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Preface

Fluid-structure interaction (FSI) describes the interplay of a flow and a solid mechanical
system. Due to the many applications in industry, technology and science, FSI has been
a very active field of research in recent decades, both from a mathematical and from an
engineering perspective. Mathematically, the combination of fluid and solid mechanical
equations poses several challenges, for example due to the different coordinate systems
involved, time-dependent subdomains and interfaces and the different characters of the
underlying partial differential equations.

More recently, the additional difficulties that arise when the solid comes into contact with
another solid or an exterior wall have been the subject of different publications. Among
others, additional challenges are given by the resulting topology change in the fluid domain,
the Navier-Stokes no-collision paradoxon and the nonlinearly changing interface conditions
in the transition to contact.

This habilitation thesis consists of nine journal articles [F1]-[F9] that deal with the mod-
elling and simulation of fluid-structure interaction problems and contact [F1]-[F3], the
development and analysis of related discretisation techniques in space and time [F4]-[F7]
and the efficient numerical simulation for FSI problems with multiple scales in time [F8, F9].
To distinguish them from other references they are referred to as [F1]-[F9] compared to
pure numbers [1]-[96]. In the following introduction the reader is guided through these
publications and the most relevant results are summarised. For details, proofs and most of the
numerical results, we refer to the respective articles that follow in the second part of this thesis.

The results in these papers have been obtained in a joint effort of the respective authors
with comparable scientific contributions. The numerical results in [F1, F5] and [F9] have
been obtained by the author, those in [F2] partially by the author and partially by F. Gerosa,
in [F3] by the author, H. von Wahl and T. Richter and in [F4], [F6], [F7] and [F8] by the
collaborators G. Judakova, M.K. Singh, M.W. Scroggs and T. Richter, respectively. In all
papers essential contributions in the analysis and the development of the methods, as well
as in the redaction of the articles, have been made by the author.
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many stimulating and motivating discussions, and for their continuous support, even years
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Part I

Introduction
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The interaction of a fluid and a solid mechanical system plays a crucial role in many appli-
cations in technology, industry and science. Prominent examples range from aerodynamical
applications involving for example airplanes, parachutes or vehicles to biomedical problems
such as blood flow through the cardiovascular system or airflow within the respiratory system.
A key problem in the modelling of fluid-structure interactions (FSI) are the different

coordinate systems that are involved. While solid equations are typically formulated in
the Lagrangian (material) coordinate framework on a fixed domain Ω̂s, fluid equations are
usually formulated and solved in Eulerian coordinates; in the context of transient FSI this
means on a time-dependent domain Ωf (t).
The most popular approach to combine the coordinate frameworks is the Arbitrary

Lagrangian Eulerian (ALE) framework [27, 37, 62, 75]. The idea is to map the fluid
equations back to an arbitrary fixed reference domain Ω̂f that matches the solid reference
domain Ω̂s at its boundary. Therefore, a smooth map ξf : Ω̂f → Ωf (t) is required (precisely
ξf needs to be a C1,1-diffeomorphism), see e.g. [77]. A sufficiently regular map does, however,
not exist in the case of topology changes within the fluid domain, that occur necessarily when
the solid comes into contact with another solid body or an exterior wall. The modelling and
simulation of such FSI-contact problems is the subject of Section 1 and the articles [F1, F2]
and [F3] described therein. Our approach to combine the FSI coupling and the contact
conditions is based on a weak imposition of both by means of Nitsche’s method [17, 24, 56, 74].
Moreover, we introduce a benchmark configuration for FSI with contact in [F3], including a
comparison with experimental data.
Instead of the ALE approach, a so-called Fully Eulerian approach [28, 29, 38, 76] is

applied in these works. There, all equations, including the solid equations, are formulated
in the current Eulerian coordinate framework, i.e. on Ωf (t) and Ωs(t). While this enables
an elegant variational formulation with the possibility of topology changes in the fluid
domain, discretisation becomes more cumbersome due to the time dependence of the sub-
domains Ωf (t),Ωs(t). In fact, an accurate discretisation needs to resolve the position and
the movement of the interface both in space and time. This is the subject of the first
three articles in Section 2. First, we introduce a second-order fitted finite element method
for the spatial discretisation of interface problems in Section 2.1 resp. [F4]. Then, we
analyse Eulerian time-stepping schemes based on an unfitted finite element discretisation in
Section 2.2 resp. [F5] and [F6]. While in [F4]-[F6] finite elements are considered for spatial
discretisation, we show in Section 2.3 resp. [F7], how contact conditions can be incorporated
in a Boundary Element Formulation by means of Nitsche’s method.

In Section 3 resp. [F8] and [F9], we study temporal multi-scale problems for the numerical
simulation of plaque growth in arteries. In this application, plaque growth takes place over a
long time scale of months to several years. On the other hand, short-time effects related to
the wall shear stress, which depends on the periodic heart beat with a scale of milliseconds
to seconds, have an essential effect on the plaque growth, i.e. the long-term dynamics. First,
in [F8], a temporal two-scale algorithm is developed. A complete numerical analysis is
given for a strongly simplified flow problem with a moving boundary. Then, in Section 3.2
resp. [F9] a temporal parallelisation based on the parareal algorithm is developed for the
two-scale algorithm of [F8] and the method is applied to a full FSI-plaque growth problem.
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1 Fluid-Structure Interactions with
Contact

In the first section, we introduce recently developed numerical models for the simulation of
FSI and contact [F1, F2] and describe an experimental benchmark configuration to validate
the numerical results [F3].

1.1 Development of a Suitable Numerical Model [F1]

1.1.1 Fluid-Structure Interactions

We assume that the entire domain of interest Ω ⊂ Rd (d = 2, 3) is fixed and consider a
partitioning into time-dependent sub-domains

Ω = Ωf (t) ∪ Γfsi(t) ∪ Ωs(t),

where Ωf (t) and Ωs(t) denote the fluid and solid subdomain, respectively, and Γfsi(t) is the
(d − 1)-dimensional FSI interface, see Figure 1.1, left sketch. As we will use an Eulerian
model for the complete FSI system all equations are formulated in the current domains
Ωf (t),Ωs(t) and Γfsi(t).

In [F1] a novel numerical framework for the modelling and simulation of FSI and contact
is introduced and -as a first step- applied to linear fluid and solid mechanical sub-systems.
Precisely, we consider the linear incompressible Stokes equations in the fluid sub-domain
Ωf (t)

∂tu− divσf (u, p) = ff , divu = 0,

where the Cauchy stress tensor σf is defined by

σf (u, p) = νf
(
∇uT +∇u

)
− pI, (1.1)

u denotes the fluid velocity, p the fluid pressure and νf > 0 is a constant viscosity. In the
solid-subdomain Ωs(t), we assume a linear elastic material

∂t
.
d− div σs(d) = fs, ∂td =

.
d, (1.2)

where the Cauchy stress tensor σs is given by

σs(d) = 2µsE(d) + λstr(E(d))I, E(d) = 1
2
(
∇d +∇dT

)
, (1.3)

.
d = ∂td denotes the solid velocity and λs, µs > 0 are the so-called Lamé constants.
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1.1 Development of a Suitable Numerical Model [F1]

Ωf

Ωs

Γfsi
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ΓC Γw
Ωf

Γfsi

Figure 1.1. Left: Fluid-structure interaction problem without contact. Right: Body in
contact with a plane wall Γw.

For the coupling across the fluid-solid interface Γfsi(t), continuity of velocities and normal
stresses

.
d = u, σf (u, p)n = σs(d)n on Γfsi(t) (1.4)

is typically assumed for viscous fluids, where n = ns denotes the outer normal vector of
the solid domain Ωs(t). When it comes to contact, however, these no-slip conditions do
in general not lead to a reasonable approximation of the underlying physics. Theoretical
works show, that the Navier-Stokes equations in combination with no-slip conditions do not
allow for contact [59], contrary to what is observed in experiments [53]. This changes when
Navier-slip [73] or pure slip-conditions are used [51]. Thus, we also consider slip conditions
in [F1], where the continuity across Γfsi(t) is only imposed for the normal velocity

u · n =
.
d · n, (I − n⊗ n)σfn = 0, σfn = σsn on Γfsi(t). (1.5)

For suitable initial conditions at t = 0 and exterior boundary conditions on ∂Ω, we refer
to [F1].

We close this section by formulating the corresponding semi-discrete variational formulation
on suitable finite element spaces Vh,Qh,Wh (see Section 2) using Nitsche’s method. We
present the formulation exemplarily for the case of slip-conditions on Γfsi:

Variational Formulation 1. Find u ∈ Vh, p ∈ Qh,d ∈ Wh, such that
.
d = ∂td and

Afsi, slip(u, p,d,
.
d)(v, q,w) = (ff ,v)Ωf (t) + (fs,w)Ωs(t) ∀v, q,w ∈ Vh ×Qh ×Wh,

where

Afsi, slip(u, p,d,
.
d)(v, q,w)

:=
(
∂tu,v

)
Ωf (t) + (σf (u, p),∇v)Ωf (t) + (divu, q)Ωf (t) + S(p, q)

+ (∂td,w)Ωs(t) + (σs(d),∇w)Ωs(t) −
(
Tf (u, p,

.
d) · n, (w− v) · n

)
Γ(t)

−
(
(
.
d− u) · n,nTσf (v,−q)n

)
Γ(t)

(1.6)

and

Tf (u, p,
.
d) := σf (u, p)− γfsi(

.
d− u) · n (1.7)
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1.1 Development of a Suitable Numerical Model [F1]

Ωf
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f

Figure 1.2. Illustrative example to motivate the role of seepage in fluid-structure interac-
tion with contact: Contact of a solid body with the lower wall (left sketch) is released in
the central part of the contact surface, when a specific force f is applied. Without seepage
on Σp a vacuum would be created in the cavity (right sketch) (Figure taken from [F2] with
permission from Elsevier).

denotes the discrete fluid fluxes with γfsi = γ0
fsih
−1 and a parameter γ0

fsi > 0. Moreover, we
assume that S : Qh×Qh → R is a pressure stabilisation term that leads to a well-posed fluid
subsystem. We note that Variational Formulation 1 goes back to [17], where an analogous
Nitsche formulation was developed for no-slip interface conditions and fixed domains Ωs and
Ωf .

1.1.2 FSI and Contact

Now we consider the case that the solid can come into contact with an exterior wall Γw. We
assume that no contact with Γw takes place at t = 0 and denote by Γ(t) ⊂ ∂Ωs the surface
which was initially the FSI interface Γ(0) = Γfsi(0) separating fluid and solid. When Γ(t)
comes into contact with Γw in a part Γc(t) ⊂ Γ(t), there is no fluid layer attached to Γ(t)
anymore. Thus, the balance of forces σfn = σsn in (1.4) resp. (1.5) can not hold anymore,
as the left-hand side is not even defined.
On the other hand, discarding the fluid forces on the contact surface can also lead to

undesired and non-physical effects, as discussed in [F1] and [2]. One issue is that contact could
be released in the interior of the contact surface without any resistive forces, which would
create non-physical islands of void (if no seepage through the contact surface is considered).
An example is given in Figure 1.2.

The solution chosen in [F1, F2] and also by Ager et al. in [2, 3] is to extend the fluid stresses
σfn onto the contact surface Γc(t). This is motivated by the fact that from a microscopic
perspective a solid body will never be exactly in contact with the wall throughout the contact
surface (for example due to surface roughness) and some seepage of fluid through the surface
can occur. Different possibilities to extend the fluid forces are described in the following
Subsection 1.1.3 and also in Section 1.2 resp. [F2]. By a slight abuse of notation we will
denote the extension of σfn onto Γc(t) still by σfn.
Nevertheless, we can not expect that the balance of forces σfn = σsn will hold during

contact for these extensions in general. Thus, we introduce a Lagrange multiplier that
corresponds to a contact force acting normal to Γw

λ := JσnK ≤ 0 on Γ(t), (1.8)

where σs,n = nTwσsn, σf,n = nTwσfn, JσnK := σs,n−σf,n and nw denotes the exterior normal
vector of Ω on Γw. The resulting contact conditions read

d · nw − g0 ≤ 0, λ ≤ 0, λ(d · nw − g0) = 0 on Γ(t), (1.9)
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1.1 Development of a Suitable Numerical Model [F1]
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Figure 1.3. Illustration of the two contact approaches. Left: Relaxed contact formulation:
Body in contact with an obstacle line Γε close to Γw. Right: Artificial fluid domain ΩC

f

below Γw (Figure taken from [F1] with permission from ESAIM ).

where g0 denotes the initial distance between interface Γ(0) and wall Γw.
It can be shown that the three conditions in (1.9) are for an arbitrary γC > 0 equivalent to

λ = −γC
[
d · nw − g0 −

1
γC
λ
]
+ on Γ(t), (1.10)

where [f ]+ := max{f, 0}, see e.g. [4, 24]. Using (1.8) the Lagrange multiplier can be further
eliminated to get

JσnK = −γC
[
Pγ(JσnK,d)

]
+, (1.11)

where Pγ(JσnK,d) := d · nw − g0 − γ−1
C σn. Equation (1.11) can be used to incorporate the

contact condition into the variational formulation by variational principles, see below.
In fact, a detailed analysis of the corresponding contact conditions in the discrete formula-

tion reveals that it is more convenient to use the discrete Nitsche fluxes

Jσ̃nK := nT (σs − Tf (u, p,
.
d))n (n · nw).

(see (1.7)) in the discrete setting. For the details we refer to [F1]. As before we can derive
the equivalent FSI-contact condition

Jσ̃nK = −γC
[
Pγ(Jσ̃nK,d)

]
+. (1.12)

Note that (1.12) combines both the FSI coupling and the contact conditions on a joint
FSI-contact surface Γ(t). The switch between both conditions is included implicitly by means
of the sign of Pγ(JσnK,d). Using Nitsche’s method, (1.12) can be incorporated easily into a
monolithic variational formulation:

Variational Formulation 2. Find u ∈ Vh, p ∈ Qh,d ∈ Wh such that
.
d = ∂td and

Afsi,slip(u, p,d,
.
d)(v, q,w) + γC ([Pγ(Jσ̃nK,d)]+,w · nw)Γ(t)

= (ff ,v)Ωf (t) + (fs,w)Ωs(t) ∀v, q,w ∈ Vh ×Qh ×Wh.
(1.13)

The contact parameter is chosen as γC = γ0
Ch
−1 depending on the mesh size h, see [24].
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1.1 Development of a Suitable Numerical Model [F1]

1.1.3 Extension of Fluid Forces

In [F1] we consider two possibilities to extend the fluid forces onto the contact surface. The
first idea is to keep a thin fluid layer of thickness ε > 0 between fluid and solid at any time.
This can be achieved by a relaxation of the no-penetration condition in (1.9) to

d · nw − gε ≤ 0, gε = g0 + ε. (1.14)

We will call this a relaxation approach in the following. This is equivalent to imposing the
no-penetration condition already at a virtual barrier Γε at an ε-distance to Γw, see Figure 1.3,
left sketch. In the numerical results we choose ε(h) = ch depending on the mesh size h, such
that ε(h)→ 0 for h→ 0. The variational formulation is given by Variational Formulation 2
with g0 replaced by gε in the definition of Pγ .

As a second possibility we consider an extension of the fluid domain Ωf (t) by an artificial
fluid domain ΩC

f across the boundary Γw, see Figure 1.3, right sketch. In [F1], an extension
of the fluid forces σfn is constructed by solving a Stokes problem including an additional
L2-penalty term that avoids penetration of fluid into ΩC

f for h→ 0

∂tu− divσf (u, p) + γau = 0, divu = 0 in ΩC
f , (1.15)

where γa = γ0
ah
−2. The artificial fluid is coupled by continuity of velocities u and normal

stresses σfn across Γw to Ωf (t). We will call this the artificial fluid approach in the following.
In fact the system (1.15) can be seen as a Brinkman model describing a porous medium with

asymptotically vanishing permeability K = γ−1
a h2 for h→ 0. A mathematical justification of

the approach has been given by Angot [6], who showed convergence of the Stokes-Brinkman
coupled model to a Stokes-rigid body system for h→ 0.
In fact the relaxation approach can be cast in a framework similar to the artificial fluid

approach by considering the fluid layer below Γε as an artificial fluid domain ΩC
f . The main

difference is the type of equations used in the articifial fluid layer (Stokes versus Brinkman).
Obviously, the usage of a pure Stokes equation (without penalising penetration) can only
yield reasonable approximations in a very thin layer ΩC

f .
Considering slip interface conditions the variational formulation for the artificial fluid

approach reads:

Variational Formulation 3. Find u ∈ Vh, p ∈ Qh,d ∈ Wh such that
.
d = ∂td and

ACfsi,slip(u, p,d,
.
d)(v, q,w) + γC ([Pγ(Jσ̃nK,d)]+,w · nw)Γ(t)

= (ff ,v)Ωf (t) + (fs, w)Ωs(t) ∀v, q,w ∈ Vh ×Qh ×Wh,
(1.16)

where

ACfsi,slip(u, p,d,
.
d)(v, q,w)

:=
(
∂tu,v

)
Ωf (t)∪ΩC

f
+ (σf (u, p),∇v)Ωf (t)∪ΩC

f
+ (div u, q)Ωf (t)∪ΩC

f

+ S(p, q) + γa(u,v)ΩC
f

+
(
∂t
.
d,w

)
Ωs(t)

+ (σs(d),∇w)Ωs(t)

− (Tf (u, p,d) · n, (w− v) · n)Γ(t) −
(
(
.
d− u) · n,nTσf (v,−q)n

)
Γ(t)

.

(1.17)
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1.1 Development of a Suitable Numerical Model [F1]

We refer to [F1] for a detailed derivation, as well as for the corresponding form Afsi,no-slip for
no-slip conditions.

We will see below that -due to the weak imposition of the contact conditions by means of
Nitsche’s method- the discrete interface Γ(t) can slightly overlap with Γε in the relaxation
approach resp.with Γw in the artificial fluid approach, which increases the stability of the
numerical method essentially.

Similar methods have also been applied by different authors recently. Ager et al. [2] used
a relatively complex porous model based on Biot’s equations in a thin layer between the
contacting structures, which yields a well-defined and physically motivated extension of
the fluid forces. While they used a Lagrange multiplier approach in the aforementioned
publication, the same authors followed a Nitsche-based approach later in the context of FSI
with two-body contact [3], but with a very simple constant extension of the fluid forces. The
recent work of Formaggia, Gatti and Zonca uses a relaxation approach similar to the one
mentioned above, but with a Navier-slip FSI interface condition near the contact region [36].
In [F2] resp. Section 1.2, we will present another physically motivated model for the fluid
extension, based on the consideration of seepage through the contact surface.

1.1.4 Stability Result

One remarkable feature of the variational contact formulations derived above is that they
allow for an elegant numerical stability analysis. Before formulating the result, let us
introduce a generalised contact formulation motivated by the work of Chouly et al. [25] for a
purely solid mechanical contact problem including a parameter θ ∈ [0, 1].

Variational Formulation 4. Find u(t) ∈ Vh, p(t) ∈ Qh,d(t) ∈ Wh, such that
.
d = ∂td

and

A∗θ(u, p,d)(v, q,w)
:= A∗fsi,slip(u, p,d)(v, q,w) + γC ([Pγ(λ, d)]+,w · nw)Γ(t)

−θ (γC [Pγ(λ,d)]+λ, λs(w))Γ(t)−θ (∂t (γC [Pγ(λ,d)]+ + λ) , λf (v, q,w))Γ(t)

= (ff , v)Ωf (t) + (fs, w)Ωs(t) ∀v, q,w ∈ Vh ×Qh ×Wh,

(1.18)

where

λ = Jσ̃nK, λs(w) = σs,n(w)(n · nw), λf (v) = (Tf (v, q, w) · n)(n · nw)

and A∗fsi,slip is one of the bilinear forms Afsi,slip or ACfsi,slip introduced above.

For θ = 0 we recover Variational Formulation 2 resp. 3. As in [25] we were able to show
a stability result for the symmetric formulation (θ = 1) and local stability (around the
unknown solution) in the general case (including the case θ = 0 considered in the previous
sections). For the stability analysis, we will assume infinitesimal displacements, i.e. the
sub-domains Ωf and Ωs as well as the interface Γ are fixed. We introduce the notation Ω̃f

for the combined fluid and artificial fluid domain in the case of ACfsi,slip, while Ω̃f = Ωf in
the relaxation approach, as well as the energy norm

E(T ) := ‖u(T )‖2Ω̃f + ‖
.
d(T )‖2Ωs + ‖d(T )‖2H1(Ωs) + θ

∥∥∥γ−1/2
C λ(T ) + γ

1/2
C [Pγ(λ,d)]+(T )

∥∥∥2

Γ
.
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1.2 A Model including Seepage [F2]

Theorem 1.1. Let u, p,d ∈ Vh and
.
d = ∂td. Under the assumptions made above, the

following stability result holds for the form A∗θ defined in (1.18), where θ ∈ [0, 1] and γ0
C

sufficiently large

E(T ) +
∫ T

0

(
νf‖∇u‖2Ω̃f + Sp(p, p) + γa‖u‖2ΩC

f

)
+ γfsi‖(

.
d− u) · n‖2Γ dt

≤ c
(
E(0) +

∫ T

0
A∗θ(u, p,d; u, p,

.
d) − (1− θ)γC

(
[Pγ(λ,d)]+,

.
d · nw

)
Γ︸ ︷︷ ︸

(I)

dt

)
.

Proof. See [F1]

For θ = 1 we get control over the energy norm E(T ) at the end time and some fluid
dissipation over the whole time interval. For θ = 0, i.e. the variational formulation introduced
above, the additional term (I) remains on the right-hand side. This term vanishes for the
continuous solution (u, p,d), as on Γ(t) we have either [Pγ(λ,d)]+ = 0 in points with a
positive distance to Γw or

.
d · nw = 0 in points in contact. Thus, Theorem 1.1 can be seen as

a local stability result for θ = 0, as we have control over E(T ) in a certain neighborhood
around the continuous solution.

1.1.5 A Summary of the Numerical Results

In the numerical results in [F1] we compare the two approaches on different mesh levels,
observing that for h → 0 the results are in reasonable agreement. Moreover, detailed
convergence studies in time and space, as well as sensitivity studies with respect to the
contact parameters are provided.
Finally, the numerical approaches are compared to a simple ad-hoc treatment of the

dynamically changing conditions on Γ(t), where the interface is split explicitly in each
time-step tm−1 → tm in a part ΓC(tm−1) which is at t = tm−1 in contact with Γw, such
that contact conditions are imposed, and a part Γfsi(tm−1) with FSI coupling conditions.
We observe that the latter approach leads to severe oscillations after the impact, while the
approaches presented above are (almost perfectly) stable.

1.2 A Model including Seepage [F2]
The two strategies to extend the fluid forces in [F1] resp. Section 1.1.3 are easy to implement,
but lack a rigorous physical foundation. It is unclear a priori, whether they reproduce the
correct physics, in particular concerning the questions if, when and where contact is released.
On the other hand, the simplicity and versatility of the relaxed contact formulation is

particularly appealing, since for example extensions to two- or multi-body contact are
straight-forward. As topology changes are avoided, it is in principle even possible to impose
no-slip conditions on the interface Γ(t) and the boundary Γw, as typically used for viscous
fluids in fluid mechanics (in absence of contact). Numerical results show, however, that in
this case the fluid forces in the layer get very large (due to a singularity in the pressure
for εg → 0) and might influence the contact dynamics significantly. The physically correct
interface and boundary conditions, when it comes to contact, are still under investigation.
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γf

Ωpn γo

Ωf

Σpεp

Figure 1.4. Porous medium domain Ωp with interface γf to Ωf and exterior boundary γo
(Figure taken from [F2] with permission from Elsevier).

For these reasons, we introduce a physically motivated model for the fluid extension in [F2].
The idea is that due to surface roughness two bodies are never exactly in contact with each
other throughout their surfaces. Thus, we allow for seepage of fluid through the contact
surface (cf. Figure 1.2). To this purpose we introduce a (d − 1) dimensional porous layer
Σp at those parts of the wall Γw, where contact might take place and derive an appropriate
model based on a Darcy equation on Σp. The paradoxon explained in Figure 1.2 is resolved,
as fluid con flow through the porous layer into the cavity and moreover, the porous pressure
provides a physically motivated resistance against the lift-off of the body.

1.2.1 Model for the Porous Layer

The derivation of a model for seepage through a porous layer given in [F2] goes back to
Martin, Jaffre & Robert [70]. Let us consider the configuration sketched in Figure 1.4, where
a thin porous layer Ωp = Σp × (− εp

2 ,
εp
2 ) ∈ Rd (d = 2, 3) with midsurface Σp is coupled

to a surrounding fluid in a fixed domain Ωf ⊂ Rd. The fluid in Ωf is governed by the
Navier-Stokes equations

ρf
(
∂tu + u · ∇u

)
− div σf (u, p) = 0, div u = 0 in Ωf . (1.19)

In the porous domain Ωp, we assume a Darcy law

ul +K∇pl = 0, ∇ · ul = 0 in Ωp, (1.20)

where ul denotes the Darcy velocity, pl the Darcy pressure and K is a d× d matrix which
can be decomposed into K∇pl = Kτ∇τpl + Kn∂npl, where Kτ ,Kn ∈ R+. Here, n is the
unit normal vector of the mid-surface Σp that points towards the exterior boundary γo,
∂n = n∂n and ∇τ := Pτ∇ stands for the corresponding tangential part of the gradient, where
Pτ := (I − n⊗ n).
Furthermore, we assume that the porous layer is very thin compared to the size of the

solid and consider the limit case εp → 0. Let the outer boundary of Ωp be denoted by γo and
the interior boundary connecting to the fluid domain Ωf by γf, see Figure 1.4. We assume
zero normal velocity (ul ·n = 0) on the outer boundary γo and continuity of normal velocities
and normal stresses on γf. For the tangential fluid stresses, we consider the Beavers-Joseph-
Saffman coupling conditions [81], such that the coupling conditions between porous medium
Ωp and fluid Ωf are given by

σf,n = −pl on γf,

u · n = ul · n on γf,

σf,τ = − α√
Kτ εp

uτ on γf,

(1.21)

10
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Σp

Ωf (t)

Ωs(t)

Γ(t)

Figure 1.5. Geometric configurations of fluid (Ωf (t)) and solid domain (Ωs(t)) and porous
layer Σp.

where uτ := Pτu denotes the tangential part of the velocity vector and σf,n = nTσfn and
σf,τ = Pτσfn are the normal and tangential part of the fluid Cauchy stress tensor σf . We
note that the condition for the tangential stresses in the last line of (1.21) corresponds to a
Navier-slip boundary condition for the fluid. However, in contrast to the typical Navier-slip
boundary condition for the fluid, the normal velocity u · n is not zero here, as the fluid can
enter the porous layer. For a discussion on the appropriate choice of α, we refer to [F2].

Introducing the averaged porous pressure Pl as

Pl = 1
2 (pl|γf + pl|γo) in Σp, (1.22)

the following equations can be derived in the limit case εp → 0 (see [22, 70])

−∇τ · (εpKτ∇τPl) = u · n on Σp,

σf,n = −Pl −
εpK

−1
n

4 u · n on Σp,

σf,τ = − α√
Kτ εp

uτ on Σp.

(1.23)

Note that the only remaining porous medium variable is the averaged pressure Pl. In the
limit Kn,Kτ → 0, the coupling conditions turn into a Navier-slip boundary condition for
the fluid on Σp.

Similar ideas based on the consideration of surface roughness have been introduced by Ager
et al. in [2]. The model proposed in their work based on Biot’s equations in a d-dimensional
porous layer is, however, much more complicated and includes several (possibly unknown)
parameters.

1.2.2 Fluid-Structure-Porous-Contact Interaction Problem

In [F2] we consider two cases, namely a coupling with a hyperelastic d-dimensional solid as
in Section 1.1 on one hand, and a coupling with a thin (d− 1)-dimensional solid, e.g. a shell
or beam model, on the other hand. For simplicity, we will only present the model for the
d-dimensional solid here and refer to [F2] for the (d− 1)-dimensional case. We will use a
relaxed treatment of the contact conditions.

11



1.2 A Model including Seepage [F2]

As an example consider the sketch given in Figure 1.5. In the fluid domain Ωf (t), we
assume the incompressible Navier-Stokes equations (1.19), in the solid domain Ωs(t) a linear
elastic material law, as in (1.2). In absence of contact the equations are coupled by means of
no-slip interface conditions

.
d = u, σf (u, p)n = σs(d)n on Γfsi(t).

To model contact, we introduce again a Lagrange multiplier λ = σs,n − σf,n which can get
negative during contact, where σs,n = nTσsn. As in (1.10)-(1.11) the relaxed form of the
contact conditions can be written as

Jσ̃nK = −γC
[
PγC(d · n, Jσ̃nK)

]
+ on Γ(t), (1.24)

for γC > 0, where PγC(d · n, Jσ̃nK) = d · n− gε − γ−1
C Jσ̃nK and gε as defined in (1.14).

In addition, the fluid is coupled to the porous layer on Σp ⊂ Γw by the coupling conditions

σf,n = −Pl −
εpK

−1
n

4 u · n︸ ︷︷ ︸
=: σp

, σf,τ = − α√
Kτ εp

uτ on Σp. (1.25)

The porous pressure Pl is determined by the equation (1.23)1, i.e.

−∇τ · (εpKτ∇τPl) = u · n on Σp. (1.26)

Note that due to the relaxed treatment of contact, the solid is never fully in contact with
Σp such that the fluid forces σf,n remain well-defined for all times on Σ(t). Moreover, the
porous layer gives also a physical meaning to σf,n in the fluid layer during contact, as for
small εg

σf,n ≈ σp ◦ π on ΓC(t), (1.27)

where π denotes a closest-point projection from ΓC(t) to Σp and σp is the physically motivated
porous stress on Σp.

The coupled model (1.2), (1.19) and (1.24)-(1.26) can again be incorporated in a variational
formulation using Nitsche’s method and suitable finite element spaces

(
Vh,Qh,Wh and Sh

(see Section 2):

Variational Formulation 5. Find
(
u, p,

.
d,d, Pl

)
∈
(
Vh×Qh×Wh×Wh×Sh

)
with

.
d = ∂td

and

Afsi,no-slip(u, p,d,
.
d)(v, q,w) + α√

Kτ εp
(uτ ,vτ )Σp − (σp,v · n)Σp

+ (εpKτ∇τPl,∇τql)Σp −
(
u · n, ql

)
Σp

= 0 (1.28)

for all (v, q,w, ql) ∈
(
Vh ×Qh ×Wh × Sh

)
, with the porous stress σp defined in (1.25) and

Afsi,no-slip(u, p,d,
.
d)(v, q,w)

:= ρf
(
∂tu + (u · ∇)u,v

)
Ωf

+ (σf (u, p),∇v)Ωf +
(
divu, q)Ωf

+ ρs
(
∂t

.
d,w

)
Ωs +

(
σs(d),∇d,w

)
Ωs + γCE

h

([
Pγc(d)]+,w · n

)
Γ

−
(
σf (u, p)n,v−w

)
Γ −

(
u−

.
d,σf (v,−q))n

)
Γ + γfsiνf

h

(
u−

.
d,v−w

)
Γ.
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1.2 A Model including Seepage [F2]

Figure 1.6. Illustration of the vertical velocities in the falling ball example at t = 0.28, t =
0.382, t = 0.47 and t = 0.63s (taken from [F2] with permission from Elsevier).

We note that the porous medium and the structure are always coupled with the fluid
only and never directly to each other. This avoids switches in the variational formulation,
which would be necessary in the transition between a fluid-solid and solid-porous interaction
(see [22]), when the fluid layer vanishes. On the other hand, the solid perceives indirectly the
presence of the porous layer through the fluid stresses and velocity during contact by means
of (1.27) and (1.24). The resulting numerical approach is highly competitive in terms of
computational costs compared to approaches using Lagrange multipliers and/or active-sets.

1.2.3 A Summary of the Numerical Results

In [F2] the model and the numerical framework are tested in two very different model problems
in two space dimensions. One one hand, we investigate the problem of a falling elastic ball
within a viscous fluid, including contact with the ground and subsequent rebounces, see
Figure 1.6. On the other hand, we consider the closure and opening of two symmetric (d−1)-
dimensional valves modelled by a non-linear Reissner-Mindlin curved beam model within a
fluid flow, which is driven by an applied pressure on the fluid boundary, see Figure 1.7.

Moreover, we show the versatility of the approach by using different numerical techniques.
In the case of a bouncing ball, a Fully Eulerian approach is used in combination with a fitted
finite element discretisation and a dG(0) time-stepping scheme, as in Section 1.1. In the
valve example, we use an immersed mixed-coordinate approach, where the fluid equations are
formulated in Eulerian and the (d−1) dimensional solid equations in Lagrangian coordinates.
For discretisation we use an unfitted finite element discretisation [17, 21, 56] with the
time-stepping scheme that will be introduced in Section 2.2.

