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ABSTRACT. For a class of weakly hyperbolic system of the form Dt − A(t, x, Dx), where A(t, x, Dx) is a
first-order pseudodifferential operator whose principal part degenerates like tl∗ at time t = 0, for some integer
l∗ ≥ 1, well-posedness of the Cauchy problem is proved in an adapted scale of Sobolev spaces. In addition,
an upper bound for the loss of regularity that occurs when passing from the Cauchy data to the solutions is
established. In examples, this upper bound turns out to be sharp.
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1. INTRODUCTION

In this paper, we study the Cauchy problem for weakly hyperbolic systems of the form
{

DtU(t, x) = A(t, x,Dx)U(t, x) + F (t, x), (t, x) ∈ (0, T ) × Rn,

U(0, x) = U0(x),
(1.1)

where A(t, x,Dx) is an N × N first-order pseudodifferential operator. The precise assumptions on the
symbol A(t, x, ξ) are stated in (1.7) below.

In order to motivate these assumptions, let us discuss an example. Systems of the form (1.1) arise, e.g., in
converting mth-order partial differential operators P with principal symbol

σm(P )(t, x, τ, ξ) =

m
∏

h=1

(τ − tl∗µh(t, x, ξ)), l∗ ≥ 1, (1.2)

where µh ∈ C∞([0, T ], S(1)) for 1 ≤ h ≤ m, into first-order systems.
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Assuming strict hyperbolicity for t > 0, i.e., the µh are real-valued and mutually distinct, it is well-known,
see, e.g., IVRII–PETKOV [10], that the Cauchy problem for the operator P is well-posed in C∞ if and only
if the lower-order terms satisfy so-called Levi conditions. In case of (1.2), Levi conditions are expressed as

P =
∑

j+|α|≤m

ajα(t, x) t(j+(l∗+1)|α|−m)+Dj
t D

α
x , (1.3)

with the coefficients ajα(t, x) being smooth up to t = 0.

Operators of the form (1.3) satisfying (1.2) are particularly interesting because of two phenomena, both
occuring when passing from the Cauchy data posed at t = 0 to the solutions in the region t > 0: One is
loss of regularity and the other one is that the singularities may propagate in a non-standard fashion. These
phenomena depend on the lower-order terms of P in a sensitive way.

One of the first examples in this direction was given by QI [14],
{

utt(t, x) − t2uxx(t, x) − (4k + 1)ux(t, x) = 0, (t, x) ∈ (0, T ) × R,

u(0, x) = ϕ(x), ut(0, x) = 0,
(1.4)

where k ∈ N. The solution to (1.4) is

u(t, x) =

k
∑

j=0

cjk t2jϕ(j)(x + t2/2)

for certain coefficients cjk 6= 0. We see that u(t, ·) for t > 0 has k derivatives lost compared to ϕ. One
actually loses k derivatives for any real number k ≥ −1/4, as can be shown by an explicit representa-
tion of the solution using special functions, see TANIGUCHI–TOZAKI [16]. The parameter k can even be
a function k(t, x) with k(0, x) ≥ −1/4 leading to a loss of regularity of k(0, x), see DREHER [3]. Fur-
ther results concerning representation formulae for the solutions and the propagation of singularities can
be found in AMANO–NAKAMURA [1], DREHER–REISSIG [4], HANGES [8], NAKAMURA-URYU [13],
YAGDJIAN [19], YOSHIKAWA [20]. For the case of systems, see KUMANO-GO [12].

The first line of (1.4) will be converted into a first-order system by setting

U(t, x) =

(

g(t,Dx)u(t, x)
Dtu(t, x)

)

,

where

g(t, ξ) =
(

1 − χ
(

t2〈ξ〉/2
))

〈ξ〉1/2 + χ
(

t2〈ξ〉/2
)

t〈ξ〉,

and χ ∈ C∞(R+; R) fulfills χ(t) = 0 if t ≤ 1/2 and χ(t) = 1 if t ≥ 1. The symbol g(t, ξ) will play an
important role later on. We then obtain

DtU(t, x) = A(t, x,Dx)U(t, x), (t, x) ∈ (0, T ) × R, (1.5)

where

A(t, x, ξ) = χ
(

t2〈ξ〉/2
)

(

t|ξ|

(

0 1
1 0

)

− it−1

(

1 0
b(t, x, ξ) 0

))

+ A2(t, x, ξ), (1.6)

b(t, x, ξ) := (4k(t, x) + 1) sgn ξ, and A2(t, x, ξ) comprises several terms of order zero, and other terms
supported in the region t2〈ξ〉 ≤ 2.

Generalizing (1.6), we are going to consider the Cauchy problem (1.1) with operators A(t, x,Dx) whose
symbols are of the form

A(t, x, ξ) = χ(Λ(t)〈ξ〉)
(

λ(t)|ξ|A0(t, x, ξ) − il∗t
−1A1(t, x, ξ)

)

+ A2(t, x, ξ), (1.7)

where A0, A1 ∈ C∞([0, T ], S(0)), A2 ∈ S−1,1;λ + S0,0;λ are N × N matrix-valued pseudodifferential
symbols, the function λ(t) = tl∗ for the fixed integer l∗ ≥ 1 characterizes the kind of degeneracy at t = 0,
Λ(t) :=

∫ t
0 λ(t′) dt′ = β∗ tl∗+1 is its primitive, and β∗ := 1/(l∗ + 1). The symbol classes Sm,η;λ for
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m, η ∈ R that are closely related to the kind of degeneracy under consideration will be introduced in
Section 2.1. In fact, these symbol classes are characterized by two weight functions

g(t, ξ) := (1 − χ(Λ(t)〈ξ〉))〈ξ〉β∗ + χ(Λ(t)〈ξ〉)λ(t)〈ξ〉

h(t, ξ) := (1 − χ(Λ(t)〈ξ〉))〈ξ〉β∗ + χ(Λ(t)〈ξ〉)t−1,

where m is the exponent of g(t, ξ) and η−m is the exponent of h(t, ξ). Note that A(t, x, ξ) in (1.7) belongs
to the class S1,1;λ.

We will present a symbolic calculus for matrices A(t, x, ξ) of the form (1.7) that for many purposes allows
to argue on a purely algebraic level, in this way leading to short and compact proofs.

We also introduce function spaces Hs,δ(x);λ((0, T ) × Rn) to which the solutions U(t, x) to (1.1) belong.
Here, s ∈ R is the Sobolev regularity with respect to (t, x) for t > 0, while δ = δ(x) is related to the
loss of regularity at the point x ∈ Rn. For instance, for s ∈ N, δ(x) = δ being a constant, the space
Hs,δ;λ((0, T ) × Rn) consist of all functions U(t, x) satisfying ks−j,s+δ(t, x,Dx)Dj

t U ∈ L2((0, T ) × Rn)

for 0 ≤ j ≤ s and arbitrary kmη ∈ Sm,m+ηl∗;λ. The case of variable δ(x) will be discussed in detail in
Section 3.

Our main result is the following:

Theorem 1.1. (a) Assume the symbol A(t, x, ξ) in (1.7) is symmetrizable-hyperbolic in the sense that
there is a matrix M0 ∈ C∞([0, T ], S(0)) such that |det M0(t, x, ξ)| ≥ c for some c > 0 and the ma-
trix (M0A0M

−1
0 )(t, x, ξ) is symmetric for all (t, x, ξ) ∈ [0, T ] × Rn × (Rn \ 0). Then there is a function

δ ∈ B∞(Rn; R) such that, for all s ≥ 0, U0 ∈ Hs+β∗δ(x)l∗(Rn), and F ∈ Hs,δ(x);λ((0, T ) × Rn), system
(1.1) possesses a unique solution U ∈ H s,δ(x);λ((0, T ) × Rn). Moreover, we have the estimate

‖U‖Hs,δ(x);λ ≤ C (‖U0‖Hs+β∗δ(x)l∗ + ‖F‖Hs,δ(x);λ) (1.8)

for a suitable constant C = C(s, δ, T ) > 0. In particular, the loss of regularity that is independent of s ≥ 0
does not exceed β∗δ(x)l∗.

(b) In (a), we can choose any function δ ∈ B∞(Rn; R) for which there is matrix M1 ∈ S(0) such that the
inequality

Re
(

M0A1M
−1
0 +

[

M1M
−1
0 ,M0A0M

−1
0

])

(0, x, ξ) ≤ δ(x)1N (1.9)

holds for all (x, ξ) ∈ Rn × (Rn \ 0). Here [ , ] denotes the commutator and ReQ := (Q + Q∗)/2.

Remark 1.2. (a) Part (a) of Theorem 1.1 continues to hold if one solely assumes that A ∈ OpS 1,1;λ and
there is an invertible M ∈ OpS0,0;λ such that Im(MAM−1) ∈ OpS0,1;λ, cf. Lemma 4.2. In this situation,
however, we have no simple formula for δ ∈ B∞(Rn; R).

(b) The loss of regularity for the weakly hyperbolic operator P from (1.3) equals β∗(δ(x)+m−1)l∗ , where
δ ∈ B∞(Rn; R) is the function satisfying (1.9) for the first-order systems that arises by converting P .

It is among the aims of this paper to establish precise upper bounds on the loss of regularity upon an
appropriate choice of the matrices M0, M1 in Theorem 1.1. For examples, see Section 5.

The paper is organized as follows: In Section 2, we introduce the symbol classes Sm,η;λ and certain sub-
classes S̃m,η;λ thereof, where the latter contains symbols A(t, x, ξ) that possess ”one and a half” principal
symbols

σm(A) ∈ tm(l∗+1)−η C∞([0, T ];S(m)), σ̃m−1,η(A) ∈ S(m−1).

A similar calculus, but differentiation with respect to t is included in the pseudodifferential action, was
established by WITT [18]. In case l∗ = 1, there is related work by BOUTET DE MONVEL [2], JOSHI [11],
YOSHIKAWA [20], and others.

