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Abstract. The intention of this article is twofold: First, we survey our re-
sults from [19, 20] about energy estimates for the Cauchy problem for weakly
hyperbolic operators with finite time degeneracy at time t = 0. Then, in a
second part, we show that these energy estimates are sharp for a wide range
of examples. In particular, for these examples we precisely determine the loss
of regularity that occurs in passing from the Cauchy data at t = 0 to the
solutions.
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1. Introduction

This article is devoted to the study of the Cauchy problem for certain degenerate
hyperbolic operators. These operators, P , are either first-order, N × N , pseudo-
differential systems,

P = Dt −A(t, x,Dx), A ∈ C∞((0, T ],OpS1
cl),(1.1)

or higher-order, scalar, pseudodifferential equations,

P = Dm
t +

m∑

j=1

aj(t, x,Dx)Dm−j
t , aj ∈ C∞((0, T ],OpSj

cl),(1.2)

where Sj
cl = Sj

cl(R
n × Rn) is the space of jth-order classical pseudodifferential

symbols. The precise assumptions as t→ +0 are stated in (1.7), (1.8) below. (Note
that the interval (0, T ] is open at t = 0.) In particular, the symbols A(t, x, ξ) and
aj(t, x, ξ), respectively, are smooth up to t = 0. Differential operators in this class
are of the form

P =
∑

j+|α|≤m

ajα(t, x) t(j+(l∗+1)|α|−m)+Dj
tD

α
x ,

where ajα ∈ C∞
b ([0, T ] × Rn) for j + |α| ≤ m, y+ = max{y, 0} for y ∈ R. Some

examples are discussed, e.g., in Sections 1.2.1, 3.1.

1.1. Well-posedness of the Cauchy problem

For most function spaces, X , hyperbolicity is a necessary condition for the Cauchy
problem for the operator P to be X well-posed. Thereby, the operator P is said to
be hyperbolic if all its characteristic roots, i.e., the roots τj(t, x, ξ) of the equation
det(τ1N −σ1(A)(t, x, ξ)) = 0 and τm +

∑m
j=1 σ

j(aj)(t, x, ξ)τ
m−j = 0, respectively,

are real. Here, σj(a) denotes the principal symbol of a ∈ Sj
cl.
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It is known that in order to ensure X well-posedness of the Cauchy problem
for the operator P , additional assumptions — besides hyperbolicity — have to be
made, usually depending on the function space X .

If X = A(Rn), the space of analytic functions, then the Cauchy problem for
differential operators P (not necessarily hyperbolic) is always well-posed, for the
initial hypersurface t = 0 is non-characteristic for P .

If X = Gs(Rn), the Gevrey space of index s, and 1 < s ≤ m/(m− 1), then
hyperbolicity is a necessary and sufficient condition for the well-posedness of the
Cauchy problem for scalar operators (1.2), see Bronstein [9], Hörmander [24],
Ivrii [29], Kajitani [37], Komatsu [40], Nishitani [51]. A similar result holds
for first-order systems.

The famous Lax–Mizohata theorem states that hyperbolicity is a necessary
condition for the C∞ well-posedness of the Cauchy problem for differential oper-
ators as above, see Lax [42], Mizohata [49].

Hyperbolicity, however, is not a sufficient condition, as will be seen below.
Sufficient conditions are, e.g., strict hyperbolicity (the characteristic roots τj(t, x, ξ)
are distinct) and symmetric hyperbolicity (the matrix σ1(A)(t, x, ξ) is Hermitian),
see Leray [43], Petrovsky [58].

The situation is delicate for non-strictly hyperbolic operators, so-called weakly

hyperbolic operators ; and many questions have been remained open until now.
Roughly speaking, there are two effects causing ill-posedness of the Cauchy prob-
lem: First, oscillations in the coefficients can occur and, secondly, the lower-order
terms play a crucial role. In Colombini–Spagnolo [14], e.g., an oscillating func-
tion a ∈ C∞([0, T ]; R), a(t) ≥ 0, has been constructed for which there are data
u0, u1 ∈ C∞(R) such that the Cauchy problem

{
utt(t, x) − a(t)uxx(t, x) = 0, (t, x) ∈ (0, T ) × R,

u(0, t) = u0(x), ut(0, x) = u1(x)

has even no distributional solution u. Several examples of ill-posed Cauchy prob-
lems for hyperbolic first-order systems with oscillating smooth coefficients have
been given by Matsumoto [46].

Concerning the influence of the lower-order terms for hyperbolic first-order
systems, we mention the results by Nishitani [54], who has studied hyperbolic
operators of the form Dt − A(t, x)Dx + B(t, x) with analytic 2 × 2 matrices A
and B; and who has given necessary and sufficient conditions for the C∞ well-
posedness, formulated in terms of certain Newton polygons. For related results,
see Nishitani–Vaillant [55], Vaillant [71], and the references therein.

One of the earliest examples of ill-posedness for a second-order operator is
due to Gevrey [21]: The non-characteristic Cauchy problem for the side-reversed
heat operator ∂2

t − ∂x is not well-posed in Gs, s > 2. Moreover, this Cauchy
problem is neither well-posed in C∞ nor in the Sobolev spaces Hs.

Conditions on the lower-order terms that guarantee well-posedness in a given
function space, X , are called Levi conditions, see Levi [44, 45]. For large classes of
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hyperbolic operators, Levi conditions forGs with s > m/(m−1) and C∞ have been
given by Colombini–Ishida–Orru [11], Colombini–Jannelli–Spagnolo [12],
Colombini–Orru [13], Hörmander [25], Ishida–Yagdjian [27], Ivrii [30, 31],
Ivrii–Petkov [33], and Oleinik [56].

For the model operator

P = D2
t − t2lD2

x + b(t)tkDx, k, l ∈ N0,

where b(0) 6= 0 and b is sufficiently smooth, these conditions are as follows:

• k < l−1: The Cauchy problem is well-posed in Gs if 1 < s < (2l−k)/(l−
k − 1). This bound on s is sharp.

• k = l− 1: The Cauchy problem is well-posed in Gs, C∞, and the scale of
Sobolev spaces Hs, however, with a certain loss of regularity in the latter
case. For more about this, see also this article.

• k ≥ l : The Cauchy problem is well-posed in Gs, C∞, and the scale of
Sobolev spaces Hs, now without any loss of regularity.

1.2. Degenerate differential operators

In this paper, we will be concerned with the case k = l−1 — in our understanding
this is the most interesting one. Henceforth, l will be denoted by l∗.

As noted above, the main example for an operator in the class under consid-
eration is the mth-order, scalar, hyperbolic differential operator

(1.3) P =
∑

j+|α|≤m

ajα(t, x) t(j+(l∗+1)|α|−m)+Dj
tD

α
x ,

where ajα ∈ C∞
b ([0, T ]× Rn), with principal symbol

(1.4) σm(P )(t, x, τ, ξ) =

m∏

k=1

(
τ − tl∗µk(t, x, ξ)

)
.

Here, the µk ∈ C∞([0, T ];S(1)) are real-valued, where S(j) = S(j)(Rn× (Rn \0)) is
the space of pseudodifferential symbols that are positively homogeneous of degree
j in ξ 6= 0. In the notation of (1.2),

(1.5) aj(t, x, ξ) =
∑

|α|≤j

am−j,α(t, x) t((l∗+1)|α|−j)+ξα.

The operator P is weakly hyperbolic, for its characteristic roots τk(t, x, ξ) =
tl∗µk(t, x, ξ) coincide at t = 0.

Operators of such structure — given by (1.3), (1.4) — will be investigated
in detail in this paper. They exhibit two phenomena attracting our attention:
The loss of regularity and a non-standard propagation of the singularities under
favourable circumstances. Generically, a singularity coming along one null bichar-
acteristic from, say, t < 0, continues to propagate along all its m connecting null
bicharacteristics in t > 0 after it has passed over t = 0. It is a discrete phenome-

non when this complete branching does not occur, i.e., when at least one of the m
branches in t > 0 is missing in the propagation picture.
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1.2.1. A first example Both phenomena have been observed in the following
example by Qi [59]. It will be generalized in Section 3.1 below:

{
utt − t2uxx − (4k + 1)ux = 0, (t, x) ∈ (0, T )× R,

u(0, x) = u0(x), ut(0, x) = 0,
(1.6)

for some k ∈ N0, with explicit solution representation

u(t, x) =
k∑

j=0

cjkt
2j u

(j)
0

(
x+

t2

2

)
, ckk 6= 0.

One sees that the solution u has k derivatives less as compared with the initial
data u0, and that the family of characteristics x − t2/2 = const traveling to the
right has disappeared. Note that the number k in (1.6) can indeed be any real
number, or even be a smooth complex-valued function k = k(t, x). In these two
cases, however, the singularities generically do not propagate in the exceptional
manner just described; but we still have a loss of regularity of |<k(0, x) + 1/4|−1/4
derivatives at time t = 0 and spatial point x, as our calculus clearly reveals. In
particular, the loss of regularity is a Lipschitz function of x, but may fail to be C1.

1.2.2. Main tools Our approach in treating the operator P from (1.3), (1.4)
consists in converting it into an equivalent first-order, m ×m, pseudodifferential
system and then to diagonalize the latter as far as it is needed. This is why we
consider systems of the form (1.1). The system resulting from converting P has
necessarily to be pseudodifferential, since for first-order differential systems in the
class under consideration it can be shown that no loss of regularity occurs — hence
such a system cannot be equivalent to P .

Therefore, we establish a calculus for a class Sm,η;λ of pseudodifferential
symbols a(t, x, ξ) on [0, T ]×R2n, where m, η ∈ R are the parameters involved and
the function λ(t) = tl∗ is to fix the kind of degeneracy at t = 0 under consideration.
In case m = η, this class of pseudodifferential symbols a(t, x, ξ) expresses the
degeneracy at t = 0 of the principal part of the operator from (1.1) and (1.2),
respectively, as well as Levi conditions on the lower-order terms in a very precise
manner, see (1.7), (1.8). The case m 6= η is needed to formulate the hyperbolicity
assumption, see (2.11). The classes Sm,η;λ are introduced with the help of two
weight functions g(t, ξ), h(t, ξ), see (2.3) and Definition 2.1.

The diagonalization procedure requires two steps: In fact, after a first step the
principal part of the operator A(t, x,Dx) from (1.1) has become diagonal. Then a
second step that up to lower-order terms effects the operator A(t, x,Dx) only at
t = 0 proves to be necessary in order to read off the precise loss of regularity. Ac-
cordingly, we single out a subclass S̃m,η;λ ⊂ Sm,η;λ of pseudodifferential symbols
a(t, x, ξ) possessing a principal symbol σm(a) as usual and, in addition, a subor-
dinated secondary symbol σ̃m−1,η(a). Both symbols σ1(A)(t, x, ξ), σ̃0,1(A)(x, ξ) in
case of (1.1) parallel the diagonalization procedure. For more details, see Defini-
tion 2.6 and thereafter.
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We complete our assumptions as t → +0 in (1.1) and (1.2), respectively: In
(1.1), we shall assume that

A(t, x,Dx) ∈ OpS1,1;λ,(1.7)

while, in (1.2), we shall assume that

aj(t, x,Dx) ∈ OpSj,j;λ, 1 ≤ j ≤ m.(1.8)

It is important to note that the differential symbol
∑

|α|≤j ãα(t, x)ξα, where ãα ∈
C∞

b ([0, T ]× Rn) for |α| ≤ j, belongs to the symbol class Sj,j;λ if and only if

(1.9) ãα(t, x) = t((l∗+1)|α|−j)+aα(t, x)

for certain aα(t, x) ∈ C∞
b ([0, T ]×Rn). In this sense, (1.7), (1.8) express sharp Levi

conditions on the lower-order terms of (1.1) and (1.2), respectively.

1.2.3. Other approaches and further results Some authors have con-
structed parametrices for the hyperbolic operators P from (1.3), (1.4), see Ku-

mano-go [41], Nakamura–Uryu [50], Taniguchi–Tozaki [69], Yoshikawa

[74]; see also Aleksandrian [1], Yagdjian [73] for related results. In Amano–

Nakamura [4], these parametrices have been exploited to classify the exceptional
cases for the propagation of singularities, with an explicit description for m = 2.
The energy method for operators in the class has been developed by Kumano-

go [41], Nishitani [52, 53], among others. A relation to Stokes phenomena and
hypoellipticity of certain associated operators has been established by Amano–

Nakamura [3], Reissig–Yagdjian [60], Shinkai [66].
The case m = 2, l∗ = 1 is of particular interest. The Cauchy problem for the

operator P +Q is then C∞ well-posed for any first-order differential operator Q
with smooth coefficients, see (1.3); one says that the operator P is regularly hyper-

bolic. Regular hyperbolicity on the level of the principal symbol has been charac-
terized by Ivrii–Petkov [33] (necessary conditions) and by Ivrii [32], Iwasaki

[34], Melrose [48] (sufficient conditions). Pseudodifferential calculi for a treat-
ment of such operators have been introduced by Boutet de Monvel [6], Joshi

[36], Sjöstrand [67], Witt [72], and others. Operators with non-involutive char-
acteristics and propagation phenomena have been further studied among others
by Alinhac [2], Boutet de Monvel–Trèves [7], Bove–Lewis–Parenti [8],
Ivrii [28], Kajitani–Nishitani [38], Melrose [47]. The question on the propa-
gation of singularities in this special case has finally been settled by Hanges [23],
who has given a symplectically invariant condition for a complete branching of
singularities to do not occur.

Semilinear problems connected with the operator P from (1.3), (1.4) have
been investigated by Dreher–Reissig [17], Dreher–Witt [19], Iwasaki [35].

1.3. Notation

Here, we list notation that will be used in the sequel. Note that the positive integer
l∗ ∈ N+ is fixed throughout this paper:
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λ(t) = tl∗ — characterizes the kind of degeneracy
under consideration at time t = 0

β∗ = 1/(l∗ + 1) — constant

Λ(t) =
∫ t

0
λ(t′) dt′ — primitive of λ(t)

〈ξ〉 = (1 + |ξ|2)1/2

〈ξ〉K = (K + |ξ|2)1/2

Hs(x) = Hs(x)(Rn) — Sobolev space of variable order for
s ∈ C∞

b (Rn; R), see (2.1)
Hs,δ(x);λ = Hs,δ(x);λ((0, T ) × Rn) — function space of Sobolev type for

s ∈ R, δ ∈ C∞
b (Rn; R), see Defini-

tions 2.2 and 3.8

Sj
cl = Sj

cl(R
n × Rn) — space of jth-order classical pseudo-

differential symbols

Sj
1,δ = Sj

1,δ(R
n × Rn) — space of jth-order pseudodifferent-

ial symbols of type 1, δ, where 0 ≤
δ < 1

S(j) = S(j)(Rn × (Rn \ 0)) — space of pseudodifferential symbols
which are positively homogeneous
of order j in ξ 6= 0

Sm,η;λ — symbol class, see Definition 2.1

S̃m,η;λ — symbol class, see Definition 2.6

Sm,η;λ
+ — symbol class, see Definition 4.7

σm(a) = σm(a)(t, x, ξ) — principal symbol of a ∈ S̃m,η;λ

σ̃m−1,η(a) = σ̃m−1,η(a)(x, ξ) — secondary symbol of a ∈ S̃m,η;λ

χ(t) — cut-off function at t = ∞, i.e., χ ∈
C∞(R+), 0 ≤ χ ≤ 1, χ(t) = 0 if
t ≤ 1/2, and χ(t) = 1 if t ≥ 1

χ+(t, ξ) = χ(Λ(t)〈ξ〉) — cuts into the hyperbolic zone
χ+

K(t, ξ) = χ(Λ(t)〈ξ〉K )
χ−(t, ξ) = 1 − χ+(t, ξ) — cuts into the pseudodifferential zone
χ−

K(t, ξ) = 1 − χ+
K(t, ξ)

g = g(t, ξ) — see (2.3)
h = h(t, ξ) — see (2.3) and (4.5)

<Q = (Q+Q∗)/2 — real part of the matrix Q, self-
adjoint part of the operator Q

=Q = (Q−Q∗)/(2i) — imaginary part of the matrix Q,
antiself-adjoint part of the operator
Q
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MN×N(C) — space of N ×N matrices with com-
plex entries

1N — N ×N identity matrix

2. Formulation of the results

In this section, our main results are stated. Beforehand, however, we provide fur-
ther motivation.

2.1. Motivation and plan of the paper

2.1.1. Qi’s example reviewed We now come back to Qi’s example (1.6) and
utilize it to explain typical features and difficulties connected with our approach.
This approach consists of two components: A calculus for a class of pseudodiffer-
ential operators generalizing (1.5) and an adapted scale of Sobolev-type function
spaces. These function spaces are most appropriate for the hyperbolic operators
under consideration in so far as they allow energy estimates including a sharp loss
of regularity.

In case of problem (1.6) with k ∈ N0, we already know that u0 ∈ Hs+k(R)
implies u ∈ Hs

loc((0, T ) × R). Therefore, we are looking for Sobolev-type function
spaces whose elements exhibit Hs regularity for t > 0, but (essentially) Hs+k

regularity at t = 0 via a trace theorem.

Moreover, we can consider the Cauchy problem (1.6) also with initial data
u(0, x) = u0(x), ut(0, x) = u1(x). A different representation of the solution (to be
discussed in Section 3.1 below) then tells us that u0 ∈ Hs+k(R), u1 ∈ Hs+k−1/2(R)
provides a solution u ∈ Hs

loc((0, T )×R). This is unexpected inasmuch as one would
expect that the orders of regularity of u0 and u1 differ by 1, as is the case for the
wave equation case. Of course, we wish our function spaces to reflect this particular
feature.

There is more about the loss of regularity: Consider (1.6) again, but now with
a smooth function k = k(t, x) satisfying k(0, x) ≥ 0, x ∈ Rn, that takes the differ-
ent integer values k1 6= k2 in a neighbourhood V1 of (0, x1) and a neighbourhood
V2 of (0, x2), respectively. By virtue of the local uniqueness of the solution u, we
have

u(t, x) =

kp∑

j=0

cjk,p t
2ju

(j)
0

(
x+

t2

2

)
, (t, x) ∈ V ′

p , p = 1, 2,

on certain smaller neighbourhoods V ′
p ⊂ Vp. One can see that the loss of regularity

at the different points (0, x1) 6= (0, x2) differs. One then guesses (in fact, we are
going to prove this below) that the Cauchy problem (1.6) with initial data u0

belonging to the Sobolev space Hs+k(0,x)(R) of variable order s + k(0, x) has a
solution u ∈ Hs

loc((0, T ) × R). Here,

(2.1) Hs+k(0,x)(R) :=
(
〈Dx〉s+k(0,x)

K

)−1
L2(Rn),
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where the parameter K > 0 is chosen large to ensure the operator 〈Dx〉s+k(0,x)
K

with symbol (K + |ξ|2)(s+k(0,x))/2 be invertible on S ′(R).
Our main results are stated in Theorems 2.5, 2.7, 2.8, 2.9, and 2.10. To let

the reader to get acquainted with them, we now describe these results as applied
to the operator P from Qi’s example (1.6), where k = k(t, x) is a smooth function
satisfying k(0, x) ≥ 0, x ∈ Rn.

To begin with, we postulate function spacesHs.δ(x);λ((0, T )×R), where s ∈ R

is Sobolev regularity for t > 0 with respect to space-time, δ(x) = 2k(0, x) is related
to the loss of regularity at the point (0, x), and λ(t) = t is as above (l∗ = 1), where
these function spaces possess the following properties:

• Hs,δ(x);λ((0, T ) × R)∣∣(T ′,T )×R
= Hs((T ′, T ) × R) for all 0 < T ′ < T ,

• Hs,δ(x);λ((0, T ) × R) ⊆ Hs((0, T ) × R) provided that δ(x) ≥ 0,

• For 0 ≤ j < s − 1/2, the trace map τj : u 7→ Dj
tu|t=0 maps the function

space Hs,δ(x);λ((0, T ) × R) onto Hs+δ(x)−j/2−1/4(R).

Further properties of these spaces as well as details of their construction will be
discussed in Section 3.4 (for the special case that δ ∈ R is independent of x) and
Section 4.4 (for general δ ∈ C∞

b (Rn; R)).
The Cauchy problem

(2.2)

{
utt − t2uxx − (4k(t, x) + 1)ux = f(t, x),

u(0, x) = u0(x), ut(0, x) = u1(x)

is well-posed in the scale
{
Hs,δ(x);λ((0, T ) × R)

∣∣ s ≥ 0
}

in the following sense:

• For uj ∈ Hs+δ(x)/2−j/2(R), j = 0, 1, and f ∈ Hs−1,δ(x)+1;λ((0, T )×R), the

Cauchy problem (2.2) possesses a unique solution u ∈ Hs,δ(x);λ((0, T )×R),
• The choice δ(x) = 2k(0, x) ≥ 0 is optimal; the statement in the previous

item becomes false if δ(x0) < 2k(0, x0) for some x0 ∈ R,
• The solution u is locally unique in H1,δ(x);λ((0, T )× R).