A sensitivity analysis with respect to the conductivity K = Kn = Kτ of the porous layer
reveals convergence to pure slip (valve example) resp.Navier-slip (ball example) boundary
conditions for the fluid for K → 0, as in the limit no fluid can escape through the porous layer
anymore. For large K fluid can flow abundantly through the porous layer and the resisitive
forces that act ”against contact” are much smaller. This means that contact happens earlier
in both examples and is released very late in the valve example, see Figure 1.7. In the ball
example the bouncing height is higher for large K, as the impact velocity is higher.
Moreover, we provide similar sensitivity studies with respect to the parameters as well

as convergence studies for space and time discretisation in [F2]. Finally, we compare the
solution in the ball example obtained with the porous model against the solution of the
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Figure 1.7. Top left: Geometric configuration of the valve in the initial state (Σ) and
a state in contact. Due to symmetry, the domain is reduced to the lower half of the
valve. Top right to bottom right: Position of the valves for different K at t = 0.25 (in
contact), t = 0.45 (contact is released for K ≤ 10−2) and t = 1 (Figure taken from [F2]
with permission from Elsevier).

same problem using a relaxation approach without a porous layer (as in Section 1.1.2)
and no-slip resp.Navier-slip boundary conditions σf,τ = − α√

Kεp
uτ for the fluid on Σp for

α = 1, K = 10−2, εp = 10−4. As the factor α√
Kτ εp

is large, the solutions for no-slip and
Navier-slip conditions are almost identical. For h → 0, the bounces get smaller and the
solution without the porous layer converges to a ball that does not bounce. This is in
agreement with analytical findings for no-slip conditions (the so-called no-collision paradoxon,
see e.g. [59]). On the other hand, using a porous layer with the same parameters yields
convergence of solutions towards a bouncing ball with a bouncing height of approximately
3mm, when the ball is dropped from a height of 5cm. The experimental results described in
the next section resp. [F3] indicate that this behaviour is indeed the physical one.

1.3 A Benchmark Configuration for FSI and Contact [F3]
To validate the different approaches to model FSI and contact, we have proposed a benchmark
configuration with experimental data in [F3]. The experiments have been conducted by
our collaborator Thomas Hagemeier [53]. Such a benchmark configuration is particularly
important, since the correct physical model for FSI and contact is still unclear and different
approaches have been proposed recently [2, 3, 36, F1, F2]. To our knowledge this is the first
benchmark for FSI with contact including an experimental comparison.

1.3.1 Configuration of Benchmark and Experiment

We consider an elastic sphere which is dropped within a glass cylinder filled with a viscous
water-glycerine mixture at equal volume fraction, see Figure 1.8. Due to gravity the sphere
is accelerated and falls down. It comes to contact with the bottom of the glass cylinder and
several bounces are observed afterwards. The experiments in [53] contain results for three
different solid materials, two of which have been considered in [F3], namely a Teflon ball of
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Figure 1.8. The initial spatial configuration. Left: Three-dimensional domain, right:
rotationally reduced domain (taken from [F3] with permission from AIP Publishing).

diameter 6mm (in the following PTFE6) and a rubber ball with diameter 22mm (Rubber22).
The resulting flow around the balls is in the transitional regime between creeping and
turbulent flow. The position of the ball has been recorded by a high-speed CMOS-camera.
For the details, we refer to [53].

If we assume that there is no horizontal deflection of the sphere, the setting is rotationally
symmetric and the equations can be reduced to a two-dimensional geometry, see the right
sketch of Figure 1.8.

Quantities of Interest

We consider six quantities of interest for comparison. The first three quantities are defined
to quantify the settling process, namely
t∗ The time after release when the ball is a distance of one diameter ds to the bottom:

dist(Γ,Γbottom) = ds

v∗ The velocity of the ball in the vertical direction at time t∗,
f∗ The vertical component of the force F acting on the ball at time t∗,

and three quantities for the contact dynamics:
tcont The time of the first solid contact,
tjump The time between first and second contact,
djump The maximum of dist(Γ,Γbottom) after contact, i.e., the height of the bounce.

1.3.2 Equations

In the numerical simulations in [F3], we consider models of different complexity for the solid.
As deformations are relatively small, in particular before contact, a rigid-body model is
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considered on one hand. The solid model is reduced to one degree of freedom, namely the
vertical velocity

.
dz, which -according to Newton’s law of motion- fulfills the equation

∂t
.
dz(t) = ρs − ρf

ρs
g + F3

ρs|Ωs|
, (1.29)

where g = 9.807 g
ms2 is the gravity force and F3 is the third component of the fluid forces

F =
∫

Γ
σfn ds.

The solid’s motion couples back to the fluid equations through the boundary condition at
the interface Γ, by requiring continuity of the velocities, i.e., u|Γ = (0, 0,

.
dz).

On the other hand, a linear elastic behaviour is considered as in Section 1.1, with the
respective elasticity parameters of PTFE and rubber. While the elasticity modulus Es ≈ 670
MPa is known in a good approximation for the PTFE material, it may lie in the range Es ∈
[1.7, 20.7] MPa for the rubber material. In the fluid domain, we assume the incompressible
Navier-Stokes equations with no-slip interface conditions on Γfsi(t). For appropriate boundary
conditions and their numerical treatment, we refer to [F3].

In the case of an elastic material, we we use the simple relaxation approach developed in
Section 1.1. In the case of a rigid solid such techniques are not available. Here, we use a
basic contact avoidance scheme based on an artificial (lubrication) force, which is widely
used in literature [38, 52, 82, 93].

Reduced 2-Dimensional Model

The experimental setup is symmetric with respect to cylindrical coordinates. If we assume
that the ball falls down vertically and that there is no rotational component (uθ = 0), the
equations can be transformed to a two-dimensional setting. In the experiments the horizontal
deflection of the ball is not exactly zero, but relatively small (max. 2mm for the PTFE case
and 0.75mm in the rubber case) compared to the initial distances of 16.2 resp. 14.6cm from
the bottom.

By means of an integral transformation, we obtain the fluid bilinear form

Af (u, p; v, q) :=ρf
∫

Ωf
r(∂tu + (u · ∇)u) · v dx+ µf

∫
Ωf
r∇u : ∇v + 1

r
urvrdx

−
∫

Ωf
p(vr + r∇ · v)dx−

∫
Ωf
q(ur + r∇ · u) dx = 0,

(1.30)

where r denotes the radial coordinate in the two-dimensional coordinate system and ur,vr
the radial component of the variables u,v.

Rigid-Body Approximation

For the rigid-body approximation this is coupled to the solid motion by means of the
ODE (1.29), where

F = 2π
∫

Γ
rσfn ds+ fc
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and by the continuity of velocities at the interface uΓ = (0, 0,
.
dz). The latter is imposed

weakly by means of the Nitsche term

bf (u, p; v, q) := µfγfsi

∫
Γ
r(u−

.
d) · v ds+

∫
Γ
rσf (u, p)n · v ds

+
∫

Γ
rσf (v, q)n · (u−

.
d)ds

for a given solid motion
.
d = (0, 0,

.
dz). The problem reads in semi-discretised variational

formulation for t ∈ I:

Variational Formulation 6. Find (u, p,
.
dz) ∈ (Vh × Qh × R) such that for all (v, q) ∈

(Vh ×Qh) it holds

Af (u, p; v, q) + bf (u, p; v, q) = 0, ∂t
.
dz(t) = ρs − ρf

ρs
g + F3

ρs|Ωs|
.

Eulerian FSI Model

Similarly the equations characterising FSI and contact in (1.13) can be transformed to
cylindrical coordinates. We define the solid bilinear form

As(d,
.
d; w, z) :=ρs

∫
Ωs
r(∂t

.
d− (

.
d · ∇)

.
d) ·w dx+

∫
Ωs
r∇σs(d) : ∇w + σs,rwr dx

+
∫

Ωs
(∂td− (

.
d · ∇)d−

.
d) · z dx,

where

σs = 2µsE(d) + λs

(
tr(E(d)) + 1

r
dr
)
I, σs,r = 2µs + λs

r
dr + λstr(E(d)).

and E(d) defined in (1.3). The FSI coupling terms read

bfsi(u, p,
.
d; v, q,w) := µfγfsi

∫
Γ
r(u−

.
d) · (v−w)ds+

∫
Γ
rσf (u, p)n · (v−w)ds

+
∫

Γ
rσf (v,−q)n · (u−

.
d)ds.

We obtain the variational formulation:

Variational Formulation 7. Find (u, p,d,
.
d) ∈ (Vh(t)×Qh(t)×Wh(t)×Zh(t)) such that

for all (v, q,w, z) ∈ (Vh(t)×Qh(t)×Wh(t)×Zh(t)) it holds

Af (u, p; v, q) +As(d,
.
d; w, z) + bfsi(u, p,

.
d; v, q,w) + (r[Pγ(d, JσnK)]+,wn)Γ = (rfs,w)Ωs .
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Figure 1.9. The distance between the bottom of the ball and the bottom of the tank:
Experimental and numerical results for the PTFE6 set-up (Figure taken from [F3] with
permission from AIP Publishing).

1.3.3 Summary of the Numerical Results

For the (two-dimensional) rigid-body approximation, we use an unfitted finite element
approach in [F3], similar to the valve example in Section 1.2.3, but using inf-sup-stable
Taylor-Hood elements and a BDF2 time discretisation [92]. This approach will be abbreviated
as CutFEM-RB in the following. For the details, we refer to Section 2.2 and [F3]. For
comparison of the settling process, we also consider a full three-dimensional and a reduced
two-dimensional ALE approximation, see [77, F3] (called ALE3d-RB resp.ALE2d-RB). In
each time-step, we iterate between equations (1.29) and (1.30) until the update in

.
dz lies

below a specified tolerance. The ALE method is expected to yield the most accurate results
for the settling, but it is unable to simulate contact, as the deformed meshes degenerate
before it comes to contact. For the (two-dimensional) full FSI model, we use again the
equal-order locally modified finite element discretisation applied in Section 1.1, see also the
following Section 2.1.

Settling

Concerning the trajectories of the particle and the three pre-contact quantities of interest,
the four numerical approaches ALE3d-RB, ALE2d-RB, CutFEM-RB and Eulerian-FSI
show reasonable agreement on the finest mesh levels, see Figure 1.9 and 1.10 as well as
Table III and IV in [F3]. This shows that the reduced two-dimensional model yields (up to
discretisation errors) the same results as the full three-dimensional model, and moreover,
that a fluid-rigid body system can capture the pre-contact dynamics in this example as well
as a full FSI model. The ALE approaches breaks down, when the ball reaches a distance
dist(Γ,Γbottom) ≈ 1.1cm to the bottom.

Compared to the experimental values we observe a maximum relative deviation of 5.1% in
the velocity functional v∗ for the PTFE6 examples, and a smaller deviation of 0.6 resp. 2.1%
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Figure 1.10. The distance between the bottom of the ball and the bottom of the tank:
Experimental and numerical results for the Rubber22 set-up (Figure taken from [F3] with
permission from AIP Publishing).

for the rubber example. Taking into account that these results ignore the 2mm- (PTFE6)
resp. 0.75mm-deflection (Rubber22) from the z-axis observed in the experiment, we consider
this to be acceptable, in particular since the results for rubber -where the horizontal effects
are smaller- are much closer.

Contact Dynamics

The contact dynamics can only be reproduced by the CutFEM-RB and the Eulerian-FSI
approach. While the contact dynamics are captured quite well with the full FSI model,
it turns out that the CutFEM-RB-scheme is quite sensitive with respect to the artificial
contact parameters. In [F3], these were chosen in such a way that the contact dynamics in
the PTFE6 example are accurately reproduced on the finest mesh level. When applying the
same parameters in the Rubber22 example the resulting rebound is, however, three times
larger compared to the physical one, see Figure 1.10.

While the settling process is almost independent of the elasticity modulus Es, the rebound
height of the ball depends significantly on it. In the rubber case, where Es is not known
exactly, the experimental rebound height lies between the simulation results for Es = 2 · 106

and Es = 5 · 106 obtained with the Eulerian FSI -model, see Figure 1.10.

Three-Dimensional Computations Including Rotational Effects

Finally, a number of three-dimensional ALE simulations with random perturbations of the
initial position, the initial velocity and rotational velocity of the ball are carried out in [F3],
in order to investigate possible reasons for the horizontal deflections in the experiment.
The rigid solids are further deflected from the center compared to their initial position,
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which shows that small fluctuations during the release process can indeed explain the small
horizontal displacement observed during the experiments.
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2 Discretisation of Interface and Contact
Problems

This section gives a summary of three of my contributions for the finite element discretisation
of interface problems as well as a boundary element formulation for a Signorini contact
problem using Nitsche’s method.

For an accurate discretisation of interface problems the position of the interface Γ(t) needs
to be resolved within the spatial discretisation. If a domain Ω(t) is time-dependent such
as Ωf (t) and Ωs(t) in the previous section, this means that new meshes would need to be
created in each time step. Meshing is, however, not straight-forward, as (i) the construction
of a new mesh at each time-step ti, i = 1, .., N might be costly by itself and (ii) a projection
of the solution from one mesh to another needs to be computed, which is both costly and
may introduce additional error contributions. Several techniques have been developed to
circumvent these issues, as described in the following.
Let us first consider the finite element discretisation of a simple elliptic model problem

with piecewise constant coefficient ν on two subdomains ν|Ωi := νi (i = 1, 2), ν1 6= ν2:

−∇ · (νi∇u) = f on Ωi, i = 1, 2, (2.1)
[u] = 0, [ν∂nu] = 0 on Γ, (2.2)

u = 0, on ∂Ω. (2.3)

This model problem is considered in the contribution [F4]. The interface conditions (2.2)
resemble the continuity of velocities and the balance of forces in the FSI system (1.4). The
solution to (2.1)-(2.3) is continuous, its normal derivative is, however, discontinuous across
the interface Γ.
If a discretisation does not resolve the interface, for example using a uniform Cartesian

mesh, the convergence order of a standard finite element discretisation is limited to O(h1/2)
in the energy norm and O(h) in the L2-norm, regardless of the polynomial degree of the
finite element space, see [8]:

||u− uh||Ω = O(h), ||∇(u− uh)||Ω = O(h1/2).

Strategies to improve the rate of convergence can be categorised in two classes, namely
fitted and unfitted finite element techniques. In an unfitted finite element approach the mesh
does not consider the position of the interface. To improve the accuracy, the finite element
space is enriched in the interface cells by discrete functions functions that are non-smooth
across Γ. Two of the most prominent examples are the Extended Finite Element Method
(XFEM) [72] and the Generalised Finite Element Method (GFEM) [9].

A concentionally different unfitted finite element approach has been introduced by Hansbo
& Hansbo in [56] called Cut Finite Elements. Here two overlapping finite element meshes
corresponding to Ω1 and Ω2 are introduced and the corresponding finite element solutions
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ΓhΓΩ1

Ω2

Figure 2.1. Left: Unfitted coarse triangulation of the domain Ω. Right: Subdivision of the
coarse elements such that the interface Γ(t) is resolved in a linear approximation by the
discrete interface Γh (Figure taken from [F1] with permission from Elsevier).

u1 and u2 are coupled weakly by means of Nitsche’s method. An elegant mathematical
theory can be built for this approach allowing for arbitrary-order convergence estimates for
different kind of interface problems [19, 21, 66]. In fact, Areias & Belytschko observed that
this approach is equivalent to a discontinuous variant of XFEM [7]. In Section 2.2 resp. [F5]
we will analyse time-stepping schemes for the Stokes equations on time-dependent domain
based on Cut Finite Elements.

In a fitted finite element approach, on the other hand, the interface is resolved by means
of the finite element mesh. In the case of moving interfaces, it is attractive to adjust the
mesh only locally near the interface to avoid global changes in the finite element spaces. A
simple approach in this category has been proposed by the author and Richter in [40] called
locally modified finite element method (LMFEM). The idea is to use an unfitted coarse mesh
consisting of quadrilaterals that does not consider the position of the interface Γ(t). This
coarse mesh (called patch mesh in the following) is further refined to resolve the interface in
at least a linear approximation on the finer level, by dividing each coarse element either into
four quadrilaterals or eight triangles. This is illustrated in Figure 2.1.
Using a combination of linear and bilinear finite elements on the so constructed sub-

triangulation, a first-order finite element method results with optimal convergence orders

||u− uh||Ω = O(h2), ||∇(u− uh)||Ω = O(h).

However, even if higher-order polynomials are used, the convergence is still limited to first
order (in the energy norm) due to the linear approximation of the interface, see Figure 2.1.
In the following subsection resp. [F4], we develop a second-order approximation based on an
isoparametric mapping and (where possible) a second-order approximation of the interface.
The (first-order) locally modified finite element method has been used by the author and

co-workers [38, 43–45], and by Langer & Yang [63] for fluid-structure interaction (FSI)
problems, including the transition between FSI and solid-solid contact [42, F1]. Holm et
al. [60] and Gangl & Langer [50] used a corresponding approach based on triangular patches,
the latter work being motivated by a topology optimisation problem. A pressure stabilisation
technique for flow problems has been developed in [39] and a suitable (second-order) time
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discretisation scheme in [41]. Details on the implementation in deal.ii and the corresponding
source code have been published in [46, 48]. Extensions to three space dimensions have been
developed by Langer & Yang [63] and by Höllbacher & Wittum [61].
For further fitted finite element methods, we refer to [8, 10, 15, 33, 34]. Some works are

similar to the locally modified finite element method in the sense that only mesh elements
close to the interface are altered [14, 94].

2.1 A Second-Order Locally Modified Finite Element
Method [F4]

In the article [F4] with the collaborators G. Judakova and T. Richter, a second-order LMFEM
is developed. The method is based on the same unfitted quadrilateral patch mesh used in the
first-order variant [40] and a similar sub-division into triangular and rectangular sub-cells
(cf. Figure 2.1). A combination of second-order (P2 and Q2) finite elements is used on
these to define the discrete finite element space. A second-order interface approximation
is constructed by moving all degrees of freedom that correspond to interface lines to the
position of the continuous interface Γ(t), in combination with an isoparametric mapping
of order two, see Figure 2.2, left sketch. Unfortunately, this construction fails in certain
pathological cases, as curved edges that correspond to a quadratic interface approximation
might intersect other edges, which leads to degenerated sub-elements, see Figure 2.3 on the
right. This difficulty is not present in the case of a linear interface approximation as in [40],
where a maximum angle condition could be ensured in each cell, independently of the way
the interface cuts a patch.

If such a case appears, we refrain from moving the corresponding degree of freedom to the
interface and stick to a linear interface approximation in the affected patch. The maximum
number of patches with a linear interface approximation (in the following denoted by nl)
remains bounded under refinement independently of the cell size h ≤ h0, if we assume that
the curvature of the interface is bounded. We will see in the error analysis below that the
additional error corresponding to a linear interface approximation in nl patches does not
disturb the second-order accuracy, if nl is bounded independently of h.

Finite element space and discrete formulation The isoparametric finite element
space Vh ⊂ H1

0 (Ω) is defined by

Vh := {ϕ ∈ C(Ω) | (ϕ ◦ ξ−1
K ) ∈ P2

K(K̂) for K ∈ Th}, (2.4)

where

P2
K(K̂) :=

{
Q2(K̂), K is a quadrilateral,
P2(K̂), K is a triangle,

and ξK is a transformation from the reference element K̂ to K. The map ξK resolves the
interface with second order in all but nl elements, where the approximation is only linear.
Note that P2 or Q2 polynomials are used for the trial functions ϕ ◦ ξ−1

K , independently of
the order of the interface approximation. The space Vh is continuous, as the restriction of a
function in Q2(K̂) to a line e ⊂ ∂K is in P2(K̂).
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Ω1 Ω2

ν1 ν2

S1
h

S2
h

Γ Γh

Si
h = Ωi

h \ Ωi

1

Figure 2.2. Left: Second-order approximation on a mesh consisting of four patches, three
of which are cut by the interface. Right: Mismatch between Ωi and Ωi

h, i = 1, 2 at two
elements along the curved interface.

Figure 2.3. The interface Γ is approximated quadratically on all triangles. To achieve
this, the midpoint of the edge that corresponds to the interface is pulled onto the curve.
Left: This is a valid configuration where a quadratic approximation is possible. Right: In
some configurations a fully quadratic interface approximation would result in a degenerate
element with an interface that is leaving the triangle (see the mark on the upper edge).
Such triangles are approximated linearly, which results in nl > 0.

We consider the following discrete variational formulation: Find uh ∈ Vh such that

ah(uh, φh) = (fh, φh)Ω ∀φh ∈ Vh, (2.5)

where we set fh|Ωi
h

:= fi, i = 1, 2 and fi is a smooth extension of f |Ωi to Ωi
h. The bilinear

form is given by

ah(uh, φh) := (νh∇uh,∇φh)Ω, where νh|Ωi
h

= νi (i = 1, 2).

2.1.1 Error Analysis

In the error analysis the mismatch between discrete and continuous bilinear form is the
predominant issue. The continuous solution u is regular in Ω1 and Ω2, while its normal
derivative has a jump across Γ. Discrete functions can only have irregularities at the
boundaries of cells ∂K, which means that -if Γh is sufficiently close to Γ- a discrete function
can at best resemble a similar discontinuity across the discrete interface Γh instead of Γ.
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2.1 A Second-Order Locally Modified Finite Element Method [F4]

As the complete analysis is relatively technical, we give here only a few hints for estimates
that are needed repeatedly throughout the analysis, while the reader is referred to the
article [F4] for further details. Therefore, let us denote the mismatch between Ωi

h and Ωi by
Sih, i = 1, 2 (see Figure 2.2, right sketch)

S1
h := Ω1

h \ Ω1 = Ω2 \ Ω2
h, S2

h := Ω2
h \ Ω2 = Ω1 \ Ω1

h, Sh = S1
h ∪ S2

h.

Further, we split Sh into parts Sh,lin with a linear approximation of the interface and parts
Sh,qu with a quadratic approximation.

Assuming that the interface Γ is of class Cs+1, the distance of the discrete and continuous
interface is bounded by

dist (Γh ∩ T ; Γ ∩ T ) ≤ chs+1
P , (2.6)

where s ∈ {1, 2} is the local approximation order of the interface and hP is the size of the
(regular) patch mesh. If the number of elements with a linear interface approximation is
bounded by nl, this implies that the areas of the regions Sh,lin and Sh,qu are bounded by

|Sh,lin| ≤ cnlh3
P , |Sh,qu| ≤ ch3

P , (2.7)

see [77, F4]. This is used frequently in the error analysis in combination with a Hölder
inequality to estimate terms of the form

‖∇u‖Sh,lin ≤ |Sh,lin|
1
2−

1
p ‖∇u‖Lp(Sh,lin) ≤ cnlh

3
2−

3
p

P ‖∇u‖Lp(Sh,lin), p > 2,

that appear for example when subtracting the continuous from the discrete bilinear form.
Next, application of the Sobolev inequality ‖∇u‖Lp(Ωi) ≤ cp

1
2 ‖∇u‖H1(Ωi) (see [90]) yields for

arbitrary p ∈ [2,∞)

‖∇u‖Sh,lin ≤ cnlp
1/2h

3
2−

3
p

P ‖u‖H2(Ω1∪Ω2).

As the minimum of J(p) := p1/2h
− 3
p

P is bounded above by c| ln(hP )|1/2 (see [F4]), we obtain

‖∇u‖Sh,lin ≤ cnlh
3
2
P | ln(hP )|1/2‖u‖H2(Ω).

This gives rise to a logarithmic factor in h that will appear in some of the error estimates.
To state the main result, we introduce discrete energy norm

|||u− uh||| :=
(
‖ν1∇(ũ1 − u1

h)‖2Ω1
h

+ ‖ν2∇(ũ2 − u2
h)‖2Ω2

h

)1/2
,

where ũi are smooth extensions of ui = u|Ωi to Ωi
h and uih := uh|Ωi

h
.

Theorem 2.1 (A priori estimate - Theorem 6 in [F4]). Let Ω ⊂ R2 be a convex domain
with polygonal boundary, which is resolved (exactly) by the family of triangulations Th. We
assume a splitting Ω = Ω1 ∪ Γ ∪ Ω2, where Γ is a smooth interface with C3-parametrisation
and that the solution u ∈ H1

0 (Ω) to (2.1)-(2.3) belongs to H3(Ω1 ∪Ω2). Moreover, we denote
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2.2 Eulerian Time-Stepping Schemes for Unfitted Finite Elements ([F5], [F6])

by nl the maximum number of elements K ∈ Th, where the interface is approximated linearly.
For the locally modified finite element solution uh ∈ Vh to (2.5) it holds

|||u− uh||| ≤
(
cln

1
2
l | ln(hP )|1/2 + cq

)
h2
P ‖u‖H3(Ω1∪Ω2), (2.8)

‖u− uh‖Ω ≤
(
clnl| ln(hP )|1/2 + cq

)
h3
P ‖u‖H3(Ω1∪Ω2), (2.9)

where cl and cq are generic constants that correspond to patches with a linear and a quadratic
interface approximation, respectively. For u ∈W 2,∞(Ω1 ∪ Ω2) we have further

|||u− uh||| ≤
(
cln

1
2
l + cq

)
h2
P

(
‖u‖H3(Ω1∪Ω2) + ‖u‖W 2,∞(Ω1∪Ω2)

)
. (2.10)

This means that we obtain the optimal error bounds (O(h2
P ) in the discrete energy norm

and O(h3
P ) in the L2-norm), when a quadratic interface approximation is possible in all

elements. If a bounded number of elements requires a linear interface approximation, the
convergence is reduced slightly by a logarithmic factor in both norms. In the discrete energy
norm, the optimal convergence is recovered when additional regularity of the solution is
assumed.

2.1.2 Numerical Results

The article [F4] presents two series of numerical examples on different mesh levels that
confirm the error analysis. In each example the interface is moved gradually by δ ∈ [0, h0]
on each mesh level, such that all possible types of anistropies are present. While in the
first series of examples a fully quadratic interface approximation is possible in all cells, a
maximum of nl = 16 patches with a linear interface approximation is required in the second
example over all mesh levels.
With a full second-order interface approximation, we observe fully quadratic resp. cubic

convergence in the discrete energy norm and the L2-norm error, as shown in Theorem 2.1.
In contrast, if a linear approximation is required in some patches, the contribution from the
linearly approximated cells becomes visible and may dominate the error. However, in any
case fully quadratic convergence was observed in the discrete energy norm (due to (2.10)),
while the estimated order of convergence in the L2-norm was slightly below cubic convergence
(around 2.92), due to the logarithmic term in (2.9).

2.2 Eulerian Time-Stepping Schemes for Unfitted Finite
Element Discretisation on Moving Domains ([F5], [F6])

In the articles [F5] with the collaborators E. Burman and A. Massing and [F6] with M.K. Singh
we investigate Eulerian time-stepping schemes for the non-stationary Stokes equations
resp. the heat equation on moving domains Ω(t). These considerations are motivated by
certain interface problems and by flow problems on moving domains, where it is advantageous
to stick to the Eulerian coordinate framework, such as fluid-structure interactions with large
displacements, see Chapter 1, or multi-phase flows. For spatial discretisation, we use a Cut
Finite Element method.
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While the space discretisation of interface problems is extensively discussed in literature,
much less works can be found for a proper time discretisation of problems with moving
interfaces. In the case of moving domains, standard time discretisation based on the method
of lines is not applicable in a straight-forward way. The reason is that the variables uh(tk)
are defined on different domains Ω(tk) in each time-step.
As an example let us consider a first-order finite difference discretisation of the time

derivative within a finite element formulation, which is used in many popular time-stepping
schemes such as the backward Euler and the Crank-Nicolson method:

(∂tuh(tn), φnh)Ω(tn)
?≈ 1

∆t(uh(tn)− uh(tn−1), φnh)Ω(tn).

Note that uh(tn−1) is defined on Ω(tn−1), but is needed on Ω(tn).
One solution to this dilemma are so-called characteristic-based approaches [58]. Similar

time-stepping schemes result when applying the ALE method only locally within one time
step and projecting the system back to the original reference frame after each step [26], or
based on Galerkin time discretisations with modified Galerkin spaces [41]. The disadvantage
of these approaches is the need for a projection between the domains Ω(tn−1) and Ω(tn) that
needs to be computed in each step.

Another possibility consists of space-time approaches [57, 64], where a d+ 1-dimensional
domain is discretised if Ω(t) ⊂ Rd. The computational requirements of these approaches
can, however, easily exceed the available computational resources, in particular within
complex three-dimensional applications. Moreover, the implementation of higher-dimensional
discretisations and accurate quadrature formulas pose additional challenges.

A simpler approach has been proposed in the dissertation of Schott [83] and by Lehrenfeld
& Olshanskii [65]. Here, the idea is to define extensions of the solution uh(tn−1) from
the previous time-step to a domain that spans at least Ω(tn). On the finite element level
these extensions can be incorporated implicitly in the time-stepping scheme to a sufficiently
large domain Ωδ(tn−1) ⊃ Ω(tn) by using so-called ghost penalty stabilisations [16]. These
techniques have originally been proposed to extend the coercivity of elliptic bilinear forms
from the physical to the computational domain in the context of CutFEM or fictitious
domain approaches [16].
While Schott used such an extension explicitly after each time step to define values for

uh(tn−1) in mesh nodes lying in Ω(tn) \ Ω(tn−1), Lehrenfeld & Olshanskii included the
extension operator implicitly within each time step by solving a combined discrete system
including the extension operator on the larger computational domain Ωδ(tn). For the latter
approach a complete analysis could be given for the corresponding backward Euler time
discretisation of the heat equation, showing first-order convergence in time in the spatial
energy norm [65]. Moreover, the authors gave hints on how to transfer the argumentation to
a backward difference scheme (BDF(2)), which results in second-order convergence.
In Section 2.2.1 resp. [F5], we extend the method of Lehrenfeld & Olshanskii to the

non-stationary Stokes equations, using both the BDF(1) (backward Euler) and the BDF(2)
variant of the approach. In Section 2.2.2 resp. [F6], we investigate a Crank-Nicolson variant
of the approach applied to the heat equation.
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Equations

In [F5] we consider the non-stationary Stokes equations with homogeneous Dirichlet boundary
conditions on a moving domain Ω(t) ⊂ Rd, d = 2, 3 for t ∈ I = [0, tfin]

∂tu−∆u +∇p = f , div u = 0 in Ω(t),
u = 0 on ∂Ω(t), u(x, 0) = u0(x) in Ω(0).

(2.11)

The model problem in [F6] is the following problem governed by the heat equation:

∂tu−∆u = f in Ω(t), u = 0 on ∂Ω(t), u(x, 0) = u0(x) in Ω(0). (2.12)

In both cases the domain movement T : Ω(0)→ Ω(t) is assumed to be a sufficiently smooth
diffeomorphism. For details on the assumptions, the corresponding variational formulations
and the well-posedness of the continuous systems on the moving domains, we refer to [F5]
and [F6], respectively.

Below we will use the following notations for the space-time domain Q and the space-time
Bochner norms

Q :=
⋃
t∈I

Ω(t)× {t}, ‖u‖∞,m := ‖u‖L∞(I,Hm(Ω(t))),

where m ∈ N ∪ {0} and H0(Ω(t)) := L2(Ω(t)).

Discretisation

For discretisation in time, we split the time interval of interest I = [0, tfin] into time intervals
In = (tn−1, tn] of uniform step size ∆t = tn − tn−1

0 = t0 < t1 < ... < tN = tfin.

Following Lehrenfeld & Olshanskii [65] we extend the domain Ωn := Ω(tn) in each time point
tn by a strip of size δ to a domain Ωn

δ , which is chosen large enough such that
s⋃
i=0

Ωn+i ⊂ Ωn
δ , (2.13)

see the left part of Figure 2.4. For the BDF schemes in [F5] the number s is the order of
the BDF formula, i.e. s = 1 for backward Euler and s = 2 for the BDF(2) variant. For the
Crank-Nicolson scheme in [F6], we set s = 1. We choose δ such that

swmax∆t ≤ δ ≤ cswmax∆t, where wmax := max
t∈I,x∈∂Ω(0)

|∂tT(x, t) · n| (2.14)

is a bound for the maximum velocity of the boundary movement in normal direction.
In the spirit of the Cut Finite Element approach the discretisation is based on a fixed

background mesh that covers Ωδ(t) for all times t ∈ [0, tfin]. In each time-step the set of cells
K ∈ T nh,δ that lie at least partially in Ωn

δ is used to define the finite element spaces, see 2.4,
right sketch:

Vnh := {v ∈ C(Ωn
h,δ), v|K ∈ Pm(K) ∀K ∈ T nh,δ} (2.15)
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Ωn

δ

Ωn
δ

Ωn+1

e ∈ Fn,cuth

e ∈ Fn,exth,δ

e ∈ Fn,inth

K ∈ T nh,δ
K ∈ T nh

K ∈ T nh delta

∂Ωn
h

∂Ωn
h,δ

Figure 2.4. Left: Illustration of Ωnδ for s = 1. Right: Illustration of the discretisation and
faces.