Eq. (1.7) actually defines the class S̃1,1;λ, where σ1(A)(t, x, ξ) = λ(t)|ξ|A0(t, x, ξ), σ̃0,1(A)(x, ξ) =
−il∗ A1(0, x, ξ) for A(t, x, ξ) as given there. According to Theorem 1.1, σ1(A)(t, x, ξ), σ̃0,1(A)(x, ξ) are
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exactly the symbols which are needed to symmetrize system (1.1) and to read off the loss of regularity,
respectively. In particular, for QI’s example (1.5), we have

σ1(A)(t, x, ξ) = t|ξ|

(

0 1
1 0

)

, σ̃0,1(A)(x, ξ) = −i

(

1 0
b(0, x, ξ) 0

)

.

We choose M0(t, x, ξ) = 1
2

(

1 −1
1 1

)

, (M1M
−1
0 )(x, ξ) = 1

4

(

0 b−1
b+1 0

)

(0, x, ξ) to obtain

Re
(

M0A1M
−1
0 +

[

M1M
−1
0 ,M0A0M

−1
0

])

(0, x, ξ) =
1

2

(

1 − Re b 0
0 1 + Re b

)

(0, x, ξ).

This leads to a loss of regularity of |Re k(0, x) + 1
4 | −

1
4 for system (1.4), see Remark 1.2 (b). Moreover,

this result is sharp. The reason that we decided to introduce δ ∈ B∞(Rn; R) in (1.9) via an estimate (rather
than an equality) is that the factual loss of regularity is Lipschitz as function of x, but may fail to be of class
C1, as this example shows.

Section 3 is concerned with properties of the function spaces H s,δ(x);λ((0, T ) × Rn). We extend results of
DREHER–WITT [6] from the case of constant δ to the case of variable δ(x). Our main result Theorem 1.1 is
then proved in Section 4. In Section 5, some special cases in which the a priori estimate (1.8) is employed
are considered: differential systems, systems with characteristic roots of constant multiplicity for t > 0, and
higher-order equations. Choosing the matrix M1 suitably, we will find that the upper bound for the loss of
regularity, as predicted by inequality (1.9), coincides with the actual loss of regularity, as known in special
cases, see, e.g., NAKAMURA–URYU [13]. In a forthcoming paper, we will provide lower bounds for the loss
of regularity for system (1.1), and we will show that for a wide class of operators the a priori estimate given
in the present paper is sharp.

Finally, in an appendix we provide an estimate that is useful to bring the remainder term A2(t, x,Dx) ∈

OpS0,0;λ + OpS−1,1;λ ⊂ L∞((0, T ),Op Sβ∗

1,0) ∩ t−1L∞((0, T ),Op S0
1,0) under control.

2. SYMBOL CLASSES

2.1. The symbol classes S
m,η;λ. In this section, we introduce the fundamental symbol classes Sm,η;λ for

m, η ∈ R. For an mth-order symbol a(t, x, ξ), the belonging of a to Sm,η;λ in case η = m expresses the
fact that σm(a) degenerates like λm(t) at time t = 0, and it expresses sharp Levi conditions on the lower
order terms as well. Note that corresponding symbol estimates (involving the functions ḡ, h̄ from (2.1)) are
predicted by the definition of the function spaces H s,δ;λ in Section 3. To be able to deal with operators that
arise in reducing (1.1) with the help of the operator Θ from Lemma 3.3, where the latter is zeroth-order for
t > 0, but of variable order β∗δ(x)l∗ when restricted to time t = 0, we further introduce the symbol classes
Sm,η;λ

+ as slightly enlarged versions of Sm,η;λ, but for m ∈ R, η ∈ B∞(Rn; R).

In the sequel, all symbols a(t, x, ξ) will take values in N × N -matrices, for some N ∈ N.

Let

ḡ(t, ξ) := λ(t)〈ξ〉 + 〈ξ〉β∗ , h̄(t, ξ) :=
(

t + 〈ξ〉−β∗

)−1
. (2.1)

Definition 2.1. (a) For m, η ∈ R, the symbol class Sm,η;λ consists of all a ∈ C∞([0, T ]×R2n;MN×N (C))
such that, for each (j, α, β) ∈ N1+2n, there is a constant Cjαβ > 0 with the property that

∣

∣∂j
t ∂

α
x ∂β

ξ a(t, x, ξ)
∣

∣ ≤ Cjαβ ḡ(t, ξ)mh̄(t, ξ)η−m+j〈ξ〉−|β| (2.2)

for all (t, x, ξ) ∈ [0, T ] × R2n.

(b) For m ∈ R, η ∈ B∞(Rn; R), and b ∈ N, the symbol class Sm,η;λ
(b) consists of all a ∈ C∞([0, T ] ×

R2n;MN×N (C)) such that, for each (j, α, β) ∈ N1+2n, there is a constant Cjαβ > 0 with the property that
∣

∣∂j
t ∂

α
x ∂β

ξ a(t, x, ξ)
∣

∣ ≤ Cjαβ ḡ(t, ξ)mh̄(t, ξ)η(x)−m+j
(

1 + | log h̄(t, ξ)|
)b+|α|

〈ξ〉−|β| (2.3)
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for all (t, x, ξ) ∈ [0, T ] × R2n. Moreover, we set

Sm,η;λ
+ =

⋃

b∈N

Sm,η;λ
(b) .

As usual, we set

S−∞,η;λ =
⋂

m∈R

Sm,η;λ,

see Proposition 2.4 (a) and also (b). Similarly for S−∞,η;λ
+ , S−∞,η;λ

(b) .

Remark 2.2. In view of ḡh̄l∗ ∼ 〈ξ〉 and ḡh̄−1 ∼ 1 + Λ(t)〈ξ〉, estimate (2.2) is equivalent to
∣

∣∂j
t ∂

α
x ∂β

ξ a(t, x, ξ)
∣

∣ ≤ C ′
jαβ ḡ(t, ξ)m−|β|h̄(t, ξ)η−m−|β|l∗+j

and
∣

∣∂j
t ∂

α
x ∂β

ξ a(t, x, ξ)
∣

∣ ≤ C ′′
jαβ (1 + Λ(t)〈ξ〉)mh̄(t, ξ)η+j〈ξ〉−|β|,

respectively. A similar remark applies to (2.3).

We discuss some examples of use further on:

Lemma 2.3. Let m, η ∈ R. Then:

(a) ḡmh̄η−m ∈ Sm,η;λ.

(b) For a ∈ C∞([0, T ];Sm) and l ∈ N, a ∈ Sm,m(l∗+1)−l;λ if and only if

∂j
t a
∣

∣

t=0
∈ Sm−β∗(l−j), 0 ≤ j ≤ l − 1.

(c) Let χ ∈ C∞(R+; R), χ(t) = 0 if t ≤ 1/2, χ(t) = 1 if t ≥ 1. Then

χ+(t, ξ) := χ(Λ(t)〈ξ〉) ∈ S0,0;λ,

while χ−(t, ξ) := 1 − χ+(t, ξ) ∈ S−∞,0;λ.

In particular, from (a), (b) we infer

λ(t)〈ξ〉 ∈ S1,1;λ, (t + 〈ξ〉−β∗)−1 ∈ S0,1;λ, Λ(t)〈ξ〉 ∈ S1,0;λ.

In the next proposition, we list properties of the symbol classes Sm,η;λ for m, η ∈ R (with proofs which are
standard omitted):

Proposition 2.4. (a) Sm,η;λ ⊆ Sm′,η′;λ ⇐⇒ m ≤ m′, η ≤ η′.

(b) Let a ∈ Sm,η;λ. Then χ+(t, ξ)a ∈ Sm′,η;λ for some m′ < m implies a ∈ Sm′,η;λ. In particular, if
a(t, x, ξ) = 0 for Λ(t)〈ξ〉 ≥ C and certain C > 0, then a ∈ S−∞,η;λ.

(c) If a ∈ Sm,η;λ, then ∂j
t ∂

α
x ∂β

ξ a ∈ Sm−|β|,η+j−|β|(l∗+1);λ.

(d) If a ∈ Sm,η;λ, a′ ∈ Sm′,η′;λ, then a ◦ a′ ∈ Sm+m′,η+η′ ;λ and

a ◦ a′ = aa′ mod Sm+m′−1,η+η′−(l∗+1);λ,

where ◦ denotes the Leibniz product with respect to x.

(e) If a ∈ Sm,η;λ, then a∗ ∈ Sm,η;λ and

a∗(t, x, ξ) = a(t, x, ξ)∗ mod Sm−1,η−(l∗+1);λ,

where a∗ is the (complete) symbol of the formal adjoint to a(t, x,Dx) with respect to L2.
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(f) If a ∈ Sm,η;λ([0, T ] × R2n;MN×N (C)) is elliptic in the sense that

|det a(t, x, ξ)| ≥ c1

(

ḡm(t, ξ) h̄η−m(t, ξ)
)N

, (t, x, ξ) ∈ [0, T ] × R2n, |ξ| ≥ c2

for some c1, c2 > 0, then there is a symbol a′ ∈ S−m,−η;λ with the property that

a ◦ a′ − 1, a′ ◦ a − 1 ∈ C∞([0, T ];S−∞).

Moreover,

a′ = a−1 mod S−m−1,−η−(l∗+1);λ.

(g)
⋂

m,η Sm,η;λ = C∞([0, T ];S−∞).

Similar results hold for the classes Sm,η;λ
+ for m ∈ R, η ∈ B∞(Rn; R):

Proposition 2.5. (a) Sm,η;λ
(b)

⊆ Sm′,η′;λ
(b′)

⇐⇒ m ≤ m′, η ≤ η′, and b ≤ b′ if η = η′.

(b) Sm,η;λ ( Sm,η;λ
+ (

⋂

ε>0 Sm,η+ε;λ.

(c) If a ∈ Sm,η;λ
(b) , then ∂j

t ∂
α
x ∂β

ξ a ∈ S
m−|β|,η−|β|(l∗+1)+j;λ
(b+|α|) .

(d) If a ∈ Sm,η;λ
(b) , a′ ∈ Sm′,η′;λ

(b′) , then a ◦ a′ ∈ Sm+m′,η+η′ ;λ
(b+b′) and

a ◦ a′ = aa′ mod S
m+m′−1,η+η′−(l∗+1);λ
(b+b′+1) .