2.1.2. Plan of the paper In the next section, Section 2.2, we state our main
results. To formulate these results, we need to introduce the basic function spaces
Hs,δ(x);λ((0, T )×Rn) as well as the symbol classes Sm,η;λ and S̃m,η;λ, respectively.
In Section 3, we discuss the example of a second-order, scalar operator P with
coefficients that are independent of x ∈ Rn (m = 2). This case is treated by Fourier
transformation with respect to x, followed by dealing with the resulting family of
O.D.E. on the half-space R+ (with variable t) depending on the parameter ξ 6= 0.

The symbol classes Sm,η;λ, S̃m,η;λ and the function spaces Hs,δ(x);λ((0, T ) × Rn)
mentioned above are thoroughly studied in Section 4. Note that a specific role
is played by the “shift operator” Θ, that is introduced in (4.4). A treatment of

Θ enforces us to enlarge the symbol class Sm,η;λ to Sm,η;λ
+ , which is done in

Section 4.4. Our main results are then proved in Section 5.
Compared to Dreher–Witt [19, 20], the representation is now enhanced in

several respects. Furthermore, Theorems 2.9 and 2.10 stating local uniqueness of
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the solutions and sharpness of the energy estimates, respectively, are new results
not contained in previous publications.

In Appendix A, we collect and prove some auxiliary material, while, in Ap-
pendix B, some open problems are listed.

2.2. Main results

Already here we formulate our main results, although part of the motivation, in
particular, for the introduction of the symbol classes S1,1;λ in Definition 2.1 and
S̃1,1;λ in Definition 2.6 will be given only in Section 3.

In Bourdaud–Reissig–Sickel [5], Colombini–Ishida [10], Ishida–Yagd-

jian [27], Kajitani–Wakabayashi–Yagdjian [39], Reissig–Yagdjian [61],
Yagdjian [73], the approach to weakly hyperbolic operators with time degen-
eracy at time t = 0 is based on dividing the (t, ξ) strip [0, T ]×Rn into two zones:
The pseudodifferential (or inner) zone Zpd given by Λ(t)〈ξ〉 ≤ 1 and the hyperbolic
(or outer) zone Zhyp given by Λ(t)〈ξ〉 ≥ 1. This reflects the fact that the microlocal

properties of the operators under consideration are different in these two zones.
Our approach is based on weight functions. A careful analysis, e.g., in Section 3.1,
shows that one should employ the following two weight functions:

{
ḡ(t, ξ) = 〈ξ〉β∗ + λ(t)〈ξ〉,
h̄(t, ξ) = (t+ 〈ξ〉−β∗)−1.

We have ḡ ∈ S1,1;λ, h̄ ∈ S0,1;λ, but ḡ /∈ S̃1,1;λ, h̄ /∈ S̃0,1;λ. In order to stay within
the smaller symbol classes, we will change g(t, ξ) for ḡ(t, ξ) and h(t, ξ) for h̄(t, ξ):

{
g(t, ξ) = χ−(t, ξ)〈ξ〉β∗ + χ+(t, ξ)λ(t)〈ξ〉,
h(t, ξ) = χ−(t, ξ)〈ξ〉β∗ + χ+(t, ξ) t−1,

(2.3)

which does not effect the symbol estimates in Definition 2.1.
We then consider the Cauchy problems for first-order pseudodifferential sys-

tems {
DtU(t, x) = A(t, x,Dx)U(t, x) + F (t, x), (t, x) ∈ (0, T )× Rn,

U(0, x) = U0(x)
(2.4)

and for mth–order, scalar, pseudodifferential equations




Dm
t u(t, x) +

m∑

j=1

aj(t, x,Dx)Dm−j
t u(t, x) = f(t, x), (t, x) ∈ (0, T ) × Rn,

Dj
tu(0, x) = uj(x), 0 ≤ j ≤ m− 1.

(2.5)

Here, U , U0, and F are N vectors and A(t, x, ξ) is an N × N matrix symbol
belonging to the symbol class S1,1;λ, as in (1.7), and u, uj , and f are scalar
functions and the aj(t, x, ξ) are scalar symbols from the symbol class Sj,j;λ, as in
(1.8).

These symbol classes are defined as follows:
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Definition 2.1. For m, η ∈ R, the symbol class Sm,η;λ consists of all functions
a ∈ C∞([0, T ]×R2n;MN×N(C)) such that, for each multi-index (j, α, β) ∈ N1+2n,
there is a constant Cjαβ > 0 with the property that

(2.6)
∣∣∂j

t ∂
α
x ∂

β
ξ a(t, x, ξ)

∣∣ ≤ Cjαβ g(t, ξ)
mh(t, ξ)η−m+j〈ξ〉−|β|

for all (t, x, ξ) ∈ [0, T ]× R2n.

The parameter m counts powers of gh−1 ∼ 1 + Λ(t)〈ξ〉, while the parameter
η counts powers of (t+ 〈ξ〉−β∗)−1. In particular,

Sm,η;λ ⊂ C∞((0, T ];Sm
1,0),

while, for j = 0, 1, 2, . . . ,

∂j
t a(0, x, ξ) ∈ S

(η+j)β∗

1,0 when a ∈ Sm,η;λ.

Note also that C∞([0, T ], Sm
1,0) ⊂ Sm,m(l∗+1);λ.

Next, we introduce the function spaces Hs,δ;λ((0, T )× Rn):

Definition 2.2. For s ∈ N0, δ ∈ C∞
b (Rn; R), and T > 0, we define the function

space Hs,δ;λ((0, T ) × Rn) by the finiteness of the norm

‖u‖Hs,δ(x);λ((0,T )×Rn) =

(
s∑

l=0

T 2l−1

∫ T

0

∥∥Θsl(t)D
l
tu(t, ·)

∥∥2

L2(Rn)
dt

)1/2

,(2.7)

where

Θsl(t) =
(
gs−lh(s+δ)l∗

)
(t, x,Dx), 0 ≤ l ≤ s.

For general s ∈ R, δ ∈ C∞
b (Rn; R), the function spaces Hs,δ;λ((0, T ) × Rn) are

defined by interpolation and duality.

Details of this construction can be found in Sections 3.4 and 4.4.

We now discuss the well-posedness of the Cauchy problems (2.4) and (2.5)
in the scale of function spaces Hs,δ(x);λ((0, T ) × Rn): For the mth-order, N ×N
matrix, pseudodifferential operator

P = Dm
t +

m∑

j=1

Aj(t, x,Dx)Dm−j
t ,

where Aj(t, x,Dx) ∈ OpSj,j;λ for 1 ≤ j ≤ m, we consider the Cauchy problem

(2.8)

{
PU = F (t, x), (t, x) ∈ (0, T )× Rn,

Dj
tU(0, x) = Uj(x), 0 ≤ j ≤ m− 1.

Definition 2.3. (a) For s ∈ N0, δ ∈ C∞
b (Rn; R), the Cauchy problem for the oper-

ator P is said to be (s, δ(x))–well-posed if, for all Uj ∈ Hs+m+β∗δ(x)l∗−β∗j−1(Rn),

0 ≤ j ≤ m − 1, and F ∈ Hs,δ(x)+m−1;λ((0, T ) × Rn), problem (2.8) possesses
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a unique solution U ∈ Hs+m−1,δ(x);λ((0, T ) × Rn). Moreover, this solution U is
subject to the estimate

(2.9)

s+m−1∑

l=0

t2l
∥∥Θs+m−1,l(t)D

l
tU(t, ·)

∥∥2

L2(Rn)

≤ C




m−1∑

j=0

‖Uj‖2
Hs+m+β∗δ(x)l∗−β∗j−1(Rn) + t2 ‖F‖2

Hs,δ(x)+m−1;λ((0,t)×Rn)


 .

for all 0 ≤ t ≤ T , where the constant C = C(s, δ, T ) > 0 is independent of Uj , F .
(b) For δ ∈ C∞

b (Rn; R), the Cauchy problem for the operator P is said to be
δ(x)–well-posed if it is (s, δ(x))–well-posed for all s ∈ N0.

We obviously have the following result:

Lemma 2.4. (a) If the Cauchy problem for the operator P is (s, δ(x))–well-posed,

then we have the estimate

(2.10) ‖U‖2
Hs+m−1,δ(x);λ((0,T )×Rn)

≤ C




m−1∑

j=0

‖Uj‖2
Hs+m+β∗δ(x)l∗−β∗j−1(Rn) + T 2 ‖F‖2

Hs,δ(x)+m−1;λ((0,T )×Rn)


 .

(b) If the Cauchy problem for the operator P is δ(x)–well-posed, then estimate

(2.10) holds for all s ≥ 0, with suitable constants C = C(s, δ, T ) > 0.

Assuming symmetrizable hyperbolicity for (2.4), we have:

Theorem 2.5. Assume the symbol A(t, x, ξ) ∈ S1,1;λ in (2.4) is symmetrizable-
hyperbolic in the sense that there is an N × N matrix M ∈ S0,0;λ such that

| detM(t, x, ξ)| ≥ c for |ξ| ≥ C and some C, c > 0 and

(2.11) χ(|ξ|/2C)=(MAM−1) ∈ S0,1;λ,

for the cut-off function χ(t) see Section 1.3. Then, for each s ≥ 0, there is a

function δ ∈ C∞
b (Rn; R) such that (2.4) is (s, δ(x))–well-posed.

This statement can be refined to δ(x)–well-posedness — including a sharp
upper bound on δ — if we assume the symbol A(t, x, ξ) is composed of two homo-
geneous components and a lower-order remainder:

Definition 2.6. For m, η ∈ R, the symbol class S̃m,η;λ consists of all functions
a ∈ C∞([0, T ]× R2n) of the form

(2.12) a(t, x, ξ) = χ+(t, ξ) t−η
(
a0(t, x, t

l∗+1ξ) + a1(t, x, t
l∗+1ξ)

)
+ a2(t, x, ξ),

where

a0 ∈ C∞([0, T ];S(m)), a1 ∈ C∞([0, T ];S(m−1)),
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and a2 ∈ Sm−2,η;λ + Sm−1,η−1;λ. With a(t, x, ξ) as in (2.12), we associate two
homogeneous symbol components,

σm(a)(t, x, ξ) = t−η a0(t, x, t
l∗+1ξ) ∈ tm(l∗+1)−η C∞([0, T ];S(m)),

σ̃m−1,η(a)(x, ξ) = a1(0, x, ξ) ∈ S(m−1).

Note that each symbol a(t, x, ξ) of the form (2.12) does belong to the symbol

class Sm,η;λ, i.e., we have S̃m,η;λ ⊂ Sm,η;λ.

Example. Consider Eq. (1.6) with k = k(t, x) and introduce the vector U(t, x) =
(g(t,Dx)u(t, x), Dtu(t, x))

t. Then U solves the 2 × 2 first-order system

DtU(t, x) = A(t, x,Dx)U(t, x)

for a certain A ∈ S̃1,1;λ, where

σ1(A)(t, x, ξ) = λ(t)|ξ|
(

0 1
1 0

)
, σ̃0,1(A)(x, ξ) = −i

(
1 0

k(0, x) ξ
|ξ| 0

)
.

Theorem 2.7 (Dreher–Witt [20, Theorem 1.1]). Let A ∈ S̃1,1;λ, where

σ1(A)(t, x, ξ) = λ(t)|ξ|A0(t, x, ξ), σ̃0,1(A)(x, ξ) = −il∗A1(0, x, ξ);

A0 ∈ C∞([0, T ];S(0)), A1 ∈ S(0). Assume A(t, x, ξ) symmetrizable–hyperbolic in

the sense that there is a symbol M0 ∈ C∞([0, T ];S(0)) satisfying | detM0(t, x, ξ)| ≥
c for ξ 6= 0 and some c > 0 such that the matrix

(2.13) (M0A0M
−1
0 )(t, x, ξ) is Hermitian

for all (t, x, ξ) ∈ [0, T ]×Rn×(Rn \0). Let M1 ∈ S(0) be an arbitrary N×N matrix

and δ ∈ C∞
b (Rn; R) satisfy

(2.14) <
(
M0A1M

−1
0 +

[
M1M

−1
0 ,M0A0M

−1
0

])
(0, x, ξ) ≤ δ(x)1N ,

for all (x, ξ) ∈ Rn× (Rn \0), where [·, ·] denotes the commutator of matrices. Then

the Cauchy problem (2.4) is δ(x)–well-posed.

Under these assumptions, Theorem 2.5 is applicable, where the symmetrizer
M can be chosen to belong to Op S̃0,0;λ and satisfy

σ0(M)(t, x, ξ) = M0(t, x, ξ), σ̃−1,0(M)(x, ξ) = −il∗|ξ|−1M1(t, x, ξ).

When applied to the mth-order, scalar, differential operator P from (1.3),
(1.4), we infer from Theorem 2.7:

Theorem 2.8 (Dreher–Witt [20, Proposition 5.6]). Let δ ∈ C∞
b (Rn; R) satisfy

(2.15) δ(x) ≥ sup
1≤h≤m

sup
ξ 6=0

(
−

τ
2

∂2p
∂τ2 + <q

∂p
∂τ

)
(0, x, µh(0, x, ξ), ξ),

where p(τ) = p(t, x, τ, ξ) is the compressed principal symbol of P ,

p(t, x, τ, ξ) =
∑

j+|α|=m

ajα(t, x)τ jξα(2.16)
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q(τ) = q(x, τ, ξ) is (up to the factor il−1
∗ ) the secondary symbol of P ,

q(x, τ, ξ) = il−1
∗

∑

j+|α|=m−1,
|α|>0

ajα(0, x)τ jξα,

and the τh = tl∗µh for 1 ≤ h ≤ m are the characteristic roots of P .

Then the Cauchy problem (2.5) is δ(x)–well-posed.

In order to study the local uniqueness, we introduce local versions of the
function spaces Hs,δ(x);λ((0, T )×Rn): For Ω ⊆ (0, T )×Rn being an open set, the
function space Hs,δ(x);λ(Ω) is defined as the space of restrictions of functions from
Hs,δ(x);λ((0, T ) × Rn) to Ω; and it is equipped with the infimum norm.

Theorem 2.9. Let P be the mth-order partial differential operator from (1.3), (1.4)
with characteristic roots τj = tl∗µj , where the µj are real and distinct,

|µj(t, x, ξ) − µk(t, x, ξ)| ≥ c |ξ|, j 6= k, c > 0.

Let the function δ ∈ C∞
b (Rn; R) satisfy condition (2.15) of Theorem 2.8. Further

let Ω ⊆ (0, T )× Rn be open such that its closure Ω is a neighbourhood of (0, 0) in

[0, T ]× Rn. Set Ω0 := Ω ∩ {t = 0}.
Under these assumptions we have that if the function u ∈ Hm−1,δ(x);λ(Ω) is

an energy solution to
{

Pu(t, x) = 0, (t, x) ∈ Ω,

Dj
tu(0, x) = 0, x ∈ Ω0, 0 ≤ j ≤ m− 1,

then u ≡ 0 in a certain open set Ω′ ⊆ Ω, where Ω′ is a neighbourhood of (0, 0) in

[0, T ]× Rn.

Upon a suitable choice of the matrix M1 ∈ S(0), (2.14) provides an optimal
lower bound for δ(x) in a number of cases. Here, this is exemplified for the scalar
operator P from (1.3), (1.4), where we assume strict hyperbolicity for t > 0. For a
discussion of other cases, see Dreher–Witt [20, Section 5]. (Note that, in general,
the lower bound for δ(x) is a Lipschitz function in x, but may fail to be C1, while
δ ∈ C∞

b (Rn; R).)

Theorem 2.10. Suppose that Dt−A is strictly hyperbolic for t > 0 in the sense that

A ∈ S̃1,1;λ and the characteristic roots τj(t, x, ξ) = tl∗µj(t, x, ξ) of the principal

part τ1N − σ1(A)(t, x, ξ) are real-valued and satisfy

(2.17) |µj(t, x, ξ) − µk(t, x, ξ)| ≥ c|ξ|, j 6= k, c > 0.

Then there are symbols νj ∈ S̃1,1;λ, j = 1, . . . , N , which coincide with the eigen-

values of

σ1(A)(t, x, ξ) + t−1σ̃0,1(A)(x, ξ), Λ(t)〈ξ〉 ≥ C,

for some large C > 0 and which possess the following properties :
(a) If a function δ ∈ C∞

b (Rn; R) satisfies

<(iσ̃0,1(νj))(x, ξ) ≤ δ(x)l∗, (x, ξ) ∈ Rn × (Rn \ 0),
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for all 1 ≤ j ≤ N , then the Cauchy problem (2.4) is δ(x)–well-posed.

(b) If δ ∈ C∞
b (Rn; R) and

<(iσ̃0,1(νj))(x0, ξ0) > δ(x0)l∗

for some j and some (x0, ξ0) ∈ Rn × (Rn \ 0), then the Cauchy problem (2.4) is

not (0, δ(x))–well-posed.

3. A model case

To motivate our considerations later on, we first consider the Cauchy problem for
the operator P from (1.3), (1.4) in the special case that P is of the second order
and its coefficients are independent of x ∈ Rn:

{
Pu(t, x) = f(t, x), (t, x) ∈ (0, T )× Rn,

u(0, x) = u0(x), Dtu(0, x) = u1(x),
(3.1)

where

(3.2) P = D2
t + 2

n∑

j=1

λ(t)cj(t)DtDj −
n∑

j,k=1

λ2(t)ajk(t)DjDk

− i
n∑

j=1

λ′(t)bj(t)Dj + c0(t)Dt,

ajk , cj ∈ C∞([0, T ]; R), and bj ∈ C∞([0, T ]). We shall assume hyperbolicity for P :



n∑

j=1

cj(t)ξj




2

+

n∑

j,k=1

ajk(t)ξjξk ≥ α0|ξ|2, (t, ξ) ∈ [0, T ]× Rn,

for some α0 > 0. This special case is comparatively easy to analyze, since Fourier
transform with respect to x turns (3.1) into a family of ordinary differential equa-
tions with parameter ξ ∈ Rn. For the complete derivation, see Dreher–Witt [19].

3.1. Taniguchi–Tozaki’s example

The following example by Taniguchi–Tozaki [69], with n = 1, is particularly
instructive:{

Pu = (D2
t − λ2(t)D2

x − iλ′(t)bDx)u = 0, (t, x) ∈ (0, T ) × R,

u(0, x) = u0(x), ut(0, x) = u1(x),
(3.3)

where b ∈ R. The Fourier transform û(t, ξ) = Fx→ξ

{
u(t, x)

}
of the solution u is

given by

û(t, ξ) = e−iΛ(t)ξ
1F1

(
β∗(1 − b)l∗

2
, β∗l∗; 2iΛ(t)ξ

)
û0(ξ)

+ te−iΛ(t)ξ
1F1

(
β∗(1 − b)l∗

2
+ β∗, β∗(l∗ + 2); 2iΛ(t)ξ

)
û1(ξ),
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where 1F1(α, γ; z) is the confluent hypergeometric function. It behaves asymptot-
ically like

1F1(α, γ, z)

=
Γ(γ)

Γ(γ − α)
e±iπαz−α +

Γ(γ)

Γ(α)
ezzα−γ + O(|z|−α−1 + |z|α−γ−1) as |z| → ∞,

with the upper sign being taken if −π/2 < arg z < 3π/2 and the lower sign being
taken if −3π/2 < arg z ≤ −π/2. From this representation we can now easily read
off the asymptotic behaviour of |û(t, ξ)| and |Dtû(t, ξ)|.

First, one of the exponents −α and α− γ is negative, since γ > 0. Therefore,
one of the terms z−α and zα−γ is negligible for large |z|. Then we check that

λ(t)〈ξ〉|û(t, ξ)| ≤ λ(t)〈ξ〉 (Λ(t)〈ξ〉)β∗(−1+|b|)l∗/2 (
c1|û0(ξ)| + c2〈ξ〉−β∗ |û1(ξ)|

)
,

|Dtû(t, ξ)| ≤ λ(t)〈ξ〉 (Λ(t)〈ξ〉)β∗(−1+|b|)l∗/2 (c3|û0(ξ)| + c4〈ξ〉−β∗ |û1(ξ)|
)
,

for large values of Λ(t)〈ξ〉 and certain cj > 0. Moreover, we can replace “≤” by
“∼” if one of the initial data û0(ξ), û1(ξ) vanishes.

Hence, it is natural to assume that 〈Dx〉β∗u0 and u1 obey the same Sobolev
regularity.

Combining the two cases Λ(t)〈ξ〉 → ∞ and t = 0, |ξ| → ∞, we find that

(
〈ξ〉β∗ + λ(t)〈ξ〉

)
|û(t, ξ)| and |Dtû(t, ξ)|

exhibit the same asymptotic behaviour as |ξ| → ∞ when 0 ≤ t ≤ T . This hints at
the importance of the weight function g(t, ξ) ∼ 〈ξ〉β∗ + λ(t)〈ξ〉.

As a side remark, we note that one of the two characteristic curves emanating
from a point on the initial line t = 0 cannot transport any singularities at all if
α ∈ −N0 or γ−α ∈ −N0, since the Gamma function has poles at the non-positive
integers.