For the Stokes problem we use continuous equal-order finite elements of degree m ≥ 1 for all
variables and define additionally for the discretisation of pressure

Lnh := {q ∈ C(Ωn
h), q|K ∈ Pm(K) ∀K ∈ T nh }, Lnh,0 := Lnh ∩ L0(tn). (2.16)

The finite element space Vnh will be used for the discretisation of the heat equation (2.12)
and for the velocities u in the Stokes problem (2.11) ; the space Lnh for the corresponding
pressure p, which is only needed in Ωn

h.
Finally, we introduce the backward difference approximations D(s)

t of order s = 1, 2 for
the time derivative ∂t

D
(1)
t unh := 1

∆t(u
n
h − un−1

h ), D
(2)
t unh := 1

2∆t(3unh − 4un−1
h + un−2

h ).

2.2.1 Implicitly Extended Backward Difference Schemes for the Stokes
Equations [F5]

For the BDF(s) approximation of the Stokes equations (2.11), we define the following
time-stepping scheme in [F5] (s = 1, 2): For k = s, . . . , n find unh ∈ Vnh , pnh ∈ Lnh,0 such that

(D(s)
t unh,vh)Ωn +Anh(unh, pnh; vh, qh) = (f ,vh)Ωn ∀vh ∈ Vnh , qh ∈ Lnh. (2.17)

The bilinear form Anh is defined by

Anh(uh, ph; vh, qh) := AnS(uh, ph; vh, qh) + anD(uh, ph; vh, qh) + γgg
n
h(uh,vh) + γps

n
h(ph, qh).

It includes the Stokes part

AnS(u, p; v, q) := (∇u,∇v)Ωn − (p, div v)Ωn + (div u, q)Ωn (2.18)
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and Nitsche terms to weakly impose the Dirichlet boundary conditions

anD(uh, ph; vh, qh) := −(∂nuh − phn,vh)∂Ωn − (uh, ∂nvh + qhn)∂Ωn + γD
h

(uh,vh)∂Ωn .

For the pressure stabilisation snh(·, ·) we use the Continuous Interior Penalty method (CIP,
[18]) in this work, although different pressure stabilisations are possible, see [F5].
The ghost-penalty term gnh(·, ·) is used to extend unh to the region Ωn

δ , where it might be
needed in the following time steps. In [F5] we consider three different variants for gnh , see
also [65]. Here, we only mention the “classical” fully consistent variant [16, 20, 71], where
jumps of derivatives over element edges are penalised

gn,jump
h (u,v) :=

∑
e∈Fn,g

h,δ

m∑
k=1

h2k−1(J∂knuK, J∂knvK)e. (2.19)

The required set of edges is defined as Fn,gh,δ = Fn,cuth ∪Fn,exth , see the illustration in Figure 2.4
on the right.
As initial value, we set (formally) u0

h := E1u0 in (2.17) (which corresponds to a L2-
projection onto the discrete spaces), where E1 denotes a smooth extension from Ω0 to Ω0

δ ⊃ Ω1.
For BDF(2) the iterate u1

h can be initialised with one BDF(1) step without compromising
the (second-order) accuracy. For the well-posedness of the discrete system (2.17) we refer
to [F5].

Stablity Results

To simplify the presentation of the analysis, we neglect geometry approximation errors
related to the approximation of curved boundaries in [F5], which have been analysed in
detail for parabolic problems in [65]. We introduce the triple norm

|||uh|||h,n :=
(
‖∇unh‖2Ωn + γgg

n
h(unh,unh) + γD

h
‖unh‖2∂Ωn

)1/2
.

The error analysis in the next paragraph is based on the following stability result.

Theorem 2.2 (Corollary 4.5 and Lemma 4.4 in [F5]). Let uh = (ukh)Nk=1, ph = (pkh)Nk=1 be
the solutions of (2.17) and let γg and γD be sufficiently large. Under regularity assumptions
stated in [F5], it holds for s = 1 and n ≥ 1 that

‖unh‖2Ωn + ∆t
n∑
k=1

(
|||ukh|||2h,k + 1

∆t‖u
k
h − uk−1

h ‖2Ωk

+ γps
k
h(pkh, pkh) + min{h2,∆t}‖∇pkh‖2Ωk + ∆t‖pnh‖2Ωn

)
≤ exp(c1(wmax)tn)

(
c‖u0‖Ω0 + 2tn‖f‖2∞,0

)
.

(2.20)

For s = 2, we have

‖unh‖2Ωn + ∆t
n∑
k=1

(
|||ukh|||2h,k + γps

k
h(pkh, pkh) + min{h2,∆t2}‖∇pkh‖2Ωk

)
≤ exp(c1(wmax)tn)

(
c‖u0‖Ω0 + 2tn‖f‖2∞,0

)
.

(2.21)
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Compared to the case of fixed domains Ω(t) = Ω, Theorem 2.2 gives the same stability
result for the velocities. For the H1-seminorm of pressure an optimal stability estimate
results under the inverse CFL condition ∆t ≥ ch2 for s = 1 and the stronger condition
∆t ≥ ch for s = 2. The stability bound in the H1-seminorm is sufficient in the error analysis
in the next paragraph to show optimal-order convergence results for the velocities.
In the L2-norm of pressure, we obtain stability for the term ∆t2

∑n
k=1 ‖pkh‖2Ωk on the

left-hand side of (2.20) for s = 1, which is by a factor ∆t weaker than in the case of
fixed domains. The corresponding argumentation in the case of fixed domains and fixed
discretisations uses that the term (divun−1

h , ξnh)Ωn vanishes for ξnh ∈ Lnh, see for example
Besier & Wollner [11]. This is not true in the case of time-dependent domains, as un−1

h is
not discrete divergence-free with respect to Ωn:

(divun−1
h , ξnh)Ωn 6= 0 for certain ξnh ∈ Lnh.

This will lead to sub-optimal error estimates in the L2-norm of pressure in the next paragraph.

Error Estimates

The error analysis is based on Galerkin orthogonality and the stability result of Theorem 2.2.
For the BDF(1) variant, we obtain:

Theorem 2.3 (Theorems 5.3 and 5.12 in [F5]). Let uh = (ukh)nk=1, ph = (pkh)nk=1 be the
discrete solution of (2.17) for s = 1 and (u, p) the continuous solution of (2.11). Further, let
γg, γD and γp sufficiently large and ∆t ≥ ch2 for some c > 0. Under regularity assumptions
stated in [F5], it holds for the error eku = uk − ukh, ekp = pk − pkh for n ≥ 1

‖enu‖2Ωn +
n∑
k=1

{
‖eku − ek−1

u ‖2Ωk + ∆t
(
|||eku|||2h,k + h2‖∇ekp‖2Ωk

)}
≤ c exp(ctn)

(
∆t2‖∂2

t u‖2Q + h2m
(
‖u‖2∞,m+1 + ‖∂tu‖2∞,m + ‖p‖2∞,m

) )
,

where e0
u := 0. In the L2(L2)-norm of velocities, we have further

∆t
n∑
k=1
‖eku‖2Ωk

≤ cwmax exp(ctn)
(
∆t2‖∂2

t u‖2Q + h2m+2
(
‖u‖2∞,m+1 + ‖∂tu‖2∞,m + ‖p‖2∞,m

) )
.

Both estimates are optimal in the respective norms. For BDF(2), we obtain optimal-order
estimates (i.e. second-order in time) under the stronger condition ∆t ≥ ch, see Remarks 5.5
and 5.13 in [F5].

For the L2-norm error of pressure we can show for s = 1, 2 that

∆t
n∑
k=1
‖ekp‖2Ωk ≤ c exp(ctn)

(
∆ts‖∂2

t u‖2Q + h2m

∆ts
(
‖u‖2∞,m+1 + ‖∂tu‖2∞,m + ‖p‖2∞,m

) )
,

(2.22)

which is suboptimal by O(∆ts/2) (after taking the square roots in (2.22)) compared to the
optimal estimates on fixed domains.
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Summary of the Numerical Results

In [F5] three-dimensional numerical results are provided for the combinations P1-BDF(1),
P2-BDF(1) and P2-BDF(2) using the CutFEM library [21] which is based on FEniCS [5].
Detailed convergence studies confirm the proven convergence orders in the L2(H1)- and
L2(L2)-norms of velocity in all cases. In the L2(H1)- and L2(L2)-norms of pressure, first-
order convergence in time is clearly visible in the BDF(1) case. This confirms the error
analysis in the L2(H1)-norm, while it indicates that the L2(L2)-norm estimate (2.22) might
not yet be optimal. The estimated temporal convergence orders for BDF(2) are larger than
2 in the L2(H1)-norm and larger than 1.5 in the L2(L2)-norm of pressure in all cases, which
leads to similar conclusions.

2.2.2 An Implicitly Extended Crank-Nicolson Scheme for the Heat
Equation [F6]

In [F6] we consider a Crank-Nicolson time-stepping scheme with implicit extensions for the
heat equation (2.12) on a moving domain. A complete a priori error analysis in space and
time is given with second-order convergence in time under a parabolic CFL condition.
In contrast to the BDF2 method, the Crank-Nicolson scheme induces less numerical

dissipation [68] and is thus more suitable for elasticity problems or fluid flows with low
Reynolds number [13, 87]. Up to now, it has been largely open, if and under what conditions
a Crank-Nicolson-type scheme can be used within an Eulerian time discretisation on moving
domains. We give a detailed stability and convergence analysis, assuming a parabolic CFL
condition of type ∆t ≤ ch2.
We consider the time and space discretisation described above on page 28. The Crank-

Nicolson method applied to (2.12) writes formally
un − un−1

∆t − 1
2(∆un + ∆un−1) = 1

2(fn + fn−1), x ∈ Ωn. (2.23)

As in the previous subsection, the main issue is that un−1 is needed on Ωn, while it is defined
on Ωn−1. We will again add implicit extension operators to define un on Ωn

δ ⊃ Ωn+1, where
it is needed in the following time step. Similarly, fn−1 might be undefined on Ωn \Ωn−1 and
needs to be extended. To cover different possibilities, we do not want to restrict the analysis
in this work to a particular extension, but assume only that fn−1 is smoothly extended to
Ωn.

For the stability and error analysis, we assume the following CFL condition depending on
the polynomial degree m of the finite element approach:
Assumption 2.4 (CFL condition). We assume the parabolic CFL condition ∆t ≤ cCFLh2,
where cCFL is an arbitrary constant for m = 1, while we assume cCFL sufficiently small for
m > 1.

Discrete Variational Formulation

We consider the following discrete variational formulation for n = 1, 2, . . . , N with Vnh defined
in (2.15): Find unh ∈ Vnh such that(

D
(1)
t unh, vh

)
Ωn

+A(unh, un−1
h ; vh) = (fn−

1
2

h , vh), ∀vh ∈ Vnh , (2.24)
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where

A(unh, un−1
h ; vh) := 1

2a
n
h(unh, vh) + 1

2a
n
h(un−1

h , vh) + γD
h

(unh, vh)∂Ωn + γgg
n
h(unh, vh) (2.25)

and

anh(ukh, vh) = (∇ukh,∇vh)Ωn − (∂nukh, vh)∂Ωn , fn−
1
2 = fn + fn−1

2 .

As in the previous subsection, we assume that all integrals in (2.25) are evaluated exactly and
refer to [65] for the consideration of additional quadrature errors. To incorporate the initial
condition, we set u0

h := E1u0 in (2.25) for n = 1, which corresponds to a Ritz projection of
the initial value. For the ghost penalty gnh(·, ·), we consider again the classical variant given
in (2.19).

Stability and Error Analysis

Compared to the BDF schemes in [65] and [F5], the analysis is complicated by the fact that
not only the discrete function un−1

h , but also its gradient ∇un−1
h appear on Ωn in the n-th

time step, whereas bounds are only available for ‖un−1
h ‖Ωn−1 and ‖∇un−1

h ‖Ωn−1 from the
previous time step.
Key to the stability proof is the following lemma, which is proven by means of several

auxiliary estimates:

Lemma 2.5 (Lemma 3.2 in [F6]). Under the CFL condition (Assumption 2.4) and a technical
assumption on the finite element mesh stated in [F6] it holds for vnh ∈ Vnh , v

n−1
h ∈ Vn−1

h that

∆t‖∇vn−1
h ‖2Ωn\Ωn−1 ≤ ∆t

2 ‖∇(vnh + vn−1
h )‖2Ωn\Ωn−1 + ‖vnh − v

n−1
h ‖2Ωn

+c∆tgnh(vnh , vnh) + c∆tgn−1
h (vn−1

h , vn−1
h ).

(2.26)

Using this, the following stability result is shown in [F6]. We define the discrete energy as

En(unh, un−1
h ) =

( 1
∆t‖u

n
h − un−1

h ‖2Ωn + ‖∇(unh + un−1
h )‖2Ωn + γD

h
‖unh‖2∂Ωn + γgg

n
h(unh, unh)

)1/2
.

(2.27)

Theorem 2.6 (Stability result, Theorem 3.5 in [F6]). Let the Assumptions of Lemma 2.5
be valid, let f ∈ L∞(I, L2(Ω(t))), u0 ∈ H1(Ω0) and let the mapping T : Ω(0) → Ω(t) be a
W 1,∞-diffeomorphism for all t ∈ [0, tfin]. For sufficiently large γg, γD the solution {ukh}nk=1
of the discrete problem (2.24) fulfills

‖unh‖2Ωn + ∆t‖unh‖2Ωn + ∆t
n∑
k=1

Ek(ukh, uk−1
h )2

≤ c exp(c tn)
(
‖u0‖2Ω0 + tn‖∇u0‖2Ω0 + tn‖f‖2∞,0

)
.

(2.28)

Based on the stability result and estimates for the consistency and interpolation errors,
the following error estimate is proven in [F6]:
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Theorem 2.7 (Theorem 4.5 in [F6]). Let u ∈ L∞(In, Hm+1(Ω(t))) ∩W 1,∞(In, Hm(Ω(t)) ∩
W 3,∞(Q) be the solution of (2.12) and {ukh}nk=1 the discrete solution of (2.24), respectively.
Under Assumptions 2.4 and further technical and regularity assumptions stated in [F6], the
global error ek = uk − ukh (k = 1, ..., n) satisfies for γg and γD sufficiently large

‖en‖2Ωn + ∆t‖∇en‖2Ωn + ∆t
n∑
k=1

Ek(ek, ek−1)2 ≤ exp(ctn)
(
∆t4 + h2m

)
R(u)2, (2.29)

where R(u) = ‖u‖∞,3 + ‖u‖∞,m+1 + ‖∂tu‖∞,m + ‖u(tn)‖W 3,∞(Q).

We note that -independently of our work- a similar approach has been investigated by von
Wahl, Richter & Lehrenfeld in [92], using an inf-sup-stable Taylor-Hood discretisation instead
of the equal-order approach with pressure stabilisation used in our work. Interestingly, the
absence of a pressure stabilisation leads to a sub-optimal convergence estimate in [92].

Summary of the Numerical Results

In [F6] numerical results in two and three space dimensions are provided to verify the
theoretical findings and the practical behaviour of the numerical method. As in the previous
subsection all numerical experiments have been obtained using the CutFEM library [21]. As
a two-dimensional example we consider a circle travelling with constant velocity w = (1, 0)
towards the right. The three-dimensional example is a three-dimensional rectangular channel
with a moving upper and lower wall, inspired by a pump. In both cases exact solutions
are available and computations are executed on different mesh levels h, for different time
step-sizes ∆t and for P1 and P2 finite elements.
In the two-dimensional example the observed spatial convergence orders are either in

agreement with or even larger than proven in Theorem 2.7 and the estimated temporal
convergence orders are close to two for sufficiently small h, in agreement with Theorem 2.7.
In the three-dimensional example, the effect of the CFL condition becomes visible when
using P2 elements by means of slightly reduced convergence orders for small h.

2.3 A Boundary Element Formulation for a Signorini
Contact Problem using Nitsche’s Method [F7]

In this section resp. the article [F7] with the collaborators E. Burman and M.W. Scroggs, we
apply a Nitsche technique within a Boundary Element method to impose Signorini (contact)
conditions on a Laplace equation. The approach to handle the Signorini conditions is very
similar to the one derived in Section 1.1.2.

The problem under consideration in [F7] writes: Find u such that

−∆u = 0 in Ω, u = gD on ΓD, (2.30)
u ≤ gC , ∂nu ≤ ψC and (∂nu− ψC)(u− gC) = 0 on ΓC . (2.31)

Here, we focus on Ω ⊂ R3 and assume that ∂Ω = ΓD ∪ ΓC .
The Boundary Element Method (BEM) is a very efficient discretisation technique for

certain PDEs. The idea is to transform the equations from the domain Ω to its boundary ∂Ω

34



2.3 A Boundary Element Formulation for a Signorini Contact Problem using Nitsche’s Method [F7]

by means of an analytically available Green’s function. The advantage compared to a finite
element approach is that a triangulation of the hypersurface ∂Ω requires typically much less
elements compared to a triangulation of Ω. Suitable boundary element formulations have
been derived for the Laplace equation, linear elasticity and for Stokes and Helmholtz equations
under certains assumptions on the data, see for example the textbook of Steinbach [88] for
an overview.
The article [F7] is based on a previous work of my collaborators [12], where a unified

boundary element framework based on the Calderón projector was derived for a Laplace
problem with Dirichlet, Neumann or Robin boundary conditions. The contributon of [F7] is
to extend the framework to Signorini conditions. Boundary element methods for Signorini
problems were first studied by Han [54]. A variational formulation based on the Calderón
projector was first presented in [55] by the same author. Alternative boundary element
methods are based on Steklov-Poincaré operators [89, 96].

2.3.1 Calderón Projector

To state a variational formulation on ∂Ω, we need to introduce a number of boundary
operators. First, we define the Green’s function for the Laplace operator in R3 by

G(x, y) = 1
4|x− y| . (2.32)

In the standard fashion (see e.g. [88, Chapter 6]), we define the single layer potential
operator, V : H−1/2(∂Ω)→ H1(Ω), and the double layer potential, K : H1/2(∂Ω)→ H1(Ω),
for v ∈ H1/2(∂Ω), µ ∈ H−1/2(∂Ω), and x ∈ Ω by

(Vµ)(x) :=
∫
∂Ω
G(x,y)µ(y) dy, (Kv)(x) :=

∫
∂Ω

∂G(x,y)
∂νy

v(y) dy. (2.33)

We denote by γD : H1(Ω) → H1/2(∂Ω) and γN : H3/2(Ω) → H−1/2(∂Ω) the Dirichlet and
Neumann trace operators, see [F7]. If both traces of a harmonic function u are known
on ∂Ω, for example as solutions of a boundary element formulation, the function can be
reconstructed in Ω as follows by the single and double layer potential operators

u = −K(γDu) + V(γNu). (2.34)

The Calderón projector is based on single layer (K), double layer (V), adjoint double layer
(W), and hypersingular (K′) boundary integral operators given by

(Kv)(x) := {γDKv}∂Ω (x), (Vµ)(x) := {γDVµ}∂Ω (x), (2.35a)
(Wv)(x) := −{γNKv}∂Ω (x), (K′µ)(x) := {γNVµ}∂Ω (x), (2.35b)

where x ∈ ∂Ω and {γDf}∂Ω and {γNf}∂Ω denote the averages of the interior and exterior
Dirichlet and Neumann traces of f , respectively. Now, the Calderón projector is defined by

C :=
(

(1− σ)Id− K V
W σId + K′

)
, (2.36)

35



2.3 A Boundary Element Formulation for a Signorini Contact Problem using Nitsche’s Method [F7]

where σ is defined as in [88, Equation 6.11] (in particular σ = 1
2 almost everywhere). The

Calderón projector has the important property that, if u is a solution of (2.30), then

C
(
γDu
γNu

)
=
(
γDu
γNu

)
. (2.37)

We write λ = γNu and u = γDu for a more compact notation and introduce the corresponding
Calderón form

C[(u, λ), (v, µ)] :=
〈

(1
2 Id− K)u, µ

〉
∂Ω

+ 〈Vλ, µ〉∂Ω +
〈

(1
2 Id + K′)λ, v

〉
∂Ω

+ 〈Wu, v〉∂Ω .

The equation (2.37) can be written in variational form as

C[(u, λ), (v, µ)] = 〈u, µ〉∂Ω + 〈λ, v〉∂Ω . (2.38)

While (2.38) could be used as basis for discretisation with a boundary element method, we
use in [F7] the multitrace form given by

A[(u, λ), (v, µ)] := −〈Ku, µ〉∂Ω + 〈Vλ, µ〉∂Ω +
〈
K′λ, v

〉
∂Ω + 〈Wu, v〉∂Ω . (2.39)

Now, (2.38) can be equivalently written as

A[(u, λ), (v, µ)] = 1
2 〈u, µ〉∂Ω + 1

2 〈λ, v〉∂Ω . (2.40)

2.3.2 Discretisation and A Priori Error Estimate

We assume that the boundary ∂Ω consists of a finite set of faces denoted by {Γi}Mi=1, that
are discretised by a family of conforming, shape regular triangulations {Th}h>0. We consider
continuous finite element spaces to approximate the Dirichlet trace u on ∂Ω

Pkh(∂Ω) := {vh ∈ C0(∂Ω) : vh|Ti ∈ Pk(Ti), for every Ti ∈ Th},

and spaces, that are either fully discontinuous or at least partially discontinuous between
the faces Γi that constitute the boundary ∂Ω, to approximate the Neumann trace λ

DPlh(∂Ω) := {vh ∈ L2(∂Ω) : vh|Ti ∈ Pl(Ti), for every Ti ∈ Th},

D̃P
l

h(∂Ω) := {vh ∈ DPlh(∂Ω) : vh|Γi ∈ C0(Γi), for i = 1, . . . ,M}.

Alternatively, we consider the space DUAL0
h(∂Ω) of piecewise constant functions on the

barycentric dual grid for λ, which is illustrated in Figure 2.5.
Note that the formulation (2.40) does not contain any boundary conditions yet. In [12]

Dirichlet boundary conditions were imposed weakly by adding a weighted boundary residual

RΓD(uh, λh) := β
1/2
D (gD − uh)

with a suitable parameter βD > 0. In the case of pure Dirichlet conditions (ΓD = ∂Ω) the
discrete variational formulation reads: Find uh ∈ P kh (∂Ω), λh ∈ Λlh, such that

A[(uh, λh), (vh, µh)] = 1
2 〈uh, µh〉∂Ω + 1

2 〈λh, vh〉∂Ω +
〈
RΓD(uh, λh), β1/2

D vh + β
−1/2
D µh

〉
ΓD
,

(2.41)
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Figure 2.5. Illustration of a triangulation Th (left) of a flat surface, the corresponding
barycentric refinement of the grid (centre), and the dual grid (right). Figure taken from [F7]
with permission from SIAM.

where Λlh can be any of the discrete spaces DPlh(∂Ω), D̃P
l

h(∂Ω) or DUAL0
h(∂Ω).

For the incorporation of Signorini boundary conditions, we use the ideas discussed in
Section 1.1.2. The three conditions in (2.31) are equivalent to

(ψC − λh) = [P τ (uh, λh)]+ , where P τ (uh, λh) := τ(uh − gC)− (λh − ψC)

for arbitrary τ > 0, see [4]. Thus, we define the boundary residual as

RΓC (uh, λh) = τ−1
(
(ψC − λh)− [P τ (uh, λh)]+

)
. (2.42)

The variational formulation for combined Signorini and Dirichlet conditions becomes: Find
uh ∈ P kh (∂Ω), λh ∈ Λlh, such that

A[(uh,λh), (vh, µh)] = 1
2 〈uh, µh〉∂Ω + 1

2 〈λh, vh〉∂Ω

+
〈
RΓD(uh, λh), β1/2

D vh + β
−1/2
D µh

〉
ΓD

+
〈
RΓC(uh, λh), vh + τ−1µh

〉
ΓC
.

(2.43)

For a proof of well-posedness of the discrete formulation (2.41) (based on Brouwer’s fixed-point
theorem), we refer to [F7].

A Priori Error Estimate

One of the main results of [F7] is the following a priori error estimate. We introduce the
notation ∂̃Ω = ∪Mi=1Γi \ ∂Γi for the set of boundary points that lie in the interior of a face
Γi ⊂ ∂Ω.

Theorem 2.8 (Theorem 5.6 in [F7]). Let (u, λ) ∈ Hs(∂Ω)×Hr(∂̃Ω) for some s ≥ 1, r ≥ 0
and (uh, λh) ∈ Pkh(∂Ω) × Λl

h be the solutions of (2.30) and the discrete problem (2.43),
respectively. If there are positive constants ci(i = 1, ..., 4) such that c1 < βD < c2h

−1 and
c3h
−1 < τ < c4h

−1, it holds that

‖u− uh‖H1/2(∂Ω) + ‖λ− λh‖H−1/2(∂Ω) ≤ c
(
hζ−1/2|u|Hζ(∂Ω) + hξ+1/2|λ|

Hξ(∂̃Ω)

)
,

where ζ = min(k+1, s) and ξ = min(l+1, r) for Λlh ∈ {DPlh(∂Ω), D̃P
l

h(∂Ω)} and ζ = min(2, s)
and ξ = min(1

2 , r) for Λlh = DUAL0
h(∂Ω). For the corresponding reconstructed functions on

Ω defined by (2.34), we have

‖ũ− ũh‖H1(Ω) ≤ c
(
hζ−1/2|u|Hζ(∂Ω) + hξ+1/2|λ|

Hξ(∂̃Ω)

)
.
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For the lowest-order variant k = 1, l = 0, Theorem 2.8 guarantees convergence order 1.5
when using the primal spaces DPlh(∂Ω), D̃P

l

h(∂Ω) if the solution is sufficiently regular. The
order is reduced to one for the dual space DUAL0

h(∂Ω), as the approximation property of
the dual space is reduced on non-smooth domains ∂Ω, see [84, Appendix 2].

2.3.3 Summary of the Numerical Results

A disadvantage of BEM is that the matrices in the resulting linear systems are typically
both dense and ill-conditioned. Thus, good solvers and preconditioners are required for their
solution. In [F7] a GMRES solver with a relatively simple mass matrix preconditioner is
used within the library BEM++ [86].

In [F7], we show detailed numerical results for the pairs P 1
h−DP0

h(∂Ω) and P 1
h−DUAL0

h(∂Ω).
A parameter study revealed that the choices βD = 0.01 and τ = 0.5/h led to the best results
concerning the solvability of the system. When using the dual space DUAL0

h(∂Ω) for the
Neumann trace, we observe a convergence order slightly larger than one, which is slightly
better than predicted by Theorem 2.8. For the primal space DP0

h(∂Ω) the preconditioner
was less effective and the accuracy of the GMRES solver decreased severely on finer meshes.
Thus, we could not confirm the convergence order 1.5 shown in Theorem 2.8, but observed
a slightly slower convergence behaviour with estimated convergence rates between 1 and
1.5. The construction of an efficient preconditioner, for example using the structure of the
Calderón projector, is subject to future work.
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3 Fluid-Structure Interactions with
Multiple Scales in Time

This final section contains two articles that consider FSI with multiple scales in time,
motivated by the numerical simulation of atherosclerotic plaque growth. In this application
a complex cardiovascular FSI problem is coupled to a model for plaque growth, which is
typically a system of convection-diffusion-reaction equations, see e.g. [35, 85, 91]. While
plaque growth usually takes place over several months to years, this process depends on the
wall shear stress in the blood vessel, which varies on a scale of milliseconds to seconds due
to the pulsating heartbeat. A resolution of this short scale over a whole year would result in
more than 109 time steps in the order of a few milliseconds. As each step corresponds to the
solution of a complex FSI problem, this is computationally by far unfeasible.
In Section 3.1 resp. the publication [F8] with T. Richter, a temporal two-scale approach

is developed for a slightly simplied flow problem. Then, in Section 3.2 resp. [F9] with the
collaborator A. Heinlein, parallel time-stepping approaches are developed for this two-scale
approach. Moreover, in [F9], the algorithms are applied to a full FSI problem coupled to a
diffusion-reaction equation modelling plaque growth.

3.1 Efficient Approximation of Flow Problems with Multiple
Scales in Time [F8]

Inspired by the temporal dynamics of atherosclerotic plaque growth, we consider flow through
a channel which is deformed over a long (macro) time scale. The deformation is caused by
an accumulation of foam cells within the vessel wall. In [F8] we use a strongly simplified
ODE model for the evolution of the concentration cs(t) of these cells. For more complex
plaque growth models, we refer to [35, 85, 91] and also Section 3.2 resp. [F9]. The coupled
system considered in [F8] consists of the non-stationary Navier-Stokes equations for the flow
and an ODE for the foam cell concentration

u(0) = u0, div u = 0, ρ(∂tu + (u · ∇)u)− divσf (u, p) = f in Ω(cs(t)) (3.1a)
cs(0) = 0, c′s = εR(cs,u). (3.1b)

Here, u and p are the fluid velocities and pressure and σf is the Cauchy stress tensor
defined in (1.1). The concentration cs(t) influences the flow problem by means of the domain
dependence Ω = Ω(cs(t)). A prototypical configuration, which is also used in the numerical
experiments in [F8], is sketched in Figure 3.1, with a parametrisation γ(cs) of the boundary.
The reaction term R(cs,u) ≥ 0 describes the influence of the fluid forces (namely the wall
shear stress on the boundary Γ) on the foam cell concentration:

R(cs,u) :=
(
1 + cs

)−1(1 + |σWSS(u)|2
)−1

, σWSS(u) := σ−1
0

∫
Γ

(
Id − nnT

)
σfn do. (3.2)

39



3.1 Efficient Approximation of Flow Problems with Multiple Scales in Time [F8]

(−5, 3/2)

Γin
Γsym

Γout

(15, 3/2)

γ(x) = cs exp(−x2)
Γ

Γ
(−5,−3/2) (15,−3/2)

Figure 3.1. Configuration of the test case. We study flow in a channel with a boundary
Γ that depends on a concentration variable cs. cs follows a simple reaction law with a
right-hand side depending on the wall shear stress on Γ (Figure taken from [F8] with
permission from SIAM.)

The parameter σ0 > 0 is chosen such that |σWSS(u)| = O(1).
The flow problem is driven by a periodic oscillating inflow profile of period 1s:

u = uD on Γin with uD(t) = uD(t+ 1s).

This period describes the short (micro) scale of the problem. The parameter ε� 1 in (3.1b)
defines the ratio between the short (micro) and the long (macro) time scales. We have
|c′s| = O(ε) and T = O(ε−1) is the expected long term horizon.
In a typical plaque growth problem, ε is in the range O(10−7) − O(10−6). A common

numerical approach is to replace the short-scale problem by an averaged stationary problem
using a fixed-in-time inflow profile [23, 95]. It is however widely accepted and also confirmed
in numerical studies [45, 47] that such a simple averaging does not necessarily reproduce the
correct dynamics. In [F8], we derive an improved algorithm in a mathematically rigorous
way, including a detailed error analysis for both modelling and discretisation errors.

3.1.1 Derivation of the Two-Scale Scheme

We define the slow (macro) variable cs(t) as average of the concentration cs

cs(t) :=
∫ t+1s

t
cs(s)ds. (3.3)

From (3.1b) we obtain the averaged equation

c′s(t) =
∫ t+1

t
εR(cs(s),u(s))ds (3.4)

Two approximation steps are performed to obtain an effective equation. First, the reaction
term in (3.4) is evaluated in cs(t) instead of cs(s). This is possible with a modelling error of
O(ε), as cs varies slowly with respect to the micro scale. Second, the fast component u(s) is
replaced by the localised solution ucs(s) of a time-periodic problem in the micro interval
[0, 1s] for a fixed value of cs = cs(t):

divucs = 0, ρ(∂tucs + (ucs · ∇)ucs)− divσf (ucs , pcs) = f , ucs(1) = ucs(0). (3.5)
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Algorithm 1: Abstract Two-Scale Algorithm
Let 0 = t0 < t1 < · · · < tN = T be a partition of the macroscopic time interval. Given
cs,0, iterate for n = 1, 2, . . .
1. Solve the time-periodic problem (3.5) for ucs,n−1 .

2. Evaluate the reaction term Rn−1 :=
∫ 1

0
R(cs,n−1,ucs,n−1(s))ds

3. Forward the slow variable with a suitable (explicit) one-step scheme G

cs,n = G(cs,n−1;Rn−1)

T0 = 0 T1 = 5 T2 = 10 T3 = 15 T4 = 20

cs,0

cs,1

cs,2

cs,3

R0
R1

R2

R3

T = O(ε−1)

ucs,0
(t) ucs,1

(t)
ucs,2

(t)

ucs,3
(t)

Figure 3.2. Construction of the two-scale scheme: 0. The slow variable cs(t) is discretised
with a time-stepping scheme with macro time-step size K � 1. 1. In each step the current
macro state cs,n−1 is transferred to the fast problem (top) and a periodic solution ucs,n−1

is computed on [Tn−1, Tn−1 + 1s] as approximation for u(t). 2. The averaged reaction term
Rn−1 = R(cs,n−1,ucs,n−1) is computed from ucs,n−1 and transferred to the slow problem
(bottom). 3. The slow variable cs,n is updated by the macro step Tn−1 → Tn (Figure taken
from [F8] with permission from SIAM ).