(e) If a ∈ Sm,η;λ
(b) , then a∗ ∈ Sm,η;λ

(b) and

a∗(t, x, ξ) = a(t, x, ξ)∗ mod S
m−1,η−(l∗+1);λ
(b+1) .

(f) S0,0;λ
(0) ⊂ L∞((0, T );S0

1,δ) for any 0 < δ < 1.

From Proposition 2.5 (f) we conclude:

Corollary 2.6. OpS0,0;λ ⊂ OpS0,0;λ
(0) ⊂ L(L2).

2.2. The symbol classes S̃
m,η;λ. To establish precise upper bounds on the loss of regularity in Theo-

rem 1.1 (b), we now refine the fundamental symbol classes Sm,η;λ to S̃m,η;λ, where symbols a(t, x, ξ) in the
latter class admit “one and a half” principal symbols σm(a), σ̃m−1,η(a). These principal symbols enable us
to read off the loss of regularity.

Definition 2.7. For m, η ∈ R, the class S̃m,η;λ consists of all a ∈ Sm,η;λ that can be written in the form

a(t, x, ξ) = χ+(t, ξ) t−η
(

a0(t, x, tl∗+1ξ) + a1(t, x, tl∗+1ξ)
)

+ a2(t, x, ξ), (2.4)

where

a0 ∈ C∞([0, T ];S(m)), a1 ∈ C∞([0, T ];S(m−1)),

and a2 ∈ Sm−2,η;λ + Sm−1,η−1;λ. With a(t, x, ξ) as in (2.4) we associate the two symbols

σm(a)(t, x, ξ) := t−η a0(t, x, tl∗+1ξ), σ̃m−1,η(a)(x, ξ) := a1(0, x, ξ). (2.5)

Remark 2.8. The symbol components χ+(t, ξ)t−ηaj(t, x, tl∗+1ξ) in (2.4) for j = 0, 1 belong to Sm−j,η;λ,
while a2(t, x, ξ) is regarded as remainder term.
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For further use, we also introduce

σ̃m,η(a)(x, ξ) := a0(0, x, ξ).

Note that this symbol is directly derived from σm(a).

In the sequel, we shall employ the symbols

g(t, ξ) := χ−(t, ξ) 〈ξ〉β∗ + χ+(t, ξ)λ(t)〈ξ〉,

h(t, ξ) := χ−(t, ξ) 〈ξ〉β∗ + χ+(t, ξ) t−1.

Note that g ∼ ḡ, h ∼ h̄ so that the symbol estimates (2.2) are not affected by this change.

Example 2.9. (a) Let m, η ∈ R. Then gmhη−m ∈ S̃m,η;λ,

σm(gmhη−m) = t−η
(

tl∗+1|ξ|
)m

, σ̃m−1,η(gmhη−m) = 0. (2.6)

(b) Let a(t, x, ξ) :=
∑

|α|≤m aα(t, x) t(|α|(l∗+1)−m)+ξα, where aα(t, x) ∈ B∞([0, T ] × Rn) for |α| ≤ m.

Then a ∈ S̃m,m;λ,

σm(a) =
∑

|α|=m

ajα(t, x) (tl∗ξ)α,

σ̃m−1,m(a) =

{

∑

|α|=m−1 ajα(0, x) ξα if m > 1,

0 if m = 0, 1.

The introduction of the principal symbols σm(a), σ̃m−1,η(a) is justified by the next lemma:

Lemma 2.10. (a) The symbols σm(a), σ̃m−1,η(a) are well-defined.

(b) The short sequence

0 −−−−→ Sm−2,η;λ + Sm−1,η−1;λ −−−−→ S̃m,η;λ
(σm,σ̃m−1,η)
−−−−−−−−→ ΣS̃m,η;λ −−−−→ 0

(2.7)

is exact, where ΣS̃m,η;λ := λm(t)t−η+m C∞([0, T ];S(m)) × S(m−1) is the principal symbol space.

Proof. For a ∈ S̃m,η;λ represented as in (2.4), we show that

a ∈ Sm−2,η;λ + Sm−1,η−1;λ ⇐⇒ a0 = 0, a1

∣

∣

t=0
= 0.

This gives (a) and also the exactness of the short sequence (2.7) in the middle. Since the surjectivity of the
map (σm, σ̃m−1,η) is obvious, the proof will then be finished.

So, let us assume that a0 6= 0 or a1

∣

∣

t=0
6= 0. If a0 6= 0, then |a| ≥ C−1 gmhη−m for Λ(t)〈ξ〉 ≥ C in some

conic set, and C > 0 sufficiently large. Hence, a /∈ Sm−2,η;λ + Sm−1,η−1;λ. If a0 = 0, but a1

∣

∣

t=0
6= 0, then

we write

a1(t, x, ξ) = b0(x, ξ) + tb1(t, x, ξ),

where b0 ∈ S(m−1), b1 ∈ C∞([0, T ], S(m−1)). But χ+(t, ξ) t−η+1b1(t, x, tl∗+1ξ) ∈ Sm−1,η−1;λ, while
χ+(t, ξ) t−ηb0(x, tl∗+1ξ) /∈ Sm−2,η;λ + Sm−1,η−1;λ in view of b0 6= 0. Hence, again, a /∈ Sm−2,η;λ +
Sm−1,η−1;λ.

Now, assume a0 = 0 and a1

∣

∣

t=0
= 0. Write a1(t, x, ξ) = tb1(t, x, ξ), where b1 ∈ C∞([0, T ], S(m−1)).

Then

a(t, x, ξ) = χ+(t, ξ) t−η+1b1(t, x, tl∗+1ξ) + a2(t, x, ξ).

But χ+(t, ξ) t−η+1b1(t, x, tl∗+1ξ) ∈ Sm−1,η−1;λ, hence the claim. �

Finally, the next two results partially sharpen Proposition 2.4:



8 MICHAEL DREHER AND INGO WITT

Proposition 2.11. (a) If a ∈ S̃m,η;λ, a′ ∈ S̃m′,η′;λ, then a ◦ a′ ∈ S̃m+m′,η+η′ ;λ and

σm+m′

(a ◦ a′) = σm(a)σm′

(a′),

σ̃m+m′−1,η+η′

(a ◦ a′) = σ̃m,η(a) σ̃m′−1,η′

(a′) + σ̃m−1,η(a) σ̃m′,η′

(a′).

(b) If a ∈ S̃m,η;λ, then a∗ ∈ S̃m,η;λ and

σm(a∗) = σm(a)∗, σ̃m−1,η(a∗) = σ̃m−1,η(a)∗.

(c) If a ∈ S̃m,η;λ([0, T ] × R2n;MN×N (C)) is elliptic, then |detσm(a)| ≥ c
(

t(l∗+1)m−η |ξ|m
)

N for some
c > 0 and the symbol a′ from Proposition 2.4 (f) belongs to S̃−m,−η;λ. Moreover,

σ−m(a′) = σm(a)−1, σ̃−m−1,−η(a′) = −σ̃m,η(a)−1 σ̃m−1,η(a) σ̃m,η(a)−1.

Proof. A straightforward computation. �

Lemma 2.12. Let a ∈ S̃m,η;λ and η = (l∗ + 1)m. Then

∂ta ∈ Sm−1,η+1;λ + Sm,η;λ.

Proof. We have ∂ta ∈ S̃m,η+1;λ and, in general,

σ̃m,η+1;λ(∂ta) = (m(l∗ + 1) − η) σ̃m,η;λ(a)

Therefore, σ̃m,η+1;λ(∂ta) = 0 in case η = (l∗+1)m. The latter implies that ∂ta ∈ Sm−1,η+1;λ+Sm,η;λ. �

Remark 2.13. (a) For the reader’s convenience, we summarize what vanishing of the single symbolic com-
ponents for a ∈ S̃m,η;λ means:

• σm(a) = 0, σ̃m−1,η(a) = 0 ⇐⇒ a ∈ Sm−2,η;λ + Sm−1,η−1;λ.
• σm(a) = 0 ⇐⇒ a ∈ Sm−1,η;λ.
• σ̃m,η(a) = 0 ⇐⇒ a ∈ Sm−1,η;λ + Sm,η−1;λ.

(b) Using the fact that asymptotic summation in the class Sm,η;λ is possible one can introduce the class
Sm,η;λ

cl of symbols a ∈ Sm,η;λ obeying asymptotic expansions into double homogeneous components, and
then it turns out that

S̃m,η;λ = Sm,η;λ
cl + Sm−2,η;λ + Sm−1,η−1;λ.

The latter relation means that in S̃m,η;λ precisely the two symbolic components from (2.5) survive. (Details
on the class Sm,η;λ

cl will be published in a forthcoming paper [5].)

3. FUNCTION SPACES

In this section, we introduce the function spaces H s,δ;λ for s ∈ R, δ ∈ B∞(Rn; R) and investigate their
basic properties. In case s, δ ∈ R, these function spaces were introduced by DREHER–WITT [6] as abstract
edge Sobolev spaces. Here, we shall assume that the case of constant δ is known. Then the case of variable δ
is traced back to the case of constant δ. The key is the invertibility of the operator Θ, as stated in Lemma 3.3.

Definition 3.1. For s ∈ N, δ ∈ B∞(Rn; R), the space Hs,δ;λ consists of all functions u = u(t, x) on
(0, T ) × Rn satisfying

(gs−jh(s+δ)l∗)(t, x,Dx)Dj
t u ∈ L2((0, T ) × Rn), 0 ≤ j ≤ s.

For general s ∈ R, δ ∈ B∞(Rn; R), the space Hs,δ;λ is then defined by interpolation and duality.

In particular, in case s ≥ 0, we have (gsh(s+δ)l∗)(t, x,Dx)u ∈ L2((0, T ) × Rn) for any u ∈ Hs,δ;λ.
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Remark 3.2. (a) Strictly speaking, before Proposition 3.5 (a) we actually do not know that the spaces H s,δ;λ,
firstly defined for s ∈ N, interpolate. Therefore, it is only after Proposition 3.5 (a) that we get Lemma 3.3
and Proposition 3.4 in their full strength.