3.2. Conversion into a 2 × 2 system

This observation in case of Eq. (3.3) hints at the conversion of the general case (3.1)
into a first-order pseudodifferential system: Utilizing the weight function g(t, ξ)
from (2.3), we introduce the vector

U(t, x) =

(
g(t,Dx)u(t, x)
Dtu(t, x)

)

and obtain the Cauchy problem

{
DtU(t, x) = A(t,Dx)U(t, x) + F (t, x),

U(0, x) = U0(x),
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where

A(t, ξ) = Ã0(t, ξ) + Ã1(t, ξ)(3.4)

=

(
0 g(t, ξ)

λ(t)2|ξ|2

g(t,ξ) a(t, ξ) −2λ(t)|ξ|c(t, ξ)

)
+

(
Dtg(t,ξ)

g(t,ξ) 0
Dtλ(t)|ξ|

g(t,ξ) b(t, ξ) −c0(t)

)

and

a(t, ξ) =

n∑

j,k=1

ajk(t)
ξjξk
|ξ|2 , b(t, ξ) = −

n∑

j=1

bj(t)
ξj
|ξ| , c(t, ξ) =

n∑

j=1

cj(t)
ξj
|ξ| ,

U0(x) =

(
〈Dx〉β∗u0(x)

u1(x)

)
, F (t, x) =

(
0

f(t, x)

)
.

The first matrix in the definition of A is the first-order principal part, while

the second matrix constitutes a lower-order term belonging to L∞((0, T ), Sβ∗

1,0) ∩
t−1L∞((0, T ), S0

1,0). The imaginary part of this second term plays a decisive role
in determining the loss of regularity.

3.3. Estimation of the fundamental matrix

The partial Fourier transform Û(t, ξ) of U(t, x) can be represented as

(3.5) Û(t, ξ) = X(t, 0; ξ)Û0(ξ) + i

∫ t

0

X(t, t′; ξ)F̂ (t′, ξ) dt′,

where X(t, t′; ξ), (t, t′; ξ) ∈ [0, T ]2 × Rn, is the fundamental matrix of the system
Dt −A(t, ξ): {

DtX(t, t′; ξ) = A(t, ξ)X(t, t′; ξ),

X(t′, t′; ξ) = 12.

An estimation of the matrix norm ‖X(t, t′; ξ)‖ can be found via a diagonalization
approach, see Dreher–Reissig [17], Dreher–Witt [19], and also Kajitani–

Wakabayashi–Yagdjian [39]:

Proposition 3.1. We have

‖X(t, t′; ξ)‖ ≤ C, 0 ≤ t′ ≤ t ≤ 〈ξ〉−β∗(3.6)

‖X(t, t′; ξ)‖ ≤ C

(
λ(t)

λ(t′)

)δ0

, 〈ξ〉−β∗ ≤ t′ ≤ t ≤ T,(3.7)

‖X(t, t′; ξ)‖ ≤ C

(
λ(t)

λ(〈ξ〉−β∗)

)δ0

, 0 ≤ t′ ≤ 〈ξ〉−β∗ ≤ t ≤ T,(3.8)

where the number

δ0 =
1

2
+ sup

ξ∈Rn

|<b(0, ξ) + c(0, ξ)|
2
√
c(0, ξ)2 + a(0, ξ)

is related to the loss of regularity β∗δ0l∗.



18 Michael Dreher and Ingo Witt

3.4. Function spaces: An approach via edge Sobolev spaces

The departing point is the observation that

(3.9) P = t−mP̃ (t, x, tDt, t
l∗+1Dx)

for the mth-order differential operator P from (1.3), where P̃ (t, x, τ̃ , ξ̃) is a polyno-

mial of degree m in the compressed covariables τ̃ = tτ , ξ̃ = tl∗+1ξ that is smooth
up to t = 0. (Note that σm(P̃ ) = p, with p taken from (2.16).) This representation
hints at P as some kind of “generalized” edge-degenerate differential operators
(with respect to the hypersurface t = 0). Edge-degeneracy is encountered when
l∗ = 0 in (3.9).

Introducing the function spaces Hs,δ;λ((0, T ) × Rn) for s, δ ∈ R, here we
adopt Schulze’s approach to edge-degenerate problems, see Schulze [63, 64]. In
particular, one separates the action of the operator P in direction of t from its
action in the directions of the spatial variables xj for 1 ≤ j ≤ n. This is accom-
panied by corresponding function spaces: The function spaces Hs,δ;λ((0, T )×Rn)
— which should “somehow” be related to the kind of degeneracy at t = 0 — are
obtained by restricting from the open “model wedge” R+ × Rn,

Hs,δ;λ((0, T ) × Rn) = Hs,δ;λ(R+ × Rn)
∣∣
(0,T )×Rn ,

where the function spaces Hs,δ;λ(R+ × Rn) appear as realizations of the abstract
concept of an edge Sobolev space with respect to the “edge” {0}×Rn of the “model
wedge” R+ × Rn, see in 3.4.2 below.

3.4.1. Geometric content of relation (3.9) Before we proceed, we look at
(3.9). Since [t∂t, t

l∗+1∂xj ] = (l∗ + 1)tl∗+1∂xj , [tl∗+1∂xj , tl∗+1∂xk ] = 0 for 1 ≤ j, k ≤
n, where [ , ] is the commutator on vector fields, we have:

• The vector fields t∂t, t
l∗+1∂x1 , . . . , tl∗+1∂xn form a basis (over C∞

b ([0, T ]×
Rn)) of the Lie algebra generated by them,

• The operator tmP belongs to the envelope of this Lie algebra.

The local belonging of a vector field to this Lie algebra is clarified by the
next result:

Lemma 3.2. A vector field X on R × Rn belongs to the Lie algebra generated by

the vector fields t∂t, t
l∗+1∂x1 , . . . , tl∗+1∂xn (over C∞(R × Rn)) if and only if, for

all functions a ∈ C∞
c (Rn), b ∈ C∞

c (R × Rn),

(3.10) X
(
a(x) + tl∗+1b(t, x)

)
vanishes to the (l∗ + 1)th order at t = 0.

Remark 3.3. A function c ∈ C∞
c (R×Rn) is of the form a(x)+ tl∗+1b(t, x) for some

a ∈ C∞
c (Rn), b ∈ C∞

c (R × Rn) if and only if ∂j
t c(0, x) ≡ 0 for 1 ≤ j ≤ l∗.

In fact, (3.10) need to be checked only when a = xj , b = 0 for some 1 ≤ j ≤ n
and when a = 0, b = 1. Moreover, the latter can be replaced by checking that X(t)
vanishes at t = 0.
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Condition (3.10), however, has the advantage of being coordinate invariant
as is seen that coordinate changes which keep the geometric situation under con-
sideration are (locally near t = 0) of the form

(3.11)

{
t̃ = tφ(t, x),

x̃ = κ(x) + tl∗+1ψ(t, x),

φ(0, x) > 0, with suitable C∞ functions κ, φ, ψ. This characterizes the situation
under consideration as being a cuspidal one.

3.4.2. Function spaces on the half-space R+ × Rn. The concept of an
abstract edge Sobolev space requires the introduction of a certain function space

Hs,δ;λ(R+) on the half-axis R+ as well as of a strongly continuous group {κ(δ)
ν }ν>0

acting on it. In particular, κ
(δ)
ν κ

(δ)
ν′ = κ

(δ)
νν′ for all ν, ν′ > 0, κ

(δ)
1 = 1Hs,δ;λ(R+).

Definition 3.4. For s, δ ∈ R, the space Hs,δ;λ(R+) consists of all u ∈ Hs
loc(R+)

being of the form

(3.12) u(t) = λ(1 + t)1/2+δ v(Λ(1 + t))

for some v ∈ Hs(R+).

Note that the behaviour of a function u ∈ Hs,δ;λ(R+) as t→ +0 and t→ ∞,
respectively, is different: we have (1 − χ(t))u ∈ Hs(R+), while χ(t)u belongs to a
certain weighted Hs space.

Lemma 3.5. (a) For s ∈ N0, δ ∈ R, u ∈ Hs,δ;λ(R+) if and only if

(3.13) λ(1 + t)−(j+δ) Dj
tu ∈ L2(R+), 0 ≤ j ≤ s.

(b) For s, δ ∈ R, {κ(δ)
ν }ν>0 defined by

(3.14)
(
κ(δ)

ν u
)
(t) = νβ∗/2−β∗δl∗ u(νβ∗t), t ∈ R+, ν > 0,

acts as strongly continuous group on Hs,δ;λ(R+).

Proof. (a) Note that

(3.15) L2(R+) =
{
λ(1 + t)1/2 v(Λ(1 + t))

∣∣ v ∈ L2(R+)
}
.

(b) For u represented as in (3.12),
(
κ(δ)

ν u
)
(t) = νβ∗/2−β∗δl∗ λ(1 + νβ∗t)1/2+δ v(Λ(1 + νβ∗t))

= ν1/2 λ(ν−β∗ + t)1/2+δ v(ν Λ(ν−β∗ + t)), ν > 0,

which obviously belongs to Hs,δ;λ(R+). We conclude that κ
(δ)
ν ∈ L(Hs,δ;λ(R+))

for each ν > 0 as well as the map R+ 3 ν 7→ κ
(δ)
ν ∈ L(Hs,δ;λ(R+)) is strongly

continuous.

Note that the group {κ(δ)
ν }ν>0 for δ ∈ R has been chosen in such way that

(i) It reflects the considered kind of degeneracy at t = 0,
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(ii) It acts as group of isometries on {λ(t)1/2+δ v(Λ(t)) | v ∈ L2(R+)}, where
the latter is the L2 space on R+ with the specific weighting of H0,δ;λ(R+)
as t → ∞ prolongated to all of R+ (i.e., when λ(1 + t) is replaced with
λ(t)).

Proof of (ii). The natural norm on {λ(t)1/2+δ v(Λ(t)) | v ∈ L2(R+)} is

u 7→
(∫ ∞

0

|u(t)|2 λ(t)−2δ dt

)1/2

.

Then (ii) follows by changing variables under the integral sign.

We proceed to abstract edge Sobolev spaces:

Definition 3.6. For s ∈ R and a Hilbert space E equipped with a strongly contin-
uous group {κν}ν>0 acting on it, the abstract edge Sobolev space Ws

(
Rn;E

)
=

Ws
(
Rn;

(
E, {κν}ν>0

))
consists of all u ∈ S ′(Rn;E) such that û ∈ L2

loc(R
n;E) and

(3.16) ‖u‖Ws(Rn;E) :=

(∫

Rn

〈ξ〉2s
∥∥κ(ξ)−1û(ξ)

∥∥2

E
dξ

)1/2

<∞,

where κ(ξ) := κ〈ξ〉 for ξ ∈ Rn.

Ws
(
Rn;E

)
equipped with the norm (3.16) is a Hilbert space.

Example. The basic example is provided by the standard Sobolev spaces H s(R+×
Rn): For s ≥ 0,

Hs(R+ × Rn) = Ws(Rn;Hs(R+))

with respect to the group {κ̄ν}ν>0 given by (κ̄νu)(t) = ν1/2u(νt) for ν > 0, see
Schulze [64, Example 1.3.23].

For the next result, see Seiler [65]:

Proposition 3.7. Let (E, {κν}ν>0), (Ẽ, {κ̃ν}ν>0) be Hilbert spaces equipped with

strongly continuous group actions. Further let a ∈ C∞(Rn × Rn;L(E, Ẽ)) such

that
∥∥κ̃(ξ)−1(∂α

x ∂
β
ξ a)(x, ξ)κ(ξ)

∥∥
L(E,Ẽ)

≤ Cαβ 〈ξ〉m−β , (x, ξ) ∈ Rn × Rn,

for some m ∈ R and certain constants Cαβ > 0. Then, for each s ∈ R,

a(x,D) : Ws(Rn;E) → Ws−m(Rn; Ẽ)

continuously, where a(x,D)u = F−1
ξ→x

{
a(x, ξ)û(ξ)

}
as usual.

After this short digression to the abstract theory, we now define:

Definition 3.8. For s, δ ∈ R, we set

Hs,δ;λ(R+ × Rn) := Ws
(
Rn;

(
Hs,δ;λ(R+), {κ(δ)

ν }ν>0

))
.

Moreover, we set

Hs,δ;λ((0, T ) × Rn) := Hs,δ;λ(R+ × Rn)
∣∣
(0,T )×Rn .
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For fixed T > 0, the Hilbert norm on the function space Hs,δ;λ((0, T ) × Rn)
following from this definition is equivalent to the Hilbert norm given by (2.7).

We summarize properties of the spaces Hs,δ;λ((0, T ) × Rn):

Proposition 3.9. (a) {Hs,δ;λ((0, T ) × Rn)
∣∣ s ∈ R} forms an interpolation scale of

Hilbert spaces with respect to the complex interpolation method.

(b) H0,0;λ((0, T )×Rn)) = L2((0, T )×Rn)), and H−s,−δ;λ((0, T )×Rn) is the

dual to Hs,δ;λ((0, T ) × Rn) with respect to the L2–scalar product.

(c) Hs,δ;λ(R+ × Rn)
∣∣
(T ′,T )×Rn = Hs((T ′, T ) × Rn) for any 0 < T ′ < T .

(d) The space C∞
c ([0, T ]× Rn) ⊂ Hs,δ;λ((0, T ) × Rn) is dense.

(e) For s > 1/2, the map

Hs,δ;λ((0, T )× Rn) →
[s−1/2]−∏

j=0

Hs+β∗δl∗−β∗j−β∗/2(Rn),

u 7→
(
Dj

tu
∣∣
t=0

)
0≤j≤[s−1/2]−

,

is surjective. Here, [s− 1/2]
−

is the largest integer strictly less than s− 1/2.

(f) Hs,δ;λ((0, T ) × Rn) ⊂ Hs′,δ′;λ((0, T ) × Rn) if and only if s ≥ s′, s +
β∗δl∗ ≥ s′ +β∗δ

′l∗. Moreover, this embedding is locally compact if and only if both

inequalities are strict.

(g) If, formally, l∗ = 0, then Hs,δ;λ((0, T ) × Rn) is independent of δ and

coincides with the standard Sobolev space Hs((0, T )× Rn).

Proof. Properties (a) to (g) have been shown in Dreher–Witt [19]. For instance,
in [19, Lemma 2.5], it has been proved that

Hs,δ;λ(R+ ×Rn)
∣∣
(T ′,∞)×Rn =

{
λ(t)1/2+δv(Λ(t), x)

∣∣ v ∈ Hs(R+ ×Rn)
}∣∣∣

(T ′,∞)×Rn

for any T ′ > 0, and (c) follows. To obtain (e), we argue as follows: We write
u ∈ Hs,δ;λ(R+ × Rn) as

u(t, x) = F−1
ξ→x

{
κ(δ)(ξ)ŵ(t, ξ)

}
,

where κ(δ)(ξ) = κ
(δ)
〈ξ〉 and w ∈ Hs(Rn;Hs,δ;λ(R+)). The function w can be rewritten

as

w(t, x) = (1 − χ(t))

[s−1/2]−∑

j=0

tj

j!
wj(x) + w̄(t, x),

where wj(x) = ∂j
tw(0, x) ∈ Hs(Rn) and w̄ ∈ Hs(Rn;Hs(R)), w̄(t, x) = 0 for t < 0.

We conclude that

u(t, x) = F−1
ξ→x

{
1 − χ(〈ξ〉β∗t)

} [s−1/2]−∑

j=0

tj

j!
〈Dx〉−β∗δl∗+β∗j+β∗/2wj(x)

+ F−1
ξ→x

{
κ(δ)(ξ) ̂̄w(t, ξ)

}
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and

∂j
t u(0, x) = 〈Dx〉−β∗δl∗+β∗j+β∗/2wj(x) ∈ Hs+β∗δl∗−β∗j−β∗/2(Rn)

for 0 ≤ j ≤ [s− 1/2]
−

.

Proposition 3.10. For the mth–order differential operator P from (1.3),

P : Hs+m,δ;λ((0, T ) × Rn) → Hs,δ+m;λ((0, T )× Rn)

for all s, δ ∈ R.

Proof. This is a direct consequence of Proposition 3.7 from inspecting all the
respective causes. For instance, we obtain

Dt : H
s+1,δ;λ(R+ × Rn) → Hs,δ+1;λ(R+ × Rn)

because of Dt ∈ L(Hs+1,δ;λ(R+), Hs,δ+1;λ(R+)) and

κ(δ+1)(ξ)−1Dtκ
(δ)(ξ) = 〈ξ〉Dt.

Similarly,

tl : Hs,δ;λ(R+ × Rn) → Hs,δ+l/l∗;λ(R+ × Rn), l = 0, 1, 2 . . . ,

Dxj : Hs+1,δ;λ(R+ × Rn) → Hs,δ;λ(R+ × Rn), 1 ≤ j ≤ n,

a(t, x) : Hs,δ;λ(R+ × Rn) → Hs,δ;λ(R+ × Rn), a ∈ C∞
b (R+ × Rn).

The proof is complete.

3.5. Establishing energy estimates

For the estimation of U(t, x), we define a weight by the aid of the symbol ϑ00,

ϑ00(t, ξ) = χ−(t, ξ)λ(〈ξ〉−β∗)−δ0 + χ+(t, ξ)λ(t)−δ0 ,

see Dreher [16], Dreher–Witt [19]. Then (3.5) yields

|ϑ00(ξ)Û(t, ξ)| ≤ C

(
|ϑ00(0, ξ)Û0(ξ)| +

∫ t

0

|ϑ00(t
′, ξ)F̂ (t′, ξ)| dt′

)
.

Squaring this inequality and integration over (0, T )× Rn gives the estimate

‖U‖2
H0,δ0;λ((0,T )×Rn) ≤ C

(
‖U0‖2

Hβ∗δ0l∗(Rn) + T 2 ‖F‖2
H0,δ0;λ((0,T )×Rn)

)
,

where ‖V ‖2
H0,δ0;λ((0,T )×Rn) defined by

‖V ‖2
H0,δ0;λ((0,T )×Rn) =

1

T

∫ T

0

∫

Rn

|ϑ00(t, ξ)V̂ (t, ξ)|2 dξ dt

is an equivalent norm on the space H0,δ0;λ((0, T ) × Rn), see (2.7).
To estimate higher order derivatives of U as well, we choose some s ∈ N0, set

ϑsl(t, ξ) = χ−(t, ξ)〈ξ〉s−lλ(〈ξ〉−β∗)−δ0−1−l + χ+(t, ξ)〈ξ〉s−lλ(t)−δ0−1−l
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for 0 ≤ l ≤ s, and define the norm

‖V ‖2
Hs,δ0;λ((0,T )×Rn) =

s∑

l=0

T 2l−1

∫ T

0

∫

Rn

|ϑsl(t, ξ)D
l
tV̂ (t, ξ)|2 dξ dt,

see (2.7) again. Differentiating (3.5) with respect to t and induction on s then
implies the estimate

‖U‖2
Hs,δ0;λ((0,T )×Rn) ≤ C

(
‖U0‖2

Hs+β∗δ0l∗ (Rn) + T 2 ‖F‖2
Hs,δ0;λ((0,T )×Rn)

)
.

This estimate is the main ingredient in the proof of Theorem 2.8 in the model
case (3.1). We see that the loss of regularity — as predicted by this estimate —
is at most β∗δ0l∗. It turns out that this result is sharp, see Theorem 2.10 and the
examples by Qi and Taniguchi–Tozaki.

3.6. Summary of Section 3

Starting from second-order operators P from (3.2) with coefficients independent
of x, we have been led via partial Fourier transformation with respect to x to
certain estimates on the solutions to the Cauchy problem. These estimates have
been brought to function spaces Hs,δ;λ((0, T )× Rn) building upon the machinery
of abstract edge Sobolev spaces. Among others, this approach enables a precise

control of the degeneracy as t→ +0, e.g., by the choice of the group {κ(δ)
ν }ν>0.

These considerations will guide us in Sections 4 and 5 — where we will be
treating operators with coefficients depending on x — where, however, we need
to replace the partial Fourier transformation with respect to x by pseudodiffer-
ential techniques relying on certain weight functions. Moreover, the variable loss
of regularity will require function spaces Hs,δ(x);λ((0, T ) × Rn), where δ = δ(x) is
a function of x (instead of being a constant), such that the technique of abstract
edge Sobolev spaces is not longer applicable. It will be replaced by an approach
also based on the weight functions just mentioned.

4. Symbol classes and function spaces

We refer the reader to Dreher–Witt [20] for proofs and further details.

4.1. The symbol classes Sm,η;λ

The relevant symbol classes in case η is constant are the symbol classes Sm,η;λ

that have been introduced in Definition 2.1. We start with some examples:

Example. (a) λ(t)〈ξ〉 ∈ S1,1;λ, (t+ 〈ξ〉−β∗)−1 ∈ S0,1;λ, Λ(t)〈ξ〉 ∈ S1,0;λ.
(b) For a ∈ C∞([0, T ], Sm

1,0), we have a ∈ Sm,m(l∗+1)−l;λ if and only if

Dj
ta(0, x, ξ) = 0, 0 ≤ j ≤ l − 1.

(c) χ+ ∈ S0,0;λ, χ− ∈ S−∞,0;λ, where

S−∞,η;λ =
⋂

m∈R

Sm,η;λ.
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Remark 4.1. We have the following equivalent descriptions of the symbol classes
Sm,η;λ: A function a ∈ C∞([0, T ]× R2n) belongs to Sm,η;λ if and only if, for each
multi-index (j, α, β) ∈ N1+2n, one of the following inequalities hold:

∣∣∂j
t ∂

α
x ∂

β
ξ a(t, x, ξ)

∣∣ ≤ C ′
jαβ (1 + Λ(t)〈ξ〉)mh(t, ξ)η+j〈ξ〉−|β|,

∣∣∂j
t ∂

α
x ∂

β
ξ a(t, x, ξ)

∣∣ ≤ C ′′
jαβ g(t, ξ)

m−|β|h(t, ξ)η−m−|β|l∗+j

for all (t, x, ξ) ∈ [0, T ]× R2n. To see this, note that

gh−1 ∼ 1 + Λ(t)〈ξ〉, ghl∗ ∼ 〈ξ〉.