Given a suitable time discretisation of the macro time interval [0, T ], we obtain the
following two-scale algorithm:

An illustration of the algorithm is given in Figure 3.2. In each macro time-step tn−1 → tn
(which is typically in the range of days for a plaque growth problem) a periodic flow problem
is solved on the micro scale for one second (step 1 of Algorithm 1). The application of an
explicit time integrator in step 3 of Algorithm 1 has the advantage that no additional loops

41



3.1 Efficient Approximation of Flow Problems with Multiple Scales in Time [F8]

are necessary within one time step.
Algorithm 1 can be seen as a variant of the Heterogeneous Multiscale Method (HMM) [1,

30, 31]. The reason to use a time-periodic approximation in Step 1 is the lack of initial
values on the micro scale, as the micro problem are not solved continuously in the whole
interval [Tn, Tn+1], but only once in the much smaller interval [Tn, Tn + 1s]. Within the
HMM method, this issue is usually solved by introducing a relaxation time η to solve the
micro problem in [Tn, Tn + η] [1, 32]). The benefit of using a periodic micro problem is
that efficient solution methods exist that exploit the periodicity. For details we refer to [F8,
Section 4.3] and [78].

3.1.2 Analysis of the Two-Scale Scheme

The analysis of the two-scale scheme applied to the system (3.1a)-(3.1b) is complicated by
several open questions regarding the existence and regularity theory of the Navier-Stokes
equations in the periodic setting. For this reason and in order to improve the presentation,
the analysis in [F8] is carried out for a strongly simplified model problem consisting of two
ODEs instead of the full Navier-Stokes equations

u(0) = u0, u′(t) + λ(cs(t))u(t) = f(t), (3.6a)
cs(0) = 0, c′s(t) = εR(cs(t), u(t)), (3.6b)

where f(t) = f(t+ 1) is periodic, λ(cs) ≥ λ0 > 0 is a function that depends smoothly on the
concentration cs and R(·, ·) is given by

R(cs, u) :=
(
1 + cs

)−1(1 + u2)−1
. (3.7)

For a discussion of the relation of (3.6a) to the Navier-Stokes equations (3.1b), we refer
to [F8, Section 5.2]. By a slight abuse of notation, we use the notation cs(t) also for the
solution of the following averaged problem

c′s(t) =
∫ t+1

t
εR
(
cs(t), ucs(t)(s)

)
ds, cs(0) = 0, (3.8)

where ucs is the solution of the corresponding time-periodic micro problem

u′cs(t) + λ(cs)ucs(t) = f(t), ucs(1) = ucs(0), (3.9)

for a fixed cs ∈ [0, cmax]. We obtain the following bound for the homogenisation error in
terms of ε [F8, Lemma 10]:

Lemma 3.1. Let (cs(t), u(t)) and (cs(t), ucs(t)(t)) be defined by (3.6a)-(3.6b), and (3.8)-
(3.9), respectively, with the initial values cs(0) = cs(0) = 0 and u(0) = ucs(0)(0). For
0 ≤ t ≤ T = O(ε−1) it holds

|cs(t)− cs(t)| ≤ Cε

with a constant C > 0.

Moreover, the interplay between the homogenisation error and the time discretisation
error on both micro and macro scale is analysed in [F8]. The analysis is given exemplarily
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for a discretisation with the second-order Adams-Bashforth scheme with uniform time-step
K on the macro scale and a Crank-Nicolson scheme with uniform time step k on the micro
scale. Moreover, we consider that in practice periodicity in step 1 of Algorithm 1 will only
be fulfilled up to a certain (prescribed) tolerance tolP :

max
n
|ucs,n(1)− ucs,n(0)| < tolP .

The resulting macro-scale solution is denoted by the vector {cs,k}nk=1. We obtain the following
a priori error estimate:

Theorem 3.2 (A priori estimate for the two-scale algorithm). Let I = [0, T ] with T = O(ε−1)
and let cs ∈ C(I) and {cs,k}nk=1 be the solutions to problem (3.6) and the discrete equivalent
of the effective equations (3.8)-(3.9), respectively. It holds that

|cs(tn)− cs,n| = C
(
k2 + ε2K2 + tolP + ε

)
,

where C > 0 does not depend on ε,K, k and tolP .

The analysis reveals that an optimal choice for the time-step sizes on micro and macro
level is given by k ∼ εK.

3.1.3 Summary of the Numerical Results

In [F8] two numerical examples are considered, both using the coupled model (3.1a)-(3.1b)
with the full Navier-Stokes equations. The two-dimensional geometry under consideration
is illustrated in Figure 3.1. The fluid parameters are chosen as in a realistic blood flow
configuration and the domain movement is incorporated by means of an ALE approach. For
details on parameters and discretisation, we refer to [F8].

In the first example, we increase the scale separation parameter ε artificially to ε = 5 ·10−5.
For this value, the channel width decreases by approx. 66% after about T = 51 200s ≈ 1
day, such that a resolved simulation over the whole time frame [0, T ] is still feasible. We
use this to validate the numerical approach and the convergence orders in Theorem 3.2.
Therefore, we conduct simulations for three different micro time-step and five different macro
time-step sizes and use a least-squares fit to approximate the parameters c, αk, αK , qk, qK in
the postulated relation cs(k,K) = c+ αkk

qk + αKK
qK . We find the relation

cs(k,K) = c− 1.12 · k1.85 − 6.61 · 10−10 ·K1.80.

Even though the convergence estimates in Theorem 3.2 have been obtained for a simpler
model, the numerical convergence orders are close to two and the constant αK = 6.61 · 10−10

is of order O(ε2), which indicates that the estimates in Theorem 3.2 are valid for the more
complex configuration considered here as well.
In the second example, we decrease ε to the more realistic value ε = 10−6, such that the

width of the artery is reduced by approx. 50% after T ≈ 30 days. Besides the two time-step
sizes k and K, we vary now also the mesh size h ∈ {0.04cm, 0.08cm, 0.16cm}. A least-squares
fit yields the relation

cs(h, k,K) ≈ 0.59076 + 7.6h2.4 − 1.7k2.2 − 0.04ε2K1.9,
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which indicates again that Theorem 3.2 is also valid in the flow configuration considered
here. Moreover, we observe also a very good convergence behaviour in space.

Finally, a comparison of the runtimes of a two-scale simulation for mesh size h = 0.08cm
(approx. 1 hour) with the estimated time for a fully resolved simulation (almost 2 years)
reveals a speed-up of up to 1:12 000 compared to the fully resolved simulation.

3.2 Parallel Time-Stepping for the Numerical Simulation of
Atherosclerotic Plaque Growth [F9]

In the joint work [F9] with the collaborator A. Heinlein, we combine the temporal two-scale
approach introduced in the previous section with parallel time-stepping algorithms. In the
example studied above application of the temporal two-scale scheme led to a reduction of
the total number of micro time steps to be solved by a factor of approx. 104. Considering
that, in a realistic configuration, plaque growth typically takes place over more than a year
(i.e. 108 to 109s), this means, however, that still 104 to 105 micro time steps remain to be
solved.

Considering a complex three-dimensional FSI problem the simulation of up to 105 micro
time steps is still computationally unfeasible. This motivates the development of paral-
lelisation algorithms for the resulting two-scale algorithm. In [F9], we derive temporal
parallelisation algorithms based on the parareal algorithm [49, 67] and apply them to
prototypical plaque growth models including fluid-structure interactions.

Due to phase shifts in a coarse solution for hyperbolic partial differential equations (PDEs),
such as the structural problem in FSI, it is generally challenging to apply parallel time-
stepping methods to FSI problems; see, e.g., [69, 80]. Thus, it seems more promising to
apply temporal parallelisation for the homogenised plaque growth problem on the macro
scale, instead of the micro-scale FSI problem. This problem consists typically of a system
of reaction-diffusion equations with parabolic character, see, e.g., [85, 95] and can thus be
solved more efficiently by parallel time-stepping methods.

3.2.1 Equations

To compute the wall shear stress, we consider the following FSI system for the blood flow in
the fluid domain Ωf (t) and its interaction with the surrounding vessel wall in the solid part
Ω̂s with interface Γ(t):

ρf (∂tu + u · ∇u)− div σf = 0, div u = 0 in Ωf (t),

ρs∂t
.̂
d− div (F̂eΣ̂e) = 0, in Ω̂s,

σfnf + σsns = 0, u =
.
d on Γ(t).

(3.10)

We use here Lagrangian coordinates for the solid equations, indicated by the ”hat” notation.
For the meaning of the variables, we refer to Section 1. The solid Cauchy stress tensor σs is
related to the second Piola–Kirchhoff stress Σ̂e as follows:

σs(x) = σ̂s(x̂) = (Ĵ−1
e F̂eΣ̂eF̂T

e )(x̂).
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The influence of plaque growth is included in the FSI system by means of a multiplicative
splitting of the deformation gradient F̂s into an elastic part F̂e and a growth function
F̂g [45, 79, 95].

F̂s = F̂eF̂g ⇔ F̂e = F̂sF̂−1
g = [I + ∇̂ûs]F̂−1

g . (3.11)

For the foam cell concentration we consider two models of increasing complexity. First,
we use the ODE model (3.1b)-(3.2) introduced in the previous section, in combination with
the following dependence of the growth tensor Fg on the foam cell concentration

ĝ(x̂, ŷ, t) = 1 + cs exp
(
−x̂2

)
(2− |ŷ|), F̂g(x̂, ŷ, t) := ĝ(x̂, ŷ, t) I. (3.12)

Here, shape and position of the plaque growth is prescribed in the center of the channel
(cf. Figure 3.1), while the velocity of the growth depends on cs. Second, we consider a
reaction-diffusion PDE model with a space-dependent foam cell concentration ĉs = ĉs(x̂, t):

∂tĉs −Ds∆̂ĉs +Rsĉs(1− ĉs) = 0 on Ω̂s,

Ds∂̂nĉs = γ(σWS
f ) := εδ(x1)

1 +

∥∥∥σWS
f

∥∥∥2

σ2
0


−1

on Γ̂,

ĉs = 0 on Γ̂s, ĉs(·, 0) = 0 on Ω̂s.

(3.13)

Here, σ0 and ε are growth parameters as in the ODE model (3.1b)-(3.2) and Ds and Rs
are positive diffusion and reaction coefficients, respectively. The function δ is given by
δ(x1) = min {0, (x1 − 1)(x1 + 1)}2 and ‖·‖ is the Euclidean norm. The underlying idea is
that the vessel wall is initially damaged in the central part of the interface around x̂1 = 0
(see Fig. 3.1) and monocytes can penetrate into Ω̂s in the part of the interface corresponding
to x̂1 ∈ (−1, 1). Here, the shape of the plaque growth is variable; the dependence of the
growth tensor Fg on the foam cell concentration is given by

ĝ(x̂, t) = 1 + ĉs(x̂, t), F̂g(x̂, t) := ĝ(x̂, t) I. (3.14)

3.2.2 Parallel Time-Stepping Algorithms

The parareal algorithm is based on a coarse discretisation of the (macro) time interval of
interest [0, Tend]:

0 = T0 < T1 < ... < TP = Tend (3.15)

and a finer discretisation of each interval [Tp, Tp+1] (p = 0, ..., P − 1):

Tp = tp,0 < tp,1 < ... < tp,np = Tp+1.

The total number of fine time steps is denoted by Nf =
∑P
p=1 np. Note that the finer

discretisation is still defined on the macro scale, i.e. the time step δt in this application is
still in the scale of days, while the micro time step δτ is in the order of milliseconds.
The parareal algorithm consists of a coarse-scale propagator C(cs(Tp)) and a a fine-scale

propagator F(cs(Tp)) [67], that both advance the foam cell concentration from Tp to Tp+1
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Algorithm 2: Parareal algorithm

(I) Initialisation: Initialise
{
(c(0)
s (Tp)

}P
p=1 by the two-scale algorithm with a coarse

macro time-step size δT := (Tp+1 − Tp)/Np on the master process. Set k ← 0

(II) while |c(k+1),fine
s (Tend)− c(k),fine

s (Tend)| > εpar do

(II.a) Fine problems (in parallel for p = 1, ..., P )
Compute

{
(c(k+1),fine
s (tp,q)

}Np
q=1 by the two-scale algorithm with fine

time-step size δt and set F(c(k)
s (Tp)) = c

(k+1),fine
s (tp,Np)

(II.b) Coarse problem (in serial)
for p = 1, ..., P do

(i) Compute C(c(k+1)
s (Tp)) by applying Np time steps of the two-

scale algorithm with coarse time-step size δT = (Tp+1 − Tp)/Np

(ii) Parareal update

c(k+1)
s (Tp+1) = C(c(k+1)

s (Tp)) + F(c(k)
s (Tp))− C(c(k)

s (Tp)).

k ← k + 1

with different accuracy. Precisely, given an iterate c(k)
s for some k ≤ 0, the parareal algorithm

computes ck+1
s by setting

c(k+1)
s (Tp+1) = C(c(k+1)

s (Tp)) + F(c(k)
s (Tp))− C(c(k)

s (Tp)) for p = 0, ..., P − 1. (3.16)

This can be seen as a predictor-corrector scheme, where the coarse predictor C(c(k+1)
s (Tp)) is

corrected by the contribution F(c(k)
s (Tp))− C(c(k)

s (Tp)) that depends only on the previous
iterate c(k)

s and can thus be computed in parallel.
A classical choice is to use a time-stepping scheme with a coarse time step δT = (Tp −

Tp−1)/Np for a small Np in the coarse-scale propagator and a time-stepping scheme with a
finer time step δt = tp,q − tp,q−1 in the fine-scale propagator. To keep the coarse propagator
as cheap as possible, we will mainly focus on Np = 1, such that the total number of coarse
time steps

Nc := P ·Np

is equal to P . A schematic algorithm is given as Algorithm 2. We note that in each time
step of both coarse and fine propagator, a costly micro-scale computation is called. Before
the first parareal iteration, we use one coarse propagation from T0 to TP to initialise the
fine-scale problems (step (I)). More details on the algorithm are given in [F9].

Computational costs The main computational cost in Algorithm 2 lies in the solution
of the non-stationary micro problems, which need to be solved in each time step of both
coarse and fine-scale propagator. Considering a relatively coarse micro-scale discretisation of
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δτ = 0.02 s, as used in the numerical results in [F9], 50 time steps are necessary to compute
a single period of the heart beat. The simulation of two or more cycles are usually necessary
to obtain a near-periodic state, such that one micro problem consists of at least 100 FSI
time-steps. Compared to these micro problems, we expect that the cost to advance the foam
cell concentration by (3.1b) or (3.13) as well as the communication between the processes
is negligible, see the detailed discussion in [F9]. Hence, it suffices to count the number of
micro problems to be solved to estimate the computational cost of the algorithm.

In Algorithm 2, we need to solve Nc micro problems in step I, kpar · dNl/P e micro problems
on each of the P processes in step II.a and kpar · Nc micro problems within the coarse
propagator in step II.b (i). As step II.a can be executed in parallel, this corresponds to the
solution of

kpar · dNl/P e︸ ︷︷ ︸
fine level (P parallel processes)

+ (kpar + 1) ·Nc︸ ︷︷ ︸
coarse level (1 serial process)

(3.17)

serial micro problems. This means that the computational cost tends to saturate for larger P
(at least if we assume that the number of required parareal iterations kpar was independent
of P ). If we set Nc = P , the cost of the coarse propagator even increases with P and the
choice P ≈

√
Nl would be optimal in terms of the smallest computational time. Thus, the

maximum possible speed-up is severely limited.

Re-usage of growth values In order to decrease the computational cost for larger P , we
propose a modification of the coarse propagator. The idea is to re-use the growth values
γ(σWS

f (c(k+1),fine
s (tp,i))), computed in the fine-scale propagator, on the coarse scale. To this

end, all values γp·Np+i := γ(σWS
f (c(k+1),fine

s (tp,i))) computed on the fine scale are stored
and re-used as an approximation for γ(σWS

f (c(k+1),coarse
s (tp,i))) to advance the foam cell

concentration in the coarse propagator. Hence, no micro problems need to be solved within
the coarse propagator, at the cost of a slightly slower convergence behavior of the parareal
algorithm. For the details of the re-usage algorithm, including an analytical convergence
analysis, we refer to [F9].
The only coarse propagator that can not be modified is the initialisiation step, as in the

beginning no growth values γp·Np+i are available. The computational cost in terms of micro
problems to be solved in kpar iterations is thus

kpar · dNl/P e+Nc.

The overall cost of the coarse propagators is reduced by a factor (kpar + 1).

3.2.3 Numerical Results

In [F9] we present two-dimensional numerical results for both the ODE and the PDE growth
model. An illustration of the configuration and the numerical example in the PDE case
is given in Figure 3.3. As the focus in this work is not on large deformations, we use an
ALE approach for the solution of the FSI problem (3.10). For details on discretisation and
implementation, we refer to [F9].
In both examples, the standard parareal algorithm (Algorithm 2) converges quickly

towards the reference solution. The respective stopping criterion (e.g. |c(k+1),fine
s (Tend) −
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t = 50 days

t = 100 days

t = 200 days

Figure 3.3. Visualisation of the flow and plaque growth on the lower half of the blood
vessel at times t = 50 days, t = 100 days and t = 200 days. The horizontal velocity (in
cm/s) and the vertical displacement (in cm) are shown on the deformed domain at micro
time τ = 0.5 s, i.e., the time of maximum inflow velocity. As the plaque growth evolves,
significantly higher velocities arise in the central part.

c
(k),fine
s (Tend)| < 10−3 for the ODE model) is reached in 3 or 4 parareal iterates, depending on
the number of processes P . Due to the approximation used in the coarse-scale propagators,
the modified parareal algorithm (re-usage of growth values) requires 1-2 additional iterations.

In the ODE model the lowest computational cost in terms of micro problems to be solved is
222 micro problems for P = 30 for the standard parareal algorithm and 128 micro problems
for P = 60 in the re-usage variant This yields a speed-up of 4.5 resp. 7.8 compared to serial
time-stepping (1 000 micro problems).

For the PDE model, the findings are similar. In Figure 3.4 we compare estimated parallel
runtimes of both algorithms for different P , and illustrate the respective contributions of
coarse- and fine-scale problems. For details on the computations and the estimation of
parallel runtimes, we refer to [F9]. We observe that the cost of the coarse-scale propagators
dominates for P ≥ 40 in the standard parareal algorithm, while this contribution is much
smaller in the re-usage variant, which is thus more efficient for P ≥ 40. Due to a load
imbalancing in the parallel fine-scale problems, the speed-ups with respect to actual runtimes
are slightly smaller compared to the theoretical estimates based on the number of micro
problems to be solved. Here, we obtain a maximum speed-up of 3.9 for the standard parareal
algorithm for P = 30 and of 5.6 for the re-usage variant for P = 70.
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Figure 3.4. Illustration of the computational times spent within the coarse- and fine-scale
problems for the PDE growth example.
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A NITSCHE-BASED FORMULATION FOR FLUID-STRUCTURE
INTERACTIONS WITH CONTACT

Erik Burman1, Miguel A. Fernández2,3 and Stefan Frei1,*

Abstract. We derive a Nitsche-based formulation for fluid-structure interaction (FSI) problems with
contact. The approach is based on the work of Chouly and Hild (SIAM J. Numer. Anal. 51 (2013)
1295–1307) for contact problems in solid mechanics. We present two numerical approaches, both of them
formulating the FSI interface and the contact conditions simultaneously in equation form on a joint
interface-contact surface Γ(𝑡). The first approach uses a relaxation of the contact conditions to allow for
a small mesh-dependent gap between solid and wall. The second alternative introduces an artificial fluid
below the contact surface. The resulting systems of equations can be included in a consistent fashion
within a monolithic variational formulation, which prevents the so-called “chattering” phenomenon.
To deal with the topology changes in the fluid domain at the time of impact, we use a fully Eulerian
approach for the FSI problem. We compare the effect of slip and no-slip interface conditions and study
the performance of the method by means of numerical examples.
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1. Introduction

Contact problems have to be considered in many physical processes in engineering, medicine and nature.
To name only a few consider for example the contact of balls and races in roller bearings, While an extensive
amount of literature exists for the numerical simulation of contact in a purely solid mechanics context (see
e.g. Wohlmuth [65] for an overview), i.e. disregarding the gas or liquid that mostly lies between contacting
structures, much less works can be found considering full fluid-structure interaction with contact. The flow
between contacting surfaces might however be of great importance for the contact dynamics. In the example of
heart valves, the pulsating blood flow is even the driving force that enables opening and closure [4, 49]. In the
case of ball bearings, fluid forces in the lubricant between ball and bearing may have a significant influence on
the performance and wear of the bearing [11,50].

Contact between different structures is typically formulated by means of variational inequalities [65]. In
the context of full fluid-structure interaction (FSI), first results and algorithms can be found using either an
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artificial penalty force [63] or Lagrange multipliers [4,27,54] to obtain a well-posed and computationally feasible
variational formulation.

However, these approaches have certain drawbacks: The use of a penalty force prevents real contact. The
force is typically an artificial force and involves the choice of penalty parameters. If they are chosen too small,
the structures might overlap in a numerical simulation. If they are chosen too large, the contact dynamics might
be significantly perturbed [33]. In the case of Lagrange multipliers, additional variables are introduced on the
contacting surfaces and an inf-sup condition is needed to ensure the well-posedness of the system. To tackle
the variational inequality numerically, classical methods are based on active-set strategies including additional
loops, which means in particular that the system of equations has to be solved several times in each time step.
There are several possibilities to overcome these issues. Instead of an active-set strategy, semi-smooth Newton
methods can be used to solve the system of equations [45]. In order to avoid additional variables, dual mortar
methods, for example based on biorthogonal Lagrange multipliers, have been introduced [46].

Another possibility is to use Nitsche’s method [57] to incorporate the contact conditions. This approach is
based on an equivalent re-formulation of the contact conditions in equality form, which goes back to Alart and
Curnier [1] and has been used in many works for the iterative solution of variational inequalities since then (see
e.g. [45,46]). In the case of the contact of an elastic body with a wall, the mechanical contact conditions on the
contact surface Γ𝐶(𝑡) read

𝑑𝑛 ≤ 0, 𝜎𝑠,𝑛(𝑑) ≤ 0, 𝜎𝑠,𝑛(𝑑)𝑑𝑛 = 0,

where 𝑑𝑛 denotes the solid displacement in normal direction and 𝜎𝑠,𝑛(𝑑) is the normal stress component. It can
be shown that these conditions are equivalent to the equality

𝜎𝑠,𝑛(𝑑) = − 1
𝛾

max{0, 𝑑𝑛 − 𝛾𝜎𝑠,𝑛(𝑑)} on Γ𝐶(𝑡), (1.1)

for arbitrary 𝛾 > 0 (see e.g. [1]). This equality can be incorporated weakly in the variational formulation using
Nitsche’s method. While this technique has originally been used as a solution technique for the iterative solution
of variational inequalities, it has only recently been considered and analysed as a discretisation technique by
Chouly and co-workers [20–22], including a complete analysis of the related discretisation errors.

The Nitsche approach has the advantage that it is fully consistent. Furthermore, no additional variables
have to be introduced and no additional loop within each time-step is needed. Numerical convergence has been
proven in a series of papers for friction-free and frictional contact [19, 22, 24]. Following these results, Burman
and co-workers used the re-formulation (1.1) to derive a Galerkin Least Squares formulation in equality form for
the obstacle problem [17] and a Galerkin Least Squares and a Lagrange multiplier formulation for membrane
contact [18].

All these studies disregard however the fluid that usually lies between the contacting structures. The aim
of the present paper is to derive a Nitsche-based formulation for FSI with contact. To this purpose, we will
introduce Lagrange multipliers on the FSI interface which can then be eliminated following the arguments
reported by Burman and Hansbo [16].

The mathematical modeling of contact in an FSI context brings along a further issue: It is unclear, whether
the incompressible Navier–Stokes equations with standard boundary conditions are an appropriate model in the
fluid part, when it comes to contact. Theoretical studies show, that for a smooth, rigid solid body, no contact
with an exterior wall can happen, when no-slip conditions are used on the interface and the outer boundary of
the fluid domain, see Hillairet [43] and Hesla [42] in 2 space dimensions and Hillairet et al. [36, 44] in 3 space
dimensions. This changes, when slip- or Navier-slip conditions are used on both the interface and the wall [36]
or when the boundary of the solid is non-smooth [35, 64]. Gerard-Varet and Hillairet [35] found in a model
example that it comes to contact for a solid with a 𝐶1,𝛼-parametrised boundary for 𝛼 < 1/2, while no contact
happens for 𝛼 ≥ 1/2. In the context of fluid-structure interactions, the regularity of the solid boundary depends
on the solid displacement 𝑑, for which such regularity can usually not be guaranteed.

For a full FSI problem with a thin-walled structure, a no-collision result has been shown by Grandmont
and Hillairet [38] in the no-slip case. For an overview on further results regarding existence of fluid-structure
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interaction problems, we refer to Grandmont et al. [39]. Recently, Muha and Čanić [56] showed the well-posedness
of a fluid-structure interaction system with slip-conditions.

Motivated by these theoretical results, we will study both no-slip and slip conditions on the FSI interface Γ(𝑡)
in this work. It will turn out that the latter transits naturally into a “no-friction” condition when it comes to
contact, while the prior leads to frictional contact. In this work, we will therefore consider friction-free contact,
when a slip-condition is used on Γ(𝑡) and the specific frictional contact condition that follows from the transition
of the interface conditions, when a no-slip condition is used on Γ(𝑡). For recent works on the incorporation of
different friction laws (in particular Coulomb and Tresca friction), we refer to Chouly and co-workers [19, 24].
Moreover, we will study only contact of a deformable elastic structure with a fixed and straight wall for simplicity.
Efficient algorithms to treat contact between more complex structures can be found, for example, in Puso [60],
Yang et al. [66] and Chouly et al. [23, 55].

Concerning the governing equations, we focus on linear model equations for the fluid and solid part, i.e. the
incompressible Stokes equations in the fluid and linear elasticity in the solid sub-domain. These simplifications
must be seen as a first step towards the derivation of Nitsche-based contact formulations for complex FSI-contact
problems. We consider, however, the case of a moving interface, which is a major challenge from the numerical
point of view and leads to a non-linear FSI system, already in absence of contact.

The change of topology in the fluid domain causes additional numerical difficulties. Standard numerical
approaches as the Arbitrary Lagrangian Eulerian method are not able to deal with topology changes, as the
map from the reference domain to the Eulerian domain degenerates necessarily in this situation. The dynamics
shortly before the impact can only be handled robustly when a Eulerian description of the fluid equations is
used.

In the last years, several numerical approaches have been developed that are able to deal with topology
changes. The methods can be split into two categories, according to the coordinate systems that are used for
the solid system: Fully Eulerian approaches, where also the structure equations are formulated in Eulerian
coordinates [26,29,33,41,61]; and Euler–Lagrangian techniques, where Lagrangian coordinates are used for the
solid equations [2, 8, 13, 27, 37, 51, 53, 58, 67], such as in the Immersed Boundary or Immersed Finite Element
methods.

Regarding the Euler–Lagrangian techniques, one can further distinguish between methods using Lagrange
multipliers for the coupling of fluid and structure [37,51] and methods based on Nitsche-techniques [2,13,40,49,
53]. For the latter, a theoretical stability and convergence analysis has been derived [13]. The reader is referred
to Boilevin-Kayl et al. [9] for a comparative study on the accuracy of some of these approaches.

The FSI approach we use here is based on the monolithic Fully Eulerian approach [26, 29, 33, 41, 61]. As the
complete system of equations is formulated in Eulerian coordinates, the incorporation of contact conditions
is straight-forward by means of variational principles. While some of the early works in this context suffered
from stability and accuracy issues, see e.g. Dunne [28], accurate and robust discretisation and stabilisation
techniques have been developed recently [32–34, 41]. We remark, however, that the algorithms we derive to
incorporate contact can be combined in a straight-forward way with different FSI coupling techniques, e.g.
Fictitious Domain or Immersed Boundary methods.

Concerning discretisation, we allow both for unfitted and fitted finite element approaches. For the unfitted
case, so-called “ghost penalty” stabilisations can be used to guarantee the coercivity of the system [12, 13]. In
order to simplify the presentation, we concentrate on fitted discretisations in this work and will comment on
the unfitted case in a remark. In the numerical examples at the end of this paper, we will use the fitted locally
modified finite element method [32].

The remainder of this paper is organised as follows: In Section 2, we first introduce the equations and the
contact model. Before tackling the full contact problem, we derive a variational formulation for a model problem
of a virtual obstacle within the fluid domain in Section 3, where we already have to deal with inequalities, but
without any topology changes in the fluid domain. Then, we investigate contact with an exterior wall in Section 4.
We show a stability result in Section 5 and present detailed numerical studies in Section 6, investigating the



534 E. BURMAN ET AL.

Figure 1. Illustration of an FSI problem without contact (left sketch). The domain affiliation
in the current state can be determined by mapping back to the initial configuration, which is
shown on on the right.

influence of contact parameters, interface conditions and different contact formulations as well as convergence
under mesh refinement. We conclude in Section 7.

2. Model

We begin by presenting the models for the fluid part, the solid part and the fluid-structure interaction on one
hand in Section 2.1 and on the other hand the contact model in Section 2.2. For both models, Nitsche-based
variational formulations are introduced. Different possibilities to combine the two models will then be presented
in Sections 3 and 4.

2.1. Fluid-structure interaction without contact

We consider a fluid-structure interaction problem that is given on an overall domain Ω ⊂ R2 which is split
into a (variable) sub-domain Ω𝑓 (𝑡) occupied by a viscous fluid, a sub-domain Ω𝑠(𝑡) occupied by an elastic solid
and a lower-dimensional interface Γ(𝑡) separating them, such that

Ω = Ω𝑓 (𝑡) ∪ Γ(𝑡) ∪ Ω𝑠(𝑡).

The boundary of the fluid domain is partitioned as follows 𝜕Ω𝑓 (𝑡) = Γfsi(𝑡) ∪ Γ𝐷
𝑓 ∪ Γ𝑁

𝑓 , where Γfsi(𝑡) stands for
the fluid-solid interface. As regards the solid boundary, we assume that 𝜕Ω𝑠(𝑡) = Γ(𝑡) ∪ Γ𝐷

𝑠 ∪ Γ𝑁
𝑠 , where the

boundary part Γ(𝑡) = Γfsi(𝑡) ∪ Γ𝐶(𝑡) is decomposed into the terms of Γfsi(𝑡) and the contact zone Γ𝐶(𝑡) (see
Fig. 1 for a configuration without contact and the left sketch of Fig. 2 for a configuration with contact). The
restriction to two dimensions is made only to simplify the presentation. The models and the methods derived
in this paper can be generalised conceptually in a straight-forward way to three space dimensions.

In this work we will use a Eulerian description for the complete FSI problem. As already mentioned in the
introduction this is not necessary for the contact algorithms derived below, but one convenient way to deal with
(possible) topology changes in the fluid domain Ω𝑓 (𝑡). In an Eulerian description, the solid sub-domain and the
interface are implicitly defined by the (unknown) solid displacement 𝑑

Ω𝑠(𝑡) =
{︀
𝑥 ∈ Ω

⃒⃒
𝑇 (𝑥, 𝑡) ∈ Ω𝑠(0)

}︀
, Γ(𝑡) =

{︀
𝑥 ∈ Ω

⃒⃒
𝑇 (𝑥, 𝑡) ∈ Γ(0)

}︀
, (2.1)

where 𝑇 : Ω(𝑡) → Ω is a bijective map, that is given by 𝑇 (𝑥, 𝑡) = 𝑥 − 𝑑(𝑥, 𝑡) in the solid domain Ω𝑠(𝑡) and
by an arbitrary (smooth) extension in Ω𝑓 (𝑡) = Ω ∖ (Ω𝑠(𝑡) ∪ Γ(𝑡)). For the details, we refer to the textbook of
Richter [62] or to Frei [30].