(b) Below we shall make use of Definition 3.1 as follows:

(i) For s ∈ N, δ ∈ B∞(Rn; R), u ∈ Hs,δ;λ if and only if gs−j(t,Dx)Dj
t u ∈ H0,s+δ;λ for 0 ≤ j ≤ s.

(ii) For δ ∈ B∞(Rn; R), u ∈ H0,δ;λ if and only if hδl∗(t, x,Dx)u ∈ L2.

For K > 0, δ ∈ B∞(Rn; R), let 〈ξ〉K := (K2 + |ξ|2)1/2, χ+
K(t, ξ) := χ(Λ(t)〈ξ〉K), χ−

K(t, ξ) := 1 −

χ+
K(t, ξ), and

Θ(t, x, ξ) = ΘK,δ(t, x, ξ) := χ−
K(t, ξ) 〈ξ〉

β∗δ(x)l∗
K + χ+

K(t, ξ) t−δ(x)l∗ .

Note that Θ(t, x,Dx) ∈ OpS
0,δ(x)l∗;λ
(0) .

Lemma 3.3. Given δ ∈ B∞(Rn; R), there is an K1 > 0 such that the operator

Θ(t, x,Dx) : Hs,δ′;λ → Hs,δ′−δ;λ (3.1)

is invertible for all s ∈ R, δ′ ∈ B∞(Rn; R), and K ≥ K1. Moreover, Θ−1 ∈ OpS
0,−δ(x)l∗;λ
(0) .

Proof. Here, we will prove invertibility of the hypoelliptic operator Θ(t, x,Dx), for large K > 0, and

also the fact that Θ(t, x,Dx)−1 ∈ OpS
0,−δ(x)l∗;λ
(0) . The proof is then completed with the help of the next

proposition.

The symbol ΘK,δ(t, x, ξ) belongs to the symbol class S
0,δ(x)l∗;λ
+ , but with parameter K ≥ K0 > 0. Similarly

for ΘK,−δ(t, x, ξ). If R′
K := ΘK,δ ◦ ΘK,−δ − ΘK,δΘK,−δ, then, for all α, β ∈ Nn and certain constants

Cαβ > 0,

|∂α
x ∂β

ξ R′
K(t, x, ξ)| ≤ Cαβ

(

〈ξ〉β∗

K + λ(t)〈ξ〉K
)−1

(t + 〈ξ〉−β∗

K )−l∗

×
(

1 + | log(t + 〈ξ〉−β∗

K )|
)1+|α|

〈ξ〉
−|β|
K , (t, x, ξ) ∈ [0, T ] × R2n, K ≥ K0 > 0

(i.e., we have estimates (2.2), but with 〈ξ〉 replaced by 〈ξ〉K ). From the latter relation, it is seen that
R′

K(t, x, ξ) → 0 in L∞((0, T );S0) as K → ∞, i.e., R′
K(t, x,Dx) → 0 in L(L2) as K → ∞.

Now, let RK := ΘK,δ ◦ ΘK,−δ − 1, i.e., RK = R′
K + ΘK,δΘK,−δ − 1. Since (ΘK,δΘK,−δ)(t, x,Dx) → 1

in L(L2) as K → ∞, it follows that RK(t, x,Dx) → 0 in L(L2) as K → ∞. Thus, ΘK,−δ ◦ (1 + RK)−1

is a right inverse to ΘK,δ, for large K > 0. In a similar fashion, a left inverse to ΘK,δ is constructed.

Moreover, Θ−1 = ΘK,−δ mod OpS
−∞,−δ(x)l∗−(l∗+1);λ
+ , as is seen from the constructions. �

Proposition 3.4. For m, s ∈ R, η, δ ∈ B∞(Rn; R), we have

OpSm,η;λ
(0) ⊂

{

L(Hs,δ;λ,Hs−m,δ+m+ m−η
l∗

;λ) if m ≥ 0,

L(Hs,δ;λ,Hs,δ+ m−η
l∗

;λ) if m < 0.
(3.2)

Proof. We prove (3.2) in case m ≥ 0; the proof in case m < 0 is similar.

By interpolation and duality, we may assume that s − m ∈ N. Then we have to show that, for 0 ≤ k ≤ j ≤
s − m,

h(s+δ)l∗+m−ηgs−m−j(Dj−k
t A)Dk

t u ∈ L2

provided u ∈ Hs,δ;λ. We have

h(s+δ)l∗+m−ηgs−m−j(Dj−k
t A)Dk

t u = hm−ηg−m−j+k(Dj−k
t A)h(s+δ)l∗gs−kDk

t u + RDk
t u (3.3)
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with hm−ηg−m−j+k(Dj−k
t A) ∈ OpS−j+k,0;λ

(j−k) and a remainder R ∈ OpS
s−j−1,(s−1)(l∗+1)+δl∗−k;λ
+ . Now,

OpS−j+k,0;λ
(j−k) ⊂ OpS0,0;λ

(0) and h(s+δ)l∗gs−kDk
t u ∈ L2 by assumption, i.e., the first summand on the right-

hand-side of (3.3) belongs to L2 by virtue of Corollary 2.6. The second summand is rewritten as

RDk
t u = Rg−s+k(ΘK,s+δ)

−1ΘK,s+δg
s−kDk

t u

for some large K > 0, where Rg−s+k(ΘK,s+δ)
−1 ∈ OpS

−j+k−1,−(l∗+1);λ
+ ⊂ OpS0,0;λ and again

ΘK,s+δg
s−kDk

t u ∈ L2, i.e., also the second summand on the right-hand-side of (3.3) belongs to L2. �

In the following result, we summarize properties of the spaces H s,δ;λ.

Proposition 3.5. Let s ∈ R, δ ∈ B∞(Rn; R). Then:

(a) {Hs,δ;λ; s ∈ R} forms an interpolation scale of Hilbert spaces (with the obvious Hilbert norms) with
respect to the complex interpolation method.

(b) Hs
comp(R+ × Rn)

∣

∣

(0,T )×Rn ⊂ Hs,δ;λ ⊂ Hs
loc(R+ × Rn)

∣

∣

(0,T )×Rn .

(c) The space C∞
comp([0, T ] × Rn) is dense in Hs,δ;λ.

(d) For s > 1/2, the map

Hs,δ;λ →

[s−1/2]−
∏

j=0

Hs+β∗δ(x)l∗−β∗j−β∗/2(Rn), u 7→
(

Dj
t u
∣

∣

t=0

)

0≤j≤[s−1/2]−
, (3.4)

where [s − 1/2]− is the largest integer strictly less than s − 1/2, is surjective.

(e) Hs,δ;λ ⊂ Hs′,δ′;λ if and only if s ≥ s′, s + β∗δl∗ ≥ s′ + β∗δ
′l∗. Moreover, the embedding {u ∈

Hs,δ;λ; suppu ⊆ K} ⊂ Hs′,δ′;λ for some K b [0, T ] × Rn is compact if and only if s > s′ and s +
β∗δ(x)l∗ > s′ + β∗δ

′(x)l∗ for all x satisfying (0, x) ∈ K .

Proof. For s, δ ∈ R, it is readily seen that Definition 3.1 coincides with that one given in DREHER–WITT

[6]. In this case, proofs may be found there. For variable δ = δ(x), we exemplarily verify (a), (d): To this
end, we write Hs,δ;λ = Θ−1Hs,0;λ for s ∈ R, with Θ being the operator from Lemma 3.3.

(a) Since {Hs,0;λ; s ∈ R} is an interpolation scale, {Hs,δ;λ; s ∈ R} is also an interpolation scale with
respect to the complex interpolation method.

(d) Let γju := Dj
t u
∣

∣

t=0
. Then γj Θu ∈ Hs−β∗j−β∗/2(Rn) for 0 ≤ j ≤ [s − 1/2]−, since (3.4) holds if

δ = 0.

Now, Hs,δ;λ →
∏[s−1/2]−

j=0 Hs+β∗δ(x)l∗−β∗j−β∗/2(Rn), u 7→
(

γju
)

0≤j≤[s−1/2]−
follows from

γju =
(

〈Dx〉
β∗δ(x)l∗
K

)−1
γjΘu,

while the surjectivity of this map is implied by the reverse relation

γj Θu = 〈Dx〉
β∗δ(x)l∗
K γju

and the surjectivity of (3.4) in case δ = 0. �

We also need the following results:
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Proposition 3.6. (a) If q(t, x,Dx) ∈ OpS0,0;λ
(0) is invertible on Hs,δ;λ for some s ∈ R, δ ∈ B∞(Rn; R),

then q(t, x,Dx) is invertible on Hs,δ;λ for all s ∈ R, δ ∈ B∞(Rn; R) and

q(t, x,Dx)−1 ∈ OpS0,0;λ
(0) .

(b) Conversely, if q0 ∈ C∞([0, T ];S(0)) and q1 ∈ S(−1) are given, where |det q0(t, x, ξ)| ≥ c for all
(t, x, ξ) ∈ [0, T ] × R2n and a certain c > 0, then there is an invertible operator q(t, x,Dx) ∈ Op S̃0,0;λ in
the sense of (a) such that

σ0(q) = q0, σ̃−1,0(q) = q1.

Proof. (a) By conjugating the operator q(t, x,Dx) with the inverse of (gshsl∗Θ)(t, x,Dx), where Θ(t, x, ξ)
is as in Lemma 3.3, we may suppose that s = 0, δ = 0. From the invertibility of q(t, x,Dx) on H0,0;λ, we
then conclude the ellipticity of the symbol q(t, x, ξ) in the standard fashion, i.e., we have |det q(t, x, ξ)| ≥
c1 for all (t, x, ξ) ∈ [0, T ] × R2n, |ξ| ≥ c2, and some constants c1, c2 > 0. By the analogue of Proposi-
tion 2.4 (f) for the class S0,0;λ

(0) , there is a symbol q1(t, x, ξ) ∈ S0,0;λ
(0) such that

q ◦ q1 − 1 ∈ C∞([0, T ];S−∞).