We conclude this section with some properties of these symbol classes, which
are easily derived:

Proposition 4.2. (a) Sm,η;λ ⊆ Sm′,η′;λ ⇐⇒ m ≤ m′, η ≤ η′.

(b) Let a ∈ Sm,η;λ. Then χ+(t, ξ)a ∈ Sm′,η;λ for some m′ < m implies

a ∈ Sm′,η;λ. In particular, if a(t, x, ξ) = 0 for Λ(t)〈ξ〉 ≥ C and some C > 0, then

a ∈ S−∞,η;λ.

(c) If a ∈ Sm,η;λ, then ∂j
t ∂

α
x ∂

β
ξ a ∈ Sm−|β|,η+j−|β|(l∗+1);λ.

(d) If a ∈ Sm,η;λ, a′ ∈ Sm′,η′;λ, then a ◦ a′ ∈ Sm+m′,η+η′;λ and

a ◦ a′ = aa′ mod Sm+m′−1,η+η′−(l∗+1);λ,

where ◦ denotes the Leibniz product with respect to x.
(e) If a ∈ Sm,η;λ, then a∗ ∈ Sm,η;λ and

a∗(t, x, ξ) = a(t, x, ξ)∗ mod Sm−1,η−(l∗+1);λ,

where a∗ is the (complete) symbol of the adjoint to a(t, x,Dx) with respect to L2.

(f) If a ∈ Sm,η;λ([0, T ]× R2n;MN×N(C)) is elliptic in the sense that

| det a(t, x, ξ)| ≥ c
(
gm(t, ξ)hη−m(t, ξ)

)N
, (t, x, ξ) ∈ [0, T ]× R2n, |ξ| ≥ C

for some C, c > 0, then there is a symbol a′ ∈ S−m,−η;λ with the property that

a ◦ a′ − 1, a′ ◦ a− 1 ∈ C∞([0, T ];S−∞).

Moreover,

a′ = a−1 mod S−m−1,−η−(l∗+1);λ.

(g)
⋂

m,η S
m,η;λ = C∞([0, T ];S−∞).

4.2. The symbol classes S̃m,η;λ

These symbol classes have been introduced in Definition 2.6. Again, we consider
some examples first:

Example. (a) For m, η ∈ R, we have gmhη−m ∈ S̃m,η;λ,

σm(gmhη−m) = t−η
(
tl∗+1|ξ|

)m
, σ̃m−1,η(gmhη−m) = 0,

see (2.3).
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(b) For a(t, x, ξ) =
∑

|α|≤j aα(t, x) t(|α|(l∗+1)−j)+ξα, where aα ∈ C∞
b ([0, T ] ×

Rn) for |α| ≤ j, we have a ∈ S̃j,j;λ,

σj(a) =
∑

|α|=j

aα(t, x) (tl∗ξ)α,

σ̃j−1,j(a) =

{∑
|α|=j−1 aα(0, x) ξα if j > 1,

0 if j = 0, 1,

see (1.9).

For a ∈ S̃m,η;λ, the principal symbol σm(a) as well as the secondary symbol
σ̃m−1,η(a) are uniquely determined. This follows from the next lemma, whose proof
can be found in [20]:

Lemma 4.3. (a) The symbols σm(a), σ̃m−1,η(a) are well-defined.

(b) The short sequence

0 −→ Sm−2,η;λ + Sm−1,η−1;λ −→ S̃m,η;λ (σm,σ̃m−1,η)−−−−−−−−→ ΣS̃m,η;λ −→ 0

is split exact, where ΣS̃m,η;λ = t(l∗+1)m−η C∞([0, T ];S(m))×S(m−1) comprises the

principal and secondary symbol spaces.

The calculus for S̃m,η;λ requires an additional notation: Let a ∈ S̃m,η;λ be of
the form

a(t, x, ξ) = χ+(t, ξ) t−η
(
a0(t, x, t

l∗+1ξ) + a1(t, x, t
l∗+1ξ)

)
+ a2(t, x, ξ),

where a0 ∈ C∞([0, T ];S(m)), a1 ∈ C∞([0, T ];S(m−1)), and a2 ∈ Sm−2,η;λ +
Sm−1,η−1;λ. Then we set

σ̃m,η(a)(x, ξ) = a0(0, x, ξ).

Note that this symbol is not of independent interest, but it is directly derived from
σm(a).

Extending Proposition 4.2 we have:

Proposition 4.4. (a) If a ∈ S̃m,η;λ, a′ ∈ S̃m′,η′;λ, then a ◦ a′ ∈ S̃m+m′,η+η′;λ and

σm+m′

(a ◦ a′) = σm(a)σm′

(a′),

σ̃m+m′−1,η+η′

(a ◦ a′) = σ̃m,η(a) σ̃m′−1,η′

(a′) + σ̃m−1,η(a) σ̃m′,η′

(a′).

(b) If a ∈ S̃m,η;λ, then a∗ ∈ S̃m,η;λ and

σm(a∗) = σm(a)∗, σ̃m−1,η(a∗) = σ̃m−1,η(a)∗.

(c) If the symbol a ∈ S̃m,η;λ([0, T ] × R2n;MN×N(C)) is elliptic in the sense

of Proposition 4.2 (f), then

| detσm(a)| ≥ c
(
t(l∗+1)m−η |ξ|m

)N
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for some c > 0 and the symbol a′ from Proposition 4.2 (f) belongs to S̃−m,−η;λ.

Moreover,

σ−m(a′) = σm(a)−1,

σ̃−m−1,−η(a′) = −σ̃m,η(a)−1 σ̃m−1,η(a) σ̃m,η(a)−1.

Proposition 4.5. (a) If q(t, x,Dx) ∈ Op S̃0,0;λ is invertible on Hs,δ;λ for some

s ∈ R, δ ∈ C∞
b (Rn; R), then q(t, x,Dx) is invertible on Hs,δ;λ for all s ∈ R,

δ ∈ C∞
b (Rn; R) and

q(t, x,Dx)−1 ∈ Op S̃0,0;λ.

(b) Conversely, if symbols q0 ∈ C∞([0, T ];S(0)), q1 ∈ S(−1) are given, where

|det q0(t, x, ξ)| ≥ c for all (t, x, ξ) ∈ [0, T ]×Rn× (Rn \0) and a certain c > 0, then

there is an invertible operator q(t, x,Dx) ∈ Op S̃0,0;λ in the sense of (a) such that

σ0(q) = q0, σ̃−1,0(q) = q1.

If a ∈ S̃m,η;λ, then in general ∂ta ∈ S̃m,η+1;λ. But in a special case, an
improvement is possible:

Lemma 4.6. Let a ∈ S̃m,η;λ and η = (l∗ + 1)m. Then

∂ta ∈ Sm−1,η+1;λ + Sm,η;λ.

Proof. We have ∂ta ∈ S̃m,η+1;λ and

σ̃m,η+1;λ(∂ta) = (m(l∗ + 1) − η) σ̃m,η;λ(a).

Therefore, σ̃m,η+1;λ(∂ta) = 0 in case η = (l∗ + 1)m. The latter implies that ∂ta ∈
Sm−1,η+1;λ + Sm,η;λ.

For the reader’s convenience, we summarize what the vanishing of the single
symbol components for a ∈ S̃m,η;λ means:

• σm(a) = 0, σ̃m−1,η(a) = 0 ⇐⇒ a ∈ Sm−2,η;λ + Sm−1,η−1;λ.
• σm(a) = 0 ⇐⇒ a ∈ Sm−1,η;λ.
• σ̃m,η(a) = 0 ⇐⇒ a ∈ Sm−1,η;λ + Sm,η−1;λ.

4.3. The symbol classes S
m,η;λ
+ for η ∈ C∞

b (Rn; R)

To get a priori estimates of the solutions of (2.4), we will symmetrize the oper-
ator A(t, x,Dx) up to a certain remainder and then ”shift the spectrum” of the
new operator A(t, x,Dx), so preparing for the application of G̊arding’s inequality.
However, the symbol Θ(t, x, ξ) of the ”shift operator” does not belong to Sm,η;λ

with constant η. Therefore, we need to enlarge our symbol classes:

Definition 4.7. For m ∈ R, η ∈ C∞
b (Rn; R), and % ∈ N0, the symbol class Sm,η;λ

(%)

consists of all a ∈ C∞([0, T ] × R2n;MN×N(C)) such that, for each multi-index
(j, α, β) ∈ N1+2n, there is a constant Cjαβ > 0 with the property that

∣∣∂j
t ∂

α
x ∂

β
ξ a(t, x, ξ)

∣∣(4.1)

≤ Cjαβ g(t, ξ)
mh(t, ξ)η(x)−m+j

(
1 + | logh(t, ξ)|

)%+|α|〈ξ〉−|β|
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for all (t, x, ξ) ∈ [0, T ]× R2n. Moreover, we set

Sm,η;λ
+ =

⋃

%∈N

Sm,η;λ
(%) .

Example. A typical example is given by h(t, ξ)δ(x)l∗ ∈ S
0,δ(x)l∗;λ
(0) .

Proposition 4.8. (a) Sm,η;λ
(%) ⊆ Sm′,η′;λ

(%′) ⇐⇒ m ≤ m′, η ≤ η′, and % ≤ %′ if η = η′.

(b) Sm,η;λ ( Sm,η;λ
+ (

⋂
ε>0 S

m,η+ε;λ.

(c) If a ∈ Sm,η;λ
(%) , then ∂j

t ∂
α
x ∂

β
ξ a ∈ S

m−|β|,η−|β|(l∗+1)+j;λ
(%+|α|) .

(d) If a ∈ Sm,η;λ
(%) , a′ ∈ Sm′,η′;λ

(%′) , then a ◦ a′ ∈ Sm+m′,η+η′;λ
(%+%′) and

a ◦ a′ = aa′ mod S
m+m′−1,η+η′−(l∗+1);λ
(%+%′+1) .

(e) If a ∈ Sm,η;λ
(%) , then a∗ ∈ Sm,η;λ

(%) and

a∗(t, x, ξ) = a(t, x, ξ)∗ mod S
m−1,η−(l∗+1);λ
(%+1) .

(f) S0,0;λ
(0) ⊂ L∞((0, T );S0

1,δ) for any 0 < δ < 1.

From Proposition 4.8 (f) we conclude:

Corollary 4.9. OpS0,0;λ ⊂ OpS0,0;λ
(0) ⊂ L(L2).

4.4. Function spaces: An approach via weight functions

For δ ∈ C∞
b (Rn; R), we employ the weight functions g, h from (2.3) to introduce

the function spaces Hs,δ(x);λ((0, T )× Rn):

Definition 4.10. For s ∈ N0, δ ∈ C∞
b (Rn; R), the space Hs,δ(x);λ((0, T ) × Rn)

consists of all functions u = u(t, x) satisfying

(4.2) (gs−jh(s+δ)l∗)(t, x,Dx)Dj
tu ∈ L2((0, T )× Rn), 0 ≤ j ≤ s.

For general s ∈ R, δ ∈ C∞
b (Rn; R), the space Hs,δ(x);λ((0, T )×Rn) is then defined

by means of duality and interpolation.

Proposition 4.11. For s ∈ N0, δ ∈ R, Definitions 3.8 and 4.10 coincide.

Proof. Since ghl∗ ∼ 〈ξ〉 by choice of the weight functions, (4.2) is equivalent to

(4.3) (〈ξ〉s−jh(j+δ)l∗)(t, x,Dx)Dj
tu ∈ L2((0, T )× Rn), 0 ≤ j ≤ s.

Now, u ∈ Hs,δ;λ(R+ × Rn) means

〈ξ〉s
∥∥κ(δ)(ξ)−1û(t, ξ)

∥∥
Hs,δ;λ(R+)

∈ L2((0, T ) × Rn
ξ ).

The latter is equivalent to

〈ξ〉s+β∗δl∗−β∗/2 λ(1 + t)−(j+δ)∂j
t

(
û
(
〈ξ〉−β∗t, ξ

))
∈ L2((0, T ) × Rn

ξ ), 0 ≤ j ≤ s,

i.e., equivalent to

〈ξ〉s+β∗δl∗−jβ∗ λ(1 + 〈ξ〉β∗t)−(j+δ)∂j
t û
(
t, ξ
)
∈ L2((0, T ) × Rn

ξ ), 0 ≤ j ≤ s.
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Writing λ(1+ 〈ξ〉β∗t)−(j+δ) = 〈ξ〉−β∗(j+δ)l∗h(t, ξ)(j+δ)l∗ , we see that this is exactly
(4.3).

Remark 4.12. Below we shall make use of Definition 4.10 as follows:
(i) For s ∈ N0, δ ∈ C∞

b (Rn; R), u ∈ Hs,δ(x);λ if and only if gs−j(t,Dx)Dj
tu ∈

H0,s+δ(x);λ for 0 ≤ j ≤ s.
(ii) For δ ∈ C∞

b (Rn; R), a function u belongs to H0,δ(x);λ if and only if
hδl∗(t, x,Dx)u ∈ L2((0, T ) × Rn).

ForK > 0, δ ∈ C∞
b (Rn; R), let 〈ξ〉K := (K+|ξ|2)1/2, χ+

K(t, ξ) := χ(Λ(t)〈ξ〉K),

χ−
K(t, ξ) := 1 − χ+

K(t, ξ), and

(4.4) Θ(t, x, ξ) = ΘK,δ(t, x, ξ) := χ−
K(t, ξ) 〈ξ〉β∗δ(x)l∗

K + χ+
K(t, ξ) t−δ(x)l∗ .

Note that Θ(t, x,Dx) ∈ OpS
0,δ(x)l∗;λ
(0) .

Remark 4.13. Below it is convenient to write Θ(t, x, ξ) = h(t, ξ)δ(x)l∗ , where we
have defined

(4.5) h(t, ξ) = χ−
K(t, ξ)〈ξ〉β∗

K + χ+
K(t, ξ)t−1.

Of course, this choice leads to the same symbol classes Sm,η;λ, S̃m,η;λ and Sm,η;λ
+

as the choice in (2.3).

Because of their importance, the proofs of the following two results are re-
peated from [20].

Lemma 4.14. Given δ ∈ C∞
b (Rn; R), there is a K0 > 0 such that the operator

(4.6) Θ(t, x,Dx) : Hs,δ′(x);λ → Hs,δ′(x)−δ(x);λ

is invertible for all s ∈ R, δ′ ∈ C∞
b (Rn; R), and K ≥ K0. Moreover, Θ−1 ∈

OpS
0,−δ(x)l∗;λ
(0) .

Proof. Here, we will prove invertibility of the hypoelliptic operator Θ(t, x,Dx), for

large K > 0, and also the fact that Θ(t, x,Dx)−1 ∈ OpS
0,−δ(x)l∗;λ
(0) . The proof is

then completed with the help of the next proposition.

The symbol ΘK,δ(t, x, ξ) belongs to the symbol class S
0,δ(x)l∗;λ
+ , but with pa-

rameter
√
K ≥ 1. Similarly for ΘK,−δ(t, x, ξ). If R′

K := ΘK,δ ◦ΘK,−δ−ΘK,δΘK,−δ,
then, for all α, β ∈ Nn

0 and certain constants Cαβ > 0,

|∂α
x ∂

β
ξ R

′
K(t, x, ξ)| ≤ Cαβ

(
〈ξ〉β∗

K + λ(t)〈ξ〉K
)−1

(t+ 〈ξ〉−β∗

K )−l∗

×
(
1 + | log(t+ 〈ξ〉−β∗

K )|
)1+|α|〈ξ〉−|β|

K , (t, x, ξ) ∈ [0, T ]× R2n, K ≥ 1

(i.e., we have estimates (2.6), but with 〈ξ〉 replaced by 〈ξ〉K). From the latter
relation, it is seen that R′

K(t, x, ξ) → 0 in L∞((0, T );S0
1,0) as K → ∞, i.e.,

R′
K(t, x,Dx) → 0 in L(L2) as K → ∞.

Now, let RK := ΘK,δ ◦ ΘK,−δ − 1, i.e., RK = R′
K + ΘK,δΘK,−δ − 1. Since

(ΘK,δΘK,−δ)(t, x,Dx) → 1 in L(L2) as K → ∞, it follows that RK(t, x,Dx) → 0
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in L(L2) as K → ∞. Thus, ΘK,−δ ◦ (1+RK)−1 is a right inverse to ΘK,δ, for large
K > 0. In a similar fashion, a left inverse to ΘK,δ is constructed.

Moreover, Θ−1 = ΘK,−δ mod OpS
−∞,−δ(x)l∗−(l∗+1);λ
+ , as is seen from the

constructions.

Proposition 4.15. We have

(4.7) OpSm,η;λ
(0) ⊂

{
L(Hs,δ(x);λ, Hs−m,δ(x)+m+(m−η)/l∗;λ) if m ≥ 0,

L(Hs,δ(x);λ, Hs,δ(x)+(m−η)/l∗;λ) if m < 0.

Proof. We prove (4.7) in case m ≥ 0; the proof in case m < 0 is similar.

By interpolation and duality, we may assume that s−m ∈ N0. Then we have

to show that, for A ∈ OpSm,η;λ
(0) and 0 ≤ k ≤ j ≤ s−m,

h(s+δ)l∗+m−ηgs−m−j(Dj−k
t A)Dk

t u ∈ L2((0, T ) × Rn)

provided u ∈ Hs,δ(x);λ((0, T ) × Rn). We have

h(s+δ)l∗+m−ηgs−m−j(Dj−k
t A)Dk

t u(4.8)

= hm−ηg−m−j+k(Dj−k
t A)h(s+δ)l∗gs−kDk

t u+RDk
t u,

with hm−ηg−m−j+k(Dj−k
t A) ∈ OpS−j+k,0;λ

(j−k) and a certain remainder term R ∈
OpS

s−j−1,(s−1)(l∗+1)+δl∗−k;λ
+ . Now OpS−j+k,0;λ

(j−k) ⊂ OpS0,0;λ
(0) and h(s+δ)l∗gs−kDk

t u

belongs to L2((0, T ) × Rn) by assumption, i.e., the first summand on the right-
hand-side of (4.8) belongs to L2((0, T )×Rn) by virtue of Corollary 4.9. The second
summand is rewritten as

RDk
t u = Rg−s+k(ΘK,s+δ)

−1ΘK,s+δg
s−kDk

t u

for large K > 1, where Rg−s+k(ΘK,s+δ)
−1 ∈ OpS

−j+k−1,−(l∗+1);λ
+ ⊂ OpS0,0;λ

and again ΘK,s+δg
s−kDk

t u ∈ L2, i.e., also the second summand on the right-hand-
side of (4.8) belongs to L2((0, T ) × Rn).

The next result extends Proposition 3.9 to the case of variable δ = δ(x).

Proposition 4.16. Let s ∈ R, δ ∈ C∞
b (Rn; R). Then:

(a)
{
Hs,δ(x);λ((0, T ) × Rn)

∣∣ s ∈ R
}

forms an interpolation scale of Hilbert

spaces with respect to the complex interpolation method.

(b) H0,0;λ((0, T )×Rn)) = L2((0, T )×Rn)), and H−s,−δ(x);λ((0, T )×Rn) is

the dual to Hs,δ(x);λ((0, T ) × Rn) with respect to the L2–scalar product.

(c) Hs,δ(x);λ(R+ × Rn)
∣∣
(T ′,T )×Rn = Hs((T ′, T ) × Rn) for any 0 < T ′ < T .

(d) The space C∞
c ([0, T ]× Rn) ⊂ Hs,δ(x);λ((0, T )× Rn) is dense.
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(e) For s > 1/2, the map

Hs,δ(x);λ((0, T )× Rn) →
[s−1/2]−∏

j=0

Hs+β∗δ(x)l∗−β∗j−β∗/2(Rn),(4.9)

u 7→
(
Dj

tu
∣∣
t=0

)
0≤j≤[s−1/2]−

,

is surjective.

(f) Hs,δ(x);λ ⊂ Hs′,δ′(x);λ if and only if s ≥ s′, s+ β∗δ(x)l∗ ≥ s′ + β∗δ
′(x)l∗.

Moreover, the embedding {u ∈ Hs,δ(x);λ
∣∣ suppu ⊆ K} ⊂ Hs′,δ′(x);λ for some

K b [0, T ]× Rn is compact if and only if s > s′ and s+ β∗δ(x)l∗ > s′ + β∗δ
′(x)l∗

for all x satisfying (0, x) ∈ K.

Proof. We exemplary verify (a), (d): We write Hs,δ(x);λ = Θ−1Hs,0;λ for s ∈ R,
with Θ being the operator from Lemma 4.14.

(a) Since {Hs,0;λ | s ∈ R} is an interpolation scale, {Hs,δ(x);λ | s ∈ R} is also
an interpolation scale with respect to the complex interpolation method.

(d) Let γju := Dj
tu
∣∣
t=0

. Then γj Θu ∈ Hs−β∗j−β∗/2(Rn) for 0 ≤ j ≤ j0, since

(4.9) holds if δ = 0.