In the variable fluid sub-domain Ω𝑓 (𝑡), we consider the linear incompressible Stokes equations

𝜕𝑡𝑢− div 𝜎𝑓 (𝑢, 𝑝) = 𝑓𝑓 , div 𝑢 = 0,
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Figure 2. Left : body in contact with the wall Γ𝑤. Right : virtual obstacle line Γ𝑜 within the
fluid domain Ω𝑓 .

where the Cauchy stress tensor 𝜎𝑓 is defined by

𝜎𝑓 (𝑢, 𝑝) = 𝜈𝑓

(︀
∇𝑢𝑇 +∇𝑢

)︀
− 𝑝𝐼,

𝑢 denotes the fluid velocity, 𝑝 stands for pressure and 𝜈𝑓 > 0 is a constant viscosity. In the solid-subdomain
Ω𝑠(𝑡), we assume a linear elastic material

𝜕𝑡𝑑− div 𝜎𝑠(𝑑) = 𝑓𝑠, 𝜕𝑡𝑑 = 𝑑,

where the Cauchy stress tensor 𝜎𝑠 is given by

𝜎𝑠(𝑑) = 2𝜇𝑠𝐸(𝑑) + 𝜆𝑠tr(𝐸(𝑑))𝐼, 𝐸(𝑑) =
1
2
(︀
∇𝑑 +∇𝑑𝑇

)︀
,

𝑑 = 𝜕𝑡𝑑 denotes the solid velocity and 𝜆𝑠, 𝜇𝑠 > 0 are positive constants.
For the coupling across the fluid-solid interface Γfsi(𝑡), the continuity of velocities and normal stresses

𝑑 = 𝑢, 𝜎𝑓 (𝑢, 𝑝)𝑛 = 𝜎𝑠(𝑑)𝑛 on Γfsi(𝑡) (2.2)

is typically considered for viscous fluids, where 𝑛 = 𝑛𝑠 denotes the outer normal vector of the solid domain
Ω𝑠(𝑡). We recall that, since in this section there is no contact in the solid (i.e. Γ𝐶(𝑡) = ∅), we have Γ(𝑡) = Γfsi(𝑡).
When it comes to contact, it is however questionable, whether the no-slip condition in (2.2) is still a reasonable
approximation of the underlying physics, see the discussion on the no-collision paradox in the introduction.
Therefore, we will study slip-conditions in this work as well (see Sect. 4.3), where the continuity across Γfsi(𝑡)
is only imposed for the normal velocity

𝑢 · 𝑛 = 𝑑 · 𝑛, 𝜏𝑇 𝜎𝑓𝑛 = 0, 𝜎𝑓𝑛 = 𝜎𝑠𝑛 on Γfsi(𝑡). (2.3)

In order to close the system of equations, we define exterior boundary conditions for the fluid and solid

𝑢 = 0 on Γ𝐷
𝑓 , 𝜎𝑓 (𝑢, 𝑝)𝑛 = 0 on Γ𝑁

𝑓

𝑑 = 0 on Γ𝐷
𝑠 , 𝜎𝑠(𝑑)𝑛 = 0 on Γ𝑁

𝑠

and the initial conditions

𝑢(𝑥, 0) = 𝑢0(𝑥) in Ω𝑓 (0), 𝑑(𝑥, 0) = 𝑑0(𝑥), 𝑑(𝑥, 0) = 𝑑0(𝑥) in Ω𝑠(0).

We introduce the finite element spaces 𝒱ℎ,𝒬ℎ and𝒲ℎ on a quasi-uniform family of triangulations (𝒯ℎ)ℎ>0 and
use Nitsche’s method to combine the equations and interface conditions into a monolithic variational formulation
(see e.g. [13,40]). The monolithic system of equations reads in the no-slip case: Find 𝑢(𝑡) ∈ 𝒱ℎ, 𝑝(𝑡) ∈ 𝒬ℎ, 𝑑(𝑡) ∈
𝒲ℎ, such that 𝑑 = 𝜕𝑡𝑑 and

𝒜fsi, no-slip(𝑢, 𝑝, 𝑑, 𝑑)(𝑣, 𝑞, 𝑤) = (𝑓𝑓 , 𝑣)Ω𝑓 (𝑡) + (𝑓𝑠, 𝑤)Ω𝑠(𝑡) ∀𝑣, 𝑞, 𝑤 ∈ 𝒱ℎ ×𝒬ℎ ×𝒲ℎ, (2.4)
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where

𝒜fsi, no-slip(𝑢, 𝑝, 𝑑, 𝑑)(𝑣, 𝑞, 𝑤) : =
(︀
𝜕𝑡𝑢, 𝑣

)︀
Ω𝑓 (𝑡)

+ 𝑎𝑓 (𝑢, 𝑝; 𝑣, 𝑞) +
(︁
𝜕𝑡𝑑, 𝑤

)︁
Ω𝑠(𝑡)

+ (𝜎𝑠(𝑑),∇𝑤)Ω𝑠(𝑡) −
(︁
𝑇𝑓 (𝑢, 𝑝, 𝑑), 𝑤 − 𝑣

)︁
Γ(𝑡)

−
(︁
𝑑− 𝑢, 𝜎𝑓 (𝑣,−𝑞)𝑛

)︁
Γ(𝑡)

(2.5)

and
𝑎𝑓 (𝑢, 𝑝; 𝑣, 𝑞) := (𝜎𝑓 (𝑢, 𝑝),∇𝑣)Ω𝑓 (𝑡) + (div 𝑢, 𝑞)Ω𝑓 (𝑡) + 𝑆(𝑝, 𝑞).

The numerical fluid traction on the interface is defined by 𝑇𝑓 (𝑢, 𝑝, 𝑑) := 𝜎𝑓 (𝑢, 𝑝)𝑛 − 𝛾fsi(𝑑 − 𝑢). The Nitsche
parameter is chosen as 𝛾fsi := 𝛾0

fsi𝜈𝑓ℎ−1. The term 𝑆(𝑝, 𝑞) stands for a pressure stabilisation term that is non-
zero in case that the discrete fluid spaces do not fulfil a discrete inf-sup condition. Note that at the FSI interface,
we have used the following relation for the interface terms arising from integration by parts

(𝜎𝑠𝑛, 𝑤)Γ(𝑡) − (𝜎𝑓𝑛, 𝑣)Γ(𝑡) = (𝜎𝑓𝑛, 𝑤 − 𝑣)Γ(𝑡) + (J𝜎𝑛K, 𝑤)Γ(𝑡), (2.6)

where we have dropped the dependencies of 𝜎𝑓 and 𝜎𝑠 for better readability. In the absence of contact, the jump
of the stresses defined by

J𝜎𝑛K := 𝜎𝑠𝑛− 𝜎𝑓𝑛, (2.7)

vanishes everywhere on Γ(𝑡). Furthermore, we have added the term

−
(︁
𝑑− 𝑢, 𝜎𝑓 (𝑣,−𝑞)𝑛

)︁
Γ(𝑡)

as in Burman and Fernandez [13] for stability reasons.
Using a slip-condition at the FSI interface, the variational formulation reads: Find 𝑢 ∈ 𝒱ℎ, 𝑝 ∈ 𝒬ℎ, 𝑑 ∈ 𝒲ℎ,

such that 𝑑 = 𝜕𝑡𝑑 and

𝒜fsi, slip(𝑢, 𝑝, 𝑑, 𝑑)(𝑣, 𝑞, 𝑤) = (𝑓𝑓 , 𝑣)Ω𝑓 (𝑡) + (𝑓𝑠, 𝑤)Ω𝑠(𝑡) ∀𝑣, 𝑞, 𝑤 ∈ 𝒱ℎ ×𝒬ℎ ×𝒲ℎ,

where

𝒜fsi, slip(𝑢, 𝑝, 𝑑, 𝑑)(𝑣, 𝑞, 𝑤) :=
(︀
𝜕𝑡𝑢, 𝑣

)︀
Ω𝑓 (𝑡)

+ 𝑎𝑓 (𝑢, 𝑝; 𝑣, 𝑞) +
(︁
𝜕𝑡𝑑, 𝑤

)︁
Ω𝑠(𝑡)

+ (𝜎𝑠(𝑑),∇𝑤)Ω𝑠(𝑡)

−
(︁
𝑇𝑓 (𝑢, 𝑝, 𝑑) · 𝑛, (𝑤 − 𝑣) · 𝑛

)︁
Γ(𝑡)

−
(︁

(𝑑− 𝑢) · 𝑛, 𝑛𝑇 𝜎𝑓 (𝑣,−𝑞)𝑛
)︁

Γ(𝑡)
.

(2.8)

2.2. Contact model without fluid

We assume that the solid is at a positive distance to the boundary at initial time and that contact can only
happen with the lower wall (see Fig. 2, left sketch, where the situation at contact is shown)

Γ𝑤 =
{︀

(𝑥1, 𝑥2) ∈ 𝜕Ω
⃒⃒
𝑥2 = 0

}︀
.

We denote the outer normal vector of the fluid domain Ω𝑓 (𝑡) at Γ𝑤 by 𝑛𝑤 = −𝑒2. Moreover, let 𝑔0(𝑥2) > 0 be
the function describing the initial distance of a point (𝑥1, 𝑥2) ∈ Γ(𝑡) to the wall Γ𝑤.

When contact with Γw occurs on a part Γ𝐶(𝑡) ⊂ Γ(𝑡), suitable contact conditions are (see e.g. [1, 45])

𝑑 · 𝑛𝑤 ≤ 𝑔0, 𝜎𝑠,𝑛𝑤
:= 𝑛𝑇

𝑤𝜎𝑠𝑛𝑤 ≤ 0, (𝑑 · 𝑛𝑤 − 𝑔0)𝜎𝑠,𝑛𝑤
= 0 on Γ(𝑡). (2.9)

The first inequality in (2.9) ensures that the solid can not pass though Γ𝑤, the second inequality describes that
the normal stress is zero (in the absence of contact) or negative (during contact) and the third condition is a
complementarity condition that guarantees that at least one of the inequalities is “active”.



A NITSCHE-BASED FORMULATION FOR FSI WITH CONTACT 537

For arbitrary 𝛾𝐶 > 0 the first line in (2.9) is equivalent to (see e.g. [1])

𝜎𝑠,𝑛𝑤
(𝑑) = −𝛾𝐶 [𝑃𝛾(𝜎𝑠,𝑛𝑤

(𝑑), 𝑑)]+, (2.10)

where [𝑓 ]+ := max{𝑓, 0} and

𝑃𝛾(𝜆, 𝑑) := 𝑑 · 𝑛𝑤 − 𝑔0 −
1

𝛾𝐶
𝜆. (2.11)

It remains to specify a contact condition for the tangential stresses. The simplest possibility is to consider
frictionless contact

𝜏𝑇
𝑤 𝜎𝑠𝑛𝑤 = 0 on Γ𝐶(𝑡). (2.12)

Choosing 𝛾𝐶 = 𝛾0
𝐶𝜇𝑠ℎ

−1, the variational formulation reads: Find 𝑑(𝑡) ∈ 𝒲ℎ such that 𝑑 = 𝜕𝑡𝑑 and(︁
𝜕𝑡𝑑, 𝑤

)︁
Ω𝑠(𝑡)

+ (𝜎𝑠(𝑑),∇𝑤)Ω𝑠(𝑡) + 𝛾𝐶 ([𝑃𝛾(𝜎𝑠,𝑛𝑤 , 𝑑)]+, 𝑤 · 𝑛𝑤)Γ(𝑡) = (𝑓𝑠, 𝑤)Ω𝑠(𝑡) ∀𝑤 ∈ 𝒲ℎ. (2.13)

We will discuss the tangential contact conditions in the context of fluid-structure interaction with contact below.
We close this section by mentioning that Chouly et al. [22] proposed a more general contact formulation that

makes use of the consistency of the term

(𝛾𝐶 [𝑃𝛾(𝜎𝑠,𝑛𝑤 (𝑑), 𝑑)]+ + 𝜎𝑠,𝑛𝑤 (𝑑), 𝜎𝑠,𝑛𝑤 (𝑤))Γ(𝑡) .

For 𝜃 ∈ [−1, 1], the contact term can be generalised to

𝛾𝐶

(︀
[𝑃𝛾(𝜎𝑠,𝑛𝑤

(𝑑), 𝑑)]+, 𝑤 · 𝑛𝑤

)︀
Γ(𝑡)

− 𝜃 (𝛾𝐶 [𝑃𝛾(𝜎𝑠,𝑛𝑤
(𝑑), 𝑑)]++𝜎𝑠,𝑛𝑤

(𝑑), 𝜎𝑠,𝑛𝑤
(𝑤))Γ(𝑡)

= (1− 𝜃)𝛾𝐶 ([𝑃𝛾(𝜎𝑠,𝑛𝑤
(𝑑), 𝑑)]+, 𝑤 · 𝑛𝑤)Γ(𝑡) + 𝜃 (𝛾𝐶 [𝑃𝛾(𝜎𝑠,𝑛𝑤

(𝑑), 𝑑)]+, 𝑃𝛾(𝜎𝑠,𝑛𝑤
(𝑤), 𝑤))Γ(𝑡)

− 𝜃 (𝜎𝑠,𝑛𝑤
(𝑑), 𝜎𝑠,𝑛𝑤

(𝑤))Γ(𝑡) .

(2.14)

For 𝜃 = 0, we recover the formulation (2.13). Besides that, the case 𝜃 = 1 is of particular interest, as it yields
a symmetric formulation, for which a stability result has been shown [21].

3. Virtual obstacle within the fluid domain

Before considering full fluid-structure interaction with contact, we present our approach for a simplified model
problem, where the movement of the solid is constraint by a virtual obstacle within the fluid domain, which
is invisible to the fluid. This setting allows us to consider the numerical treatment of the interface conditions
without accounting for the issues related to topology changes within the fluid. In Section 4, we will then show
how this numerical setting can be extended to model contact of the solid with an exterior wall.

The setting of the model problem is shown on the right sketch of Figure 2. The fluid domain contains a
horizontal obstacle line Γ𝑜 which is invisible to the fluid, but an obstacle to the solid. One may consider for
example a perfectly rigid thin membrane, that is laterally fixed and perfectly permeable for the fluid, but not
for the solid, or a magnetic field below the obstacle that prevents the solid from crossing the line. We assume for
simplicity that the obstacle line is parallel to the fluid boundary and denote its distance by 𝛼 > 0. The initial
distance of the FSI interface Γ(0) to the obstacle line is then given by

𝑔𝛼(𝑥2) := 𝑔0(𝑥2)− 𝛼.

We assume that 𝑔𝛼 ≥ 0.
When considering fluid-structure interactions, the body is pre-loaded before it reaches the obstacle by means

of the balance of normal forces
𝜎𝑠𝑛 = 𝜎𝑓𝑛 on Γ(𝑡). (3.1)
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If the interface Γ(𝑡) reaches the obstacle Γ𝑜, the additional constraint 𝑑 ·𝑛𝑤 ≤ 𝑔𝛼 has to be fulfilled. This gives
rise to an additional surface force, that acts in the direction −𝑛𝑤 = 𝑒2 (normal to Γ𝑜)

J𝜎𝑛K−𝜆𝑛𝑤 = 0 on Γ(𝑡). (3.2)

Note that we distinguish between the normal and tangential vectors of the wall 𝑛𝑤, 𝜏𝑤 and the normal and
tangential vector of the FSI interface 𝑛, 𝜏 . The vectors are equal on Γ𝐶(𝑡), where the body is in contact with
the wall, but different in the absence of contact.

The variable 𝜆 defined through (3.2) can be seen as a Lagrange multiplier, which is zero in absence of
contact with the obstacle line (due to (3.1)) and can become negative during contact. This is described by the
complementarity conditions

𝑑 · 𝑛𝑤 ≤ 𝑔𝛼, 𝜆 ≤ 0, (𝑑 · 𝑛𝑤 − 𝑔𝛼)𝜆 = 0. (3.3)

Splitting into normal and tangential contributions, (3.2) reads

𝑛𝑇
𝑤J𝜎𝑛K− 𝜆 = 0, 𝜏𝑇

𝑤 J𝜎𝑛K = 0 on Γ(𝑡). (3.4)

Using the same trick as in Section 2.2, (3.3) is equivalent to

𝜆 = −𝛾𝐶 [𝑃𝛾(𝜆, 𝑑)]+ on Γ(𝑡), (3.5)

with 𝑃𝛾 defined in (2.11).
Eliminating the Lagrange multiplier by using (3.4), this reads

𝜆 = −𝛾𝐶 [𝑃𝛾(J𝜎𝑛(𝑢, 𝑝, 𝑑)K, 𝑑)]+ on Γ(𝑡), (3.6)

where we have used the abbreviations

𝜎𝑠,𝑛 := 𝑛𝑇
𝑤𝜎𝑠𝑛, 𝜎𝑓,𝑛 := 𝑛𝑇

𝑤𝜎𝑓𝑛, J𝜎𝑛K := 𝑛𝑇
𝑤J𝜎𝑛K.

The natural formulation in the discrete setting is to consider the numerical stresses 𝑇𝑓 in (2.7) and in (3.2).
Let us derive these conditions first for the no-slip case. Adding the additional surface force to the FSI-Nitsche
formulation (2.4), the discrete variational formulation reads

𝒜FSI, no-slip(𝑢, 𝑝, 𝑑, 𝑑)(𝑣, 𝑞, 𝑤)− (𝜆𝑛𝑤, 𝑤)Γ(𝑡) = (𝑓𝑓 , 𝑣)Ω𝑓 (𝑡) + (𝑓𝑠, 𝑤)Ω𝑠(𝑡) ∀𝑣, 𝑞, 𝑤 ∈ 𝒱ℎ ×𝒬ℎ ×𝒲ℎ. (3.7)

Due to the additional Nitsche interface terms in (3.2), this formulation includes the interface condition

J̃︀𝜎𝑛(𝑢, 𝑝, 𝑑)K− 𝜆 = 0 on Γ(𝑡), (3.8)

where the numerical stress jump in the FSI-Nitsche formulation across the interface is given by

J̃︀𝜎𝑛(𝑢, 𝑝, 𝑑)K := 𝜎𝑠,𝑛(𝑑)− 𝑇𝑓 (𝑢, 𝑝, 𝑑) · 𝑛w. (3.9)

Eliminating the Lagrange multiplier by means of (3.8), the identity (3.5) reads

𝜆 = −𝛾𝐶 [𝑃𝛾(J̃︀𝜎𝑛(𝑢, 𝑝, 𝑑)K, 𝑑)]+ on Γ(𝑡). (3.10)

For the definition of the numerical stresses in the slightly more complicated case of slip-interface conditions, we
refer to Section 4.3. We will in the following analyse both contact formulations (3.6) and (3.10) and in particular
their effect on the weakly imposed interface conditions. In order to avoid too much repetition, we use a general
formulation that includes the Lagrange multiplier 𝜆 = 𝜆(𝑢, 𝑝, 𝑑), keeping in mind that 𝜆(𝑢, 𝑝, 𝑑) will be either
chosen as the jump of normal stresses J𝜎𝑛(𝑢, 𝑝, 𝑑)K or the jump of normal discrete stresses J̃︀𝜎𝑛(𝑢, 𝑝, 𝑑)K.
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Using (3.5), the variational formulation reads:

Variational Formulation 1. Find 𝑢(𝑡) ∈ 𝒱ℎ, 𝑝(𝑡) ∈ 𝒬ℎ, 𝑑(𝑡) ∈ 𝒲ℎ such that 𝑑 = 𝜕𝑡𝑑 and

𝒜fsi,*(𝑢, 𝑝, 𝑑, 𝑑)(𝑣, 𝑞, 𝑤) + 𝛾𝐶 ([𝑃𝛾(𝜆, 𝑑)]+, 𝑤 · 𝑛𝑤)Γ(𝑡)

= (𝑓𝑓 , 𝑣)Ω𝑓 (𝑡) + (𝑓𝑠, 𝑤)Ω𝑠(𝑡) ∀𝑣, 𝑞, 𝑤 ∈ 𝒱ℎ ×𝒬ℎ ×𝒲ℎ,
(3.11)

where the bilinear form is one of the forms 𝒜fsi, no-slip or 𝒜fsi, slip defined in (2.5) and (2.8), respectively, and
the contact parameter is chosen 𝛾𝐶 = 𝛾0

𝐶𝜇𝑠ℎ
−1, as in [20].

3.1. Weakly imposed interface conditions

Let us now analyse which interface conditions on Γ(𝑡) are implicitly included in Variational Formulation 1.
For simplicity, we analyse the formulation with the bilinear form 𝒜fsi, no-slip corresponding to no-slip conditions.
Therefore, we integrate by parts in (3.11) and consider only the interface terms by formally neglecting the bulk
and inter-element terms. For better readability, we drop all the dependencies of 𝜎𝑓 and 𝜎𝑠. Collecting all terms
with the fluid test function 𝑣, we obtain

−𝜎𝑓𝑛 + 𝜎𝑓𝑛− 𝛾fsi(𝑑− 𝑢) = −𝛾fsi(𝑑− 𝑢) = 0 on Γ(𝑡), (3.12)

i.e. the kinematic condition 𝑑 = 𝑢. Next, we collect the interface terms for the solid part 𝑤 and split into a
normal part (𝑤 ·𝑛𝑤) and a tangential part (𝑤 ·𝜏𝑤). We recall that since the boundary Γ𝑤 is flat, the extension to
Γ(𝑡) of its tangential and normal vectors are trivial. For the tangential part, we obtain as usual for Nitsche-based
FSI

𝜏𝑇
𝑤 𝜎𝑠𝑛− 𝜏𝑇

𝑤 𝜎𝑓𝑛 + 𝛾fsi(𝑑− 𝑢) · 𝜏𝑤 = 0 on Γ(𝑡). (3.13)

For the normal part, we have

𝜎𝑠,𝑛 − 𝜎𝑓,𝑛 + 𝛾fsi(𝑑− 𝑢) · 𝑛𝑤 + 𝛾𝐶 [𝑃𝛾(𝑑, 𝜆)]+ = 0 on Γ(𝑡).

Let us first consider the case that the contact force is not active. We obtain, as in the standard FSI-Nitsche
formulation

J𝜎𝑛K + 𝛾fsi(𝑑− 𝑢) · 𝑛𝑤 = 0.

If the contact force is active, we get

0 = J𝜎𝑛K + 𝛾fsi(𝑑− 𝑢) · 𝑛𝑤 + 𝛾𝐶(𝑑 · 𝑛𝑤 − 𝑔𝛼)− 𝜆 =

{︃
𝛾𝐶(𝑑 · 𝑛𝑤 − 𝑔𝛼) + 𝛾fsi(𝑑− 𝑢) · 𝑛𝑤, 𝜆 = J𝜎𝑛K
𝛾𝐶(𝑑 · 𝑛𝑤 − 𝑔𝛼), 𝜆 = J̃︀𝜎𝑛K

. (3.14)

In the first case, this is a combination of the “active” contact condition 𝑑·𝑛𝑤 = 𝑔 and the continuity of velocities.
As the continuity of velocities is imposed from the fluid side (3.12), this is not an issue for the model problem
considered here. It will however lead to problems, when we consider contact of the solid with the lower wall Γ𝑤

in Section 4. There, the second formulation, based on the discrete stresses (3.8) will be needed. As can be seen
in (3.14), the pure contact condition 𝑑 · 𝑛𝑤 = 𝑔 is valid from the solid side during contact.

4. Fluid-structure interaction with contact

In this section, we consider contact of the solid body with the lower fluid boundary Γ𝑤. The formulation
of a macroscopically relevant computational formulation without introducing the full physical model of all the
interacting scales and elements, which is too costly in many applications, is an open problem to our knowledge
and rarely discussed in literature.

When the solid enters into contact with a rigid wall, the action of the wall on the solid is expressed as a
constraint, giving rise to a variational inequality. In principle there is no longer a fluid between the contacting
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solids (“dry contact”). However, the presence of the fluid can not be discarded in this zone, since otherwise
contact could be released in the interior of the contact zone through deformation of the elastic solid, thus
creating a void, without neither fluid nor solid. A solution to this problem is to design a model where a fluid
pressure remains in the contact zone, either on the boundary or in the bulk domain and prevents unphysical
lift off creating vacuum. Our objective in the present work is to consider finite element formulations for contact
between an elastic solid and a rigid wall assuming the existence of such a pressure model.

For the purpose of discussion, and without claiming that these models are optimal, we consider two simple
models of seepage that introduce a fluid pressure in the contact zone. The first is a rather widespread approach
which consists in relaxing the contact condition by introducing a small gap (see e.g. [4,49]), so that the contact
in the computational model takes place at an 𝜖-distance from the wall (Sect. 4.1). Thus allowing for a thin fluid
layer to remain. Here 𝜖 can be made to go to zero with reduced mesh-size. The second model consists in allowing
the bulk fluid to penetrate into the solid wall in the form of a Navier–Stokes porous medium model where the
permeability is driven to zero with reduced mesh-size (Sect. 4.2).

Our main objective is then to design a computational method that allows for contact in a consistent fashion,
exploiting the presence of the modelled fluid contact pressure to get a smooth transition from contact to no
contact without the appearance of non-physical inclusions or oscillations (“chattering”). To this end we study
a nonlinear Nitsche-type coupling combining in a unfied way the FSI coupling and the contact conditions.

4.1. Relaxed contact formulation

The idea of the relaxed formulation is to impose contact using a virtual barrier Γ𝜖 for the solid at a very
small distance 𝜖 to Γ𝑤. This may be used for instance when the numerical discretisation of all the scales of the
macroscopic model is unfeasible. We consider two examples.

If the solid has some fine scale structure on an unresolved scale 𝜖, for example due to surface roughness, it is
reasonable to consider that contact already takes place when the distance between the two structures is 𝑂(𝜖).
Since by the modelling assumption the elastic solid can not penetrate into the rigid solid, the total forces from
the fluid captured in the 𝜖-layer and of the rigid solid must be sufficient to prevent penetration. This gives rise
to equation (3.8), where 𝜆 represents the additional force coming from the rigid solid below Γ𝜖 that is necessary
to prevent penetration.

On the other hand, as noted in the introduction, the continuous formulation does not allow for contact, when
no-slip conditions are used on at least one of the interface and/or the boundary, due to the Navier–Stokes contact
paradox. To reproduce this phenomenon in numerical simulations, an extremely high mesh resolution in the
remaining small fluid layer between solid and rigid wall is typically required, in order to approximate the fluid
tensor 𝜎𝑓 , which might become singular for ℎ → 0. In many situations, this might exceed the computational
limits and moreover, it is a priori not clear how fine the mesh needs to be. In principle the condition 𝜎𝑠,𝑛 = 𝜎𝑓,𝑛

is valid in the continuous formulation in this situation. As the singular behaviour of 𝜎𝑓,𝑛 might however not be
accurately captured on coarser grids, it makes sense to re-inforce the fluid force by the contact force [𝑃𝛾 ]+, if
the line Γ𝜖 is passed, which indicates a failure of the force 𝜎𝑓,𝑛 to prevent contact.

In both these situations our idea to impose a virtual barrier Γ𝜖 for the solid at a very small distance 𝜖 to Γ𝑤

permits numerical simulations already on reasonably coarse grids. In the numerical examples we will place the
obstacle line at a distance 𝛼 = 𝜖(ℎ) to Γ𝑤, see Figure 3 on the left. We assume that 𝜖(ℎ) → 0, as the mesh size
ℎ tends to zero. The variational formulation is given by (3.11), where 𝛼 = 𝜖(ℎ), i.e.

𝑔𝛼(𝑥2) = 𝑔𝜖(ℎ)(𝑥2) = 𝑔0(𝑥2)− 𝜖(ℎ).

Besides its simplicity, the main advantages of this contact formulation are:

– The numerical difficulties related to a topology change of the fluid domain are simplified.
– No-slip conditions can be used on both Γ(𝑡) and the lower wall Γ𝑤.
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Figure 3. Illustration of the two approaches to include contact. Left : relaxed contact formu-
lation: Body in contact with an obstacle line Γ𝜖 close to Γ𝑤. Right : introduction of an artificial
fluid domain Ω𝐶

𝑓 below Γ𝑤.

4.2. Contact formulation using an artificial fluid

As a second possibility, we add an artificial fluid domain Ω𝐶
𝑓 below Γ𝑤, see the right sketch of Figure 3, and

allow for a small, asymptotically for ℎ → 0 vanishing penetration into Ω𝐶
𝑓 . For the extension, we use a Stokes

equation in combination with a penalty for the velocity 𝑢 that drives the penetration to zero with ℎ → 0. This
can be seen as a porous medium model with asymptotically vanishing permeability.
The variational formulation reads:

Variational Formulation 2. Find 𝑢 ∈ 𝒱ℎ, 𝑝 ∈ 𝒬ℎ, 𝑑 ∈ 𝒲ℎ such that 𝑑 = 𝜕𝑡𝑑 and

𝒜𝐶
𝐹𝑆𝐼,*(𝑢, 𝑝, 𝑑, 𝑑)(𝑣, 𝑞, 𝑤) + 𝛾𝐶 ([𝑃𝛾(𝜆, 𝑑)]+, 𝑤 · 𝑛𝑤)Γ(𝑡)

= (𝑓𝑓 , 𝑣)Ω𝑓 (𝑡) + (𝑓𝑠, 𝑤)Ω𝑠(𝑡) ∀𝑣, 𝑞, 𝑤 ∈ 𝒱ℎ ×𝒬ℎ ×𝒲ℎ,
(4.1)

where in the no-slip case

𝒜𝐶
fsi,no-slip(𝑢, 𝑝, 𝑑, 𝑑)(𝑣, 𝑞, 𝑤) :=

(︀
𝜕𝑡𝑢, 𝑣

)︀
Ω𝑓 (𝑡)∪Ω𝐶

𝑓

+ 𝑎𝐶
𝑓 (𝑢, 𝑝; 𝑣, 𝑞) + 𝛾𝑎(𝑢, 𝑣)Ω𝐶

𝑓
+
(︁
𝜕𝑡𝑑, 𝑤

)︁
Ω𝑠(𝑡)

+ (𝜎𝑠(𝑑),∇𝑤)Ω𝑠(𝑡) −
(︁
𝑇𝑓 (𝑢, 𝑝, 𝑑), 𝑤 − 𝑣

)︁
Γ(𝑡)

−
(︁
𝑑− 𝑢, 𝜎𝑓 (𝑣,−𝑞)𝑛

)︁
Γ(𝑡)

(4.2)

and for slip interface conditions

𝒜𝐶
fsi,slip(𝑢, 𝑝, 𝑑, 𝑑)(𝑣, 𝑞, 𝑤) :=

(︀
𝜕𝑡𝑢, 𝑣

)︀
Ω𝑓 (𝑡)∪Ω𝐶

𝑓

+ 𝑎𝐶
𝑓 (𝑢, 𝑝; 𝑣, 𝑞) + 𝛾𝑎(𝑢, 𝑣)Ω𝐶

𝑓
+
(︁
𝜕𝑡𝑑, 𝑤

)︁
Ω𝑠(𝑡)

+ (𝜎𝑠(𝑑),∇𝑤)Ω𝑠(𝑡)

−
(︁
𝑇𝑓 (𝑢, 𝑝, 𝑑) · 𝑛, (𝑤 − 𝑣) · 𝑛

)︁
Γ(𝑡)

−
(︁

(𝑑− 𝑢) · 𝑛, 𝑛𝑇 𝜎𝑓 (𝑣,−𝑞)𝑛
)︁

Γ(𝑡)
.

(4.3)
Note the presence of the penalty term 𝛾𝑎(𝑢, 𝑣)Ω𝐶

𝑓
within the artificial fluid, where 𝛾𝑎 := 𝛾0

𝑎ℎ𝛽 for 𝛽 > 0. The
fluid bilinear form is defined in Ω𝑓 (𝑡) ∪ Ω𝐶

𝑓

𝑎𝐶
𝑓 (𝑢, 𝑝; 𝑣, 𝑞) := (𝜎𝑓 (𝑢, 𝑝),∇𝑣)Ω𝑓 (𝑡)∪Ω𝐶

𝑓
+ (div 𝑢, 𝑞)Ω𝑓 (𝑡)∪Ω𝐶

𝑓
+ 𝑆(𝑝, 𝑞).

Remark 4.1 (Porous medium analogy). The penalisation used in Variational Formulation 2 corresponds to
the so-called penalty approach that is sometimes used for the coupling of free flow and flow through porous
medium [25,48]. There, the Stokes equations in the fluid part Ω𝑓 and the Darcy equations in the porous medium
Ω𝑝 (which corresponds to Ω𝐶

𝑓 ) are formulated simultaneously in the whole domain Ω = Ω𝑓 ∪Ω𝑝 in the spirit of
the volume penalty approach

𝜕𝑡𝑢− 𝜇∆𝑢 +∇𝑝 +
𝜇

𝐾
𝑢𝜒Ω𝑝

= 0, ∇ · 𝑢 = 0 in Ω,
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where 𝐾 denotes the permeability of the porous medium and 𝜒Ω𝑝
is the characteristic function of the domain Ω𝑝.

In this sense the artificial fluid in our approach can be seen as a porous medium with asymptotically vanishing
permeability 𝐾 = 𝒪(ℎ𝛽). A mathematical justification of this penalisation has been given by Angot [3]. Below
we will choose the parameter 𝛽 = 2, which is optimal in terms of the conditioning of the system. Following the
argumentation of Angot a larger choice of 𝛽 is also reasonable, with an optimal convergence rate reached for
𝛽 = 4.

4.2.1. Discussion of the weakly imposed interface conditions: The no-slip case

We have already derived the weakly imposed interface conditions for the no-slip case in Section 3.1. Here,
however, we have to consider that the fluid below the contact line is artificial, and we should in particular make
sure that there is no feedback from the artificial fluid to the solid. In other words, we want that the artificial
fluid acts as a slave to the solid during contact. Owing to (3.14), this naturally motivates the choice of 𝜆 in
terms of the numerical stresses.