It follows that

q(t, x,Dx) q(t, x,Dx)−1 = q(t, x,Dx) q1(t, x,Dx) mod C∞([0, T ]; Op S−∞),

i.e., by multiplying both sides from the left by q(t, x,Dx)−1 ∈ OpS0
1,β∗

([0, T ] × Rn × Rn),

q(t, x,Dx)−1 = q1(t, x,Dx) mod C∞([0, T ]; Op S−∞)

and q(t, x,Dx)−1 ∈ OpS0,0;λ
(0) .

(b) The rather long proof is deferred to Appendix A.2. �

4. SYMMETRIZABLE-HYPERBOLIC SYSTEMS

In this section we prove our main result Theorem 1.1.

4.1. Reduction of the problem. For A ∈ Op S̃1,1;λ, throughout we shall adopt the notation

σ1(A)(t, x, ξ) = λ(t)|ξ|A0(t, x, ξ), σ̃0,1(A)(x, ξ) = −il∗A1(x, ξ),

where A0 ∈ B∞([0, T ];S(0)), A1 ∈ S(0). Likewise, for the symmetrizer M ∈ Op S̃0,0;λ, we shall write

σ0(M)(t, x, ξ) = M0(t, x, ξ), σ̃−1,0(M)(x, ξ) = −il∗|ξ|
−1M1(x, ξ),

where M0 ∈ B∞([0, T ];S(0)), M1 ∈ S(0). Condition (1.9) is

Re
(

M0A1M
−1
0 +

[

M1M
−1
0 ,M0A0M

−1
0

])

≤ δ(x)1N . (4.1)

Remark 4.1. Because M0A0M
−1
0 is symmetric,

Re
[

M1M
−1
0 ,M0A0M

−1
0

]

= i
[

Im(M1M
−1
0 ),M0A0M

−1
0

]

,

i.e., (4.1) amounts to choose Im(M1M
−1
0 ) appropriately.

Lemma 4.2. For system (1.1) with A(t, x, ξ) ∈ S̃1,1;λ, the following conditions are equivalent:

(a) There is an M0 ∈ C∞([0, T ];S(0)) such that |det M0(t, x, ξ)| ≥ c for some c > 0 and the matrix

(M0A0M
−1
0 )(t, x, ξ)

is symmetric for all (t, x, ξ) ∈ [0, T ] × Rn × (Rn \ 0).

(b) There is an operator M(t, x,Dx) ∈ Op S̃0,0;λ that is invertible on L2 such that

Im(MAM−1) ∈ OpS0,1;λ,

i.e., Imσ1(MAM−1) = 0.



12 MICHAEL DREHER AND INGO WITT

Proof. If (a) is fulfilled, let M(t, x,Dx) ∈ Op S̃0,0;λ be invertible such that σ0(M)(t, x, ξ) = M0(t, x, ξ).
Such an operator M exists according to Proposition 3.6 (b). Then we have that the matrix

σ1(MAM−1)(t, x, ξ) = λ(t)|ξ| (M0A0M
−1
0 )(t, x, ξ)

is symmetric for all (t, x, ξ), i.e., σ1(Im(MAM−1))(t, x, ξ) = 0 and Im(MAM−1) ∈ OpS0,1;λ.

Vice versa, if (b) is satisfied, then we can take σ0(M)(t, x, ξ) for M0(t, x, ξ) in (a). �

Definition 4.3. System (1.1) is called symmetrizable-hyperbolic if the conditions of Lemma 4.2 are fulfilled.
It is called symmetric-hyperbolic if A0(t, x, ξ) is already symmetric, i.e., ImA ∈ OpS0,1;λ.

Proposition 4.4. In the proof of Theorem 1.1, we can assume that

A(t, x, ξ) = χ+(t, ξ)
(

λ(t)|ξ|A0(t, x, ξ) − il∗t
−1A1(x, ξ)

)

+ A2(t, x, ξ), (4.2)

where A0 ∈ C∞([0, T ];S(0)), A0 = A∗
0, A1 ∈ S(0),

ReA1(x, ξ) ≤ 0,

and A2 ∈ S−1,1;λ + S0,0;λ; and δ = 0.

Proof. Note that (4.2) means σ1(A)(t, x, ξ) is symmetric, while Im σ̃0,1(A)(x, ξ) ≥ 0.

Let the assumptions of Theorem 1.1 be satisfied. In particular, let δ ∈ B∞(Rn; R) satisfy (1.9). We reduce
(1.1) in two steps.

(a) Using the symmetrizer M ∈ Op S̃0,0;λ, that is an isomorphism from Hs,δ;λ onto Hs,δ;λ for all s ∈ R

by Proposition 3.4, while M(0, x,Dx) is an isomorphism from Hs(Rn) onto Hs(Rn), instead of (1.1) we
consider the equivalent system satisfied by V := MU :

{

DtV (t, x) = B(t, x,Dx)V (t, x) + G(t, x), (t, x) ∈ (0, T ) × Rn,

V (0, x) = V0(x).
, (4.3)

where B = MAM−1 + (DtM)M−1, V0 = M(0, x,Dx)U0, G = MF .

We have B ∈ Op S̃1,1;λ, σ1(B) = λ(t)|ξ| (M0A0M
−1
0 )(t, x, ξ),

σ̃0,1(B) = σ̃0,1(MAM−1) = −il∗
(

M0A1M
−1
0 +

[

M1M
−1
0 ,M0A0M

−1
0

])

according to the composition rules in Proposition 2.11. In the last line, it was employed that (DtM)M−1 ∈

Op S̃0,1;λ, σ̃0,1((DtM)M−1) = 0 by virtue of Lemma 2.12.

Thus, we can assume that A0(t, x, ξ) is symmetric, M0(t, x, ξ) = 1N , and M1(x, ξ) = 0 in Theorem 1.1.
In this first reduction, δ has not been changed.

(b) Now assume A0(t, x, ξ) is symmetric, M0(t, x, ξ) = 1N , and M1(x, ξ) = 0. Then using the operator
Θ from Lemma 3.3, that is an isomorphism from H s,δ;λ onto Hs,0;λ for all s ∈ R, while Θ(0, x,Dx) =

〈Dx〉
β∗δ(x)l∗
K is an isomorphism from Hs+β∗δ(x)l∗(Rn) onto Hs(Rn), instead of (1.1) we consider the equiv-

alent system satisfied by V := ΘU :
{

DtV (t, x) = B(t, x,Dx)V (t, x) + G(t, x), (t, x) ∈ (0, T ) × Rn,

V (0, x) = V0(x).
, (4.4)

where this time B = ΘAΘ−1 + (DtΘ)Θ−1, V0 = Θ(0, x,Dx)U0, G = ΘF .

By Lemma 4.5 below, ΘAΘ−1 + (DtΘ)Θ−1 ∈ Op S̃1,1;λ, σ1(ΘAΘ−1 + (DtΘ)Θ−1) = λ(t)|ξ|A0,

σ̃0,1(ΘAΘ−1 + (DtΘ)Θ−1)(x, ξ) = −il∗ (A1(x, ξ) − δ(x)) 1N .

Thus we can, in addition, assume that Re A1 ≤ 0. This second reduction changes δ to zero. �
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Lemma 4.5. Let Θ be as in Lemma 3.3. Then ΘAΘ−1 + (DtΘ)Θ−1 ∈ Op S̃1,1;λ and

σ1(ΘAΘ−1 + (DtΘ)Θ−1) = σ1(A),

σ̃0,1(ΘAΘ−1 + (DtΘ)Θ−1) = σ̃0,1(A) + iδ(x)l∗1N .

Proof. We have ΘAΘ−1 ∈ Op S̃1,1;λ and σ1(ΘAΘ−1) = σ1(A), σ̃0,1(ΘAΘ−1) = σ̃0,1(A) because of

Θ ◦ A ◦ Θ−1 = ΘK,δAΘK,−δ = A mod S−∞,−l∗;λ
+ .

Furthermore,

(DtΘ) ◦ Θ−1 = (DtΘK,δ)ΘK,−δ mod S−1,−l∗;λ
+ ⊂ S−1,1;λ;

so we consider the product (DtΘK,δ)ΘK,−δ:

(DtΘK,δ) ΘK,−δ =
(

λ(t)〈ξ〉K χ′ (Λ(t)〈ξ〉K)
(

t−δ(x)l∗ − 〈ξ〉
β∗δ(x)l∗
K

)

− δ(x)l∗ χ+
K(t, ξ)t−δ(x)l∗−1

)(

χ−
K(t, ξ) 〈ξ〉

−β∗δ(x)l∗
K + χ+

K(t, ξ) tδ(x)l∗
)

= λ(t)〈ξ〉K χ′ (Λ(t)〈ξ〉K) χ−
K(t, ξ)

(

(c1Λ(t)〈ξ〉K)−β∗δ(x)l∗ − 1
)

+ λ(t)〈ξ〉K χ′ (Λ(t)〈ξ〉K) χ+
K(t, ξ)

(

1 − (c1Λ(t)〈ξ〉K)β∗δ(x)l∗
)

− δ(x)l∗ χ+
K(t, ξ)χ−

K(t, ξ)λ(t)〈ξ〉K(c1Λ(t)〈ξ〉K)−β∗δ(x)l∗−1

− δ(x)l∗
(

χ+
K(t, ξ)

)2
t−1

with c1 = l∗ + 1. The first three summands on the right-hand side belong to S−∞,1;λ, since we have, e.g.,
χ′(t) (1 − χ(t)) ∈ C∞

comp(R+); thus, d1 ≤ Λ(t)〈ξ〉K ≤ d2 for certain constants 0 < d1 < d2 on the

support of the first summand and the derivatives of (c1Λ(t)〈ξ〉K)−β∗δ(x)l∗ with respect to x do not produce
logarithmic terms in the estimates.

Thus, we obtain

(DtΘ) ◦ Θ−1 = iδ(x)l∗ χ+(t, ξ) t−1 mod S−1,1;λ,

i.e., (DtΘ)Θ−1 ∈ Op S̃1,1;λ and σ1((DtΘ)Θ−1) = 0, σ̃0,1((DtΘ)Θ−1) = iδ(x)l∗1N , as required. �

4.2. Proof of Theorem 1.1. We now come to the proof of the main theorem. We divide this proof into three
steps. Thereby, we always assume the reductions made in Proposition 4.4.