Now, Hs,δ(x);λ → ∏j0
j=0 H

s+β∗δ(x)l∗−β∗j−β∗/2(Rn), u 7→
(
γju
)
0≤j≤j0

follows

from
γju =

(
〈Dx〉β∗δ(x)l∗

K

)−1
γjΘu,

while the surjectivity of this map is implied by the reverse relation

γj Θu = 〈Dx〉β∗δ(x)l∗
K γju

and the surjectivity of (4.9) in case δ = 0.

4.5. Summary of Section 4

Our analysis is based on the two weight functions g(t, ξ), h(t, ξ) introduced in
(2.3). These weight functions have been designed to reflect the kind of degeneracy
as t→ +0 under consideration. Thereby, the weight function g plays the predom-
inant part, while the weight function h is to control the fine structure. One major
achievement has been the reformulation of the results of Section 3 in terms of g, h.

More precisely, the symbol classes Sm,η;λ come into being. Here, the basic
case occurs when m = η, e.g., among others the belonging of A(t, x,Dx) in (2.4)
to OpS1,1;λ expresses sharp Levi conditions on the lower-order terms. Symbol
classes Sm,η;λ with m 6= η are utilized to formulate hyperbolicity assumptions, e.g.,
A(t, x,Dx) −A(t, x,Dx)∗ ∈ OpS0,1;λ in case of symmetric-hyperbolic systems.

The symbol classes Sm,η;λ are then further refined to S̃m,η;λ, where the ele-
ments a(t, x, ξ) of the latter admit two homogeneous symbol components σm(a),
σ̃m−1,η(a). These homogeneous symbol components will be used to determine the
loss of regularity on a symbolic level.

We have also introduced the symbol classes Sm,η;λ
+ . The only place, where

these symbol classes will be of use in this article, is the proof of Theorem 2.7 in
Section 5.3, below, where they play an auxiliary role. Therefore, they need not be
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considered further here. However, these symbol classes are expected to play a role
in the parametrix construction.

Finally, the properties of the function spaces Hs,δ;λ((0, T )×Rn) in case s, δ ∈
R carry over to the case s ∈ R, δ ∈ C∞

b (Rn; R) with the help of the operator Θ
considered in Lemma 4.14.

5. The Cauchy problem

In this section, we prove Theorems 2.5, 2.7, 2.8, 2.9, and 2.10. Our main tools are
a priori estimates, which all are variations of the following simple result, see, e.g.,
Hörmander [26, Chapter 23]:

Lemma 5.1. Let A = A(t, x, ξ) ∈ L∞([0, T ], S1
1,0) be a pseudodifferential symbol

with

(5.1) <(iA)(t, x, ξ) ≤ C0, (t, x, ξ) ∈ [0, T ]× R2n.

Then the Cauchy problem
{

DtU(t, x) = A(t, x,Dx)U(t, x) + F (t, x), (t, x) ∈ (0, T )× Rn,

U(0, x) = U0(x)

is well-posed in L2(Rn).

Proof. By the sharp G̊arding inequality,

∂t ‖U(t, ·)‖2
L2(Rn) = 2< (∂tU(t, ·), U(t, ·))

= 2< (i(AU)(t, ·) + iF (t, ·), U(t, ·))
≤ C ‖U(t, ·)‖2

L2(Rn) + ‖F (t, ·)‖2
L2(Rn) .

Gronwall’s lemma now yields an a priori estimate, and the L2(Rn) well-posedness
follows by standard arguments.

In Section 5.1, we observe that the real number C0 from (5.1) can be replaced
by a scalar symbol q = q(t, ξ) ∈ L∞([0, T ], S1

1,0) whose primitive p = p(t, ξ) =∫ t

0 q(t
′, ξ) dt′ belongs to L∞([0, T ], S0

1,0).
The key example for such a symbol q is

q(t, ξ) = C0(g(t, ξ)
−1h(t, ξ)2 + 1),

which appears naturally in estimates of symbols from the class S−1,1;λ + S0,0;λ.

The consequences for the case that A ∈ S̃1,1;λ are obvious, as A has the
structure

A(t, x, ξ) = χ+(t, ξ)t−1
(
A0(t, x, t

l∗+1ξ) +A1(x, ξ)
)

+A2(t, x, ξ),(5.2)

A0 ∈ C∞([0, T ], S(1)), A1 ∈ S(0), A2 ∈ S−1,1;λ + S0,0;λ.
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From the above reasoning we find that the Cauchy problem for the operatorDt−A
is well-posed in L2(Rn) (without loss of regularity) provided that <(i(A0+A1)) ≤ 0,
which can be achieved in two steps as follows:

• First, we diagonalize A0 (which is possible by assumption of symmetriz-
ability). This way, the real eigenvalues tl∗µj(t, x, ξ) appear on the diagonal
of A0, hence <(iA0) = 0.

• Secondly, we “shift the spectrum” of <(iA1) by means of a “shift opera-
tor” Θ with symbol Θ(t, x, ξ) ∼ h(t, ξ)δ(x)l∗ . If we choose the parameter
function δ = δ(x) suitably, we can arrange that the symbol of the new A1

satisfies <(iA1) ≤ 0. The predicted loss of regularity is proportional to
δ(x). Since we want to describe the loss precisely, we wish to choose δ as
small as possible. It turns out that an optimal δ can be chosen if A1 can
be diagonalized, which is certainly possible if the µj satisfy (2.17).

The details of this reduction are presented in Section 5.3.
As application, we consider higher order differential equations in Section 5.4,

and we prove the local uniqueness (and, consequently, the finite propagation speed)
for higher order differential equations in Section 5.5.

The optimality of this choice of δ is proved in Section 5.6, using an a priori

estimate from below. See Section 5.6.1 for a detailed exposition.
The situation is not so nice if we merely assume that A ∈ S1,1;λ instead of

A ∈ S̃1,1;λ. In that case we cannot longer assume that A can be split into two
homogeneous components and a remainder as in (5.2). But we still can show that
the Cauchy problem to Dt −A is well-posed with a certain loss of derivatives, see
Section 5.2.

5.1. Improvement of G̊arding’s inequality

The proofs of Theorems 2.5 and 2.7 rely on the following estimate for matrix
pseudodifferential initial-value problems.

We suppose that the operator Dt − A(t, x,Dx) possesses a forward funda-
mental solution X(t, t′) that maps the Sobolev space H∞(Rn) into itself:

{
(Dt − A(t, x,Dx))X(t, t′) = 0, 0 ≤ t′ ≤ t ≤ T,

X(t′, t′) = I, 0 ≤ t′ ≤ T.

Our assumptions on A(t, x, ξ) are as follows:

(A): A ∈ L∞((0, T ), S1
1,0(R

n × Rn)),
(B): <(iA(t, x, ξ)) ≤ q(t, ξ)1N for (t, x, ξ) ∈ (0, T ) × Rn × (Rn \ 0),
(C): The real-valued scalar function q(t, ξ) belongs to L∞((0, T ), S1

1,0(R
n)),

while its primitive p(t, ξ) :=
∫ t

0
q(t′, ξ) dt′ belongs to L∞((0, T ), S0

1,0(R
n)).

Lemma 5.2. Under the assumptions (A), (B), (C), each solution U = U(t, x) ∈
C([0, T ], L2(Rn)) to the Cauchy problem

{
DtU(t, x) = A(t, x,Dx)U(t, x) + F (t, x),

U(0, x) = U0(x),
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where U0 ∈ L2(Rn), F ∈ L2((0, T ), L2(Rn)), such that DtU ∈ L2((0, T );L2(Rn))
satisfies the a priori estimate

(5.3) ‖U(t, ·)‖2
L2(Rn) +

1

t

∫ t

0

‖U(t′, ·)‖2
L2(Rn) dt

′

≤ C

(
‖U0‖2

L2(Rn) + t

∫ t

0

‖F (t′, ·)‖2
L2(Rn) dt

′

)

for all 0 ≤ t ≤ T and some C = C(T ).

Proof. Representing the solution U = U(t, x) in terms of the fundamental matrix
X(t, t′),

U(t, x) = X(t, 0)U0(x) + i

∫ t

0

X(t, t′)F (t′, x) dt′,

we see that it suffices to establish the uniform estimate

(5.4) ‖X(t, t′)V ‖L2(Rn) ≤ C0 ‖V ‖L2(Rn) , 0 ≤ t′ ≤ t ≤ T,

for all V ∈ H∞(Rn), since we then obtain the estimate

‖U(t, ·)‖L2(Rn) ≤ C0 ‖U0‖L2(Rn) + C0

∫ t

0

‖F (t′, ·)‖L2(Rn) dt
′

≤ C0 ‖U0‖L2(Rn) + C0

√
t

(∫ t

0

‖F (t′, ·)‖2
L2(Rn) dt

′

)1/2

,

from which the assertion (5.3) follows by squaring and integrating over t.
For 0 ≤ t′ ≤ t ≤ T , we define a map Y (t, t′) : H∞(Rn) → H∞(Rn) by

Y (t, t′) = exp(−p(t,Dx)) exp(p(t′, Dx))X(t, t′).

Observe that the zeroth-order pseudodifferential operators exp(±p(t,Dx)) are in-
vertible. Moreover, Y (t′, t′) = I and

∂tY (t, t′)

= −q(t,Dx)Y (t, t′) + i exp(−p(t,Dx)) exp(p(t′, Dx))A(t, x,Dx)X(t, t′)

= (iA− q1N + [exp(−p(t,Dx)) exp(p(t′, Dx)), iA]

× exp(−p(t′, Dx)) exp(p(t,Dx))) Y (t, t′)

= B(t, x,Dx)Y (t, t′)

for some B ∈ L∞((0, T ), S1
1,0(R

n × Rn)) that satisfies <B(t, x, ξ) ≤ C a.e. for

(t, x, ξ) ∈ (0, T ) × R2n. Then G̊arding’s inequality gives

∂t ‖Y (t, t′)V ‖2
L2(Rn) = 2< (∂tY (t, t′)V , Y (t, t′)V )

= 2 ((<B)Y (t, t′)V , Y (t, t′)V ) ≤ C ′ ‖Y (t, t′)V ‖2
L2(Rn) .

Upon applying Gronwall’s inequality, we obtain

‖Y (t, t′)V ‖2
L2(Rn) ≤ C ‖Y (t′, t′)V ‖2

L2(Rn) = C ‖V ‖2
L2(Rn) , 0 ≤ t′ ≤ t ≤ T,
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which gives (5.4), since the factors exp(±p(t,Dx)) are continuous isomorphisms
on L2(Rn).

5.2. Symmetric-hyperbolic systems

Lemma 5.2 enables us to establish estimates on the solutions to (2.4) provided
that A ∈ S1,1;λ has Hermitian principal part and the eigenvalues of <(iA(t, x, ξ))
lie on the negative real axis modulo perturbations from S−1,1;λ + S0,0;λ:

Proposition 5.3. Let A = A(t, x, ξ) ∈ S1,1;λ satisfy <(iA) ∈ S0,1;λ, where

<(iA(t, x, ξ)) ≤ C0(g(t, ξ)
−1h(t, ξ)2 + 1)1N , (t, x, ξ) ∈ [0, T ]× R2n.

Then the Cauchy problem (2.4) is (0, 0)–well-posed in the sense of Definition 2.3.

Proof. We approximate A(t, x, ξ) by

Aε(t, x, ξ) = <A(t, x, ξ) + i
t+ 〈ξ〉−β∗

t+ 〈ξ〉−β∗ + ε
=A(t, x, ξ),

for 0 < ε ≤ 1. It is then clear that Aε ∈ S1,1;λ, <(iAε) ∈ S0,1;λ with uniform
symbol estimates, where

<(iAε(t, x, ξ)) ≤ C0(g(t, ξ)
−1h(t, ξ)2 + 1), (ε, t, x, ξ) ∈ (0, 1]× [0, T ]× R2n.

The operator Dt − Aε is hyperbolic with Hermitian principal part <A and a
lower-order term i=Aε belonging to L∞((0, T ), S0

1,0(R
n ×Rn)). Consequently, the

Cauchy problem
{

DtUε(t, x) = Aε(t, x,Dx)Uε(t, x) + F (t, x),

Uε(0, x) = U0(x)

has a unique solution Uε ∈ L∞((0, T ), H∞(Rn)) for all U0 ∈ H∞(Rn), F ∈
L∞((0, T ), H∞(Rn)).

We now apply Lemma 5.2 with weight q(t, ξ) = C0(g(t, ξ)
−1h(t, ξ)2 + 1) to

obtain the estimate

‖Uε‖2
H0,0;λ((0,T )×Rn) ≤ C(T )

(
‖U0‖2

L2(Rn) + ‖F‖2
H0,0;λ((0,T )×Rn)

)
.

uniformly in 0 < ε ≤ 1. It remains to show that the Uε converges in H0,0;λ((0, T )×
Rn)) as ε → +0 to a solution U = U(t, x) to (2.4). To this end, we consider
〈Dx〉MUε for M > 0, which solves the problem

{
Dt〈Dx〉MUε = Aε〈Dx〉MUε +

[
〈Dx〉M , A

]
Uε + 〈Dx〉MF,

〈Dx〉MUε(0, x) = 〈Dx〉MU0(x),

which together with [〈Dx〉M , A]〈Dx〉−M ∈ S0,−l∗;λ ⊂ S0,0;λ and Lemma 5.2 yields
the estimate

(5.5)
∥∥〈Dx〉MUε

∥∥2

H0,0;λ((0,T )×Rn)

≤ C
(
‖U0‖2

HM (Rn) +
∥∥〈Dx〉MF

∥∥2

H0,0;λ((0,T )×Rn)

)
.
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The difference Uε − Uε′ solves
{

Dt(Uε − Uε′) = Aε(Uε − Uε′) + (Aε −Aε′)Uε′ ,

(Uε − Uε′)(0, x) = 0.

Since the set {(Aε − Aε′)/(ε − ε′) : 0 < ε′ < ε ≤ 1} is bounded in S0,2;λ, we
conclude from Proposition 4.15 that

‖Uε − Uε′‖2
H0,0;λ((0,T )×Rn)

≤ C|ε− ε′| ‖Uε‖2
H0,2/l∗;λ((0,T )×Rn) ≤ C|ε− ε′| ‖〈Dx〉Uε‖2

H0,0;λ((0,T )×Rn) .

The uniform estimate (5.5) implies the convergence Uε → U in H0,0;λ as ε →
+0. By interpolation, 〈Dx〉MUε converges to 〈Dx〉MU . A density argument then
completes the proof.

The estimate of the previous proposition can be refined if one has more
information about the structure of the symbol A(t, x, ξ):

Proposition 5.4. Let A ∈ S̃1,1;λ satisfy the assumptions of Proposition 5.3, i.e.,

A(t, x, ξ) = χ+(t, ξ)
(
λ(t)|ξ|A0(t, x, ξ) − il∗t

−1A1(x, ξ)
)

+A2(t, x, ξ),

where A0 ∈ C∞([0, T ], S(0)), A1 ∈ S(0), A2 ∈ S−1,1;λ + S0,0;λ, and

A0 = A∗
0, <A1(x, ξ) ≤ 0.

Then the Cauchy problem (2.4) is 0–well-posed.

Proof. We need to show that, for any s ∈ N0, the Cauchy problem (2.4) is (s, 0)–
well-posed. We proceed by induction on s. The (0, 0)–well-posedness follows from
Proposition 5.3.

Now suppose that (s, 0)–well-posedness has already been proved and consider
(s+ 1, 0)–well-posedness.

By definition, W ∈ Hs+1,0;λ if and only if (ghl∗)(t,Dx)W, hl∗(t,Dx)DtW ∈
Hs,0;λ. For 〈ξ〉 ∼ (ghl∗)(t, ξ), we rephrase this as 〈Dx〉W , g(t,Dx)−1〈Dx〉DtW ∈
Hs,0;λ.

The 2N–vector

V (t, x) =

(
〈Dx〉U(t, x)

g(t,Dx)−1〈Dx〉DtU(t, x)

)

is a solution to the Cauchy problem




DtV =

(
A(00) 0

A(10) A(11)

)
V +

(
〈Dx〉F

Dt(g
−1〈Dx〉F )

)
,

V (0, x) = V0(x) =

(
〈Dx〉U0(x)

〈Dx〉1−β∗(A(0, x,Dx)U0(x) + F (0, x))

)
,

(5.6)
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where

A(00)(t, x, ξ) = 〈ξ〉 ◦A(t, x, ξ)〈ξ〉−1 ∈ S̃1,1;λ,

A(10)(t, x, ξ) =
(
Dt(g(t, ξ)

−1〈ξ〉 ◦A(t, x, ξ))
)
g(t, ξ)〈ξ〉−1 ∈ S−1,1;λ,

A(11)(t, x, ξ) = g(t, ξ)−1〈ξ〉 ◦A(t, x, ξ)g(t, ξ)〈ξ〉−1 ∈ S̃1,1;λ.

By direct computation, we find

σ1

((
A(00) 0

A(10) A(11)

))
=

(
σ1(A) 0

0 σ1(A)

)
,

σ̃0,1

((
A(00) 0

A(10) A(11)

))
=

(
σ̃0,1(A) 0

0 σ̃0,1(A)

)
.

Moreover, V0 ∈ Hs(Rn) and 〈Dx〉F ,Dt(g
−1〈Dx〉F ) ∈ Hs,0;λ((0, T )×Rn) assuming

U0 ∈ Hs+1(Rn) and F ∈ Hs+1,0;λ((0, T ) × Rn). This brings us in a position to
apply the supposed (s, 0)–well-posedness (but for the 2N × 2N system (5.6)),
completing the proof this way.

5.3. Symmetrizable-hyperbolic systems

Now we are able to prove Theorems 2.5 and 2.7. We bring system (2.4) into a form
that allows to apply Propositions 5.3 and 5.4. We proceed as follows:

• First, we symmetrize the principal part of A by constructing a suitable
symmetrizer M0,

• Secondly, we diagonalize (if possible) the secondary part σ̃0,1(A) with the
help of some matrix M1,

• Thirdly, we shift the spectrum of <iσ̃0,1(A) by utilizing the shift operator
Θ from (4.6).

Proof of Theorem 2.5. By assumption, there is a matrix M ∈ S0,0;λ satisfying
| detM(t, x, ξ)| ≥ c > 0 for |ξ| ≥ C > 0 and χ(|ξ|/2C)=(MAM−1) ∈ S0,1;λ. By
virtue of Lemma A.3, we can assume that the operators M(t, x,Dx), t ∈ [0, T ],
are invertible on L2(Rn).

We set

U (1)(t, x) = M(t, x,Dx)U(t, x),

and obtain the system

(5.7)

{
DtU

(1) =
(
MAM−1 + (DtM)M−1

)
U (1) +MF = A(1)U (1) + F (1),

U (1)(0, x) = M(0, x,Dx)U0(x) = U
(1)
0 (x).

The operator A(1) has Hermitian principal part <A(1) ∈ S1,1;λ and lower-order
part i=A(1) ∈ S0,1;λ. However, we cannot hope to symmetrize i=A(1) because of
lack of information on the structure of A.

But there is surely a constant δ0 ∈ R such that

< iA(1)(t, x, ξ) ≤ δ0h(t, ξ)l∗1N , (t, x, ξ) ∈ [0, T ]× R2n, |ξ| ≥ C.
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Therefore, setting

Θ(t, ξ) = h(t, ξ)δ0l∗ ∈ S0,δ0l∗;λ,

U (2)(t, x) = Θ(t,Dx)U (1)(t, x),

we arrive at the system

(5.8)





DtU
(2) =

(
ΘA(1)Θ−1 + (DtΘ)Θ−1

)
U (2) + ΘF (1)

= A(2)U (2) + F (2),

U (2)(0, x) = Θ(0, Dx)M(0, x,Dx)U0(x) = U
(2)
0 (x).

Since Θ is scalar, we have ΘA(1)Θ−1 = A(1) mod S0,−l∗;λ ⊂ S0,0;λ. Clearly,

(DtΘ)Θ−1 = δ0l∗
Dth

h
,

< i(DtΘ)Θ−1 = δ0l∗
ht

h
≤ −δ0hl∗ mod S−∞,1;λ.

Therefore, the term A(2) satisfies the conditions of Proposition 5.3. It follows that
∥∥U (2)

∥∥
H0,0;λ((0,T )×Rn)

≤ C
(∥∥U (2)

0

∥∥
L2(Rn)

+
∥∥F (2)

∥∥
H0,0;λ((0,T )×Rn)

)

or, equivalently,

‖U‖H0,δ0;λ((0,T )×Rn) ≤ C
(
‖U0‖Hβ∗δ0l∗ (Rn) + ‖F‖H0,δ0;λ((0,T )×Rn)

)
.