First, we note that the continuity of velocities (3.12) is imposed from the fluid side, such that no feedback
to the solid is included from this equation. Considering the contact condition for the normal contact (3.14), we
obtain

𝛾𝐶(𝑑 · 𝑛𝑤 − 𝑔0) + 𝛾fsi(𝑑− 𝑢) · 𝑛𝑤 = 0 (4.4)

when choosing 𝜆 = J𝜎𝑛K. Instead of the condition 𝑑·𝑛𝑤 = 𝑔0, this induces an influence from the artificial velocity
𝑢 from Ω𝐶

𝑓 onto the solid displacement. Moreover, if 𝑢 is driven to zero in Ω𝐶
𝑓 , 𝑑 ·𝑛𝑤 goes to zero as well, which

might prevent the body from releasing from contact. On the other hand, using the jump of fluxes 𝜆 = J̃︀𝜎𝑛K, we
obtain the “pure” contact condition

𝑑 · 𝑛𝑤 = 𝑔0 (4.5)

as desired.
The weakly imposed tangential contact condition (3.13) reads

𝜏𝑇
𝑤 𝜎𝑠𝑛 + 𝛾fsi𝑑 · 𝜏𝑤 = 0, (4.6)

when considering that the fluid velocity 𝑢 is driven to zero asymptotically. As 𝛾fsi →∞ for ℎ → 0, this means
(asymptotically) that the solid is not allowed to slide along the line Γ𝑤. While this might seem restrictive at
first sight, this condition is in fact in some sense inherited from the no-slip condition at Γ(𝑡) before contact.
This is due to the continuity of velocities on Γfsi(𝑡) and the fact that the velocity is driven to zero in Ω𝐶

𝑓 (and
hence on Γ𝑤). Moreover, the no-slip condition on the fluid part of Γ𝑤 implies that the solid can not slide on the
end points 𝑥𝐶,1 and 𝑥𝐶,2 of the contact interval (see Fig. 3, right sketch). Altogether, this shows in agreement
with a number of theoretical works (e.g. [36]) that the no-slip interface conditions are not an appropriate model
for the case that it comes to contact with an exterior wall.

Remark 4.2 (Relation of the two contact formulations). The relaxed contact formulation derived in Section 4.1
can also be seen as an extension of the fluid forces 𝜎𝑓 to a region below the contact line (here Γ𝜖), namely by
using the Stokes equations in the extended domain. We will see in the numerical examples below that the two
approaches yield similar results. In this way the use of the relaxed contact formulation might be justified also
in cases, where real contact with the wall is expected. Moreover, it would be enough to use the extension in the
artificial fluid approach only in a small layer of size 𝒪(𝜖).

Remark 4.3 (Lagrange multiplier formulation). A further possibility would be to keep the Lagrange multiplier
𝜆 in the variational formulation (3.7) and (3.8) and to discretise additionally the Lagrange multiplier space, as
in [37,51] for the pure FSI case. Due to the difficulties concerning the discrete inf-sup stability and the additional
computational effort, we will, however, not consider this alternative in the remainder of this work.
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4.3. Slip conditions

Motivated by the above considerations, we study slip conditions in this section. The arguments that follow
can be applied to the formulations proposed in Sections 3 and 4.

Observe that in the continuous case the discussion of (3.1) and (3.2) remains valid in the case of contact with
slip conditions (noting that the tangential stresses vanish on both sides of the fluid-solid interfaces). However,
at the discrete level, care has to be taken to use only the normal component of the numerical stress. Indeed, in
this case the relation (3.2) becomes

(𝑛𝑇 J𝜎𝑛K)𝑛− 𝜆𝑛𝑤 = 0 on Γ(𝑡), (4.7)

which yields 𝜆 = (𝑛𝑇 J𝜎𝑛K)(𝑛 · 𝑛w) =: J𝜎𝑛,slipK.
At the discrete level, using the numerical stress this expression translates to

𝜆 = (𝑛𝑇 J̃︀𝜎𝑛K)(𝑛 · 𝑛w) =: J̃︀𝜎𝑛,slipK, (4.8)

where the jump operator is given by (3.9). The resulting discrete formulations are given by Variational Formu-
lation 1 or Variational Formulation 2, respectively, with the respective choice of 𝜆.

4.3.1. Weakly imposed interface conditions: The slip case

Let us consider again which interface conditions are implicitly included in the variational formulation,when
using the numerical stresses (4.8) for 𝜆. Considering the interface terms with fluid test function 𝑣 yields as usual
the interface conditions 𝜏𝑇 𝜎𝑓𝑛 = 0 and (𝑑− 𝑢) ·𝑛 = 0. Let us therefore concentrate on the terms with the solid
test function 𝑤

(𝜎𝑠𝑛, 𝑤)Γ(𝑡) − (𝑇𝑓 · 𝑛, 𝑤 · 𝑛)Γ(𝑡) + 𝛾𝐶([ ̃︀𝑃𝛾 ]+, 𝑤 · 𝑛𝑤)Γ(𝑡) = 0.

In the case without contact, the last term vanishes and hence we retrieve the standard consistency of Nitsche’s
method for fluid-structure interaction with slip conditions. On the other hand, by developing the solid test
function 𝑤 in the local basis of Γ(𝑡) we have

(𝜏𝑇 𝜎𝑠𝑛, 𝑤 · 𝜏)Γ(𝑡) + ((𝑛𝑇 J̃︀𝜎𝑛K), 𝑤 · 𝑛)Γ(𝑡) + 𝛾𝐶([𝑃𝛾(𝑑, 𝜆)]+, 𝑤 · 𝑛𝑤)Γ(𝑡) = 0.

Now, we use the identity 𝑛 = (𝑛 · 𝑛𝑤)𝑛𝑤 + (𝑛 · 𝜏𝑤)𝜏𝑤 to get(︀
𝜏𝑇 𝜎𝑠𝑛, 𝑤 · 𝜏

)︀
Γ(𝑡)

+
(︀
(𝑛𝑇 J̃︀𝜎𝑛K), (𝑤 · 𝜏𝑤)(𝑛 · 𝜏𝑤)

)︀
Γ(𝑡)

+
(︀
(𝑛𝑇 J̃︀𝜎𝑛K), (𝑤 · 𝑛𝑤)(𝑛 · 𝑛𝑤)

)︀
Γ(𝑡)

+ 𝛾𝐶([𝑃𝛾(𝑑, 𝜆)]+, 𝑤 · 𝑛𝑤)Γ(𝑡) = 0.

Hence, in the case of contact by using the definition of 𝑃𝛾

(𝜏𝑇 𝜎𝑠𝑛, 𝑤 · 𝜏)Γ(𝑡) + ((𝑛𝑇 J̃︀𝜎𝑛K), (𝑤 · 𝜏𝑤)(𝑛 · 𝜏𝑤))Γ(𝑡) + 𝛾𝐶(𝑑 · 𝑛𝑤 − 𝑔0, 𝑤 · 𝑛𝑤)Γ(𝑡) = 0. (4.9)

When it comes to contact, we have in the asymptotic limit 𝜏𝑤 = 𝜏 and 𝑛 · 𝜏𝑤 = 0, so that (4.9) reduces to the
“no-friction” condition 𝜏𝑇 𝜎𝑠𝑛 = 0 and the non-penetration condition 𝑑 · 𝑛𝑤 = 𝑔0. This is the desired contact
condition, as in the no-slip case, see (4.5).

We observe that in (4.9) both the tangential and the normal components (with respect to 𝜏𝑤 and 𝑛𝑤) have
asymptotically vanishing perturbations. It is possible to eliminate the perturbation in the normal component,
from the solid stress term (𝜏𝑇 𝜎𝑠𝑛, 𝑤 · 𝜏)Γ(𝑡), by adding the corresponding term to the definition of 𝜆, i.e.

𝜆 = J̃︀𝜎𝑛,slipK + (𝜏𝑇 𝜎𝑠𝑛)(𝜏 · 𝑛𝑤). (4.10)

In this case the relation (4.9) takes the form

(𝜏𝑇 𝜎𝑠𝑛, 𝑤 · 𝜏𝑤(𝜏 · 𝜏𝑤))Γ(𝑡) + ((𝑛𝑇 J̃︀𝜎𝑛K), (𝑤 · 𝜏𝑤)(𝑛 · 𝜏𝑤))Γ(𝑡) + 𝛾𝐶(𝑑 · 𝑛𝑤 − 𝑔0, 𝑤 · 𝑛𝑤)Γ(𝑡) = 0.

Testing with 𝑤 = 𝑛𝑤 we see that here the non-penetration condition 𝑑 · 𝑛𝑤 = 𝑔0 is imposed unperturbed for all
ℎ > 0. By moving the perturbation to 𝜆 as in (4.10) it is instead the form 𝑃𝛾 that is perturbed, which implies
a (weakly consistent) perturbation of the contact zone.
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5. Stability

In this work, we will use fitted finite elements, i.e. we assume that both the interface Γ(𝑡) and the wall Γ𝑤 are
resolved by mesh lines. The approaches presented, however, can be combined with unfitted finite elements as
well, with the only difference that some more stabilisation terms have to be added to the variational formulation.
In order to simplify the presentation, we will concentrate on the fitted case first and discuss the extension to
unfitted finite elements in a remark afterwards.

We will use equal-order finite elements in combination with a pressure stabilisation term 𝑆𝑝(𝑝, 𝑞) for the fluid
equations. For the stability analysis, the only requirement on 𝑆𝑝 is that it leads to a well-posed discrete fluid
problem. Possibilities include the Brezzi–Pitkäranta stabilisation [10], local projections (LPS) [5], the pressure-
stabilised Petrov–Galerkin approach (PSPG) [47] or the Continuous Interior Penalty method (CIP) [14]).

In order to present the stability analysis in a general setting, we introduce some further notation splitting
the contact force variable 𝜆 into a fluid part 𝜆𝑓 and a solid part 𝜆𝑠, such that 𝜆 = 𝜆𝑠−𝜆𝑓 . For the no-slip case,
we define 𝜆𝑠(𝑤) = 𝜎𝑠,𝑛(𝑤) and

𝜆𝑓 (𝑣, 𝑞, 𝑤) =

{︃
𝜎𝑓,𝑛(𝑣, 𝑞), if 𝜆 = J𝜎𝑛K,
𝑇𝑓 (𝑣, 𝑞, 𝑤) · 𝑛, if 𝜆 = J�̃�𝑛K,

(5.1)

see (3.4) and (3.8). For the slip case, we define 𝜆𝑠(𝑤) = 𝜎𝑠,𝑛(𝑤)(𝑛 · 𝑛𝑤) and

𝜆𝑓 (𝑣, 𝑞, 𝑤) =

{︃
𝜎𝑓,𝑛(𝑣, 𝑞)(𝑛 · 𝑛𝑤), if 𝜆 = J𝜎𝑛,slipK,
(𝑇𝑓 (𝑣, 𝑞, 𝑤) · 𝑛)(𝑛 · 𝑛𝑤), if 𝜆 = J̃︀𝜎𝑛,slipK,

(5.2)

see (4.7) and (4.8).

5.1. Generalised contact formulation

Before we conduct the stability analysis, let us introduce a generalised contact formulation, following the
ideas of Chouly et al. [22]. We have already briefly discussed their ideas for the case of a pure solid with contact
in (2.14). The generalisation of (2.14) to the FSI-contact system (Variational Formulation 2) would be to add
the terms

− (𝛾𝐶 [𝑃𝛾(𝜆, 𝑑)]+ + 𝜆, 𝜆(𝜕𝑡𝑣, 𝜕𝑡𝑞, 𝑤))Γ(𝑡) . (5.3)

The time derivatives on the test functions 𝑣 and 𝑞 are motivated by the stability analysis below, where we have
to test the variational form with 𝑣 = 𝑢, 𝑞 = 𝑝 and 𝑤 = 𝜕𝑡𝑑, in order to show stability (see also Burman and
Fernández [13]).

On the other hand, the term (5.3) is not usable within a time-stepping scheme due to the time derivatives
on the test functions. A remedy is to shift the time derivatives to the first integrand (ignoring the boundary
terms), i.e. adding the consistent terms

− (𝛾𝐶 [𝑃𝛾(𝜆, 𝑑)]+ + 𝜆, 𝜆𝑠(𝑤))Γ(𝑡)− (𝜕𝑡 (𝛾𝐶 [𝑃𝛾(𝜆, 𝑑)]+ + 𝜆) , 𝜆𝑓 (𝑣, 𝑞, 𝑤))Γ(𝑡) .

This yields the variational formulation:

Variational Formulation 3. Find 𝑢(𝑡) ∈ 𝒱ℎ, 𝑝(𝑡) ∈ 𝒬ℎ, 𝑑(𝑡) ∈ 𝒲ℎ, such that 𝑑 = 𝜕𝑡𝑑 and

𝒜(𝑢, 𝑝, 𝑑)(𝑣, 𝑞, 𝑤) := 𝒜**,𝐹𝑆𝐼(𝑢, 𝑝, 𝑑)(𝑣, 𝑞, 𝑤) + 𝛾𝐶 ([𝑃𝛾(𝜆, 𝑑)]+, 𝑤 · 𝑛𝑤)Γ(𝑡)−𝜃 (𝛾𝐶 [𝑃𝛾(𝜆, 𝑑)]+ + 𝜆, 𝜆𝑠(𝑤))Γ(𝑡)

− 𝜃 (𝜕𝑡 (𝛾𝐶 [𝑃𝛾(𝜆, 𝑑)]+ + 𝜆) , 𝜆𝑓 (𝑣, 𝑞, 𝑤))Γ(𝑡)

= (𝑓𝑓 , 𝑣)Ω𝑓 (𝑡) + (𝑓𝑠, 𝑤)Ω𝑠(𝑡) ∀𝑣, 𝑞, 𝑤 ∈ 𝒱ℎ ×𝒬ℎ ×𝒲ℎ,

(5.4)
where 𝒜**,FSI is one of the bilinear forms 𝒜no-slip,FSI,𝒜slip,FSI,𝒜𝐶

no-slip,FSI or 𝒜𝐶
slip,FSI.
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5.2. A stability result

In this section, we will investigate stability of the discrete formulation for different values of 𝜃. In particular,
we will show a stability result for the symmetric formulation (𝜃 = 1) and stability up to a specific term in
the general case (including 𝜃 = 0). These results correspond to the results that have been obtained by Chouly
et al. [22] for the pure solid case. For the stability analysis, we will assume infinitesimal displacements, i.e. the
sub-domains Ω𝑓 and Ω𝑠 as well as the interface Γ are fixed. We introduce the notation ̃︀Ω𝑓 = Ω𝑓 ∪ Ω𝐶

𝑓 for the
combined fluid and artificial fluid domain and set Ω𝐶

𝑓 = ∅ for the relaxed approach.

Theorem 5.1. Let 𝑢, 𝑝, 𝑑 ∈ 𝑉ℎ and 𝑑 = 𝜕𝑡𝑑. We have the following stability result for the form 𝒜 defined in
(5.4), where 𝜃 ∈ [−1, 1] and 𝛾0

𝐶 sufficiently large

‖𝑢(𝑇 )‖2̃︀Ω𝑓
+ ‖𝑑(𝑇 )‖2Ω𝑠

+ ‖𝑑(𝑇 )‖2𝐻1(Ω𝑠) +
∫︁ 𝑇

0

(︁
𝜈𝑓‖∇𝑢‖2̃︀Ω𝑓

+ 𝑆𝑝(𝑝, 𝑝) + 𝛾𝑎‖𝑢‖2Ω𝐶
𝑓

)︁
d𝑡

+
∫︁ 𝑇

0

𝛾fsi‖(𝑑− 𝑢) · 𝑛‖2Γ d𝑡 + 𝜃
⃦⃦⃦
𝛾
−1/2
𝐶 𝜆(𝑇 ) + 𝛾

1/2
𝐶 [𝑃𝛾(𝜆, 𝑑)]+(𝑇 )

⃦⃦⃦2

Γ

≤ 𝐶

(︃∫︁ 𝑇

0

𝒜(𝑢, 𝑝, 𝑑; 𝑢, 𝑝, 𝑑) − (1− 𝜃)𝛾𝐶

(︁
[𝑃𝛾(𝜆, 𝑑)]+, 𝑑 · 𝑛𝑤

)︁
Γ

d𝑡 + ‖𝑢0‖2̃︀Ω𝑓

+ ‖𝑑0‖2Ω𝑠
+ ‖𝑑0‖2𝐻1(Ω𝑠) + 𝜃

⃦⃦⃦
𝛾
−1/2
𝐶 𝜆0 + 𝛾

1/2
𝐶 [𝑃𝛾(𝜆0, 𝑑0)]+

⃦⃦⃦2

Γ

)︃
,

where we have used the abbreviation 𝜆0 := 𝜆(𝑢0, 𝑝0, 𝑑0). For the no-slip case, the term ‖(𝑑 − 𝑢) · 𝑛‖Γ can be
replaced by ‖(𝑑− 𝑢)‖Γ.

Remark 5.2 (Contact terms). The second line gives us control over the satisfaction of the FSI-contact condition
for 𝜃 > 0. In contrast to the work by Chouly et al. [22] for a pure solid problem, we obtain here discrete stability
for 𝜃 = 1, for the following positive discrete energy

𝐸(𝑇 ) := ‖𝑢(𝑇 )‖2̃︀Ω𝑓
+ ‖𝑑(𝑇 )‖2Ω𝑠

+ ‖𝑑(𝑇 )‖2𝐻1(Ω𝑠) +
⃦⃦⃦
𝛾
−1/2
𝐶 𝜆(𝑇 ) + 𝛾

1/2
𝐶 [𝑃𝛾(𝜆, 𝑑)]+(𝑇 )

⃦⃦⃦2

Γ
.

For 𝜃 ̸= 1 on the other hand, the contact term (1− 𝜃)𝛾𝐶

(︁
[𝑃𝛾(𝜆, 𝑑)]+, 𝑑 · 𝑛𝑤

)︁
Γ

appears on the right-hand side.
For 𝜃 < 0 we have additionally a negative contribution on the left-hand side. Both issues are directly inherited
from the pure solid mechanical case, see [21]. The last term on the right-hand side vanishes, if we assume that
the contact conditions are fulfilled at initial time, for example if the solid is not in contact with at 𝑡 = 0.

Proof. We test (5.4) with 𝑤 = 𝑑 = 𝜕𝑡𝑑, 𝑣 = 𝑢 and 𝑞 = 𝑝 and integrate in time. We start by deriving a lower
bound for 𝒜**,FSI. For the fluid part, we use the techniques from Burman and Fernandez [13], to show coercivity
of the Stokes part including the coupling terms. For the no-slip case, the authors have shown that

𝑎𝐶
𝑓 (𝑢, 𝑝; 𝑢, 𝑝) + 𝛾𝑎(𝑢, 𝑢)Ω𝐶

𝑓
− (𝜎𝑓 (𝑢, 𝑝)𝑛, 𝑑− 𝑢)Γ − (𝑑− 𝑢, 𝜎𝑓 (𝑢,−𝑝)𝑛)Γ + 𝛾fsi‖𝑑− 𝑢‖2Γ

≥ 𝑐
(︁
𝜈𝑓‖∇𝑢‖2̃︀Ω𝑓

+ 𝛾fsi‖𝑑− 𝑢‖2Γ + 𝑆𝑝(𝑝, 𝑝) + 𝛾𝑎‖𝑢‖2Ω𝐶
𝑓

)︁
.

Analogously, one can show in the slip-case that

𝑎𝐶
𝑓 (𝑢, 𝑝; 𝑢, 𝑝) + 𝛾𝑎(𝑢, 𝑢)Ω𝐶

𝑓
− (𝑛𝑇 𝜎𝑓 (𝑢, 𝑝)𝑛, (𝑑− 𝑢) · 𝑛)Γ − ((𝑑− 𝑢) · 𝑛, 𝑛𝑇 𝜎𝑓 (𝑢,−𝑝)𝑛)Γ + 𝛾fsi‖(𝑑− 𝑢) · 𝑛‖2Γ

≥ 𝑐
(︁
𝜈𝑓‖∇𝑢‖2̃︀Ω𝑓

+ 𝛾fsi‖(𝑑− 𝑢) · 𝑛‖2Γ + 𝑆𝑝(𝑝, 𝑝) + 𝛾𝑎‖𝑢‖2Ω𝐶
𝑓

)︁
.
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Using the symmetry of 𝜎𝑠, integration in time and a Korn’s inequality, we obtain for the solid part

∫︁ 𝑇

0

(𝜎𝑠(𝑑),∇𝑑)Ω𝑠
d𝑡 =

1
2

∫︁ 𝑇

0

𝜕𝑡(𝜎𝑠(𝑑),∇𝑑)Ω𝑠
d𝑡 =

1
2

((𝜎𝑠(𝑑(𝑇 )),∇𝑑(𝑇 ))Ω𝑠
− (𝜎𝑠(𝑑(0)),∇𝑑(0))Ω𝑠

)

≥ 𝑐1‖∇𝑑(𝑇 )‖2Ω𝑠
− 𝑐2‖∇𝑑0‖2Ω𝑠

.

Moreover, we have

∫︁ 𝑇

0

(𝜕𝑡𝑢, 𝑢)̃︀Ω𝑓
+ (𝜕𝑡𝑑, 𝑑)Ω𝑠

d𝑡 =
1
2

(︁
‖𝑢(𝑇 )‖2̃︀Ω𝑓

+ ‖𝑑(𝑇 )‖2Ω𝑠
− ‖𝑢0‖2̃︀Ω𝑓

− ‖𝑑0‖2Ω𝑠

)︁
.

Together, we have shown that

‖𝑢(𝑇 )‖2̃︀Ω𝑓
+ ‖𝑑(𝑇 )‖2Ω𝑠

+ ‖𝑑(𝑇 )‖2𝐻1(Ω𝑠) +
∫︁ 𝑇

0

𝜈𝑓‖∇𝑢‖2̃︀Ω𝑓
+ 𝑆𝑝(𝑝, 𝑝) + 𝛾𝑎‖𝑢‖2Ω𝐶

𝑓
+ 𝛾fsi‖𝑑− 𝑢‖2Γ d𝑡

≤ 𝐶

(︃∫︁ 𝑇

0

𝒜**,𝐹𝑆𝐼(𝑢, 𝑝, 𝑑; 𝑢, 𝑝, 𝑑) d𝑡 + ‖𝑢0‖2̃︀Ω𝑓
+ ‖𝑑0‖2Ω𝑠

+ ‖𝑑0‖2𝐻1(Ω𝑠)

)︃
.

Let us now estimate the contact terms. We split the principal contact term into

∫︁ 𝑇

0

𝛾𝐶

(︁
[𝑃𝛾(𝜆, 𝑑)]+, 𝑑 · 𝑛𝑤

)︁
Γ

d𝑡 =
∫︁ 𝑇

0

𝜃𝛾𝐶

(︁
[𝑃𝛾(𝜆, 𝑑)]+, 𝑑 · 𝑛𝑤

)︁
Γ

+ (1− 𝜃)𝛾𝐶

(︁
[𝑃𝛾(𝜆, 𝑑)]+, 𝑑 · 𝑛𝑤

)︁
Γ

d𝑡.

We have to estimate the terms

𝜃

∫︁ 𝑇

0

𝛾𝐶

(︁
[𝑃𝛾(𝜆, 𝑑)]+, 𝑑 · 𝑛𝑤

)︁
Γ⏟  ⏞  

𝐼1

−
(︁
𝛾𝐶 [𝑃𝛾(𝜆, 𝑑)]+ + 𝜆, 𝜆𝑠(𝑑)

)︁
Γ⏟  ⏞  

𝐼2

−
(︁
𝜕𝑡 (𝛾𝐶 [𝑃𝛾(𝜆, 𝑑)]+ + 𝜆) , 𝜆𝑓 (𝑢, 𝑝, 𝑑)

)︁
Γ⏟  ⏞  

𝐼3

d𝑡.

(5.5)

From the definition of 𝑃𝛾 we can write 𝑑 · 𝑛𝑤 = 𝑃𝛾(𝜆, 𝑑) + 𝛾−1
𝐶 𝜆. Hence, since the lower wall is assumed to be

time independent, we have

∫︁ 𝑇

0

𝐼1 d𝑡 = 𝛾𝐶

∫︁ 𝑇

0

(︀
[𝑃𝛾(𝜆, 𝑑)]+, 𝜕𝑡(𝑃𝛾(𝜆, 𝑑) + 𝛾−1

𝐶 𝜆)
)︀
Γ

d𝑡

= 𝛾𝐶

∫︁ 𝑇

0

(︀
[𝑃𝛾(𝜆, 𝑑)]+, 𝜕𝑡([𝑃𝛾(𝜆, 𝑑)]+ + 𝛾−1

𝐶 𝜆)
)︀
Γ

d𝑡.

In the second line, we have used that [22]

1
2
𝜕𝑡[𝜑]2+ = [𝜑]+𝜕𝑡[𝜑]+ = [𝜑]+𝐻(𝜑)𝜕𝑡[𝜑]+ = [𝜑]+𝜕𝑡𝜑
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where 𝐻 is the Heaviside function. We insert ±𝛾−1
𝐶 𝜆 and integrate by parts∫︁ 𝑇

0

𝐼1 d𝑡 = 𝛾𝐶

∫︁ 𝑇

0

(︀
[𝑃𝛾(𝜆, 𝑑)]+ + 𝛾−1

𝐶 𝜆, 𝜕𝑡([𝑃𝛾(𝜆, 𝑑)]+ + 𝛾−1
𝐶 𝜆)

)︀
Γ

d𝑡

−
∫︁ 𝑇

0

(︀
𝜆, 𝜕𝑡([𝑃𝛾(𝜆, 𝑑)]+ + 𝛾−1

𝐶 𝜆)
)︀
Γ⏟  ⏞  

𝐼4

d𝑡

=
𝛾𝐶

2
‖[𝑃𝛾(𝜆, 𝑑)(𝑇 )]+ + 𝛾−1

𝐶 𝜆(𝑇 )‖20,Γ⏟  ⏞  
𝐷𝑇

− 𝛾𝐶

2
‖[𝑃𝛾(𝜆0, 𝑑0)]+ + 𝛾−1

𝐶 𝜆0‖20,Γ⏟  ⏞  
𝐷0

−
∫︁ 𝑇

0

𝐼4 d𝑡.

Now the idea is to split the contribution from the term 𝐼4 into fluid and solid stresses and to apply integrating
by parts in time (only) in the solid stress contribution. By definition, we have

−
∫︁ 𝑇

0

𝐼4 d𝑡 =−
∫︁ 𝑇

0

(︀
𝜆𝑠(𝑑), 𝜕𝑡([𝑃𝛾(𝜆, 𝑑)]+ + 𝛾−1

𝐶 𝜆)
)︀
Γ

+
(︀
𝜆𝑓 (𝑢, 𝑝, 𝑑), 𝜕𝑡([𝑃𝛾(𝜆, 𝑑)]+ + 𝛾−1

𝐶 𝜆)
)︀
Γ

d𝑡

and, by integrating by parts in the first term of the right-hand side, we have

−
∫︁ 𝑇

0

𝐼4 d𝑡 =
∫︁ 𝑇

0

(︀
𝜆𝑠(𝑑), [𝑃𝛾(𝜆, 𝑑)]+ + 𝛾−1

𝐶 𝜆
)︀
Γ⏟  ⏞  

𝐼5

d𝑡−
(︀
𝜆𝑠(𝑑(𝑇 )), [𝑃𝛾(𝜆, 𝑑)(𝑇 )]+ + 𝛾−1

𝐶 𝜆(𝑇 )
)︀
Γ⏟  ⏞  

𝐼6

+
(︀
𝜆𝑠(𝑑0), [𝑃𝛾(𝜆0, 𝑑0)]+ + 𝛾−1

𝐶 𝜆0

)︀
Γ⏟  ⏞  

𝐼7

+
∫︁ 𝑇

0

(︀
𝜆𝑓 (𝑢, 𝑝, 𝑑), 𝜕𝑡([𝑃𝛾(𝜆, 𝑑)]+ + 𝛾−1

𝐶 𝜆)
)︀
Γ⏟  ⏞  

𝐼8

d𝑡.

The terms 𝐼5 and 𝐼8 cancel with the terms 𝐼2 and 𝐼3 in (5.5). The term 𝐼6 is treated in a standard fashion
using Young’s inequality, an inverse inequality and the dissipation provided by 𝐷𝑇 and the elastic energy
1
2𝑎s(𝑑(𝑇 ), 𝑑(𝑇 )) for 𝛾0

𝐶 sufficiently large. For 𝜃 > 0, we estimate

𝐼6 ≥ −𝛾−1
𝐶 ‖𝜆𝑠(𝑑(𝑇 ))‖20,Γ −

𝛾𝐶

4
‖[𝑃𝛾(𝜆(𝑇 ), 𝑑(𝑇 ))]+ + 𝛾−1

𝐶 𝜆(𝑇 )‖20,Γ

≥ −1
4
‖𝑑(𝑇 )‖2𝐻1(Ω𝑠) −

1
2
𝐷𝑇 .

In the same way, we get the upper bound

𝐼6 ≤
1
4
‖𝑑(𝑇 )‖2𝐻1(Ω𝑠) +

1
2
𝐷𝑇 ,

which is needed in the case 𝜃 < 0. For 𝐼7 we obtain analogously

−1
4
‖𝑑0‖2𝐻1(Ω𝑠) −

1
2
𝐷0 ≤ 𝐼7 ≤

1
4
‖𝑑0‖2𝐻1(Ω𝑠) +

1
2
𝐷0,

which completes the proof. �

Remark 5.3 (Unfitted finite elements). When using unfitted finite elements [13, 15], additional stabilisation
terms 𝑆𝑢 and 𝑆𝑑 are needed, if the interface Γ(𝑡) is not resolved by mesh lines. Their purpose is to extend the
coercivity of the fluid system from Ω𝑓 (resp. Ω𝑠) to the extended domains Ω𝑓

ℎ (resp. Ω𝑠
ℎ) that consists of all

element 𝑇 ∈ 𝒯ℎ, with a non-empty intersection with the respective sub-domain (𝑇 ∩ Ω𝑖 ̸= ∅). Suitable “ghost
penalty” operators have been defined in Burman [12]. The same stability result as in Theorem 5.1 can then be
shown with an analogous argumentation.
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Remark 5.4 (Newton convergence). While the symmetric formulation (𝜃 = 1) seems beneficial from the the-
oretical point of view, the additional terms in (5.4) can cause severe difficulties for the non-linear solver. The
reason is that the additional contact terms are not only highly non-linear, but also non-smooth, especially due
to the time derivative acting on the maximum operator 𝜕𝑡[·]+. In our numerical tests, we were not able to obtain
numerical convergence for different versions of generalised Newton methods [52]. The investigation of the case
𝜃 ̸= 1 by means of numerical tests and in particular the construction of a robust non-linear solver are subject
to future research.

6. Numerical results

In this section, we show some numerical results to analyse and to compare the different contact formulations.
As mentioned in Remark 5.4, we were not able to obtain results for the generalised contact formulation with
𝜃 ̸= 0, due to divergence of the generalised Newton-type methods we have tried. Therefore, we only show results
for 𝜃 = 0, where Newton convergence was not an issue, at least when the time step 𝛿𝑡 was chosen reasonably
small. Following the standard approach for contact in solid mechanics, we could in this case simply ignore the
non-differentiability of the maximum operator when computing the Newton derivatives, as the term 𝑃𝛾 inside
the bracket [·]+ is in practice typically never exactly zero. For all other values of 𝑃𝛾 the derivatives are well-
defined. In the computations made for this paper, the Newton algorithm needed 1–2 iterations per time step to
reduce the initial residual by a factor of 10−7, if the contact force was not getting active during the iteration, and
1–5 iterations per time step in and around the interval of contact. This makes the method highly competitive
in terms of computational costs compared to approaches using Lagrange multipliers and/or active-sets.

We first give some details in Section 6.1 on the fitted, equal-order finite element discretisation and the
stabilisations we use. Then, in Section 6.2, we study the problem of a virtual obstacle within the fluid domain
introduced in Section 3. The purpose of this example is to isolate the effect of the contact terms from issues
related to discretisation during contact and the topology change in the fluid domain Ω𝑓 (𝑡). Then, we study in
Section 6.3 a model problem with contact with the boundary of the fluid domain, where we compare among
other aspects the two contact formulations introduced in Section 4, the different possibilities to choose the fluxes
𝜆 and the effect of slip and no-slip boundary and interface conditions.

6.1. Details on discretisation and stabilisation

For the numerical results in this paper, we will use a monolithic Fully Eulerian approach on a global mesh
𝒯ℎ covering Ω(𝑡). In order to resolve the interface Γ(𝑡) within the discretisation, we use the locally modified
finite element method introduced by Frei and Richter [32]. The idea of this approach is to use a fixed coarse
triangulation 𝒯2ℎ of the overall domain Ω = ̃︀Ω𝑓 (𝑡) ∪ Γ(𝑡) ∪ Ω𝑠(𝑡) that is independent of the position of the
interface Γ(𝑡). Then, in each time step, this coarse grid is refined once by splitting each so-called “patch”
element in either eight triangles or four quadrilaterals to resolve the interface in at least a linear approximation,
see Figure 4 for an illustration.

The finite element space 𝑉ℎ is then defined as a combination of piece-wise linear and piece-wise bi-linear
finite elements on the patches. It can be guaranteed that a maximum angle condition is fulfilled in each of the
sub-cells, leading to optimal-order interpolation and error estimates [32].