First step (Basic a priori estimate). Each solution U to system (1.1) satisfies the a priori estimate (1.8) in
case s = 0, i.e.,

‖U‖H0,0;λ((0,T )×Rn) ≤ C
(

‖U0‖L2(Rn) + ‖F‖H0,0;λ((0,T )×Rn)

)

, (4.5)

where C = C(T ) > 0.

Proof. First recall that H0,0;λ((0, T ) × Rn) = L2((0, T ) × Rn).

Rewrite (1.1) in the form (∂t − B)U = iF , where

B(t, x, ξ) = iA(t, x, ξ) = B1(t, x, ξ) + Br(t, x, ξ),

B1(t, x, ξ) − iχ+(t, ξ)
(

λ(t)|ξ|A0(t, x, ξ) − il∗t
−1A1(x, ξ)

)

∈ S−1,1;λ,

and Br ∈ S0,0;λ. By construction,

(B1 + B∗
1)(t, x, ξ) ≤ 2q(t, ξ)1N ,

where q(t, ξ) = Cg(t, ξ)−1h(t, ξ)2 and
∫ t
0 q(t′, ξ) dt′ ∈ L∞((0, T ), S0

1,0). From Lemma A.1, we infer

‖U(t, ·)‖2
L2(Rn) ≤ C

(

‖U0‖
2
L2(Rn) +

∫ t

0

∥

∥F (t′, ·)
∥

∥

2

L2(Rn)
dt′
)

. (4.6)

Integrating this inequality over the time interval (0, T ) yields the desired estimate (4.5). �
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Second step (a priori estimate of higher-order derivatives). Each solution U to system (1.1) satisfies the
a priori estimate (1.8) in case s > 0, i.e.,

‖U‖Hs,0;λ((0,T )×Rn) ≤ C
(

‖U0‖Hs(Rn) + ‖F‖Hs,0;λ((0,T )×Rn)

)

, (4.7)

where C = C(s, T ) > 0.

Proof. For any s ∈ R, we have U ∈ Hs+1,0;λ if and only if g(t,Dx)hl∗(t,Dx)U, hl∗(t,Dx)DtU ∈ Hs,0;λ.

Moreover, the vector
(

g(t,Dx)hl∗(t,Dx)U, hl∗(t,Dx)DtU
)T

is a solution to the Cauchy problem


















Dt

(

ghl∗U

hl∗DtU

)

=

(

A00 0
A10 A11

)(

ghl∗U

hl∗DtU

)

+

(

ghl∗F

Dthl∗F

)

,

(

ghl∗U

hl∗DtU

)

(0, x) =

(

〈Dx〉U0(x)

〈Dx〉1−β∗ (A(0, x,Dx)U0(x) + F (0, x))

)

,

(4.8)

where

A00 = ghl∗A(ghl∗)−1 + (Dtg)g−1 + l∗(Dth)h−1,

A10 =
[

hl∗(DtA) + l∗(Dth)hl∗−1A
]

(ghl∗)−1,

A11 = hl∗Ah−l∗ .

By Lemma 4.6 below, induction on s ∈ N, and interpolation in s ≥ 0, we then deduce the second step from
the first one. �

Lemma 4.6. We have
(

A00 0
A10 A11

)

∈ Op S̃1,1;λ and

σ1

((

A00 0
A10 A11

))

=

(

σ1(A) 0
0 σ1(A)

)

, (4.9)

σ̃0,1

((

A00 0
A10 A11

))

=

(

σ̃0,1(A) 0
0 σ̃0,1(A)

)

. (4.10)

In particular,
(

A00 0
A10 A11

)

fulfills the same assumptions as A ∈ Op S̃1,1;λ does, but for (2N)×(2N) matrices.

Furthermore,
(

〈Dx〉U0

〈Dx〉1−β∗ (A(0)U0 + F (0))

)

∈ Hs(Rn),

(

ghl∗F

Dthl∗F

)

∈ Hs,0;λ (4.11)

provided that U0 ∈ Hs+1(Rn), F ∈ Hs+1,0;λ.

Proof. A straightforward calculation using Proposition 2.11 and (2.6) gives ghl∗A(ghl∗)−1 ∈ Op S̃1,1;λ,

σ1(ghl∗A(ghl∗)−1) = σ1(A), σ̃0,1(ghl∗A(ghl∗)−1) = σ̃0,1(A),

(Dtg)g−1, (Dth)h−1 ∈ Op S̃0,1;λ,

σ̃0,1((Dtg)g−1) = −il∗, σ̃0,1((Dth)h−1) = i,

hl∗(DtA)(ghl∗)−1, (Dth)hl∗−1A(ghl∗)−1 ∈ Op S̃0,1;λ

σ̃0,1(hl∗(DtA)(ghl∗)−1) = −il∗|ξ|
−1σ̃1,1(A), σ̃0,1((Dth)hl∗−1A(ghl∗)−1) = i|ξ|−1σ1,1(A),

and hl∗Ah−l∗ ∈ Op S̃1,1;λ,

σ1(hl∗Ah−l∗) = σ1(A), σ̃0,1(hl∗Ah−l∗) = σ̃0,1(A).

Thus, (4.9), (4.10) hold. Moreover, (4.11) is obvious. �

Third step (Existence and uniqueness). For all U0 ∈ Hs(Rn), F ∈ Hs,0;λ((0, T ) × Rn), where s ≥ 0,
system (1.1) possesses a unique solution U ∈ H s,0;λ((0, T ) × Rn) satisfying the a priori estimate (4.7).
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Proof. Let s ≥ 1, the general case then follows by density arguments. By Proposition 3.5 (c), we may
suppose that U0 ∈ C∞

comp(R
n), F ∈ C∞

comp([0, T ] × Rn).

We replace the operator A(t, x,Dx) by Aε(t, x,Dx) for 0 < ε ≤ 1, where

Aε(t, x, ξ) = χ+(t, ξ)
(

λ(t)|ξ|A0(t, x, ξ) − il∗(t + ε)−1A1(x, ξ)
)

+ A2ε(t, x, ξ),

A2ε(t, x, ξ) =
t + 〈ξ〉−β∗

t + 〈ξ〉−β∗ + ε
A2(t, x, ξ).

The system Dt−Aε(t, x,Dx) is symmetrizable-hyperbolic with the lower-order term belonging to the space
L∞((0, T ), S0

1,0). Therefore, the Cauchy problem
{

DtUε(t, x) = Aε(t, x,Dx)Uε(t, x) + F (t, x), (t, x) ∈ (0, T ) × Rn,

Uε(0, x) = U0(x),

possesses a unique solution Uε ∈ C∞([0, T ],H∞(Rn)), see TAYLOR [17].

The set {Aε : 0 < ε ≤ 1} is bounded in S̃1,1;λ. Hence, the second step provides an estimate

‖Uε‖Hs,0;λ((0,T )×Rn) ≤ C
(

‖U0‖Hs(Rn) + ‖F‖Hs,0;λ((0,T )×Rn)

)

.

that holds uniformly in 0 < ε ≤ 1. Furthermore, the set
{

(Aε −Aε′)/(ε− ε′) : 0 < ε′ < ε ≤ 1
}

is bounded
in S0,2;λ. From the first step as well as Propositions 3.4, 3.5 (e), we deduce that

‖Uε − Uε′‖H0,0;λ ≤ C ‖(Aε − Aε′)Uε‖H0,0;λ

≤ C(ε − ε′) ‖Uε‖H0,2/l∗;λ ≤ C(ε − ε′) ‖Uε‖H1,0;λ

for 0 < ε′ < ε ≤ 1. Since s ≥ 1, this implies that Uε converges to some limit U in the space H0,0;λ as
ε → +0.

The rest of the proof is standard. �

5. APPLICATIONS

We discuss three examples demonstrating the value of Theorem 1.1.

5.1. Differential systems. Differential systems of the form (1.1) with A(t, x, ξ) from (1.7) are of restricted
interest, because a lower-order term as described by the term χ+(t, ξ)t−1A1(t, x, ξ) cannot occur. Hence,
the loss of regularity is always zero.

Consider the operator

L = Dt +
n
∑

j=1

tl∗aj(t, x)Dxj + a0(t, x), (5.1)

where aj ∈ B∞([0, T ]×Rn;MN×N (C)) for 0 ≤ j ≤ n. With A(t, x, ξ) := −
∑n

j=1 tl∗aj(t, x)ξj−a0(t, x),

σ1(A)(t, x, ξ) = −λ(t)|ξ|

n
∑

j=1

aj(t, x)
ξj

|ξ|
, σ̃0,1(A)(x, ξ) = 0.

Proposition 5.1. Let the differential system (5.1) be symmetrizable-hyperbolic. Then, for all s ≥ 0, U0 ∈
Hs(Rn), and F ∈ Hs,0;λ((0, T ) × Rn), the Cauchy problem

{

LU(t, x) = F (t, x), (t, x) ∈ (0, T ) × Rn,

U(0, x) = U0(x).
(5.2)

possesses a solution U ∈ Hs,0;λ((0, T ) × Rn). This solution U is unique in L2.

Proof. We have A1 = 0. Let M0 be a symmetrizer for A0, and M1 = 0. Then (1.9) is satisfied with δ = 0.
The assertion follows immediately from Theorem 1.1. �
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5.2. Characteristic roots of constant multiplicity. An interesting class of systems to which Theorem 1.1
applies is that of systems having characteristic roots of constant multiplicity.

Definition 5.2. System (1.1) is said to have characteristic roots of constant multiplicity if it is symmetriza-
ble-hyperbolic in the sense of Definition 4.3 and if

det
(

τ1N − σ1(A)(t, x, ξ)
)

=

r
∏

h=1

(τ − tl∗µh(t, x, ξ))Nh ,

where µh ∈ C∞([0, T ], S(1)) for 1 ≤ h ≤ r are real-valued, N1 + · · · + Nr = N , and

|µh(t, x, ξ) − µh′(t, x, ξ)| ≥ c, 1 ≤ h < h′ ≤ r,

for some c > 0.