Well-posedness in the spaces Hs,δ;λ for s ∈ N0 can be shown in a similar way. Ex-
emplary, we demonstrate this in the case s = 1. As in the proof of Proposition 5.4,
we introduce

V (1)(t, x) =

(
〈Dx〉U (1)(t, x)

g(t,Dx)−1〈Dx〉DtU
(1)(t, x)

)
,

which is a solution to

DtV
(1) =

(
A(1,00) 0
A(1,10) A(1,11)

)
V (1) +

(
〈Dx〉F (1)

Dt(g
−1〈Dx〉F (1))

)
,

where < i
(

A(1,00) 0
A(1,10) A(1,11)

)
∈ S0,1;λ and

< i
(
A(1,00) 0

A(1,10) A(1,11)

)
(t, x, ξ) ≤ δ1h(t, ξ)l∗12N ,

for (t, x, ξ) ∈ [0, T ] × Rn × (Rn \ 0) and some δ1 ∈ R. We set Θ(t, ξ) = h(t, ξ)δ1l∗

and proceed as above to obtain

‖U‖H1,δ1;λ((0,T )×Rn) ≤ C
(
‖U0‖H1+β∗δ1l∗(Rn) + ‖F‖H1,δ1;λ((0,T )×Rn)

)
,

completing the proof in the case s = 1. The parameter functions δ ∈ C∞
b (Rn; R)

turn out to be constants.
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The following refined a priori estimate will be useful in the proof of the local
uniqueness.

Corollary 5.5. Let A and M be as in Theorem 2.5, and δ ∈ C∞
b (Rn; R) be a

function with

< iA(1)(t, x, ξ) ≤
(
δ(x)h(t, ξ)l∗ + C(g(t, ξ)−1h(t, ξ)2 + 1)

)
1N ,

for all (t, x, ξ) ∈ [0, T ] × R2n, |ξ| ≥ C, where A(1) = MAM−1 + (DtM)M−1.

Then the fundamental solution X(t, t′) of the system Dt −A satisfies the a priori
estimate

∥∥h(t,Dx)δl∗X(t, t′)U0(·)
∥∥

L2(Rn)
≤ C

∥∥h(t′, Dx)δl∗U0(·)
∥∥

L2(Rn)
,

for all U0 ∈ H∞(Rn), 0 ≤ t′ ≤ t ≤ T , and some constant C = C(T ) > 0.

Proof. Put U(t, x) = X(t, t′)U0(x). Then, by definition, U is the solution to
{

DtU(t, x) = A(t, x,Dx)U(t, x), (t, x) ∈ (t′, T ) × Rn,

U(t′, x) = U0(x).

Setting U (2)(t, x) = Θ(t, x,Dx)M(t, x,Dx)U(t, x) with Θ(t, x, ξ) = h(t, ξ)δ(x)l∗ we
get, as in the proof of Theorem 2.5,

{
DtU

(2)(t, x) = A(2)(t, x,Dx)U (2)(t, x), (t, x) ∈ (t′, T ) × Rn,

U2(t′, x) = Θ(t′, x,Dx)M(t′, x,Dx)U0(x),

with A(2) satisfying the conditions of Lemma 5.2. Then it suffices to exploit (5.4)
of Lemma 5.2.

Proof of Theorem 2.7. By assumption, there is a matrix M0 ∈ C∞([0, T ], S(0))
such that M0A0M

−1
0 is Hermitian. Choose an arbitrary M1 ∈ S(0). According to

Proposition 4.5, there is an invertible operator M(t, x,Dx) ∈ Op S̃0,0;λ such that

M−1 ∈ Op S̃0,0;λ and

σ0(M) = M0, σ̃−1,0(M) = −il∗|ξ|−1M1.

The inverse operator M−1 has principal symbols

σ0(M−1) = M−1
0 , σ̃−1,0(M−1) = il∗|ξ|−1M0(0, x, ξ)

−1M1(x, ξ)M0(0, x, ξ)
−1,

see Proposition 4.4. Similarly as in the proof of Theorem 2.5, we set U (1) = MU ,
leading to the Cauchy problem (5.7). We compute the principal symbols of A(1) ∈
S̃1,1;λ:

σ1(A(1)) = σ0(M)σ1(A)σ0(M−1) = λ(t)|ξ|(M0A0M
−1
0 )(t, x, ξ),

which is Hermitian, by choice of M0. Due to Lemma 4.6, (DtM)M−1 ∈ S−1,1;λ, so
we can regard this term as remainder. The secondary symbol of A(1) is, according
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to Proposition 4.4,

σ̃0,1(A(1)) = σ̃0,0(M)σ̃1,1(A)σ̃−1,0(M−1) + σ̃0,0(M)σ̃0,1(A)σ̃0,0(M−1)

+ σ̃−1,0(M)σ̃1,1(A)σ̃0,0(M−1)

= −il∗
(
M0A1M

−1
0 +

[
M1M

−1
0 ,M0A0M

−1
0

])
(0, x, ξ).

By assumption, the function δ ∈ C∞
b (Rn; R) satisfies

< iσ̃0,1(A(1))(x, ξ) ≤ δ(x)l∗1N , (x, ξ) ∈ Rn × (Rn \ 0).

As in the proof of Theorem 2.5, we set Θ(t, x, ξ) = h(t, ξ)δ(x)l∗ , and choose
U (2)(t, x) = Θ(t, x,Dx)U (1)(t, x), resulting in the Cauchy problem (5.8). We want
to apply Proposition 5.4 to this system. Therefore, we compute the principal sym-
bols of A(2). By Proposition 4.8,

Θ ◦A(1) ◦ Θ−1 = A(1) mod S
0,−(l∗+1);λ
(2) ⊂ S0,0;λ,

(DtΘ) ◦ Θ−1 = (DtΘ)Θ−1 mod S−1,−l∗;λ
(1) ⊂ S0,0;λ,

(DtΘ)Θ−1 = i−1δ(x)
ht

h
l∗ mod S−∞,1;λ

(0) ,

since (DtΘ)Θ−1 ∈ S0,1;λ
(0) according to the rules of Proposition 4.8.

Hence, we conclude that σ1(A(2)) = σ1(A(2))∗ and < iσ̃0,1(A(2)) ≥ 0. Then
Proposition 5.4 provides us with the (s, 0)–well–posedness of (5.8), which, in turn,
implies the (s, δ(x))–well–posedness of (2.4) for any s ∈ N0. This completes the
proof.

5.4. Higher-order scalar equations

Proof of Theorem 2.8. We transform problem (2.5) to an m × m system of the
first order. Then it is equivalent to the Cauchy problem

{
DtU(t, x) = A(t, x,Dx)U(t, x) + F (t, x), (t, x) ∈ (0, T )× Rn,

U(0, x) = U0(x),

where

U =




gm−1u
gm−2Dtu

...
gDm−2

t u
Dm−1

t u




∈ Hs,δ(x)+m−1;λ

(this holding if and only if u ∈ Hs+m−1,δ(x);λ),

U0 =




〈Dx〉β∗(m−1)u0

〈Dx〉β∗(m−2)u1

...
〈Dx〉β∗um−2

um−1




∈ Hs+β∗(δ(x)+m−1)l∗ , F =




0
0
...
0

f(t, x)




∈ Hs,δ(x)+m−1;λ,
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and

A(t, x, ξ) =




(m− 1) Dtg
g g 0 . . . 0 0

0 (m− 2) Dtg
g g . . . 0 0

0 0 (m− 3) Dtg
g . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Dtg
g g

− a0

gm−1 − a1

gm−2 − a2

gm−3 . . . −am−2

g −am−1




,

where aj(t, x, ξ) =
∑

|α|≤m−j ajα(t, x) t(j+(l∗+1)|α|−m)+ξα.

We have A ∈ S̃1,1;λ, σ1(A)(t, x, ξ) = λ(t)|ξ|A0(t, x, ξ), where

A0(t, x, ξ) =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1

−p0 −p1 −p2 . . . −pm−2 −pm−1




,

pj(t, x, ξ) =
∑

|α|=m−j ajα(t, x)(ξ/|ξ|)α, and σ̃0,1(A)(x, ξ) = −il∗A1(x, ξ), where

A1(x, ξ) =




m− 1 0 0 . . . 0 0
0 m− 2 0 . . . 0 0
0 0 m− 3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

−q0 −q1 −q2 . . . −qm−2 0




,

qj(x, ξ) = il−1
∗

∑
|α|=m−j−1 ajα(0, x)(ξ/|ξ|)α.

Now, it is easy to provide a symmetrizer M0 for A0, namely

M0(t, x, ξ)
−1 =




1 1 . . . 1
µ1 µ2 . . . µm

...
...

. . .
...

µm−1
1 µm−1

2 . . . µm−1
m


 .

Note that detM−1
0 =

∏
h>h′(µh − µh′) and, for 1 ≤ h, j ≤ m,

(5.9) (M0(t, x, ξ))hj =
µm−j

h + pm−1µ
m−j−1
h + · · · + pj+1µh + pj

∂p
∂τ (µh)

.
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According to our general scheme, to read off the loss of regularity we have to
calculate
(
M0A1M

−1
0

)
hh

=
∑

j, k

(M0)hj (A1)jk (M−1
0 )kh

=
m−1∑

j=1

(m− j) (M0)hj (M−1
0 )jh −

m−1∑

j=1

qj−1 (M0)hm (M−1
0 )jh

= m−
m∑

j=1

j (M0)hj (M−1
0 )jh −

m−1∑

j=1

qj−1 (M0)hm (M−1
0 )jh.

By virtue of (5.9),
m∑

j=1

j(M0)hj(M
−1
0 )jh

=
1

∂p
∂τ (µh)

m∑

j=1

j
(
µm−j

h + pm−1µ
m−j−1
h + · · · + pj+1µh + pj

)
µj−1

h

=

∑m
j=1

(
j+1
2

)
pjµ

j−1
h

∂p
∂τ (µh)

=

(
∂p
∂τ + τ

2
∂2p
∂τ2

∂p
∂τ

)
(0, x, µh, ξ)

and
m−1∑

j=1

qj−1 (M0)hm (M−1
0 )jh =

∑m−1
j=1 qj−1µ

j−1
h

∂p
∂τ (µh)

=
q(x, µh, ξ)

∂p
∂τ (0, x, µh, ξ)

.

Hence, the assertion follows.

5.5. Local uniqueness

Proof of Theorem 2.9. We follow an approach of Kumano-go [41].
Choose a cut-off function ϕ ∈ C∞

c (Rn; R) with suppϕ b Ω0, ϕ ≡ 1 in a
neighbourhood Ω1 of 0 ∈ Rn. Set

v(t, x) = ϕ(x)u(t, x) ∈ Hm−1,δ(x);λ((0, T )× Rn)

(shrink T if necessary). Then v solves the Cauchy problem
{

Pv(t, x) = [P, ϕ] u(t, x) =: f(t, x), (t, x) ∈ (0, T ) × Rn,

Dj
t v(0, x) = 0, 0 ≤ j ≤ m− 1.

We compare v with the solution vε to
{

Pvε(t, x) = f(t, x), (t, x) ∈ (ε, T ) × Rn,

Dj
t vε(ε, x) = 0, 0 ≤ j ≤ m− 1,

for 0 < ε < T . Observe that v ≡ u in (0, T )×Ω1 and f ≡ 0 in (0, T )×Ω1. Since the
Cauchy problem for vε is strictly hyperbolic and, therefore, has finite propagation
speed, there is a neighbourhood Ω2 b Ω1 of 0 such that vε ≡ 0 in (ε, T ) × Ω2 for
all 0 < ε < T (shrink T again if necessary).
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It suffices to show that

(5.10) lim
ε→+0

‖v(t, ·) − vε(t, ·)‖L2(Rn) = 0,

for 0 < t < T a.e., because this implies limε→+0 ‖v(t, ·) − vε(t, ·)‖L2(Ω2) = 0.

Writing P in the form (1.2) with aj ∈ Sj,j;λ, we find

[P, ϕ] =
m∑

j=1

[aj , ϕ]Dm−j
t ,

where [aj , ϕ] ∈ Sj−1,j−l∗−1;λ, since ϕ ∈ S0,0;λ. According to Proposition 4.15,

[aj , ϕ] ∈ L(Hj−1,δ+m−j−1;λ, H0,δ+m−1;λ).

From Proposition 3.10, we get

Dm−j
t ∈ L(Hm−1,δ−1;λ((0, T )× Rn), Hj−1,δ+m−j−1;λ((0, T ) × Rn)).

Thus,

[P, ϕ] ∈ L(Hm−1,δ−1;λ((0, T )× Rn), H0,δ+m−1;λ((0, T ) × Rn)).

We now introduce the vectors

V =




gm−1v
gm−2Dtv

...
gDm−2

t v
Dm−1

t v



, Vε =




gm−1vε

gm−2Dtvε

...
gDm−2

t vε

Dm−1
t vε



.

These vectors solve the Cauchy problems
{

DtV (t, x) = A(t, x,Dx)V (t, x) + F (t, x), (t, x) ∈ (0, T ) × Rn,

V (0, x) = 0,
{

DtVε(t, x) = A(t, x,Dx)Vε(t, x) + F (t, x), (t, x) ∈ (ε, T )× Rn,

Vε(ε, x) = 0.

See the proof of Theorem 2.8 for the definition of A and F .
According to Corollary 5.5 and the proof of Theorem 2.8, the fundamental

solution X(t, t′) to the first-order system Dt −A(t, x,Dx) satisfies the estimate
∥∥h(t,Dx)(δ+m−1)l∗X(t, t′)U0(·)

∥∥
L2(Rn)

≤ C
∥∥h(t′, Dx)(δ+m−1)l∗U0(·)

∥∥
L2(Rn)

.

Obviously,

V (t, x) = i

∫ t

0

X(t, t′)F (t′, x) dt′, 0 < t < T,

Vε(t, x) = i

∫ t

ε

X(t, t′)F (t′, x) dt′, ε < t < T,
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and, therefore,

V (t, x) − Vε(t, x) = i

∫ ε

0

X(t, t′)F (t′, x) dt′.

We have the following estimates:

∥∥h(t,Dx)(δ+m−1)l∗(V (t, ·) − Vε(t, ·))
∥∥

L2(Rn)

≤ C

∫ ε

0

∥∥h(t′, Dx)(δ+m−1)l∗F (t′, ·)
∥∥

L2(Rn)
dt′,

and

∥∥h(t,Dx)(δ+m−1)l∗(V (t, ·) − Vε(t, ·))
∥∥2

L2(Rn)

≤ Cε

∫ ε

0

∥∥h(t′, Dx)(δ+m−1)l∗F (t′, ·)
∥∥2

L2(Rn)
dt′,

≤ Cε ‖F‖2
H0,δ+m−1;λ((0,T )×Rn)

≤ Cε ‖u‖2
Hm−1,δ−1;λ(Ω) .

This implies (5.10) finishing the proof.

5.6. Sharpness of energy estimates

We finally come to the proof of Theorem 2.10. For technical reasons, it is quite
long; however, the main ideas are borrowed from the proof of a standard result on
the instability of ODE systems. For the reader’s convenience, we recall that result
from stability theory first, and present the proof of Theorem 2.10 then. Compare
also [73].

5.6.1. Digression to stability theory Let A ∈ MN×N(C) be a constant

matrix, G : CN → CN be a smooth mapping with ‖G(W )‖ ≤ C ‖W‖2
in a neigh-

bourhood of 0 ∈ CN , and consider the ODE system

(5.11)

{
DtW (t) = AW (t) +G(W (t)), 0 ≤ t <∞,

W (0) = W0,

where W ∈ C1([0,∞); C) is an unknown N -vector.

Definition 5.6. We say that the zero solution to (5.11) is stable if for every δ > 0
there is a γ > 0 such that ‖W0‖ < γ implies global existence of the solution W to
(5.11), and ‖W (t)‖ < δ for all 0 ≤ t <∞.

The zero solution is called asymptotically stable if it is stable and there is a
γ∗ > 0 such that ‖W0‖ < γ∗ implies limt→∞ ‖W (t)‖ = 0.

Denote the eigenvalues of A by ν1,. . . ,νN . It is well-known that the imaginary
parts =νj determine the stability behaviour:



44 Michael Dreher and Ingo Witt

Proposition 5.7. (a) If the values <(iνj), j = 1, . . . , N , are all negative, then the

zero solution to (5.11) is asymptotically stable.

(b) If one value <(iνj) is positive, then the zero solution to (5.11) is not

stable.

Sketch of proof of (b). For simplicity, assume that A is symmetrizable, and no
eigenvalue νj has vanishing imaginary part.

Then there is a symmetrizer M with MAM−1 = diag(ν1, . . . , νN ). Replacing
W with MW , we can suppose that A is already diagonalized. Be reordering we
may additionally assume that

ε ≤ <(iνk), k = 1, . . . , d,

<(iνk) ≤ −ε, k = d+ 1, . . . , N,

for some ε > 0 and some 1 ≤ d ≤ N . We divide A into blocks,

A =

(
A(00) 0

0 A(11)

)
,

where A(00), A(11) are d× d, (N − d) × (N − d) matrices, respectively, with

<(iA(00)) ≥ ε1d,

<(iA(11)) ≤ −ε1N−d.

We choose a special initial vector W0,

W0 = γ0(1, . . . , 1︸ ︷︷ ︸
d times

, 0, . . . , 0︸ ︷︷ ︸
N − d times

)T , γ0 > 0 small,

and define W = W (t) as the (at least local) solution to (5.11).

Our goal is to show that ‖W (t)‖ grows up to a certain value, independent of
‖W0‖. To this end, we define the Lyapunov functional

S(t) =

d∑

k=1

|Wk(t)|2 −
N∑

k=d+1

|Wk(t)|2 =
∥∥∥W (0)(t)

∥∥∥
2

−
∥∥∥W (1)(t)

∥∥∥
2

.

This functional is always bounded by the energy ‖W (t)‖2
,

|S(t)| ≤ ‖W (t)‖2
;

and in our case S(t) > 0 for small t, since S(0) > 0.
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We deduce that

∂tS(t) = 2<
(
∂tW

(0)(t),W (0)(t)
)
− 2<

(
∂tW

(1)(t),W (1)(t)
)

= 2<
(
iA(00)W (0)(t),W (0)(t)

)
+ 2<

(
−iA(11)W (1)(t),W (1)(t)

)

+ 2<
(
G̃(W (t)),W (t)

)

≥ 2ε ‖W (t)‖2 − C0 ‖W (t)‖3

≥ (2ε− C0 ‖W (t)‖)S(t),

assuming 2ε−C0 ‖W (t)‖ > 0 and S(t) > 0, which is true for small γ0 and small t.
It follows that S(t) keeps growing until ‖W (t)‖ reaches the value 2ε

C0
. Therefore,

the zero solution is not stable.

Now, we compare two evolution equations:

Case 1: DtW = AW +G(W ) as in (5.11)
Case 2: DtU = AU as in Theorem 2.10

and list their similarities:

• In both cases, the operators on the right-hand side have a diagonalizable
principal part Apr: Apr = A in Case 1 and

Apr = Opχ(Λ(t)〈ξ〉/C)
(
σ1(A) + t−1σ̃0,1(A)

)
for some large C > 0,

in Case 2,
• Both operators on the right–hand side contain a perturbation term Apert,

which does not respect the eigenspaces of the diagonalized Apr, but turns
out to be negligible: Apert(W ) = G(W ) in Case 1 and Apert ∈ S−1,1;λ +
S0,0;λ in Case 2,

• At least after some transformations, the spectrum of <(iApr) contains a
positive part. In the second case, these transformations are the following:

– diagonalize Apr,
– possibly shift δ, see Lemma 5.8,
– cut-off a subset of a conic neighbourhood of (x0, ξ0),
– shift the spectrum using an operator Θ, see (5.24),
– restrict the time interval from [0, T ] to some subset [tj , T ],

• In order to handle a (possibly empty) negative part of the spectrum of
<(iApr), we introduce a Lyapunov functional as difference of L2 norms of
components of the solution vector,

• The proofs of instability and ill-posedness, respectively, are based on an
a priori estimate from below for the Lyapunov functional for suitably
chosen initial values.

But there are also some differences:

• In Case 2, we have to bring several additional terms under control, which
arise from cut-off operators and commutators,
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• We consider a whole family Uj = Uj(t, x) of approximate solutions to
DtU = AU . They are supported in a neighbourhood of the line [0, T ] ×
{x0}, and their Fourier transforms Ûj(t, ξ) are concentrated near [0, T ]×
{2jξ0}, |ξ0| = 1. We will compare the values of the Lyapunov functional
to Uj evaluated at t = tt and t = Tj , obtaining (for large j) a contra-
diction to the a priori estimate that follows from the assumed (0, δ(x))–
well-posedness of the Cauchy problem for the operator Dt −A. Here, tj is
defined by Λ(tj)〈ξj〉 = N1 for large N1, and Tj =

√
tj .

5.6.2. Proof of Theorem 2.10 Before proving Theorem 2.10, we state a tech-
nical result whose proof is postponed to the appendices:

Lemma 5.8. Let A ∈ OpS1,1;λ, δ ∈ C∞
b (Rn; R). Assume the Cauchy problem for

the operator Dt − A be (0, δ(x))–well-posed. Then, for any ε > 0, the Cauchy

problem for this operator is also (0, δ(x) + ε)–well-posed.

As announced in Section 5.6.1, we diagonalize A modulo a remainder Apert

with symbol from S−1,1;λ + S0,0;λ:

Lemma 5.9. Under the assumptions of Theorem 2.10, there is an invertible op-

erator M ∈ Op S̃0,0;λ with M−1 ∈ Op S̃0,0;λ such that the non-diagonal part of

MAM−1 belongs to Op(S−1,1;λ + S0,0;λ). Moreover, there are functions νj ∈
S̃1,1;λ for 1 ≤ j ≤ N which coincide with the eigenvalues of σ1(A)(t, x, ξ) +
t−1σ̃0,1(A)(x, ξ) for large values of Λ(t)〈ξ〉.