For temporal discretisation, we split the time interval 𝐼 into 𝑚 equidistant-distant time intervals 𝐼𝑗 =
(𝑡𝑗−1, 𝑡𝑗−1 +𝑘] and use a time-stepping scheme that is based on a modified discontinuous Galerkin time discreti-
sation of lowest order (dG(0)), see Frei and Richter [34]. The displacement-velocity relation 𝜕𝑡𝑑 = 𝑑 is included
by means of the 𝐿2-projection

(𝜕𝑡𝑑, 𝑧)Ω𝑠(𝑡) − (𝑑, 𝑧)Ω𝑠(𝑡) = 0 ∀𝑧 ∈ 𝑉 𝑠
ℎ ,

where 𝑉 𝑠
ℎ denotes the (modified) finite element space that is spanned by the degrees of freedom of the elements

in the solid part Ω𝑠
ℎ.
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Figure 4. Left: fixed triangulation 𝒯2ℎ of the domain Ω. Right: subdivision of the patches
𝑃 ∈ 𝒯2ℎ such that the interface Γ(𝑡) is resolved in a linear approximation by the discrete
interface Γℎ.

The domain affiliation of a point 𝑥 ∈ Ω(𝑡) is determined by means of the Initial Point Set/Backward Charac-
teristics method [26,29], that uses the displacement 𝑑(𝑡) in the solid domain and an extension to Ω𝑓 (𝑡) in order
to trace back points to their initial position in Ω(0), following the definition (2.1).

For pressure stabilisation, we use an anisotropic variant of the Continuous Interior Penalty method, see
Frei [30,31]. In addition, we add the temporal pressure stabilisation term

𝑆𝑝𝑡(𝑝, 𝑞) = 𝛾𝑝𝑡ℎ(𝑝𝑚 − 𝑝𝑚−1, 𝑞)Γ(𝑡)

in each time interval 𝐼𝑚. This additional stabilisation is needed, as the mesh 𝒯ℎ(𝑡𝑚), and hence the finite element
spaces, change from time-step to time-step. The solution 𝑢𝑚−1 from the previous time-step 𝑡𝑚−1 is therefore
not discrete divergence-free with respect to the new mesh 𝒯ℎ(𝑡𝑚), which gives rise to pressure oscillations, see
for example Besier and Wollner [7].

All the following results have been obtained using the finite element library Gascoigne 3d [6].

6.2. Virtual obstacle within the fluid domain

We begin by investigating the simplified problem introduced in Section 3. The initial fluid and solid domains
are defined as

Ω𝑓 (0) = (0, 1)× (0, 0.5), Ω𝑠(0) = (0, 1)× (0.5, 0.6)

and a lower-dimensional obstacle Γ𝑤 = (0, 1) × 0.25 within the fluid domain. We consider a moving interface
Γ(𝑡), which is resolved using the locally modified finite element method. The sub-domains Ω𝑠(𝑡) and Ω𝑓 (𝑡) and
the interface Γ(𝑡) depend on the solid displacement 𝑑(𝑡), see (2.1).

The constraint for the solid displacement is given by

𝑑 · 𝑛𝑤 ≤ 0.25 (=: 𝑔𝛼). (6.1)

We use the elasticity parameters 𝜆𝑠 = 𝜇𝑠 = 2 × 106 and the fluid viscosity 𝜈𝑓 = 1. The structure is pulled
towards the bottom by fluid forces due to a prescribed pressure mean value at the left and right boundary of
the fluid domain ∫︁

Γ𝑓,left

𝑝 d𝑠 =
∫︁

Γ𝑓,left

𝑃 d𝑠,

∫︁
Γ𝑓,right

𝑝 d𝑠 =
∫︁

Γ𝑓,right

𝑃 d𝑠
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where 𝑃 := 1.3 × 105. We consider the Variational Formulation 1 with no-slip conditions and 𝜆 = J�̃�𝑛K, see
(3.8), on a Cartesian mesh that consists of 5120 elements and with a small time step 𝛿𝑡 = 10−5. The Nitsche
constant at the FSI interface is chosen 𝛾0

fsi = 103 and temporal pressure stabilisation with 𝛾𝑝𝑡 = 10−2 is used.
To analyse the results, we define the “minimal distance”

𝑑min := min
𝑥∈Γ(𝑡)

𝑥2 − 0.25

of the interface Γ(𝑡) to Γ𝑤. To be precise the term “minimal distance” is only correct before contact, as 𝑑min

gets negative in case of an overlap. Moreover, we define the following functionals in order to analyse the pressure
𝑝 and the contact force at the interface Γ(𝑡)

𝐽𝑝 :=

⃒⃒⃒⃒
⃒
∫︁

Γ(𝑡)

𝑝 d𝑠

⃒⃒⃒⃒
⃒ , 𝐽𝑃𝛾

:= 𝛾𝐶

∫︁
Γ(𝑡)

[𝑃𝛾(𝜆, 𝑑)]+ d𝑠.

In Figure 5, we plot these three functionals over time for two contact periods and the contact parameters
𝛾0

𝐶 = 10, 102, 103. In the top left plot, we observe that the solid is pulled down until it reaches Γ𝑤 at 𝑡 ≈ 1.5×10−3.
After a short contact period, it is released again due to its elastic properties before it reaches the obstacle for
a second time at 𝑡 ≈ 5× 10−3.

The contact condition 𝑑 · 𝑛𝑤 ≤ 0.25 is only significantly violated for the smallest contact parameter, where
𝑑min reaches a minimum value of around −8×10−4, see the zoom-in around the contact interval on the top left.
This value is more than an order of magnitude smaller than the mesh size in vertical direction ℎ ≈ 1.4× 10−2.
For the larger values of 𝛾0

𝐶 , the minimal value of 𝑑min is even much closer to zero. On the other hand, we
observe that even for the largest value 𝛾0

𝐶 = 103, the contact condition is slightly relaxed, allowing for very
small overlaps of solid and contact line.

In the second row of Figure 5, we observe that the pressure shows a peak at the beginning (𝑡 ≈ 1.5 × 10−3

and 𝑡 ≈ 5 × 10−3) of the contact periods, followed by some small oscillations. The peak is caused by the fluid
dynamics and will be discussed below. The oscillations get smoother for larger values of 𝛾0

𝐶 and are barely
visible for 𝛾0

𝐶 = 103.
Similarly, the contact force 𝐽𝑃𝛾

shows oscillations for 𝛾0
𝐶 = 10 and a much smoother behaviour for 𝛾0

𝐶 ≥ 102.
Note that this does not contradict the stability result in Theorem 5.1, where we have assumed that 𝛾0

𝐶 is large
enough. The relatively large value for 𝛾0

𝐶 that is needed here is due to the anisotropic cells that appear in some
of the time-steps, when using the locally modified finite element method. In the absence of extreme anisotropies
a value of 𝛾0

𝐶 ≈ 1 seems to be enough to obtain stable numerical results. The optimal choice of the contact
parameter 𝛾𝐶 in the context of anisotropic cells is subject to future research.

If 𝛾0
𝐶 is chosen large enough, the contact force is roughly of the same size for different 𝛾0

𝐶 . This is in agreement
with the observations of Chouly et al. for the case of a pure solid problem [23], who showed that the consistency
of the method makes the choice of the contact parameter much less sensitive compared to a pure penalty method.

6.2.1. Investigation of the pressure peak

The pressure peak at the beginning of the contact interval can be explained as follows. As the fluid does
not “see” the obstacle before reaching it, the solid is pulled down towards it without reducing its velocity. At
the moment when the obstacle is reached, its vertical velocity 𝑑 · 𝑛𝑤 has to decrease to zero in an instant. Due
to the continuity of velocities, the same happens for the fluid velocity 𝑢 · 𝑛𝑤 at the interface, and due to the
incompressibility constraint the velocity has to change globally in the fluid domain Ω𝑓 (𝑡). The pressure can be
seen as a Lagrange multiplier and more specifically as sensitivity of a (jumping) energy functional with respect
to the incompressibility constraint, which explains the peak.

To substantiate this explanation numerically, we add an artificial penalty for the velocity on the sub-domain
Ω0

𝑓 below the contact line
𝑆𝑎(𝑢, 𝑣) := 𝛾0

𝑎ℎ−2(𝑢, 𝑣)Ω0
𝑓
.
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Figure 5. Top row : “Minimal distance” 𝑑min to Γ𝑤 over time with two contact periods. Left :
total time interval. Right : zoom-in at the first contact interval. Bottom left : pressure functional
𝐽𝑝 over time. Bottom right : functional 𝐽𝑃𝛾

measuring the contact force around the contact
interval over time.

For 𝛾𝑎 := 𝛾0
𝑎ℎ−2 → ∞, the fluid velocity is driven to zero below the obstacle. As this is already the case

before contact, no abrupt changes in the fluid velocity are expected at the moment of the impact. Note that
the problem with 𝛾0

𝑎 > 0 is purely artificial, as the pressure mean values are still applied on the whole fluid
boundary, including the boundary of Ω0

𝑓 .
In Figure 6 we compare the minimal distance and pressure functionals for computations without penalty

(𝛾0
𝑎 = 0) to results for 𝛾0

𝑎 = 10. First, we note that the vertical displacement is significantly influenced by
the penalty, which has to be expected as the fluid dynamics are altered. Contact happens later at 𝑡 ≈ 0.0022
with the artificial penalty. Moreover, we observe indeed that the initial pressure peak at the time of impact is
significantly reduced for 𝛾0

𝑎 = 10.

6.3. Contact problem

Next, we study a problem, where it comes to real contact with the wall Γ𝑤 = {(𝑥, 𝑦) ∈ Ω, 𝑦 = 0.25}. At time
𝑡 = 0, we define

Ω𝑓 (0) := (0, 1)× (0.25, 0.5), Γ(0) := (0, 1)× 0.5, Ω𝑠(0) := (0, 1)× (0.5, 0.6).

Below Γ𝑤, we define a fixed artificial fluid domain Ω𝐶
𝑓 := (0, 1)× (0, 0.25).
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Figure 6. Minimal distance 𝑑min to the contact line Γ𝑤 (left) and mean pressure over the
interface 𝐽𝑝 (right), plotted over time with an artificial penalty for the velocity below the
virtual obstacle.

We apply again a pressure mean value 𝑃 on the lateral boundaries Γ𝑓,left and Γ𝑓,right of the fluid domain
Ω𝑓 (𝑡). As the size of Γleft and Γright is smaller and the viscous fluid forces acting against the closure of the
channel are stronger than in the previous example, we have to set a larger pressure force 𝑃 = 3× 105 in order
to obtain contact. On the other hand, the contact was never released again in our numerical experiments, when
we used this constant boundary force for all times. Therefore, we decrease 𝑃 linearly from 𝑡 = 10−3 on until
it reaches zero at 𝑡 = 1.2 × 10−3. In order to avoid the issues related to no-slip conditions and contact, we
use slip-interface conditions first, i.e. the Variational Formulation 2 with 𝒜𝐶

slip,FSI. Unless stated differently, 𝜆
is chosen as the jump of numerical stresses J̃︀𝜎𝑛,slipK. Moreover, we use again a Cartesian mesh that consists of
5120 elements, a time step 𝛿𝑡 = 10−5 and temporal pressure stabilisation with 𝛾𝑝𝑡 = 10−2. Unless explicitly
stated, the Nitsche parameters are chosen as 𝛾0

fsi = 𝛾0
𝐶 = 103 and the penalty in the artificial fluid as 𝛾0

𝑎 = 102.
The results on a coarser mesh are illustrated in Figure 7 at four time instants. Contact happens after the

pressure on the lateral boundaries is released, as the solid continues moving downwards for some time. During
contact, there is a very small overlap of the solid with the artificial fluid Ω𝐶

𝑓 . As the overlap is of order 10−5,
it can barely be seen in the bottom left picture. Notice however the triangular cells in Ω𝐶

𝑓 that are used only,
when a patch is cut by Γ(𝑡).

6.3.1. Comparison of the two contact formulations

First, we compare the two contact strategies derived in Section 4, i.e. the relaxed contact formulation intro-
duced in Section 4.1 with a small gap of size 𝜖(ℎ) = ℎ/10 between the solid and Γ𝑤 and the strategy using an
artificial fluid derived in Section 4.2. A comparison of the results for 𝑑min, the pressure norm ‖𝑝‖𝐿2(Ω𝑓,mid(𝑡)),
where

Ω𝑓,mid(𝑡) := {𝑥 ∈ Ω𝑓 (𝑡), 0.4 ≤ 𝑥1 ≤ 0.6}

denotes the central part of the fluid domain, and the contact force 𝐽𝑃𝛾 are shown in Figure 8 on two different
meshes with 5120 and 20 480 elements, respectively.

First, we observe from the plots in the top row that the interface stays at a distance to Γ𝑤 of about 𝜖 ≈
ℎ/10 ≈ 1.4× 10−3 on the coarser and 𝜖 ≈ ℎ/10 ≈ 7× 10−4 on the finer mesh for the relaxed formulation. The
much smaller overlap with Ω𝐶

𝑓 in the artificial fluid formulation is not visible, not even in the zoom-in on the
right.

While the curves for 𝑑min look similar in the global picture (left), the zoom-in shows significant differences
already before the impact. The contact happens earlier for the artificial fluid formulation: on the coarser mesh
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Figure 7. Illustration of the contact problem at four time instances on a coarse mesh: 𝑡 = 0
(top left), 𝑡 = 1.2 × 10−3 (top right), 𝑡 = 2 × 10−3 (bottom left) and 𝑡 = 2.5 × 10−3 (bottom
right). The grey part corresponds to the structure Ω𝑠(𝑡), the white part is the artificial fluid
Ω𝐶

𝑓 . In the fluid domain Ω𝑓 (𝑡), values of the pressure 𝑝 are visualised.

at time 𝑡𝐶,𝑎 = 1.87 × 10−3 compared to 𝑡𝐶,𝑟 = 2.02 × 10−3 for the relaxed formulation. This deviation is
already much smaller on the finer mesh, where 𝑡𝐶,𝑟 − 𝑡𝐶,𝑎 = 2 × 10−5. The reason for this deviation is that
in the artificial fluid formulation the wall Γ𝑤 is only asymptotically for 𝛾𝑎 → ∞ impermeable for the fluid.
Therefore, in practice, the fluid forces acting against the contact, in particular the pressure 𝑝, are smaller for
this formulation. As 𝛾𝑎 = 𝛾0

𝑎ℎ−2 →∞ for ℎ → 0 the difference is significantly reduced on the finer mesh.
To substantiate this explanation, we plot the pressure norm ‖𝑝‖𝐿2(Ω𝑓,mid(𝑡)) over the central part of the fluid

domain Ω𝑓,mid(𝑡) and the time period before the impact in the bottom left figure. The maximum value of the
norm on the coarser mesh at time 𝑡 = 1.1× 10−3 is approximately 20.563 for the relaxed formulation and about
19.065 for the artificial fluid version. On the finer mesh, the pressure values are much closer. After that time
the functional values decrease because the domain Ω𝑓,mid(𝑡) gets smaller.

In the next paragraph, we will study the performance of both contact formulations under mesh refinement.

6.3.2. Convergence under mesh refinement

We solve the same problem on three different meshes with 1.280, 5.120 and 20.480 mesh elements, where the
finer meshes are obtained from the coarsest one by global mesh refinement. The plots of the functionals 𝑑min

and 𝐽𝑃𝛾
as well as the functionals

𝐽contact :=

⃦⃦⃦
𝛾

1/2
𝐶 [𝑃𝛾(𝜆, 𝑑)]+ + 𝛾

−1/2
𝐶 𝜆

⃦⃦⃦
Γ(𝑡)

‖𝜆‖Γ
, 𝐽vel,fsi :=

‖(𝑑− 𝑢) · 𝑛‖Γfsi(𝑡)

‖𝑢 · 𝑛‖Γfsi
+ ‖𝑑 · 𝑛‖Γfsi
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Figure 8. Comparison of the relaxed and the artificial fluid contact formulation. Top: mini-
mal distance 𝑑min to Γ𝑤. Right: zoom-in around the contact interval. Bottom: pressure norm
‖𝑝‖𝐿2(Ω𝑓 ,mid) over the central part of the fluid domain before contact over time.

measuring the fulfilment of the contact condition and the continuity of velocities on the part Γfsi(𝑡) of Γ(𝑡) that
is not in contact with Γ𝑤

Γfsi(𝑡) :=
{︀
𝑥 ∈ Γ(𝑡)

⃒⃒
𝑃𝛾(𝜆, 𝑑)(𝑥) ≤ 0

}︀
are shown in Figure 9 for the artificial fluid formulation and in Figure 10 for the relaxed contact formulation
over time. The quantities ‖ · ‖* that are used to scale the functionals are temporal averages of the respective
norms over the interval 𝐼 = [0, 0.004], computed on the finest grid.

First, we observe for both formulations in the plots on the top left that the contact happens later, the finer
the discretisation is, as the fluid forces which act against the closure of the fluid channel are better resolved on
the finer meshes (see also Fig. 8 and the related discussion above).

The curves for the contact force 𝑃𝛾 on the top right of both figures show significant differences between the
two formulations. While the functional values seem to converge for the artificial fluid formulation (if we neglect
the time shift), the contact force gets larger under mesh refinement for the relaxed formulation. The larger values
for the relaxed formulation are due to the presence of the fluid forces 𝜎𝑓,𝑛 during the whole contact interval,
that are not penalised in this formulation. As a Lagrange multiplier for the incompressibility constraint, the
continuous pressure 𝑝 gets singular when it comes to contact. The discrete pressure 𝑝ℎ gets larger and larger
under mesh refinement in our computations.
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Figure 9. Convergence studies under mesh refinement for the artificial fluid formulation by
means of the following functionals over time: Top left: minimal distance 𝑑min of Γ(𝑡) to Γ𝑤, top
right : contact force 𝐽𝑃𝛾

, Bottom left : fulfilment of the contact condition 𝐽contact. Bottom right :
continuity of velocities 𝐽vel,fsi.

On the other hand, the functional 𝐽contact, that measures the difference between −𝛾
1/2
𝐶 [𝑃𝛾 ]+ and 𝛾

−1/2
𝐶 𝜆

decreases under mesh refinement for both formulations. Besides the differences in the contact force 𝐽𝑃𝛾
, the

functional values on each of the mesh levels are actually very similar. The reason must be that the fluid forces
𝜎𝑓,𝑛 enter in both 𝜆 and [𝑃𝛾 ]+. We conclude that the increase in the functional 𝐽𝑃𝛾

seems not to be an issue
for the contact dynamics.

Both 𝐽contact and the functional 𝐽vel,fsi are controlled by the stability estimate in Theorem 5.1 for 𝜃 = 1.
Although the parameter 𝜃 = 0 is used here, we observe that both functionals decrease with mesh refinement
before and during contact. While the convergence for the contact functional is quite slow, the values of the
velocity functional indicate a convergence order 𝒪(ℎ𝛼) with 0.5 ≤ 𝛼 ≤ 1 for both formulations. Note that
in contrast to the term 𝐽contact, 𝐽vel,fsi is controlled in the stability estimate in Theorem 5.1 even with the
pre-factor (𝛾0

fsi𝜇𝑓 )1/2ℎ−1/2.

6.3.3. Flux formulations

Next, we compare the different choices for 𝜆. We show results exemplarily for the artificial fluid formulation
with slip interface conditions. We will compare results using the jump of stresses 𝜆 = J𝜎𝑛,slipK (4.7), the jump
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Figure 10. Convergence studies under mesh refinement for the relaxed contact formulation by
means of the following functionals over time: Top left: minimal distance 𝑑min of Γ(𝑡) to Γ𝑤, top
right : contact force 𝐽𝑃𝛾

, Bottom left : fulfilment of the contact condition 𝐽contact. Bottom right :
continuity of velocities 𝐽vel,fsi.

of the numerical fluxes 𝜆 = J̃︀𝜎𝑛,slipK (4.8) and the extended fluxes 𝜆 = J̃︀𝜎𝑛,slipK + 𝜏𝑇 𝜎𝑠𝑛(𝜏 · 𝑛𝑤) (see (4.10)).
As the results for the latter two choices are nearly identical in this example, we show here only plots for the
jump of stresses and the (non-extended) numerical fluxes. We use the artificial fluid formulation (Variational
Formulation 2) and the previously used mesh with 5120 elements.

In Figure 11, we show the minimal distance 𝑑min to Γ𝑤, the contact force 𝐽𝑃𝛾 and the integral over the
velocity difference across the contact part Γ𝐶(𝑡) of the interface over time

𝐽vel,𝐶 :=
∫︁

Γ𝐶(𝑡)

(𝑑− 𝑢) · 𝑛 d𝑠, Γ𝐶(𝑡) :=
{︀
𝑥 ∈ Γ(𝑡)

⃒⃒
𝑃𝛾(𝜆, 𝑑)(𝑥) ≤ 0

}︀
.

The fluid velocity 𝑢 is here artificial as it comes from Ω𝐶
𝑓 . When choosing 𝜆 = J̃︀𝜎𝑛,slipK, we ensure that there is

no feedback from this artificial velocity to the solid, see (4.5). For the jump of stresses 𝜆 = J𝜎𝑛,slipK, we obtain
a mixture of the solid contact condition and the continuity of normal velocities and a feedback might result.
This follows analogously to the no-slip case, see (3.14).

In the left sketch of Figure 11, we see that the minimal distance in the stress-based formulation shows
oscillations during the whole contact interval, especially in the second half. The interface jumps back and forth
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Figure 11. Comparison of the different possibilities to choose the fluxes 𝜆. Minimal distance
𝑑min to Γ𝑤 (top left), contact force 𝐽𝑃𝛾

(top right) and velocity difference 𝐽vel,𝐶 (bottom) inte-
grated over the contact part Γ𝐶(𝑡) of Γ(𝑡) over time for computations with 𝜆 = J𝜎𝑛,slipK and
𝜆 = J̃︀𝜎𝑛,slipK for the artificial fluid formulation.

over the contact line many times. The curve corresponding to the formulation using discrete fluxes is much
smoother. Similarly, the contact force 𝐽𝑃𝛾

looks smoother, when the flux formulation is used. The reason for
this behaviour is the mixture of the interface conditions during contact. On the bottom of Figure 11, we see that
the velocity difference 𝐽vel,𝐶 shows wild oscillations for the stress formulation, while it looks much smoother
when using J̃︀𝜎𝑛,slipK. As the artificial velocity in Ω𝐶

𝑓 has no physical meaning, it is not a drawback that the
absolute values of 𝐽vel,𝐶 are larger. Due to the feedback of this velocity to the contact conditions, the oscillations
appear in the displacement as well.

On the other hand, we should mention that the oscillations are relatively small. Especially those in 𝑑min are
almost by a factor 103 smaller than the mesh size ℎ ≈ 1.4× 10−2 in vertical direction in this example and are
therefore still acceptable.

6.3.4. Influence of the contact parameter 𝛾0
𝐶

Next, we study the effect of different contact parameters 𝛾0
𝐶 for the artificial fluid formulation and 𝜆 = J̃︀𝜎𝑛,slipK

on the mesh with 5120 elements. In Figure 12, we show the “minimal distance” 𝑑min (top) and the contact force
𝐽𝑃𝛾

over time for different contact parameters 𝛾0
𝐶 . The results are similar to the corresponding results for the

virtual obstacle problem in Figure 5. For the smallest contact parameter 𝛾0
𝐶 = 10, the contact condition is
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Figure 12. Parameter studies for the contact parameter 𝛾0
𝐶 : Minimal distance of Γ(𝑡) to the

wall Γ𝑤 (Top left : total time interval, top right : zoom around the contact interval) and contact
force 𝐽𝑃𝛾

(bottom) over time.

violated throughout the contact interval (𝑑min < 0). The maximum overlap into the artificial fluid domain is
again approximately by a factor 30 smaller than the mesh size ℎ ≈ 1.4× 10−2. This violation gets smaller, the
larger the contact parameter is chosen. The instabilities for the smallest parameter are still much better visible
in the contact force 𝐽𝑃𝛾

. At time 𝑡 = 1.89 × 10−3 the functional shows a huge peak, as the contact condition
𝑑 · 𝑛𝑤 ≤ 𝑔0 is severely violated and it vanishes from 𝑡 = 1.94× 10−3 to 𝑡 = 1.97× 10−3, when the contact is in
fact shortly released.

For the larger values 𝛾0
𝐶 ≥ 102, the curves are relatively smooth and very similar. Altogether, this shows

again that the assumption “𝛾0
𝐶 sufficiently large” in Theorem 5.1 is necessary in order to ensure stability.

6.3.5. Slip vs no-slip conditions

Next, we compare the effect of slip- and no-slip boundary and interface conditions in Figure 13. Due to the
difficulties associated with the artificial fluid formulation and no-slip interface and boundary conditions (see the
discussion at the end of Sect. 4.2), we use the relaxed contact formulation on the mesh with 5120 elements in
this paragraph.
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Figure 13. Comparison of slip- and no-slip interface/boundary conditions by means of the
minimal distance 𝑑min of the interface Γ(𝑡) to Γ𝑤 around the contact interval (left) and the 𝐿2-
norm of the pressure over a region Ω𝑓,mid(𝑡) around the contact surface before contact (right)
over time. Due to the larger pressure before contact, the impact happens later when using
no-slip conditions.

We show results for

– Slip conditions on the interface Γ(𝑡) and the lower wall Γ𝑤

– A slip condition on Γ(𝑡) and a no-slip condition on Γ𝑤

– No-slip conditions on Γ(𝑡) and Γ𝑤.

Note that the second option is possible, as for the relaxed contact formulation Γ𝑤 ∩ Γ(𝑡) = ∅.
We observe that the contact condition (or more precisely the relaxed condition 𝑑 · 𝑛𝑤 ≤ 𝑔𝜖) is earlier active,

when using slip-conditions: at 𝑡𝐶 = 1.42 × 10−3 for slip/slip conditions compared to 𝑡𝐶 = 2.02 × 10−3 for
slip interface and no-slip boundary conditions and at 𝑡𝐶 = 2.23 × 10−3 for no-slip conditions on interface and
boundary. The reason is that the fluid forces, and in particular the pressure, that act against the contact are
larger for no-slip conditions, as the fluid can not “slip” out of the contact zone easily. This can be seen in the
pressure plot on the right. The pressure is considerably larger from 𝑡 ≈ 5× 10−4 for the no-slip conditions until
contact is reached for the slip/slip case at 𝑡𝐶 = 1.42× 10−3.

As we are allowing for a small gap between the solid and the ground, these results do not contradict the
theoretical results by Gerard-Varet et al. [36] discussed in Section 4.3, who showed that (in their configuration
with a rigid body) contact can not happen, when no-slip conditions are used on the interface and/or the
boundary. As discussed in Section 4.1, the basic assumption of the relaxed formulation is that a small or
infinitesimal fluid layer remains during contact. On the contrary, the results confirm that contact is more likely
to happen for slip-conditions, which is in agreement with the theoretical results.

6.3.6. Comparison with an explicit ad hoc approach

The probably simplest possibility to combine the FSI model introduced in Section 2.1 and the contact
approach described in Section 2.2 is to split Γ explicitly in each time-step into a fluid-structure interface
Γfsi(𝑡𝑚−1) and a contact surface Γ𝐶(𝑡𝑚−1) based on the displacement 𝑑(𝑡𝑚−1) of the previous time-step and
to use the interface condition (3.1) on Γfsi(𝑡𝑚−1) and the contact condition (2.10) on Γ𝐶(𝑡𝑚−1). A strategy
of this type has been used by Hecht and Pironneau [41]. The system of equations reads in the slip case: Find
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Figure 14. Comparison of an explicit ad hoc approach to include the contact and interface
conditions with the approach using an artificial fluid described in Section 4.2. We show the
minimal distance 𝑑min of the interface Γ(𝑡) to Γ𝑤 on the top left and a zoom-in on the top right.
Chattering, i.e. an alteration between contact and no contact is visible for the ad hoc approach
at the beginning of the contact interval. The integral over the normal solid stresses 𝐽𝜎𝑠,𝑛

shown
in the graph on the bottom shows large instabilities for the ad hoc approach.

𝑢 ∈ 𝒱, 𝑝 ∈ 𝒬, 𝑑 ∈ 𝒲 such that 𝑑 = 𝜕𝑡𝑑 and

(︀
𝜕𝑡𝑢, 𝑣

)︀
Ω𝑓 (𝑡)

+ (𝜎𝑓 (𝑢, 𝑝),∇𝑣)Ω𝑓 (𝑡) + (div 𝑢, 𝑞)Ω𝑓 (𝑡) +
(︁
𝜕𝑡𝑑, 𝑤

)︁
Ω𝑠(𝑡)

+ (𝜎𝑠(𝑑),∇𝑤)Ω𝑠(𝑡)

−
(︀
𝑛𝑇 𝜎𝑓 (𝑢, 𝑝)𝑛, (𝑤 − 𝑣) · 𝑛

)︀
Γfsi(𝑡𝑚−1)

−
(︁

(𝑑− 𝑢) · 𝑛, 𝑛𝑇 𝜎𝑓 (𝑣,−𝑞)𝑛
)︁

Γfsi(𝑡𝑚−1)

+ 𝛾fsi

(︁
(𝑑− 𝑢) · 𝑛, (𝑤 − 𝑣) · 𝑛

)︁
Γfsi(𝑡𝑚−1)

+ 𝛾𝐶 (𝑃𝛾(𝜎𝑠,𝑛(𝑑), 𝑑), 𝑤 · 𝑛𝑤)Γ𝐶(𝑡𝑚−1)

= (𝑓𝑓 , 𝑣)Ω𝑓 (𝑡) + (𝑓𝑠, 𝑤)Ω𝑠(𝑡) ∀𝑣, 𝑞, 𝑤 ∈ 𝒱 ×𝒬×𝒲.

(6.2)

We use the same numerical parameters as for the contact formulations presented in this work.
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To compare this approach with the artificial fluid formulation we show the minimal distance to the ground
𝑑min and the integral over the normal solid stresses over Γ(𝑡) = Γfsi(𝑡) ∪ Γ𝐶(𝑡)

𝐽𝜎𝑠,𝑛
=
∫︁

Γ(𝑡)

𝜎𝑠,𝑛 d𝑠

on the finer mesh with 20 480 elements in Figure 14. While the curves for 𝑑min over the total time interval
shown on the top left look similar, a zoom-in on the right shows again that the presence of the artificial fluid
leads to an earlier time of impact. Moreover, we observe chattering for the ad-hoc approach at the beginning of
the contact interval, i.e. contact is released twice again before the solid stays in contact with Γ𝑤. The interface
jumps back to the fluid domain, with a (relatively small) minimal distance of approximately 1.6× 10−5.

In fact, the functional 𝑑min is not a good indicator to investigate stability for the ad hoc approach, as it is
zero, as soon as one point of the interface lies on Γ𝑤. Note that this is different for the approaches presented in
this work, where the interface can go beyond Γ𝑤 (or Γ𝜖 for the relaxed approach). In the actual computation,
the interface oscillates considerably in each time-step and contact is released and renewed frequently in different
points. The functional 𝐽𝜎𝑠,𝑛

on the bottom left of Figure 14 serves to get a better impression of the instabilities
during contact. It oscillates throughout the contact interval including a huge peak at 𝑡 = 2.32×10−3. Moreover,
we see that the elastic dynamics after the contact are also significantly influenced by these instabilities. Compared
to the artificial fluid approach the oscillations in the displacement are significantly larger after contact.

We have also tried to iterate for the splitting into Γ𝐶(𝑡) and Γfsi(𝑡) within each time-step of the ad-hoc
approach, which can be seen as an active-set strategy. This did however not cure the problem, as cycling
between different active sets is not prevented.

7. Conclusions

We have presented two consistent formulations for fluid-structure interactions with contact, both including
a continuous switch between the FSI interface and the contact condition depending on the contact force 𝑃𝛾 . In
contrast to certain penalty approaches, the contact force is physically motivated and included in a consistent way
in the variational formulations. Our numerical results indicate that the two proposed formulations have better
stability properties than the usual ad hoc approaches and no chattering was observed in our computations.

Moreover, we have derived analytically a stability result for a generalised formulation including a parameter
𝜃 ∈ [−1, 1]. As in the pure solid case [20], this result implies stability for 𝜃 = 1 and stability up to a term
including the contact force for 𝜃 ̸= 1. In our computations, we have however not observed any stability issues
for the choice 𝜃 = 0 either.

The contact formulations were derived here for the simplified configuration of contact with a fixed and
straight wall and using linear models for the fluid and solid sub-problems. The algorithms can be applied to
more complex contact configurations by using approaches from the literature to compute the projection and the
distances between different surfaces [59,65,66]. In particular, the extension to the incompressible Navier–Stokes
equations in the fluid and to non-linear elasticity in the solid can be addressed by combining the proposed
approach with the arguments recently reported in Mlika et al. [55]. Moreover, Coulumb or Tresca friction can
also be incorporated by following Chouly et al. [19, 24].

In our numerical examples, we have studied a two-dimensional model problem on a relatively simple and
smooth geometry. In future, we plan to apply the methods on more complex geometries, including a direct
comparison with experiments, in order to further validate the numerical approach.

Acknowledgements. The first author acknowledges support by the EPSRC grant EP/P01576X/1. The third author was
supported by the DFG Research Scholarship FR3935/1-1.
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tional formulation, edited by H.J. Bungartz and M. Schäfer. In: Fluid-Structure Interaction: Modeling, Simulation, Optimiza-
tion. Lect. Notes Comput. Sci. Eng. Springer (2006) 110–145.