Remark 5.3. In case r = N , we have N1 = · · · = Nr = 1 and the operator Dt − A(t, x,Dx) is strictly
hyperbolic for t > 0.

If Dt − A(t, x,Dx) has characteristic roots of constant multiplicity, then there exists a matrix M0 ∈

C∞([0, T ], S(0)) with |det M0(t, x, ξ)| ≥ c > 0 such that

B0(t, x, ξ) := (M0A0M
−1
0 )(t, x, ξ) = diag(µ11N1 , . . . , µr1Nr)(t, x, ξ)

is a diagonal matrix. With A1(x, ξ) = il−1
∗ σ̃0,1(A)(x, ξ) as before, we put

B1(x, ξ) := M0(0, x, ξ)A1(x, ξ)M0(0, x, ξ)−1 =











B1,11 B1,12 . . . B1,1r

B1,21 B1,22 . . . B1,2r
...

...
. . .

...
B1,r1 B1,r2 . . . B1,rr











(5.3)

where B1,jk ∈ C∞([0, T ], S(0)) is an Nj × Nk matrix.

Proposition 5.4. Assume system (1.1) has characteristic roots of constant multiplicity, and define B0, B1

as above. Let δ ∈ B(Rn; R) be so that

ReB1,jj(x, ξ) ≤ δ(x)1Nj , (x, ξ) ∈ Rn × (Rn \ 0), 1 ≤ j ≤ r. (5.4)

Then, for all s ≥ 0, U0 ∈ Hs+β∗δ(x)l∗ , and F ∈ Hs,δ(x);λ, the Cauchy problem (1.1) possesses a unique
solution U ∈ Hs,δ(x);λ.

Proof. Assuming (5.4), we are looking for a matrix M1 ∈ S(0) such that

Re(B1 +
[

M1M
−1
0 , B0

]

)(0, x, ξ) ≤ δ(x)1N , (x, ξ) ∈ Rn × (Rn \ 0).

We are done if we can find a matrix P1 = M1M
−1
0 in such a way that

B1 + [P1, B0] =











B1,11 0 . . . 0
0 B1,22 . . . 0
...

...
. . .

...
0 0 . . . B1,rr











(5.5)

is block-diagonal.

Such a matrix P1 can be constructed using the fact that B0 is diagonal with distinct eigenvalues for the
different blocks, and employing the following result, see TAYLOR [17, Chap. IX, Lemma 1.1]:

For E ∈ MM×M (C), F ∈ MN×N (C), the map

MM×N (C) → MM×N (C), T 7→ TF − ET ,

is bijective if and only if E and F have disjoint spectra.
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We choose P1 so that P1,jj = 0 for 1 ≤ j ≤ r, where the meaning of P1,jk is the same as in (5.3). Then
[P1, B0]jk = P1,jkB0,kk − B0,jjP1,jk for j 6= k, while [P1, B0]jj = 0 for 1 ≤ j ≤ r. According to the
result just quoted, we can choose P1,jk for j 6= k so that

B1,jk + [P1, B0]jk = 0, j 6= k.

That is, by this choice of P1 we kill all off-diagonal entries of B1, while the diagonal entries of B1 remain
unchanged. Thus, we end up with (5.5). �

Example 5.5. There are two extreme cases exemplified by (a), (b) below:

(a) Let r = N , see Remark 5.3. Then we can choose any δ ∈ B∞(Rn; R) satisfying

Re(M0A1M
−1
0 )jj(0, x, ξ) ≤ δ(x), (x, ξ) ∈ Rn × (Rn \ 0), 1 ≤ j ≤ N.

In a forthcoming paper, we will show that this bound on δ is sharp.

(b) Consider the Cauchy problem
{

DtU(t, x) + il∗a(t, x)h(t,Dx)U(t, x) = F (t, x), (t, x) ∈ (0, T ) × Rn,

U(0, x) = U0(x),
(5.6)

where a ∈ B∞([0, T ] × Rn;MN×N (C)). Then A(t, x, ξ) = −il∗a(t, x)h(t, ξ), A0(t, x, ξ) = 0, and
A1(t, x, ξ) = a(t, x). By choosing M0(t, x, ξ) so that M0(0, x, ξ) is unitary and diagonalizes Re a(0, x),
we see that we can choose any δ ∈ B∞(Rn; R) satisfying

δ(x) ≥ max
1≤j≤N

νj(x),

where ν1(x), . . . , νN (x) are the eigenvalues of Re a(0, x) (not necessarily distinct).

5.3. Higher-order scalar equations. Let L be the operator

L = Dm
t +

∑

j+|α|≤m,
j<m

ajα(t, x) t(j+(l∗+1)|α|−m)+Dj
t D

α
x , (t, x) ∈ (0, T ) × Rn,

where ajα ∈ B∞([0, T ] × Rn) for j + |α| ≤ m, j < m. We assume L to be strictly hyperbolic in the sense
that

σm(L) =

m
∏

h=1

(τ − λ(t)µh(t, x, ξ)),

where µh ∈ C∞([0, T ], S(1)), 1 ≤ h ≤ m, are real–valued, and
∣

∣µh(t, x, ξ) − µh′(t, x, ξ)
∣

∣ ≥ c |ξ|, 1 ≤ h < h′ ≤ m, c > 0.

We define a reduced principal symbol of L,

p(τ) := p(t, x, τ, ξ) = τm + pm−1τ
m−1 + · · · + p1τ + p0,

where

pj(t, x, ξ) :=
∑

|α|=m−j

ajα(t, x)
( ξ

|ξ|

)α
,

and a reduced secondary symbol,

q(τ) := q(x, τ, ξ) = qm−2τ
m−2 + qm−3τ

m−3 + · · · + q1τ + q0,

where

qj(x, ξ) := il∗
−1

∑

|α|=m−j−1

ajα(0, x)
( ξ

|ξ|

)α
.

The loss of regularity is then determined as follows:
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Proposition 5.6. Let s ≥ 0, δ ∈ B∞(Rn; R) satisfy

δ(x) ≥ sup
1≤h≤m

sup
|ξ|=1

(

−
τ
2

∂2p
∂τ2 + Re q

∂p
∂τ

)

(0, x, µh(0, x, ξ), ξ). (5.7)

Then, for all uj ∈ Hs+m−jβ∗−1+β∗δ(x)l∗ for 0 ≤ j ≤ m − 1, f ∈ Hs,δ(x)+m−1;λ, the Cauchy problem
{

Lu(t, x) = f(t, x), (t, x) ∈ (0, T ) × Rn,

Dj
t u(0, x) = uj(x), 0 ≤ j ≤ m − 1,

(5.8)

possesses a solution u ∈ Hs+m−1,δ(x);λ. This solution u is unique in the space Hm−1,δ(x);λ.

Proof. We convert problem (5.8) into an m×m system of the first order. Then it is equivalent to the Cauchy
problem

{

DtU(t, x) = A(t, x,Dx)U(t, x) + F (t, x), (t, x) ∈ (0, T ) × Rn,

U(0, x) = U0(x),

where U =











gm−1u
gm−2Dtu

...
gDm−2

t u

Dm−1
t u











∈ Hs,δ(x)+m−1;λ (if and only if u ∈ Hs+m−1,δ(x);λ, see Remark 3.2 (b) (i)),

U0 =









〈Dx〉β∗(m−1)u0

〈Dx〉β∗(m−2)u1

...
〈Dx〉β∗um−2

um−1









∈ Hs+β∗(δ(x)+m−1)l∗ , F =







0
0
...
0

f(t,x)






∈ Hs,δ(x)+m−1;λ,

A(t, x, ξ) =





















(m − 1) Dtg
g g 0 . . . 0 0

0 (m − 2) Dtg
g g . . . 0 0

0 0 (m − 3) Dtg
g . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Dtg
g g

− a0

gm−1 − a1

gm−2 − a2

gm−3 . . . −am−2

g −am−1





















,

and aj(t, x, ξ) =
∑

|α|≤m−j ajα(t, x) t(j+(l∗+1)|α|−m)+ξα.

From Example 2.9 (b), we infer that A ∈ S̃1,1;λ, σ1(A)(t, x, ξ) = λ(t)|ξ|A0(t, x, ξ), where

A0(t, x, ξ) =



















0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1

−p0 −p1 −p2 . . . −pm−2 −pm−1



















,

and σ̃0,1(A)(x, ξ) = −il∗A1(x, ξ), where

A1(x, ξ) =



















m − 1 0 0 . . . 0 0
0 m − 2 0 . . . 0 0
0 0 m − 3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

−q0 −q1 −q2 . . . −qm−2 0



















.
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Now, it is easy to provide a symmetrizer M0 for A0, namely

M0(t, x, ξ)−1 =











1 1 . . . 1
µ1 µ2 . . . µm
...

...
. . .

...
µm−1

1 µm−1
2 . . . µm−1

m











.

Note that detM−1
0 =

∏

h>h′(µh − µh′) and, for 1 ≤ h, j ≤ m,

(M0(t, x, ξ))hj =
µm−j

h + pm−1µ
m−j−1
h + · · · + pj+1µh + pj

∂p
∂τ (µh)

. (5.9)

According to our general scheme, see Example 5.5 (a), to read off the loss of regularity we have to calculate
(

M0A1M
−1
0

)

hh
=
∑

j, k

(M0)hj (A1)jk (M−1
0 )kh

=
m−1
∑

j=1

(m − j) (M0)hj (M−1
0 )jh −

m−1
∑

j=1

qj−1 (M0)hm (M−1
0 )jh

= m −
m
∑

j=1

j (M0)hj (M−1
0 )jh −

m−1
∑

j=1

qj−1 (M0)hm (M−1
0 )jh.

By virtue of (5.9),
m
∑

j=1

j(M0)hj(M
−1
0 )jh =

1
∂p
∂τ (µh)

m
∑

j=1

j
[

µm−j
h + pm−1µ

m−j−1
h + · · · + pj+1µh + pj

]

µj−1
h

=

∑m
j=1

(j+1
2

)

pjµ
j−1
h

∂p
∂τ (µh)

=

(

∂p
∂τ + τ

2
∂2p
∂τ2

∂p
∂τ

)

(0, x, µh, ξ)

and
m−1
∑

j=1

qj−1 (M0)hm (M−1
0 )jh =

∑m−1
j=1 qj−1µ

j−1
h

∂p
∂τ (µh)

=
q(x, µh, ξ)

∂p
∂τ (0, x, µh, ξ)

.