Proof. Fix M0, A0 as in the proof of Theorem 2.7, where the matrix M0A0M
−1
0 is

real diagonal. According to the computations there, it suffices to find an M1 ∈ S(0)

with the property that the matrix

M0A1M
−1
0 +

[
M1M

−1
0 ,M0A0M

−1
0

]

is diagonal. But the existence of such an M1 follows from Lemma A.1. Then
σ1(MAM−1) and σ̃0,1(MAM−1) are diagonal, and the first claim is proved.

Concerning the second claim, we have to investigate the eigenvalues of

λ(t)|ξ|Aε(t, x, ξ) = λ(t)|ξ| (A0(t, x, ξ) − iεA1(x, ξ))

for small values of ε = l∗(tλ(t)|ξ|)−1, where A0 ∈ C∞([0, T ], S(0)) and A1 ∈
S(0). The eigenvalues of A0(t, x, ξ) are µj(t, x, ξ)|ξ|−1, hence distinct in the sense
of (2.17). Lemma A.2 gives us the desired symbol estimates of the eigenvalues µj,ε

of λ(t)|ξ|Aε(t, x, ξ) for large Λ(t)〈ξ〉. Then

νj(t, x, ξ) = χ(Λ(t)〈ξ〉/C)µj,ε(t, x, ξ).

are as desired.

Proof of Theorem 2.10. Part (a) follows from Theorem 2.7 and Lemma 5.9.
To prove part (b), we may suppose that the complete symbol A(t, x, ξ) is

diagonalized modulo S−1,1;λ + S0,0;λ.
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Without loss of regularity, we may suppose that |ξ0| = 1. Denote by Uγ for
γ > 0 a truncated conic neighbourhood of (x0, ξ0) ∈ Rn × (Rn \ 0),

Uγ :=

{
(x, ξ) ∈ Rn × (Rn \ 0) : |x− x0| < γ,

∣∣∣∣
ξ

|ξ| −
ξ0
|ξ0|

∣∣∣∣ < γ, |ξ| ≥ 1

}
.

By renumbering, if necessary, we can achieve that

<(iσ̃0,1(ν1))(x0, ξ0) ≥ <(iσ̃0,1(ν2))(x0, ξ0) ≥ . . . ≥ <(iσ̃0,1(νN ))(x0, ξ0).

Lemma 5.8 allows us to assume that

(5.12)
(δ(x) + ε)l∗ ≤ <(iσ̃0,1(νk))(x, ξ) ≤ (δ(x) + 2ε)l∗, k = 1, . . . , d,

<(iσ̃0,1(νk))(x, ξ) ≤ (δ(x) − ε)l∗, k = d+ 1, . . . , N,

for (x, ξ) ∈ Uγ , certain small positive ε and γ, and some 1 ≤ d ≤ N .

Choose a cut-off function v0 ∈ C∞
c (Rn; R) supported in {|x − x0| < γ/4},

and put

v0,j(x) = v0(x) exp
(
ix · 2jξ0

)
.

Then the Fourier transform v̂0,j is concentrated near 2jξ0. Lemma A.6 gives us
the crucial estimate

(5.13) C−1 ‖v0,j‖Hs(x)(Rn) ≤
∥∥∥ϕ(k)

j (x,Dx)v0,j

∥∥∥
Hs(x)(Rn)

≤ C ‖v0,j‖Hs(x)(Rn) ,

for j large, k = 1, 2, s ∈ C∞
b (Rn; R) and cut-off operators ϕ

(1)
j , ϕ

(2)
j defined as

follows. Fix ϕ
(2)
j ∈ S0 with

suppϕ
(2)
j ⊂ Uγ ∩ {(x, ξ) : 2j−1 < |ξ| < 2j+1},

ϕ
(2)
j (x, ξ) = 1 on Uγ/2 ∩

{
(x, ξ) :

5

4
· 2j−1 < |ξ| < 3

4
· 2j+1

}
.

Define ϕ
(1)
j similarly, with ϕ

(2)
j ≡ 1 on suppϕ

(1)
j . These symbols form a bounded

subset of S0,0;λ.

With d from (5.12), we introduce a vector

(5.14) V0,j(x) = v0,j(x)(1, . . . , 1︸ ︷︷ ︸
d times

, 0, . . . , 0︸ ︷︷ ︸
N − d times

)T .

We need an auxiliary vector function Vj , which is defined as the solution to
{

DtVj(t, x) = A(t, x,Dx)ϕ
(2)
j (x,Dx)Vj(t, x),

Vj(tj , x) = V0,j(x),

where tj is given by the relation Λ(tj)2
j = N1, and N1 will be chosen later.

To estimate Vj in terms of V0,j , we note that (5.12) implies

< iAϕ
(2)
j (t, x, ξ) ≤ ((δ(x) + 2ε)h(t, ξ)l∗ + Cg(t, ξ)−1h(t, ξ)2 + C)1N
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for (t, x, ξ) ∈ [0, T ] × Rn × (Rn \ 0). Then the proof of Theorem 2.5 gives us
(5.15)∥∥∥h(t,Dx)(δ(x)+2ε)l∗Vj(t, ·)

∥∥∥
L2(Rn)

≤ C ‖Vj(0, ·)‖Hβ∗(δ(x)+2ε)l∗ (Rn) , 0 ≤ t ≤ T.

To relate Vj(0, ·) with V0,j , we note that the symbol A ◦ ϕ(2)
j belongs to the

Hörmander class S0
1,0, for 0 ≤ t ≤ tj , with symbol seminorms O(2β∗j). By choice

of tj , it holds 2β∗jtj ≤ C. Then it can be concluded that

(5.16) C−1 ‖V0,j‖Hs(x)(Rn) ≤ ‖Vj(t, ·)‖Hs(x)(Rn) ≤ C ‖V0,j‖Hs(x)(Rn)

for 0 ≤ t ≤ tj , and all s ∈ C∞
b (Rn; R).

We will need a refinement of these estimates. Denote by {ψj}j≥0 the standard
Littlewood-Paley decomposition (see the proof of Lemma 5.8 in the Appendix for
a precise definition), and set

ζj(ξ) = ψj−1(ξ) + ψj(ξ) + ψj+1(ξ),

which is identical 1 on the support of ϕ
(2)
j . Then

Dt(ζjVj) = Aϕ
(2)
j (ζjVj) +

[
ζj , Aϕ

(2)
j

]
Vj ,

where the commutator on the right belongs to OpS−∞. By the same reasoning as
before,

∥∥∥h(t,Dx)(δ(x)+2ε)l∗ζj(Dx)Vj(t, ·)
∥∥∥

L2(Rn)
(5.17)

≤ C ‖ζjV0,j‖Hβ∗(δ(x)+2ε)l∗ (Rn) + Ck2−jk ‖V0,j‖H−k(Rn) ,

for any k ∈ R, refining (5.15).
Now we are ready to define Uj ,

Uj(t, x) = ϕ
(1)
j (x,Dx)Vj(t, x),

which is a solution to

DtUj = AUj +A(ϕ
(2)
j − 1)ϕ

(1)
j Vj +

[
ϕ

(1)
j , Aϕ

(2)
j

]
Vj = AUj + Fj .

Now we bring the assumption of (0, δ(x))–well-posedness into play. According to
Definition 2.3, the a priori estimate

∥∥∥h(Tj , Dx)δ(x)l∗Uj(Tj , ·)
∥∥∥

2

L2(Rn)
(5.18)

≤ C
(
‖Uj(0, ·)‖2

Hβ∗δ(x)l∗ (Rn) + Tj ‖Fj‖2
H0,δ(x);λ((0,Tj)×Rn)

)

holds for 0 ≤ Tj ≤ T . By the estimates (5.13) and (5.16),

‖Uj(0, ·)‖Hβ∗δ(x)l∗ (Rn) ≤ C ‖Vj(0, ·)‖Hβ∗δ(x)l∗ (Rn)(5.19)

≤ C ‖V0,j‖Hβ∗δ(x)l∗ (Rn) ≤ C ‖Uj(tj , ·)‖Hβ∗δ(x)l∗ (Rn) .
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Choosing the number k sufficiently large, we can conclude that

(5.20) ‖V0,j‖H−k(Rn) ≤ C ‖V0,j‖Hβ∗δ(x)l∗ (Rn)

≤ C ‖Uj(tj , ·)‖Hβ∗δ(x)l∗ (Rn) ≤ C ‖Wj(tj , ·)‖L2(Rn) ,

where we have introduced Wj = ΘUj and Θ(t, x, ξ) = h(t, ξ)δ(x)l∗ . Then we can
rewrite (5.18) as

‖Wj(Tj , ·)‖2
L2(Rn) ≤ C0

(
‖Wj(tj , ·)‖2

L2(Rn) + Tj ‖ΘFj‖2
L2((0,Tj)×Rn)

)
.(5.21)

To derive an estimate from below, we define the Lyapunov functional

Sj(t) =

d∑

k=1

‖Wj,k(t, ·)‖2
L2(Rn) −

N∑

k=d+1

‖Wj,k(t, ·)‖2
L2(Rn) ,

where Wj,k is the kth component of the vector Wj . Observe that

|Sj(t)| ≤ ‖Wj(t, ·)‖2
L2(Rn) , 0 ≤ t ≤ T,(5.22)

Sj(tj) = ‖Wj(tj , ·)‖2
L2(Rn) ,(5.23)

by choice of V0,j , see (5.14). The vector Wj solves

DtWj =
(
ΘAΘ−1 + (DtΘ)Θ−1

)
Wj + ΘFj = AΘWj + ΘFj ,(5.24)

AΘ =

(
A

(00)
Θ A

(01)
Θ

A
(10)
Θ A

(11)
Θ

)
,

where A
(00)
Θ , A

(11)
Θ ∈ S̃1,1;λ are d×d, (N −d)× (N −d) matrices, respectively, and

A
(01)
Θ , A

(10)
Θ ∈ S−1,1;λ + S0,0;λ. By (5.12),

< iA
(00)
Θ (t, x, ξ) ≥

(
εh(t, ξ)l∗ − C(g(t, ξ)−1h(t, ξ)2 + 1)

)
1d,

< iA
(11)
Θ (t, x, ξ) ≤

(
−εh(t, ξ)l∗ + C(g(t, ξ)−1h(t, ξ)2 + 1)

)
1N−d,

for (t, x, ξ) ∈ [0, T ] × Uγ . Remember that ϕ
(1)
j ≡ 0 outside [0, T ] × Uγ . Then it

follows that

∂tSj ≥ 2<
(
(εhl∗ − Cg−1h2 − C)Wj ,Wj

)
−C ‖ΘFj‖2

L2(Rn)−C2−2jk ‖V0,j‖2
H−k(Rn) .

If t ≥ tj and the constant N1 in the definition of tj is sufficiently large, then

εh(t, ξ)l∗ − Cg(t, ξ)−1h(t, ξ)2 − C ≥ ε

2
h(t, ξ)l∗ =

εl∗
2t
,

shrinking T if necessary. As a consequence,

∂tSj(t) ≥
εl∗
t
Sj(t) − C1

(
‖(ΘFj)(t, ·)‖2

L2(Rn) + 2−2jkSj(tj)
)
,
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for tj ≤ t ≤ T , exploiting (5.20), (5.22), and (5.23). By Gronwall’s Lemma,

Sj(Tj) ≥
(
Tj

tj

)εl∗
(
Sj(tj)−

− C1

∫ Tj

tj

(
t

tj

)−εl∗ (
‖(ΘFj)(t, ·)‖2

L2(Rn) + 2−2jkSj(tj)
)
dt

)
.

Combining this with (5.21) and (5.22), we find, for large j, k, and small ε,

C0

(
Sj(tj) + Tj ‖ΘFj‖2

L2((0,Tj)×Rn)

)
(5.25)

≥
(
Tj

tj

)εl∗
(

1

2
Sj(tj) − C1

∫ Tj

tj

(
t

tj

)−εl∗

‖(ΘFj)(t, ·)‖2
L2(Rn) dt

)
.

This will be a contradiction for large values of
Tj

tj
provided that we get control on

the term ΘFj . Recall that

Fj = A(ϕ(2) − 1)ϕ
(1)
j Vj +

[
ϕ

(1)
j , Aϕ

(2)
j

]
Vj

= A(ϕ(2) − 1)ϕ
(1)
j ζjVj +

[
ϕ

(1)
j , Aϕ

(2)
j

]
ζjVj ,

since ζj = ζj(ξ) ≡ 1 on suppϕ
(1)
j b suppϕ

(2)
j . Clearly,

{
(ϕ

(2)
j − 1)ϕ

(1)
j

∣∣ j ∈ N0

}
⊂

S−∞ and
{
[ϕ

(1)
j , Aϕ

(2)
j ]

∣∣ j ∈ N0

}
⊂ S0,−l∗;λ are bounded subsets. Therefore, we

get

‖(ΘFj)(t, ·)‖2
L2(Rn) ≤ C

∥∥h(t,Dx)−l∗(ΘζjVj)(t, ·)
∥∥2

L2(Rn)

≤ C
∥∥∥h(t,Dx)−(1+2ε)l∗h(t,Dx)(δ(x)+2ε)l∗ζj(Dx)Vj(t, ·)

∥∥∥
2

L2(Rn)
.

For 0 ≤ t ≤ tj , we have h(t, ξ)−(1+2ε)l∗ζj(ξ) ∼ 2−β∗j(1+2ε)l∗ , hence

‖(ΘFj)(t, ·)‖L2(Rn)

≤ C2−β∗j(1+2ε)l∗ ‖ζjV0,j‖Hβ∗(δ(x)+2ε)l∗ (Rn) + Ck2−jk ‖V0,j‖H−k(Rn)

≤ C2−β∗jl∗ ‖ζjV0,j‖Hβ∗δ(x)l∗ (Rn) + Ck2−jk ‖Wj(tj , ·)‖L2(Rn)

≤ C2−β∗jl∗ ‖Wj(tj , ·)‖L2(Rn) ,

due to (5.17), (5.19), and (5.20). And in the case of tj ≤ t ≤ T , we know that

h(t, ξ)−(1+2ε)l∗ζj(ξ) ∼ t(1+2ε)l∗ , from which follows that

‖(ΘFj)(t, ·)‖L2(Rn) ≤ Ct(1+2ε)l∗ ‖ζjV0,j‖Hβ∗(δ(x)+2ε)l∗ (Rn) + Ck2−jk ‖V0,j‖H−k(Rn)

≤ Ctl∗
(
2β∗jt

)2εl∗ ‖Wj(tj , ·)‖L2(Rn) .
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Inserting these estimates into (5.25), we obtain

C0Sj(tj)
(
1 + CTjtj2

−2β∗jl∗ + CT 2+2l∗
j

(
2β∗jTj

)4εl∗
)

≥
(
Tj

tj

)εl∗

Sj(tj)

(
1

2
− CT 2+2l∗

j

(
2β∗jTj

)4εl∗
)
.

We recall that tj = C2−β∗j . Choosing Tj =
√
tj , we find that

lim
j→∞

(
Tjtj2

−2β∗jl∗ + T 2+2l∗
j

(
2β∗jTj

)4εl∗
)

= 0,

for small ε > 0, which gives a contradiction as j → ∞.

Appendix A. Supplements

Proof of Lemma 5.8. We have to show that

∥∥∥h(t,Dx)(δ(x)+ε)l∗U(t, ·)
∥∥∥

2

L2(Rn)

≤ C
(
‖U0‖2

Hβ∗(δ(x)+ε)l∗ (Rn) + t2 ‖F‖2
H0,δ(x)+ε;λ((0,t)×Rn)

)

for any solutions U = U(t, x) to DtU = A(t, x,Dx)U + F (t, x), U(0, x) = U0(x),
where the constant C does not dependent on t, 0 ≤ t ≤ T . By density arguments,
we can assume that U0 ∈ H∞(Rn), F ∈ H∞([0, T )×Rn). Then U ∈ H∞((0, T )×
Rn).

We use the well-known Littlewood-Paley decomposition:

ψj ∈ C∞
c (Rn; R), j = 0, 1, 2, . . . ,

0 ≤ ψj(ξ) ≤ 1, ξ ∈ Rn, j = 0, 1, 2, . . . ,

suppψ0 ⊂ {ξ ∈ Rn | |ξ| < 2},
suppψj ⊂ {ξ ∈ Rn | 2j−1 < |ξ| < 2j+1}, j = 1, 2, . . . ,

ψj(ξ) = ψ1(2
1−jξ), j = 1, 2, . . . ,

∞∑

j=0

ψj(ξ) = 1, ξ ∈ Rn.

The set {ψj | j = 0, 1, . . . } ⊂ S0,0;λ is bounded. Denote U (j) = ψj(Dx)U , U
(j)
0 =

ψj(Dx)U0, and F (j) = ψj(Dx)F . Then




DtU
(j) = AU (j) + [ψj , A]

∞∑

l=0

ψlU + F (j), (t, x) ∈ (0, T )× Rn,

U (j)(0, x) = U
(j)
0 (x).
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From Proposition 4.2, we have that the set
{
[ψj , A]

∣∣ j = 0, 1, . . .
}

⊂ S0,−l∗;λ

is bounded. Moreover, the operator [ψj , A]
∑

|l−j|≥2 ψl is regularizing, where, for

any k ∈ N0, the set

{
2jk [ψj , A]

∑

|l−j|≥2

ψl

∣∣ j = 0, 1, . . .
}
⊂ S0,0;λ

is bounded.

By virtue of the (0, δ(x))–well-posedness,

∥∥∥h(t,Dx)δ(x)l∗U (j)(t, ·)
∥∥∥

2

L2(Rn)

≤ C



∥∥∥U (j)

0

∥∥∥
2

Hβ∗δ(x)l∗ (Rn)
+ t2

∑

|l−j|≤1

∥∥∥U (l)
∥∥∥

2

H0,δ(x);λ((0,t)×Rn)

+2−2jkt2 ‖U‖2
H0,δ(x);λ((0,t)×Rn) + t2

∥∥∥F (j)
∥∥∥

2

H0,δ(x);λ((0,t)×Rn)

)
.

If Λ(t)2j ≤ 1, then h(t, ξ)εl∗ ∼ 2β∗jεl∗ on supphδl∗ψj , hence

(A.1)
∥∥∥h(t,Dx)(δ(x)+ε)l∗U (j)(t, ·)

∥∥∥
2

L2(Rn)

≤ C



∥∥∥U (j)

0

∥∥∥
2

Hβ∗(δ(x)+ε)l∗ (Rn)
+ t2

∑

|l−j|≤1

∥∥∥U (l)
∥∥∥

2

H0,δ(x)+ε;λ((0,t)×Rn)

+2−2jk+2β∗jεl∗ t2 ‖U‖2
H0,δ(x);λ((0,t)×Rn) + t2

∥∥∥F (j)
∥∥∥

2

H0,δ(x)+ε;λ((0,t)×Rn)

)
.

If Λ(t)2j ≥ 1, then h(t, ξ)εl∗ ∼ t−εl∗ on supphδl∗ψj . Moreover, t−εl∗ ≤ Ch(t′, ξ)εl∗

for 0 ≤ t′ ≤ t, ξ ∈ suppψj . Thus, we have (A.1) also in this case.

For the further treatment of all the terms of (A.1) (except the third on the
right), we have to commute h(δ+ε)l∗ and ψj :

h(δ+ε)l∗ ◦ ψj =
(
ψj +

[
h(δ+ε)l∗ , ψj

]
◦ (h(δ+ε)l∗)−1

)
◦ h(δ+ε)l∗ ,
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and [h(δ+ε)l∗ , ψj ] ◦ (h(δ+ε)l∗)−1 ∈ S
−1,−(l∗+1);λ
(1) with S0,−εl∗;λ

(0) symbol seminorms

O(2−j/2), for small ε, whence
∥∥∥h(t,Dx)(δ(x)+ε)l∗U (j)(t, ·)

∥∥∥
2

L2(Rn)

≤
∥∥∥ψjh(t,Dx)(δ(x)+ε)l∗U(t, ·)

∥∥∥
2

L2(Rn)
+ C2−j

∥∥∥h(t,Dx)δ(x)l∗U(t, ·)
∥∥∥

2

L2(Rn)
,

∥∥∥U (j)
0

∥∥∥
2

Hβ∗(δ(x)+ε)l∗ (Rn)

≤
∥∥∥ψjh(0, Dx)(δ(x)+ε)l∗U0

∥∥∥
2

L2(Rn)
+ C2−j ‖U0‖2

Hβ∗δ(x)l∗ (Rn) ,

∥∥∥U (l)
∥∥∥

2

H0,δ(x)+ε;λ((0,t)×Rn)

≤
∫ t

0

∥∥∥ψlh(t
′, Dx)(δ(x)+ε)l∗U(t′, ·)

∥∥∥
2

L2(Rn)
dt′ + C2−j ‖U‖2

H0,δ(x);λ((0,t)×Rn) .

