.

Let us now apply the general theory developed in this paper. We have

b(ξ, t) = b
ξ

|ξ| , c(ξ, t) =
1

2
c
ξ

|ξ| , a(ξ, t) = a,

J(s, t) = exp

(∫ t

s

λ′(τ)

2λ(τ)

(
1 +

|2b+ c|√
c2 + 4a

)
dτ

)
=

(
λ(t)

λ(s)

) 1
2
+

|2b+c|

2
√

c2+4a

,

tξ = O
(
〈ξ〉− 1

l+1

)
, λ(tξ) = O

(
〈ξ〉− l

l+1

)
.

This implies for the weight ϑMKK(ξ, t):

h(ξ, 0)ϑMKK(ξ, 0) = %(ξ, tξ)J(tξ, t0)〈ξ〉MtKξ

= O

(
〈ξ〉M+1+ l

2(l+1)

„

−1+ |2b+c|√
c2+4a

«

− K
l+1

)
,

ϑMKK(ξ, t) = J(t, t0)〈ξ〉MtKξ = O(〈ξ〉M− K
l+1 )

if t > 0 is fixed and 〈ξ〉 is large. It is known that ‖Hv‖BMKK
≤

C ‖H(Dx, 0)ϕ‖CMK
, where H is an operator that behaves like λ(t)∂x if t > 0

is fixed. Then our theory says that the loss of Sobolev regularity is

l

2(l + 1)

(
−1 +

|2b+ c|√
c2 + 4a

)
.

But this value is exactly m1. In other words, the results of this paper are
sharp in the case of this linear model problem.

However, our theory says more, namely that the solution u of the semilinear
problem

Lu = f(u) =

∞∑

j=1

fju
j, u(x, 0) = ϕ(x), ut(x, 0) = 0
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has the same regularity as v, and that the difference u − v has higher reg-
ularity than u and v. The difference in the regularities is described by
t−1
ξ = O(〈ξ〉1/(l+1)), cf. Theorems 6.1 and 6.3. Summarizing, we have

u, v ∈ C([0, T ], Hs−m1(R)), u− v ∈ C([0, T ], Hs−m1+1/(l+1)(R))

if T > 0 is sufficiently small and s is sufficiently large.

This allows to draw some conclusions about the propagation of singularities.
Let us assume ϕ ∈ Hs(R) and ϕ ∈ C∞(R \ {x0}). From the explicit represen-
tation of v(x, t) we know that the singularity of ϕ at the point x0 propagates
along the characteristic

C = {(x, t) : x+ µ1t
l+1 = x0}.

The function v is smooth in the complement set of this characteristic. From
the above statements we get that

∅ 6= sing–suppHs−m1+ε(v(., t)) = sing–suppHs−m1+ε(u(., t)),

if 0 < t ≤ T and 0 < ε ≤ 1/(l+ 1). In other words, u has Hs−m1 singularities
on C. The function u may have singularities away from C, but these are
weaker, at least of order 1/(l + 1). The strongest singularities of u coincide
with the singularities of v.

Remark 7.1. The results tell us that mild singularities of solutions to semi-
linear equations propagate in the same way as the singularities of solutions to
linear equations. The linear case has been studied, e.g., in [10] and [1].
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[5] L. Hörmander. Linear Partial Differential Operators. Springer, 1969.

[6] M.-Y. Qi. On the Cauchy problem for a class of hyperbolic equations
with initial data on the parabolic degenerating line. Acta Math. Sinica,
8, 1958, 521–529.

[7] M. Reissig and K. Yagdjian. Lp−Lq estimates for the solutions of strictly
hyperbolic equations of second order with increasing in time coefficients.
to appear in: Math. Nachr.

[8] M. Reissig and K. Yagdjian. Weakly hyperbolic equations with fast os-
cillating coefficients. Osaka J. Math., 36, 1999, 433–460.

[9] K. Shinkai. Stokes multipliers and a weakly hyperbolic operator. Comm.
PDE, 16, 1991, 667–682.

[10] K. Taniguchi and Y. Tozaki. A hyperbolic equation with double charac-
teristics which has a solution with branching singularities. Math. Japon-
ica, 25, 1980, 279–300.

[11] S. Tarama. On the second order hyperbolic equations degenerating in
the infinite order. — example —. Math. Japonica, 42, 1995, 523–533.

[12] K. Yagdjian. The Cauchy Problem for Hyperbolic Operators. Multiple
Characteristics, Micro–Local Approach. Akademie Verlag, Berlin, 1997.

[13] A. Yoshikawa. Construction of a parametrix for the Cauchy problem of
some weakly hyperbolic equation I, II, III. Hokk. Math. J., 6, 7, 7, 1977,
1977, 1978, 313–344, 1–26, 127–141.

Michael Dreher
Institute of Mathematics, University of Tsukuba

Ibaraki 305, Japan

email: dreher@math.tsukuba.ac.jp

Michael Reissig
Fakultät für Mathematik und Informatik

TU Bergakademie Freiberg

09596 Freiberg, Germany

email: reissig@mathe.tu-freiberg.de

35