Hence, the assertion follows. �

Remark 5.7. The expression

l∗ sup
x∈Rn, |ξ|=1

(

−
τ
2

∂2p
∂τ2 + Re q

∂p
∂τ

)

(0, x, µh(0, x, ξ), ξ)

is the connecting coefficient m+
h from AMANO–NAKAMURA [1].

A. APPENDICES

A.1. A useful estimate. We consider a matrix pseudodifferential operator ∂t −B(t, x,Dx) and its forward
fundamental solution X(t, t′) which is defined by the relations

(∂t − B(t, x,Dx)) ◦ X(t, t′) = 0, 0 ≤ t′ ≤ t ≤ T,

X(t′, t′) = I, 0 ≤ t′ ≤ T.

We suppose that this forward fundamental solution operator exists and maps S(Rn) onto itself. Our assump-
tions on B(t, x,Dx) are as follows:

• B(t, x, ξ) = B1(t, x, ξ) + Br(t, x, ξ) with B1 ∈ L∞((0, T ), S1
1,0), Br ∈ L∞((0, T ), S0

%,δ), where
0 ≤ δ ≤ % ≤ 1, δ < 1,
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• B1(t, x, ξ) + B∗
1(t, x, ξ) ≤ 2q(t, x, ξ)1N for all (t, x, ξ) ∈ [0, T ] × R2n, where B∗

1(t, x, ξ) denotes
the Hermitian conjugate of the matrix B1(t, x, ξ),

• the real-valued scalar function q = q(t, x, ξ) belongs to L∞((0, T ), S1
1,0) and depends either only

on (t, x) or only on (t, ξ),
• p(t, x, ξ) =

∫ t
0 q(t′, x, ξ) dt′ ∈ L∞((0, T ), S0

1,0).

Think of B1 as the first-order principal symbol of B, which is almost skew-symmetric (up to an integrable
perturbation described by q), and regard Br as remainder term.

Lemma A.1. Under these assumptions, the forward fundamental solution operator can be extended such
as acting boundedly from L2(Rn) onto itself,

X ∈ L∞(4+,L(L2(Rn))), 4+ = {(t, t′) : 0 ≤ t′ ≤ t ≤ T}.

Proof. For (t, t′) ∈ 4+, we define a mapping Y (t, t′) : S(Rn) → S(Rn) by

Y (t, t′) = exp(−p(t, x,Dx)) ◦ exp(p(t′, x,Dx)) ◦ X(t, t′).

Obviously, Y (t′, t′) = I . Since the symbol p(t, x, ξ) does not depend on x and ξ simultaneously, we have

∂t ◦ Y (t, t′) = −q(t, x,Dx) ◦ Y (t, t′)

+ exp(−p(t, x,Dx)) ◦ exp(p(t′, x,Dx)) ◦ B(t, x,Dx) ◦ X(t, t′)

=
(

B − q1N +
[

e−p(t,x,Dx)ep(t′,x,Dx)
1N , B

]

e−p(t′,x,Dx)ep(t,x,Dx)
)

◦ Y (t, t′)

= (B1 − q1N + B0) ◦ Y (t, t′)

for some B0 ∈ L∞(4+, S0
%,δ) because of exp(±p(t, x, ξ)) ∈ L∞((0, T ), S0

1,0).

For fixed t′ ∈ [0, T ], U0 ∈ S(Rn), we define a function U(t, x) = Y (t, t′)U0(x) which solves

∂tU = (B1 − q1N + B0)U, (t, x) ∈ (t′, T ) × Rn,

U(t′, x) = U0(x).

Employing the sharp Gårding inequality and Calderón-Vaillancourt’s theorem, we obtain

∂t (U(t, ·), U(t, ·)) = 2Re (∂tU(t, ·), U(t, ·)) = 2Re ((B1 − q1N + B0)U(t, ·), U(t, ·))

≤ ((B1 + B∗
1 − 2q1N )U(t, ·), U(t, ·)) + 2 ‖(B0U)(t, ·)‖L2 ‖U(t, ·)‖L2 ≤ C ‖U(t, ·)‖2

L2 .

Then Gronwall’s lemma implies ‖U(t, ·)‖L2 ≤ C ‖U(t′, ·)‖L2 , i.e.,

Y ∈ L∞(4+,L(L2(Rn))).

The operators exp(±p(t, x,Dx)) map L2(Rn) continuously and bijectively onto itself which completes the
proof. �

A.2. Proof of Proposition 3.6 (b). We need the following result:

Lemma A.2. For each N × N matrix function q0 ∈ S(0) satisfying |det q0(x, ξ)| ≥ c for all (x, ξ) ∈
Rn×(Rn\0) and some c > 0, there is an invertible operator Q ∈ S0

cl(R
n) such that σ0(Q)(x, ξ) = q0(x, ξ).

Proof. We construct two invertible operators Q1, Q2 ∈ S0
cl(R

n) such that

σ0(Q1)(x, ξ) = q0(x, ξ)q0(x
0, ξ)−1, σ0(Q2)(x, ξ) = q0(x

0, ξ)

for some x0 ∈ Rn. Then the composition Q1Q2 has the desired properties.

Construction of Q1. We employ the parameter-dependent calculus of GRUBB [7].
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Rename q0(
0, ξ)−1 to q0(x, ξ). Then q0(x

0, ξ) = 1N for all ξ ∈ Rn \ 0. Therefore, there is an invertible
N ×N matrix function p0 ∈ S(0)

(

Rn × ((Rn ×R+) \ 0)
)

such that |det p0(x, ξ, µ)| ≥ c/2 for (x, ξ, µ) ∈

Rn × ((Rn × R+) \ 0) and

p0(x, ξ, 0) = q0(x, ξ), (x, ξ) ∈ Rn × (Rn \ 0).

We now set

p(x, ξ, µ) := χ(|ξ, µ|)
(

p1(x, ξ, µ) + χ(|ξ|)
(

p0(x, ξ, µ) − p1(x, ξ, µ)
))

,

where p1(x, ξ, µ) :=
∑

|α|<k
ξα

α! ∂α
ξ p0(x, ξ, µ) for some integer k > 0, see [7, Remark 2.1.13]. According

to [7, Theorem 3.2.11], there is a µ0 ≥ 0 such that, for all µ ≥ µ0, the operator p(x,Dx, µ) : L2(Rn) →
L2(Rn) is invertible. It suffices to set Q1 := p(x,Dx, µ), where µ ≥ µ0.

Construction of Q2. Rename q0(x
0, ξ) to q0(ξ). The task to construct q ∈ S0

cl such that σ0(q)(x, ξ) = q0(ξ)
and q(x,Dx) ∈ OpS0

cl is invertible can be fulfilled within the framework of SG-calculus, where one has
symbols which have asymptotic expansions into components which are homogeneous in both the x- and
the ξ-variables. In particular, we have a symbol σ0

e(q)(x, ξ) ∈ S(0)(Rn
x \ 0)⊗̂πS0

cl(R
n
ξ ), having the status of

a second principal symbol, subject only to the restriction σ0(σ0
e(q)(x, ξ)) = q0(ξ). Choosing σ0

e(q)(x, ξ)
as an elliptic symbol in x 6= 0 uniformly with respect to ξ, we get that q(x,Dx) : L2(Rn) → L2(Rn) is
a Fredholm operator. Moreover, upon an appropriate choice of σ0

e(q)(x, ξ) we can achieve each integer as
index of this operator. We choose σ0

e(q)(x, ξ) in such a way that q(x,Dx) : L2(Rn) → L2(Rn) has index
0. Then, by adding a contribution from OpS−∞(Rn

x × Rn
ξ ) if necessary, we finally arrive at an operator

q(x,Dx) that is invertible as operator on L2(Rn). We leave the details of this construction to the reader. For
more on SG-calculus we refer, e.g., to SCHULZE [15]. �

Proof of Proposition 3.6 (b). There is a generalization of Lemma A.2 to the case q0 ∈ C∞([0, T ];S(0)).
Therefore, we find an invertible operator Q1 ∈ C∞([0, T ]; Op S(0)) such that σ0(Q1)(t, x, ξ) = q0(t, x, ξ)

for (t, x, ξ) ∈ [0, T ]×Rn×(Rn\0). Since q ∈ C∞([0, T ];S0
cl +S−1) implies q ∈ S̃0,0;λ, where σ̃−1,0(q) =

0, it remains to construct an operator Q2 ∈ Op S̃0,0;λ such that

σ0(Q2)(t, x, ξ) = 1N , σ̃−1,0(Q2)(x, ξ) = q0(0, x, ξ)−1q1(x, ξ),

and the composition Q1Q2 has the desired properties.

Rename (q−1
0 q1)(0, x, ξ) to q1(x, ξ) and set Q2 = q(t, x,Dx), where

q(t, x, ξ) = 1N + χ(Λ(t)〈ξ〉/d)t−(l∗+1)q1(x, ξ)

for some large d > 0 to be chosen. We have
∣

∣

∣
χ(Λ(t)〈ξ〉/d)t−(l∗+1)q1(x, ξ)

∣

∣

∣
≤ Cd−1, (t, x, ξ) ∈ [0, T ] × R2n,

for some C > 0 and d > 0 is large enough. From HÖRMANDER [9, Theorem 18.1.15], we conclude that

∥

∥

∥
χ(Λ(t)〈Dx〉/d)t−(l∗+1)q1(x,Dx)

∥

∥

∥

L(L2(Rn))
≤

1

3
+ C ′

(

Λ(t)

d

)1/2

, t ∈ [0, T ],

for some C ′ > 0 and d ≥ C/3 is large enough. Choosing additionally d ≥ 9C ′ 2Λ(T ), we find that, for
each t ∈ [0, T ], the operator q(t, x,Dx) is invertible on L2(Rn) with

‖q(t, x,Dx)−1‖L(L2(Rn)) ≤ 3.

This completes the proof. �
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