The term
∥∥F (j)

∥∥2

H0,δ(x)+ε;λ((0,t)×Rn)
from (A.1) can be treated in a similar way as

∥∥U (l)
∥∥2

H0,δ(x)+ε;λ((0,t)×Rn)
. Inserting these inequalities into (A.1), we find

∥∥∥ψjh(t,Dx)(δ(x)+ε)l∗U(t, ·)
∥∥∥

2

L2(Rn)

≤ C

(∥∥∥ψjh(0, Dx)(δ(x)+ε)l∗U0

∥∥∥
2

L2(Rn)

+ t2
∑

|l−j|≤1

∫ t

0

∥∥∥ψlh(t
′, Dx)(δ(x)+ε)l∗U(t′, ·)

∥∥∥
2

L2(Rn)
dt′

+ t2
∫ t

0

∥∥∥ψjh(t
′, Dx)(δ(x)+ε)l∗F (t′, ·)

∥∥∥
2

L2(Rn)
dt′

+ 2−jt2 ‖U‖2
H0,δ(x);λ((0,t)×Rn) + 2−j

∥∥∥h(t,Dx)δ(x)l∗U(t, ·)
∥∥∥

2

L2(Rn)

+2−j ‖U0‖2
Hβ∗δ(x)l∗ (Rn) + 2−jt2 ‖F‖2

H0,δ(x);λ((0,t)×Rn)

)
.

Summing over j and exploiting the embeddings from Proposition 4.16, we obtain
the estimate∥∥∥h(t,Dx)(δ(x)+ε)l∗U(t, ·)

∥∥∥
2

L2(Rn)

≤ C
(
‖U0‖2

Hβ∗(δ(x)+ε)l∗ (Rn) + t2 ‖F‖2
H0,δ(x)+ε;λ((0,t)×Rn)

+ t2
∫ t

0

∥∥∥h(t′, Dx)(δ(x)+ε)l∗U(t′, ·)
∥∥∥

2

L2(Rn)
dt′

+t2 ‖U‖2
H0,δ(x);λ((0,t)×Rn) +

∥∥∥h(t,Dx)δ(x)l∗U(t, ·)
∥∥∥

2

L2(Rn)

)
.
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Finally, we apply Gronwall’s lemma and the assumed (0, δ(x))–well-posedness, and
deduce the a priori estimate for the (0, δ(x) + ε)–well-posedness.

From Taylor [70, Chap. IX, Lemma 1.1], we quote the following result:

Lemma A.1. For E ∈MM×M (C), F ∈MN×N(C), the map

MN×M (C) →MN×M (C), T 7→ TF −ET,

is bijective if and only if E and F have disjoint spectra.

We also need:

Lemma A.2. Let A ∈ MN×N(C) have distinct eigenvalues µj ,

|µj − µk| ≥ c0 > 0, j 6= k.

Then, for each B ∈ MN×N(C), there is a constant ε0 > 0 with the property that

the eigenvalues µjε of A+ εB for |ε| ≤ ε0 are distinct,

|µjε − µkε| ≥
c0
2
, j 6= k, |ε| ≤ ε0,

and depend analytically on ε and the entries of A and B. The bound ε0 depends

analytically on c0 and the norms ‖A‖, ‖B‖, and
∥∥M−1

∥∥, where M with ‖M‖ = 1

is a diagonalizer of A. Here, ‖ ‖ denotes the row-sum matrix norm.

Proof. By definition ofM , we haveMAM−1 = diag(µ1, . . . , µN ), and the eigenval-
ues µj as well as the entries ofM depend analytically on the entries of A. Therefore,
we can assume that A = diag(µ1, . . . , µN ) is diagonal. By Gerschgorin’s theorem,
each of the N balls

Ωjε =
{
z ∈ C

∣∣∣ |z − (µj + εBjj)| ≤ |ε|
∑

k 6=j

|Bjk |
}

contains exactly one eigenvalue µjε of A + εB provided that these balls do not
intersect. This happens when |ε| ≤ ε0 and 2ε0 ‖B‖ ≤ c0/2. The eigenvalues µjε of
A+ εB are solutions to the polynomial equation

0 = φε(µ) = det (A+ εB − µ1N ) ,

and are given by the integral

µjε =
1

2πi

∮

∂Ωjε

µφ′ε(µ)

φε(µ)
dµ,

which completes the proof.

We likewise need the following results:

Lemma A.3. For each N × N matrix symbol q ∈ S0
1,0(R

n × Rn) that satisfies

| det q(x, ξ)| ≥ c for all (x, ξ) ∈ R2n, |ξ| ≥ C, and some constants C, c > 0, there

is an invertible operator Q ∈ OpS0
1,0(R

n) such that

Q− q(x,Dx) ∈ OpS−1
1,0(Rn).



Sharp Energy Estimates 55

Proof. We construct two invertible operators Q1 = q1(x,Dx), Q2 = q2(x,Dx) ∈
OpS0

1,0(R
n) such that

q1(x, ξ) ≡ χ(|ξ|/(2C))q(x, ξ)q(x0 , ξ)−1 mod S−1
1,0(Rn × Rn),

q2(x, ξ) ≡ q(x0, ξ) mod S−1
1,0(Rn × Rn).

Here, the point x0 ∈ Rn is chosen arbitrarily. Then the compositionQ1Q2 possesses
the desired properties.

Construction of Q1. We employ the parameter calculus of Grubb [22].

Rename (1 − χ(|ξ|/(2C)))1N + χ(|ξ|/(2C))q(x, ξ)q(x0, ξ)−1 to q(x, ξ). Then
| det q(x, ξ)| ≥ c′ for |ξ| ≥ 2C and some c′ > 0 and q(x0, ξ) = 1N for all ξ ∈ Rn.
By a standard application of the mapping degree and homotopy theory, we obtain
an N × N matrix function h ∈ S0

1,0(R
n × Rn) such that h(x, ξ) = q(x, ξ) for

|ξ| ≥ 2C and | deth(x, ξ)| ≥ c′/2 for all (x, ξ) ∈ R2n, by changing q(x, ξ) for
|ξ| ≤ 2C if necessary. We then further get an N ×N matrix function p0(x, ξ, µ) ∈
S0

1,0(R
n × Rn × R+), where µ ≥ 0 enters as additional covariable, such that

| det p0(x, ξ, µ)| ≥ c′/2, (x, ξ, µ) ∈ R2n × R+, |ξ, µ| ≥ 2C,

p0(x, ξ, 0) = q(x, ξ), (x, ξ) ∈ R2n,

For that it suffices to set

p̃0(x, ξ, µ) = h(x, ξ/|ξ, µ|), |ξ, µ| ≥ 2C, µ ≥ |ξ|,

and then to connect p0(x, ξ, 0) = q(x, ξ) to p0(x, ξ/
√

2, |ξ|/
√

2) = h(x, ξ/(
√

2|ξ|))
for |ξ| ≥ 2C along the curve [0, 1] 3 σ 7→ (x, (1−κσ)ξ,

√
2κσ − κ2σ2|ξ|) ∈ R2n×R+,

where κ = 1 − 1/
√

2, appropriately:

p̃0(x, ξ, µ) = h

(
x, (1 − σ)

ξ

1 − κσ
+ σ

ξ

|ξ, µ|

)
, |ξ, µ| ≥ 2C, µ < |ξ|,

where σ = κ−1 (1 − |ξ|/|ξ, µ|), i.e., ξ/(1−κσ) = |ξ, µ| ξ/|ξ|. The symbol p̃0 thus ob-
tained (appropriately continued into |ξ, µ| < 2C) is continuous, but only piecewise
C∞; smoothing p̃0 along |ξ, µ| ≥ 2C, µ = |ξ|, whilst keeping the symbol estimates
and invertibility, yields the symbol p0.

We now set

p(x, ξ, µ) = χ(|ξ, µ|)
(
p1(x, ξ, µ) + χ(|ξ|)

(
p0(x, ξ, µ) − p1(x, ξ, µ)

))
,

where p1(x, ξ, µ) =
∑

|α|<k ξ
α∂α

ξ p0(x, ξ, µ)/α! for some integer k > 0, see Grubb

[22, Remark 2.1.13]. According to Grubb [22, Theorem 3.2.11], there is a µ0 ≥ 0
such that, for all µ ≥ µ0, the operator p(x,Dx, µ) : L2(Rn) → L2(Rn) is invertible.

Eventually, it suffices to set Q1 = p(x,Dx, µ), where µ ≥ µ0.

Construction of Q2. Rename q(x0, ξ) to q(ξ). The task to construct a symbol
q2 ∈ S0

1,0 such that q2(x,Dx) is invertible and q(Dx)−q2(x,Dx) ∈ OpS−∞ can be
fulfilled within the framework of SG-calculus, where one has symbols which fulfil
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independently symbol estimates in both the x- and the ξ-variables. Recall that
Sm;η = Sm;η(Rn × Rn) is the class of all a ∈ C∞(R2n) such that

|∂α
x ∂

β
ξ a(x, ξ)| ≤ Cαβ〈x〉η−|α|〈ξ〉m−|β|, (x, ξ) ∈ R2n.

Recall also that a(x,Dx) : 〈x〉rHs(Rn) → 〈x〉r+ηHs−m(Rn) for a ∈ Sm;η is a
Fredholm operator if and only if, for some R > 0,

(A.2) det a(x, ξ) 6= 0 (x, ξ) ∈ R2n, |x| + |ξ| ≥ R,

and

(A.3) 〈x〉m〈ξ〉η‖a−1(x, ξ)‖ ≤ c, (x, ξ) ∈ R2n, |x| + |ξ| ≥ R.

Now we choose a symbol q2 ∈ S0;0 that is elliptic in the sense of (A.2), (A.3)
such that

(A.4) q2(x, ξ) ≡ q(ξ) mod S−1;0.

The choice of q2(x, ξ) relies on the split exactness of the short sequence

0 −−−−→ Sm−1;η−1 −−−−→ Sm;η (σm,ση
e )−−−−−→ ΣSm;η −−−−→ 0

where σm(a) = a + Sm−1;η is the principal symbol of a ∈ Sm;η, ση
e (a) = a +

Sm;η−1 is its principal exit symbol, and both symbols are subject to the condition
σm(a)+Sm;η−1 = ση

e (a)+Sm−1;η. Accordingly, ΣSm;η =
{
(a, ae) ∈ Sm;η/Sm−1;η×

Sm;η/Sm;η−1
∣∣ a ≡ ae mod Sm−1;η + Sm;η−1

}
. (A.4) says that σ0(q2) = σ0(q),

while the choice of σ0
e(q2) is restricted by the requirement σ0

e(h) ≡ σ0(q) mod
S−1;0 + S0;−1 and is free otherwise (except that σ0

e (q2) needs to be elliptic).
Then q2(x,Dx) : L2(Rn) → L2(Rn) is a Fredholm operator. It follows from

standard SG–calculus that, upon an appropriate choice of σ0
e(q2), one can achieve

each integer as index of this operator. We choose q2(x, ξ) in such a way that
q2(x,Dx) : L2(Rn) → L2(Rn) has index 0. Then, by adding a contribution from
OpS−∞;−∞(Rn × Rn) = OpS(R2n) if necessary, we finally arrive at an operator
Q2 = q2(x,Dx) that is invertible as operator on L2(Rn).

For more on SG-calculus we refer to Cordes [15], Parenti [57], Schrohe

[62], and Schulze [64].

Proposition A.4. For each N ×N matrix symbol q ∈ S0,0;λ that satisfies

| det q(t, x, ξ)| ≥ c, (t, x, ξ) ∈ [0, T ]× R2n, |ξ| ≥ C,

for some C, c > 0, there exists an invertible operator Q ∈ OpS0,0;λ such that

Q− q(t, x,Dx) ∈ OpS−1,−(l∗+1);λ.

Proof. A parameter version of Lemma A.3 yields the existence of an invertible
operator Q ∈ C∞([0, T ]; OpS0

1,0) ⊂ OpS0,0;λ such that

Q− q(t, x,Dx) ∈ C∞([0, T ]; OpS−1
1,0) ⊂ OpS−1,−(l∗+1);λ.

There is the following improvement of Proposition A.4:
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Proposition A.5. Given N×N matrix symbols q0 ∈ C∞([0, T ];S(0)) and q1 ∈ S(−1)

such that |det q0(t, x, ξ)| ≥ c for all (t, x, ξ) ∈ [0, T ] × R2n and some c > 0, there

is an invertible operator Q ∈ Op S̃0,0;λ that satisfies

σ0(Q) = q0, σ̃−1,0(Q) = q1.

Proof. See Dreher–Witt [20, Proposition 3.6 (b)].

Finally, we show that, for special functions, certain cut-off operators can be
estimated from below:

Lemma A.6. Define v0,j ∈ C∞
c (Rn; R) and ϕ

(1)
j , ϕ

(2)
j for j = 1, 2, . . . as in the

proof of Theorem 2.10. Then, for each s ∈ C∞
b (Rn; R), there are constants C and

j0 such that

C−1 ‖v0,j‖Hs(x)(Rn) ≤
∥∥∥ϕ(k)

j (x,Dx)v0,j

∥∥∥
Hs(x)(Rn)

≤ C ‖v0,j‖Hs(x)(Rn) ,

for k = 1, 2 and j ≥ j0.

Proof. The Fourier transform v̂0,j is given by

v̂0,j(ξ) = v̂0(ξ − 2jξ0), |ξ0| = 1,

and decays rapidly,

|v̂0,j(2
jξ0 + η)| ≤ CN 〈η〉−N , N ∈ N.

For s ∈ R, we split the norm ‖v0,j‖Hs(R):

‖v0,j‖2
Hs(Rn) = I1,s + I2,s

=

∫

|ξ−2jξ0|≤2j−1

〈ξ〉2s|v̂0,j(ξ)|2 dξ +

∫

|ξ−2jξ0|≥2j−1

〈ξ〉2s|v̂0,j(ξ)|2 dξ.

Since v̂0 decays rapidly, we have

I1,s ∼ 22js

∫

|η|<2j−1

|v̂0(η)|2 dη ∼ 22js ‖v0‖2
L2(Rn) .

To show that I1,s is the main part of ‖v0,j‖Hs(Rn), we estimate

I2,s =

∫

|η|≥2j−1

〈2jξ0 + η〉2s|v̂0,j(2
jξ0 + η)|2 dη

≤ C2
N

∫

|η|≥2j−1

〈2jξ0 + η〉2s〈η〉−2N dη

≤ CM2−2jM ,

for all M and j. Hence we conclude that

C−12js ≤ ‖v0,j‖Hs(Rn) ≤ C2js, j ∈ N, s ∈ R.
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Next, let s = s(x) be a non-constant function from C∞
b (Rn; R). Then we have,

with

s− = inf
x∈R

s(x) < s+ = sup
x∈R

s(x),

the estimate

C−1 ‖f‖Hs
− (Rn) ≤

∥∥∥〈Dx〉s(x)
K f(x)

∥∥∥
L2(Rn)

≤ C ‖f‖Hs+ (Rn) , f ∈ S(Rn).

The proof is complete if we can show that

∥∥∥〈Dx〉s(x)
K (1 − ϕ

(k)
j (x,Dx))v0,j(x)

∥∥∥
L2(Rn)

≤ 1

2

∥∥∥〈Dx〉s(x)
K v0,j(x)

∥∥∥
L2(Rn)

, j ≥ j0.

Choose a cut-off function w0 ∈ C∞
c (Rn; R) with w0(x) ≡ 1 on supp v0,j and

suppw0 ⊂ {|x−x0| ≤ γ/3}. Then w0(x)v0,j(x) = v0,j(x). Since (1−w0)(1−ϕj
(k))

acts as regularizing operator on functions with support contained in supp v0,j , it
follows that

∥∥∥〈Dx〉s(x)
K (1 − ϕ

(k)
j (x,Dx))v0,j(x)

∥∥∥
L2(Rn)

≤ C
∥∥∥(1 − ϕ

(k)
j (x,Dx))v0,j(x)

∥∥∥
Hs+ (Rn)

≤ C
∥∥∥w0(x)(1 − ϕ

(k)
j (x,Dx))v0,j(x)

∥∥∥
Hs+ (Rn)

+ C
∥∥∥(1 − w0(x))(1 − ϕ

(k)
j (x,Dx))v0,j(x)

∥∥∥
Hs+ (Rn)

≤ C
∥∥∥w0(x)(1 − ϕ

(k)
j (x,Dx))v0,j(x)

∥∥∥
Hs+ (Rn)

+ CM2−jM ‖v0,j(x)‖Hs+−M (Rn) .

We may choose M = s+ − s−, leading to

2−jM ‖v0,j(x)‖Hs+−M (Rn) ≤ C2−j(s+−s−)
∥∥∥〈Dx〉s(x)

K v0,j(x)
∥∥∥

L2(Rn)
.

If w0(x)(1 − ϕ
(k)
j (x, ξ)) 6= 0, then |ξ − 2jξ0| ≥ ε2j for some positive ε. Hence

w0(x)(1 − ϕ
(k)
j (x, ξ)) = w0(x)(1 − ϕ

(k)
j (x, ξ)) ◦ χ((ξ − 2jξ0)/(ε2

j)),
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and {w0(1 − ϕ
(k)
j )}j is a bounded subset of S0

1,0. Therefore

∥∥∥w0(x)(1 − ϕ
(k)
j (x,Dx))v0,j(x)

∥∥∥
2

Hs+ (Rn)

≤ C
∥∥χ((Dx − 2jξ0)/(ε2

j))v0,j(x)
∥∥2

Hs+ (Rn)

= C

∫

Rn
ξ

〈ξ〉2s+χ((ξ − 2jξ0)/(ε2
j))2|v̂0,j(ξ)|2 dξ

≤ C

∫

|η|≥ε′2j

〈2jξ0 + η〉2s+ |v̂0,j(2
jξ0 + η)|2 dη

≤ CM2−2jM

≤ C ′
M2−2j(M+s−) ‖v0,j(x)‖2

Hs
− (Rn)

≤ C ′′
M2−2j(M+s−)

∥∥∥〈Dx〉s(x)
K v0,j(x)

∥∥∥
2

L2(Rn)
,

for all M and j. We select M = s+ − 2s−, and deduce that
∥∥∥〈Dx〉s(x)

K (1 − ϕ
(k)
j (x,Dx))v0,j(x)

∥∥∥
L2(Rn)

≤ C2−j(s+−s−)
∥∥∥〈Dx〉s(x)

K v0,j(x)
∥∥∥

L2(Rn)
,

completing the proof.

Appendix B. Open problems

We list some open problems:

1. For A(t, x,Dx) ∈ OpS1,1;λ satisfying (2.11), is it true that the (0, δ(x))–
well-posedness of the Cauchy problem for the operator Dt − A(t, x,Dx)
already implies its δ(x)–well-posedness? By virtue of Theorem 2.7, this is

true if A(t, x,Dx) ∈ Op S̃1,1;λ and the symmetrizer M(t, x,Dx) is found

in the class Op S̃0,0;λ.
2. Prove (or disprove) that for A(t, x,Dx) ∈ Op S̃1,1;λ — assuming sym-

metrizable hyperbolicity in the sense of (2.13) — the loss of regularity
only dependents on σ1(A), σ̃0,1(A). In particular, this is true if the condi-
tions of Theorem 2.10 are met.

3. More generally, assuming an answer in the affirmative to Problem 1 prove
(or disprove) that the operators A(t, x,Dx) and A(t, x,Dx)+A2(t, x,Dx),
where A(t, x,Dx) ∈ OpS1,1;λ is symmetrizable-hyperbolic in the sense of
(2.11) andA2(t, x,Dx) belongs to the reminder class OpS0,0;λ+OpS−1,1;λ,
always admit the same loss of regularity.

4. In case the right-hand side of (2.15) fails to be C∞ as a function of x (it
is always globally Lipschitz), our result is sharp in the class of functions
δ ∈ C∞

b (Rn; R), but it is surely not sharp in general. Improve this result.
5. Address degeneracies at time t = 0 other than the one characterized by
λ(t) = tl∗ , l∗ ∈ N+. For admissible λ(t), see Yagdjian [73].
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6. In the previous item, allow also mixed types of degeneracies, in which one
has, e.g., a degeneracy like e−1/t in direction of x1, a degeneracy like t3 in
direction of x2, and a degeneracy like t2 in all other directions. Some results
can be found in Kajitani–Wakabayashi–Yagdjian [39], Tahara [68].

7. Establish an upper bound for the microlocal loss of regularity. The result
is conjectured to be the same as in (2.15), but with the two supremums
skipped.

8. Show that the microlocal estimates from the previous item are generi-
cally sharp. In the remaining cases, we expect exceptional propagation of
singularities, with the complete branching of singularities does not occur.

9. Discuss the invariance of the operator classes OpSm,η;λ, Op S̃m,η;λ for
m, η ∈ R under coordinate changes of the form (3.11). See the authors’
article [18] for the case t̃ = t, x̃ = κ(x).

10. Solve semilinear problems related to the operator P from (1.3), (1.4),
{

Pu = F (t, x,Qu), (t, x) ∈ (0, T )× Rn,

Dj
tu(0, x) = uj(x), 0 ≤ j ≤ m− 1,

where Q is a differential operator like P , but of orderm−1. Among others,
this requires to discuss the superposition operator F (u) for u ∈ Hs,δ;λ (or
u ∈ Hs,δ;λ ∩ L∞). For the case F is analytic, see Dreher–Reissig [17],
Dreher–Witt [19]. It can be shown that

Hs,δ;λ((0, T ) × Rn) ⊂ L∞((0, T ) × Rn)

if and only if s > (n+ 1)/2, s+ β∗δ(x)l∗ ≥ (n+ 1)/2.
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