[30] S. Frei, Eulerian finite element methods for interface problems and fluid-structure interactions. Ph.D. thesis, Heidelberg
University (2016). http://www.ub.uni-heidelberg.de/archiv/21590.

http://www.gascoigne.uni-hd.de
http://www.gascoigne.uni-hd.de
http://www.ub.uni-heidelberg.de/archiv/21590


A NITSCHE-BASED FORMULATION FOR FSI WITH CONTACT 563

[31] S. Frei, An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes. Int. J. Numer.
Methods Fluids 89 (2019) 407–429.

[32] S. Frei and T. Richter, A locally modified parametric finite element method for interface problems. SIAM J. Numer. Anal. 52
(2014) 2315–2334.

[33] S. Frei and T. Richter, An accurate Eulerian approach for fluid-structure interactions, edited by S. Frei, B. Holm, T. Richter,
T. Wick and H. Yang. In: Fluid-Structure Interaction: Modeling, Adaptive Discretization and Solvers. Rad. Ser. Comput.
Appl. Math. Walter de Gruyter, Berlin (2017).

[34] S. Frei and T. Richter, A second order time-stepping scheme for parabolic interface problems with moving interfaces. ESAIM:
M2AN 51 (2017) 1539–1560.

[35] D. Gérard-Varet and M. Hillairet, Regularity issues in the problem of fluid structure interaction. Arch. Ration Mech. Anal.
195 (2010) 375–407.

[36] D. Gerard-Varet, M. Hillairet and C. Wang, The influence of boundary conditions on the contact problem in a 3D Navier–Stokes
flow. J. Math. Pure Appl. 103 (2015) 1–38.

[37] A. Gerstenberger and W.A. Wall, An extended finite element method/Lagrange multiplier based approach for fluid–structure
interaction. Comput. Methods Appl. Mech. Eng. 197 (2008) 1699–1714.

[38] C. Grandmont and M. Hillairet, Existence of global strong solutions to a beam–fluid interaction system. Arch. Ration Mech.
Anal. 220 (2016) 1283–1333.
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Abstract

We present a new approach for the mechanically consistent modelling and simulation of fluid–structure interactions (FSI)
with contact. The fundamental idea consists of combining a relaxation of the contact conditions with the modelling of seepage
through a porous layer of co-dimension one during contact. For the latter, a Darcy model is considered in a thin porous layer
attached to a solid boundary in the limit of infinitesimal thickness. The resulting computational model is both mechanically
consistent and simple to implement. The FSI coupling and the contact conditions are imposed weakly by means of a unified
Nitsche approach. We analyse the approach in detailed numerical studies with both thick- and thin-walled solids, within a fully
Eulerian and an immersed approach and using fitted and unfitted finite element discretisations.
© 2022 Elsevier B.V. All rights reserved.

Keywords: Fluid–structure interaction; Contact mechanics; Nitsche’s method; Seepage; Darcy equation; Mechanical consistency

1. Introduction

The design and analysis of computational methods for systems where solids are immersed in a fluid and that can
come into contact is an outstanding problem. Already fluid–structure interaction (FSI) without contact is challenging
due to the moving geometries and the stiff coupling between the solid and the fluid systems. If contact between
solids is to be modelled as well, the complexity increases drastically. In particular the following additional issues
need to be addressed:

• In combination with no-slip boundary conditions, FSI models are unable to predict contact (see, e.g., [1–3]),
contrary to what is observed in experiments [4];

• The simple addition of a contact constraint (variational inequality) to an FSI model which allows for contact
yields a mechanically inconsistent fluid–structure–contact interaction model (as discussed for example in [5]);

• Topological changes in the fluid domain need to be dealt with;
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• Non-linearly changing interface conditions: The interface condition changes from a fluid–solid interaction to
a solid–solid contact problem which is described by variational inequalities;

• Important differences in the characteristic scales of the different physical phenomena: Contact represents a
singular phenomenon in time and space, which needs to be resolved in space and time discretisation.

The first difficulty requires a modification of the boundary and interface conditions on the contacting walls (see,
e.g., [6–8]) that reproduces the physically observed contact phenomena. However, as pointed out in the second issue,
this does not necessarily lead to a mechanically consistent model, due to the possibility of unphysical void creation
(when an elastic solid releases from contact) or to unbalanced stresses (in the case of relaxed contact modelling).

While nowadays several works on FSI–contact problems are available in literature, surprisingly few of them
actually take care of the mechanical consistency of the contact treatment involving a fluid. In the vast majority of
the cases, either an ad-hoc contact force is added to the model to prevent real contact (see, e.g., [9–13]), or contact
is simply added as an additional constraint to the FSI problem (see, e.g., [14–18]).

A recent approach to circumvent the two difficulties discussed above is to consider a poroelastic modelling of the
fluid seepage induced by the roughness of the contacting solids, which guarantees mechanical consistency at contact
(see [5]). The price to pay is a model with a high computational complexity (notably, with respect to traditional FSI
without contact). Alternatively, an artificial extension of the fluid stresses to the contact surface can be used [19,20].
The choice of the extension can, however, have an unphysical impact on the release of contact and moreover, in
case of an unrelaxed contact treatment, very small fluid regions can get trapped between the solid and the contacting
wall, which are difficult to treat numerically [20].

In the present work, we derive a simple, but mechanically consistent model for FSI with contact which
circumvents these issues. Motivated by the fact that in reality two solid bodies will never be exactly in contact
throughout their surfaces (for example due to microscopic roughness), the main idea is to consider seepage of the
fluid through the contact surface. To fix ideas, let Ω ⊂ Rd for d = 2, 3 be the overall domain consisting of fluid
and solid subdomains. Seepage is modelled by the introduction of a (d − 1)-dimensional porous layer that adheres
to a solid boundary, where contact might take place. This can be considered as a generalised boundary condition, or
a bulk surface coupling in the spirit of [21]. In our case, however, the free-flow Navier–Stokes’ system is coupled
to a surface Darcy equation. This model goes back to [22] and is of interest in its own right, as discussed in the
note [23]. By combining this porous layer approach for seepage with a relaxed treatment of contact (see, e.g., [19]),
we obtain a simple and mechanically consistent model for fluid–structure interactions with contact.

We implement the approach using different solid models, coordinate systems and discretisations, which are able
to deal with topology changes in the fluid domain. Concerning coordinate systems, we consider both an Immersed
approach going back to Peskin [24] as well as a Fully Eulerian approach [11,25–27]. For discretisation, we use
the unfitted finite element method of [28–30] and the two-scale interface fitting approach of [31]. We illustrate the
modelling capacity in a series of computational examples in two dimensions, including a beam solid model and a
thick-walled solid model. To deal with the non-linearly changing interface conditions a unified Nitsche approach is
applied which takes care of the FSI coupling and contact conditions simultaneously [19].

Indeed, depending on if no-slip conditions are imposed or if the porous medium approach proposed here is used,
the approximations will converge to different solutions for h → 0. If we consider the case of a bouncing ball the
use of no-slip conditions will lead to a sequence of solutions that converge to a ball that does not bounce, whereas
the solutions obtained with the porous medium approach converge to a certain bouncing height that depends on
the parameters of the Darcy model. Recent comparisons of computational methods with experimental studies [4,13]
confirm that the second behaviour is the physical one. Of course the parameters of the model need to be fixed
through experimental studies, or otherwise.

An outline of the paper is as follows. In Section 2, we introduce the Navier–Stokes–Darcy coupling as well as
the FSI–contact model. The variational formulation and the discretisation based on Nitsche’s method is described in
Section 3. In Section 4 we give detailed numerical studies both in the case of a thin- and thick-walled solid model.
Finally, some conclusions are drawn in Section 5.

2. Equations

In this section, we derive the Navier–Stokes–Darcy coupling, and subsequently the equations for fluid–structure–
porous–contact interaction. For simplicity, we will consider that contact takes place at a given fixed plane surface.
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Fig. 1. Geometric configurations of the fluid and solid domains.

This can be either an exterior rigid wall or a symmetry boundary within the fluid domain, which is relevant for
example in the case of contact between two symmetric valves. The case of two-body contact is not considered here.

The fluid equations in Ω f(t) ⊂ Rd will be coupled to a fixed (d − 1)-dimensional porous layer Σp on the
exterior boundary, where contact might take place. The fluid is described by the Navier–Stokes equations in Eulerian
formalism and the structure by a possibly non-linear solid model. We consider both (d −1)-dimensional thin-walled
solids and d-dimensional thick-walled solids.

2.1. Problem setting

Let Ω = Ω s(t) ∪ Ω f(t) ⊂ Rd be a current configuration of the complete domain of interest, with boundary
∂Ω :=Γ ∪Σp, where Σp denotes the part of the boundary where contact might take place (see Fig. 1). There, a thin
porous fluid layer is considered. The solid domain Ω s(t) can be either a surface (actually the solid mid-surface) or a
domain with positive volume in Rd in the case of the coupling with a thick-walled solid. The current fluid–structure
interface is denoted by Σ (t) and coincides with Ω s(t) in the case of a thin-walled solid. The corresponding reference
configurations are denoted by Σ and Ω s.

The structure is allowed to move freely within the domain Ω . The current position of the interface Σ (t) and the
solid domain Ω s(t) are described in terms of a deformation map φ : Ω s

× R+
−→ Rd such that Ω s(t) = φ(Ω s, t)

and Σ (t) = φ(Σ , t), with φ:=IΩs +d and where d denotes the solid displacement. To simplify the notation we will
refer to φt :=φ(·, t), so that we can also write Ω s(t) = φt (Ω s), Σ (t) = φt (Σ ). The fluid domain is time-dependent,
namely Ω f(t):=Ω\(Ω s(t) ∪Σ (t)) ⊂ Rd with boundary ∂Ω f(t) = Σ (t) ∪Γ ∪Σp. In the case of a closed thin-walled
structure, the solid domain Ω s(t) divides Ω f(t) into two subdomains Ω f(t) = Ω f

1(t) ∪ Ω f
2(t), with respective unit

normals n1:=n and n2:= − n, as shown in Fig. 1(b). Similarly, in the case of a thick-walled solid, the interface
Σ (t) divides Ω into a solid part Ω s(t) and a fluid part Ω f (t). We write H 1

Γ (Ω ) for the first-order Sobolev space
with vanishing trace on Γ ⊂ ∂Ω .

For a given field f defined in Ω (possibly discontinuous across the interface), we can define its one-sided
restrictions, denoted by f1 and f2, as

f1(x):= lim
ξ→0−

f (x + ξn1), f2(x):= lim
ξ→0−

f (x + ξn2),

for all x ∈ Σ (t), and the following jump and average operators across Σ (t):

J f K:= f1 − f2 J f nK:= f1n1 + f2n2, {{ f }}:=
1
2

(
f1 + f2

)
. (1)

In the case of a thin structure that has a boundary inside the fluid domain (for example with a tip), these quantities
can be defined similarly. For the details, we refer to [30] and Remark 3.1.

While the fluid and solid equations are standard and will be introduced in Section 2.3, we give some details on
the porous medium model in the following section.

2.2. Porous medium model and Navier–Stokes-Darcy coupling

We consider the configuration sketched in Fig. 2, where a thin porous layer Ωp = Σp ×(− ϵp
2 ,

ϵp
2 ) ∈ Rd (d = 2, 3)

with midsurface Σp is coupled to a surrounding fluid in a fixed domain Ω f
⊂ Rd . The surrounding fluid is governed

3
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Fig. 2. Porous medium domain Ωp with interface γf to Ω f and exterior boundary γo.

by the Navier–Stokes equations{
ρf

(
∂t u + u · ∇u

)
− div σ f(u, p) = ρf f f in Ω f,

div u = 0 in Ω f.
(2)

Here, u denotes the fluid velocity, p the fluid pressure and f f is a volume force defined in Ω f. The Cauchy stress
tensor is given by

σ f := 2µε(u) − pI, ε(u) =
1
2

(
∇u + ∇uT)

, (3)

where I denotes the identity matrix, ρf the fluid density, νf the kinematic and µ = ρfνf the dynamic viscosity.
In the porous domain Ωp, we assume a Darcy law{

ul + K∇ pl = 0 in Ωp,

∇ · ul = 0 in Ωp,
(4)

where ul denotes the Darcy velocity, pl the Darcy pressure and K is a d × d matrix such that the following
decomposition holds

K∇ pl = Kτ∇τ pl + Kn∂n pl,

with Kτ , Kn ∈ R+. According to [32] the conductivities Kn and Kτ are proportional to the inverse of the kinematic
viscosity ν−1

f . Here, n is the unit normal vector of the mid-surface Σp that points towards the exterior boundary γo,
∂n = n∂n and ∇τ := Pτ∇ stands for the corresponding tangential part of the gradient

Pτ := (I − n ⊗ n).

We assume that the porous layer is very thin and consider the limit case ϵp → 0. Let the outer boundary of Ωp
be denoted by γo and the interior boundary connecting to the fluid domain Ω f by γf, see Fig. 2. We assume zero
normal velocity (ul · n = 0) on the outer boundary γo and continuity of normal velocities and normal stresses on γf.
For the tangential fluid stresses, we consider the Beavers–Joseph–Saffman coupling conditions [33]. The coupling
conditions between porous medium Ωp and fluid Ω f read⎧⎪⎪⎨⎪⎪⎩

σf,n = −pl on γf,

u · n = ul · n on γf,

σf,τ = −
α√
Kτ ϵp

uτ on γf

(5)

where uτ := Pτ u denotes the tangential part of the velocity vector and σf,n = nTσ fn and σf,τ = Pτσ fn are the
normal and tangential part of the Cauchy stress tensor σ f introduced above. We note that the condition for the
tangential stresses in the last line of (5) corresponds to a Navier-slip boundary condition for the fluid. In contrast to
this boundary condition for the fluid, the normal velocity u·n is not zero here, as the fluid can enter the porous layer.

The appropriate choice of the parameter α in the last line of (5) depends on the application. In the case that
γf corresponds to a symmetry boundary within a larger fluid domain, where contact can take place, for example
between two contacting valves, it is appropriate to set α = 0 (pure slip). If the porous layer is, however, placed
at a rigid wall, the Beavers–Joseph–Saffman condition with α > 0 is more appropriate [33,34]. The parameter α

depends on the structure of the porous layer. Values 0.01 < α < 5 have been suggested in [35], depending on the
structure of the porous medium. We will consider both kinds of conditions in the numerical examples of Section 4.

4



E. Burman, M.A. Fernández, S. Frei et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114637

Introducing the averaged porous pressure Pl as

Pl =
1
2

(pl|γf + pl|γo) in Σp, (6)

the following equations can be derived in the limit case ϵp → 0 (see [22,23])⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇τ ·

(
ϵp Kτ∇τ Pl

)
= u · n on Σp,

σf,n = −Pl −
ϵp K −1

n

4
u · n on Σp,

σf,τ = −
α√
Kτ ϵp

uτ on Σp.

(7)

Note that the only remaining porous medium variable is the averaged pressure Pl. In the limit Kn, Kτ → 0, the
coupling conditions turn into a no-slip boundary condition for the fluid on Σp.

2.3. Fluid–structure–porous–contact interaction model

We assume that Ω f(t) is filled with an incompressible fluid governed by the Navier–Stokes equations. The domain
Ω s(t) is occupied by a solid medium described by a beam or shell solid model (given in terms of an abstract surface
differential operator L) on a (d − 1)-dimensional domain Σ or by the elastodynamics equations in the case of a
d-dimensional domain Ω s. The fluid and solid equations are coupled with no-slip interface conditions on the fluid–
structure interface Σ (t). The solid is constrained to not penetrate into the porous medium Σp via the (relaxed)
unilateral frictionless contact conditions

d · n − gϵ ≤ 0, λ ≤ 0, λ(d · n − gϵ) = 0 on Σ . (8)

Here, gϵ := g − ϵg , where g denotes the gap function to Σp and ϵg > 0 is a small parameter. The symbol λ stands
for the normal component of the contact traction, which corresponds to the Lagrange multiplier associated to the
no-penetration condition.

The proposed fluid–structure–porous–contact interaction model is hence formulated as follows: Find the fluid
velocity and pressure u : Ω f

×R+
→ Rd , p : Ω f

×R+
→ R, the solid displacement and velocity d : Ω s

×R+
→ Rd ,.

d : Ω s
× R+

→ Rd , the Darcy porous pressure Pl : Σp × R+
→ R and the Lagrange multiplier λ : Σ × R+

→ R
such that, for all t ∈ R+, the following relations are satisfied

• Fluid problem:⎧⎪⎨⎪⎩
ρf

(
∂t u + u · ∇u

)
− div σ f(u, p) = ρf f f in Ω f(t),

div u = 0 in Ω f(t),
u = 0 on Γ ,

(9)

• Porous layer:{
−∇τ ·

(
ϵp Kτ∇τ Pl

)
= u · n on Σp,

ϵp Kτ τ · ∇τ Pl = 0 on ∂Σp,
(10)

• Solid problem:⎧⎪⎨⎪⎩
ρsϵs∂t

.
d + L(d) = T on Ω s

= Σ ,
.
d = ∂t d on Ω s

= Σ ,

d = 0 on ∂Ω s
∩ Γ ,

(11)

in case of a thin-walled solid, or⎧⎪⎨⎪⎩
ρs∂t

.
d − div σ s (d) = ρs f s on Ω s,

.
d = ∂t d on Ω s,

d = 0 on ∂Ω s
∩ Γ ,

(12)

in case of a thick-walled solid.

5
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• Contact conditions:

d · n − gϵ ≤ 0, λ ≤ 0, λ(d · n − gϵ) = 0 on Σ . (13)

• Fluid–structure coupling conditions:{
φ = IΩs + d, Ωs(t) = φt (Ω

s), Ω f(t) = Ω\Ω s(t),

u =
.
d ◦ φ−1

t on Σ (t),
(14)

and ∫
Σ

(T − λn) · w = −

∫
Σ (t)

Jσ f(u, p)nK · w ◦ φ−1
t , (15)

or ∫
Σ

(σ s − λI)n · w =

∫
Σ (t)

σ f(u, p)n · w ◦ φ−1
t (16)

for all test functions w, respectively in the case of the coupling with a thin- or thick-walled solid.
• Fluid–porous coupling conditions:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σf,n = −Pl −
ϵp K −1

n

4
u · n  

=: σp

on Σp,

σf,τ = −
α√
Kτ ϵp

uτ on Σp.

(17)

Here, the symbol ρs stands for the solid density and f f and f s are volume forces in the fluid and solid,
respectively. In the case of a thin-walled solid, the symbol ϵs denotes the solid thickness and T the surface force
acting on the reference configuration of the thin-walled solid mid-surface. The relations in (14)–(16) enforce the
geometrical compatibility and the kinematic and the dynamic coupling at the interface between the fluid and the
solid, respectively. It should be noted that the no-penetration condition in (13) is already imposed at an ϵg-distance
to the porous layer Σp. This modelling simplification circumvents most of the numerical difficulties associated
with the topological change in the fluid domain induced by the exact contact condition (i.e., with ϵ = 0), such
as switching between the contact and fluid–solid interfaces and presence of isolated small fluid regions (see [20]).
Moreover, it also facilitates the explicit treatment of the geometric condition in the fluid–structure coupling (see
Section 3).

2.3.1. Mechanical consistency
In the fluid–structure–porous–contact interaction model (9)–(17), a very thin fluid layer remains between the

solid and porous medium during contact. Usually, this relaxation of the contact conditions comes with a drawback,
which is that the fluid forces arising in the layer have no physical meaning, but might distort the contact dynamics.
This is different when a porous layer is considered on Σp. Owing to relations (7), the behaviour of the fluid confined
in the contact layer is expected to be very close to the one of the porous fluid. Indeed, this is a consequence of the
kinematic-dynamics relations (7)1,2, which are enforced both during and in absence of contact. If a part of Σ (t) is
in contact with Σp according to (8), the value of σf,n (resp. u ·n) on this part Σ (t) will be close to σp (resp. ul ·n) on
the corresponding part of Σp. As a result, all the kinematic and dynamic relations acting on the solid during contact
have a physical meaning, which guarantees the mechanical consistency of the proposed fluid–structure–contact
interaction model.

More precisely, owing to (16), in the case of a thick-walled solid the Lagrange multiplier for the no-penetration
condition will formally assume the form

λ = σs,n − σf,n  
=: JσnK

≈ σs,n − σp ◦ π on Σ ,

where we write σs,n := nTσ sn for the solid normal traction and π denotes a (closest-point) projection from Σ (t) to
Σp. Both, the solid stresses σs,n and the “porous stresses” σp have a physical meaning during solid-porous contact.

6
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Fig. 3. Illustrative example to motivate the role of seepage in fluid–structure interaction with contact: Contact of a solid body with the lower
wall is released in the central part of the contact surface, when a specific force f is applied. Without seepage on Σp a vacuum would be
created.

Hence, this porous–contact approach gives a physical meaning to the stresses generated in the infinitesimal fluid
layer, in contrast to the relaxed contact formulation in [19], where the fluid stresses σf,n did not allow for a direct
physical interpretation. A similar argumentation holds true for the thin-walled solid case, where

λ =
(
ρsϵ

s∂t
.
d + L(d)

)
· n + Jσf,nK ≈

(
ρsϵ

s∂t
.
d + L(d)

)
· n + σp ◦ π − σf,n|2 on Σ .

In the spirit of [36], the Lagrange multiplier can further be eliminated, which in the case of a thick-walled solid
results in the non-linear contact condition

JσnK = −γC
[
d · n − gϵ − γ −1

C JσnK  
=: PγC (d · n, JσnK)

]
+

on Σ , (18)

for γC > 0. This can be embedded in an elegant way in the variational formulation using a Nitsche-based approach,
see [19] and Section 3. For a thin solid, a similar approach is possible, with the additional difficulty that the normal
solid traction on the mid-surface is given in terms of the normal PDE residual

(
ρsϵ

s∂t
.
d + L(d)

)
· n, which is rarely

available at the discrete level. On the other hand, it has been shown that, for the case of a thin-walled solid, and P1

finite elements a pure penalty approach (i.e. neglecting the normal traction λ in the term Pγc ) leads to a first-order
approximation, see [37,38]. The detailed variational formulations for both the case of a thick- and a thin-walled
solid will be given in the next section.

Besides its mechanical consistency, the main advantage of this method is its simplicity. The porous medium
and the structure are always coupled with the fluid only and never directly to each other. This avoids switches
in the variational formulation, which would be necessary in the transition between fluid–solid and solid-porous
interaction [23]. On the other hand, the solid perceives indirectly the presence of the porous layer through the
fluid stresses and velocity during contact. The resulting numerical approach is highly competitive in terms of
computational costs compared to approaches using Lagrange multipliers and/or active-sets.

2.3.2. Seepage
The proposed fluid–structure–porous–contact interaction model (9)–(17) allows for seepage in the sense that fluid

can flow through the porous layer Σp, for example to connect a cavity in the central part of the contact surface with
the exterior fluid. These could emerge when the impact of the structure happens in the lateral parts of the structure
first or when contact of the solid is released in a central part of the contact surface only. This is an important aspect
in the modelling of fluid–structure–contact interaction, as otherwise unphysical configurations might result. As an
example consider the situation sketched in Fig. 3, where a solid body is in contact with the lower wall Σp at initial
time (left sketch). When a (sufficiently strong) force f is applied in the central part of Ω s, while the body is fixed
at the lateral parts, contact will be released in the central part only. If no seepage along Σp is allowed, a vacuum
would emerge between Ω s and Σp. While one could argue that this paradox is already circumvented by using the
relaxed contact conditions (8), we note that only the porous layer gives a physical meaning to the fluid filling the
contact layer.

3. Numerical methods

This section is devoted to the numerical discretisation of the fluid–structure–porous–contact interaction model
(9)–(17). Two numerical approaches will be considered which basically depend on thin- or thick-walled nature of

7
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the solid model and on the formalism used for the fluid–structure coupling (mixed Lagrangian–Eulerian or fully
Eulerian formalisms). For an accurate discretisation of the fluid–structure–porous–contact interaction model (9)–
(17), two different strategies will be considered in the numerical examples reported in Section 4. The first strategy
is based on an unfitted Nitsche-XFEM method, drawing on [29,30]. The second strategy is a fitted finite element
method, following [31]. In both cases, we will use equal-order finite element methods.

To fix ideas, we will present the numerical approaches for two specific combinations of these components (mixed
Lagrangian–Eulerian vs. Fully Eulerian, fitted vs. unfitted finite elements, thick-walled vs. thin-walled structures),
namely a mixed Lagrangian–Eulerian approach with a thin-walled solid using unfitted finite elements in Section 3.1
and a fully Eulerian approach with a thick-walled solid using fitted finite element discretisation in Section 3.2.
Different combinations are possible as well, but will not be considered in the remainder of this article.

3.1. Lagrange–Eulerian formalism with immersed thin-walled solids

In what follows, the parameter δt > 0 stands for the time-step length and tn := nδt denotes the time instant at
time level n ∈ N. The symbol xn generally denotes an approximation of x(tn), for a given time valued function
x(t). We also introduced the notation

∂δt xn
:=

1
δt

(
xn

− xn−1) ,

for the first-order backward difference.
We consider the fluid–structure–porous–contact interaction problem (9)–(17) in the case of the coupling with

immersed thin-walled solids. The time discretisation is performed with a backward-Euler scheme, including a semi-
implicit treatment of the convective term in (9) and an explicit treatment of the geometric coupling (14)1. As regards
the spatial discretisation, an unfitted finite element approximation with overlapping meshes is considered for the
fluid–solid coupling, by drawing on the Nitsche-XFEM method reported in [29,30]. The Fluid–porous system is
discretised by a standard fitted finite element approximation.

For the solid, we start by assuming that there exists a positive form as
: W × W −→ R, linear with respect to

the second argument, such that

as(d, w
)

=
(
L(d), w

)
Σ

for all w ∈ W := [W 1,∞
Γ∩∂Σ (Σ )]d , where W stands for the space of admissible displacements. Let {T s

h }0<h<1 be
a family of triangulations of Σ . We consider the standard space of continuous piecewise affine functions

X s
h :=

{
vh ∈ C0(Σ )

⏐⏐ vh|K ∈ P1(K ), ∀K ∈ T s
h

}
, W h := [X s

h]d
∩ W .

The contact condition (13) is approximated via a penalty method (see, e.g., [37]), by adding the following penalty
term into the solid discrete problem:

γc Eϵs

h2

([
dn

h · n − gε

]
+
, wh · n

)
Σ

,

where E is the solid Young modulus and γc > 0 is the (dimensionless) penalty parameter.
For a given discrete displacement approximation dn

h ∈ W h at time tn , we define its associated deformation map
by φn

h :=IΣ + dn
h . This map characterises the current solid configuration (i.e., at time level n), as Σ n

:=φn
h(Σ ). As

indicated above, we consider an explicit update for the physical fluid domain in (14)1, namely,

Ω f,n
:=Ω\Σ n−1, (19)

which has the effect of removing the geometrical non-linearities in the fluid problem (9).
Let {Th}0<h<1 a family of triangulations of Ω . Owing to (19), for each Th we defined two overlapping meshes T n

h,i ,
i = 1, 2, such that T n

h,i covers the i th fluid region Ω f,n
i defined by Σ n−1 through (19). Note that each triangulation

T n
h,i is fitted to the exterior boundary Γ ∪ Σp, but in general not to Σ n−1 (nor T s

h ), see Fig. 4.
There will be duplicated elements, i.e., such that K ∈ T n

h,1 ∩ T n
h,2, but this is only allowed when K ∩Σ n−1

̸= ∅.
We denote by Ω f,n

h,i the domain covered by T n
h,i , viz.,

Ω f,n
h,i :=int

⎛⎝ ⋃
K∈T n

h,i

K

⎞⎠ .

8
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Fig. 4. One dimensional illustration of the overlapping meshes T n
h,i and of the construction of the discrete spaces Xn

h,i .

We can hence introduce the following spaces of continuous piecewise affine functions

Xn
h,i :=

{
vh ∈ C0(Ω f,n

h,i )
⏐⏐ vh|K ∈ P1(K ), ∀K ∈ T n

h,i

}
.

and set

V n
h,i :=[Xn

h,i ]
d

∩ [H 1
Γ (Ω f,n)]d , Qn

h,i :=Xn
h,i ∩ L2

0(Ω f,n).

For the approximation of the fluid velocity and pressure we will consider the following time-dependent discrete
product spaces

V n
h :=V n

h,1 × V n
h,2, Qn

h :=Qn
h,1 × Qn

h,2. (20)

The functions in (20) are continuous in the physical fluid domain Ω f,n
i , but discontinuous across the interface location

Σ n−1 (see Fig. 4).

Algorithm 1 Strongly coupled scheme for fluid–structure–porous–contact interaction (thin-walled solid).
For n ≥ 1:

1. Interface update:

φn−1
h = IΣ + dn−1

h , Σ n−1
= φn−1

h (Σ ), Ω f,n
= Ω\Σ n−1.

2. Find
(
un

h, pn
h ,

.
dn

h, dn
h, Pn

l,h

)
∈ V n

h × Qn
h × W h × W h × Sh with

.
dn

h = ∂δt dn
h such that

ρf
(
∂δt un

h, vh
)
Ωn + af,n

h

(
un−1

h ; (un
h, pn

h ), (vh, qh)
)
+ ρsϵ

s(∂δt
.
dn

h, wh
)
Σ

+ as(dn
h, wh)

+
γc Eϵs

h2

([
dn

h · n − gϵ

]
+
, wh · n

)
Σ

−

2∑
i=1

(
σ f(un

h,i , pn
h,i )ni , vh,i − wh

)
Σn−1

−

2∑
i=1

(
un

h,i −
.
dn

h, σ f(vh,i , −qh,i ))ni
)
Σn−1 +

γµf

h

2∑
i=1

(
un

h,i −
.
dn

h, vh,i − wh
)
Σn−1

−(σp, vh · n)Σp + (ϵp Kτ∇τ Pn
l,h, ∇τ ql,h)Σp −

(
un

h · n, ql,h
)
Σp

+
α√
Kτ ϵp

(un
h,τ , vh,τ )Σp = (ρf f f , vh)Ωn (21)

for all (vh, qh, wh, ql,h) ∈ V n
h × Qn

h × W h × Sh , where the porous stress σp is given by

σp := −Pn
l,h−

ϵp K −1
n

4
un

h · n on Σp.

9



E. Burman, M.A. Fernández, S. Frei et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114637

We can now introduce the corresponding fluid discrete tri-linear form (see [30]):

af,n
h

(
zh; (uh, ph), (vh, qh)

)
:=2µf

(
ϵ(uh), ϵ(vh)

)
Ω f,n + ρf

(
zh · ∇uh, vh

)
Ω f,n +

ρf

2

(
(divzh)uh, vh

)
Ω f,n

− ρf
(
{{zh}} · nJuhK, {{vh}}

)
Σn−1 −

ρf

2

(
Jzh · nK, {{uh · vh}}

)
Σn−1

− (ph, div vh)Ω f,n + (div uh, qh)Ω f,n

+ sn
v,h(zh; uh, vh) + sn

p,h(zh; ph, qh) + gn
h (uh, vh).

For consistency the bulk terms are integrated in the physical domain Ω f,n , which requires a specific track of the
interface intersections within the fluid domain (see e.g. [39–41]). The terms sn

v,h and sn
p,h respectively correspond

to the continuous interior penalty velocity and pressure stabilisation operators, given by (see, e.g., [42]):

sn
v,h(zh; uh, vh):=γvh2

2∑
i=1

∑
F∈Fn

h,i

ξ
(
ReF (zh)

)
∥zh · n∥L∞(F)

(
J∇uhKF , J∇vhKF

)
F ,

sn
p,h(zh; ph, qh):=γph2

2∑
i=1

∑
F∈Fn

h,i

ξ
(
ReF (zh)

)
∥zh∥L∞(F)

(
J∇ phKF , J∇qhKF

)
F ,

where Fn
h,i denotes the set of interior edges or faces of T n

h,i , ReF (zh):=ρf∥zh∥L∞(F)hµ−1
f denotes the local Reynolds

number, ξ (x) := min{1, x} is a cut-off function and γp, γv > 0 are user-defined parameters. Finally, gn
h is the so-called

ghost-penalty operator, given by

gn
h (uh, vh):=γgµfh

2∑
i=1

∑
F∈FΣn−1

i,h

(
J∇ui,hKF , J∇vi,hKF

)
F ,

where FΣn−1

i,h denotes the set of interior edges or faces of the elements intersected by Σ n−1. This term is added to
guarantee robustness independent of the way the interface cuts the fluid mesh. The underlying idea is to extend the
coercivity of the bi-linear form to the whole computational domain, see [43] or [44] for different possibilities.

For the approximation of the porous system, we consider a family of triangulation {T p
h }h>0 of Σp, so that each

T p
h is fitted Th . We then consider the standard space of continuous piecewise affine functions for the approximation

of the porous pressure Pl

Sh :=
{
vh ∈ C0(Σp)

⏐⏐ vh|K ∈ P1(K ), ∀K ∈ T p
h

}
.

In summary, the resulting fully discrete method is reported in Algorithm 1. We use the notation un
h,i , v

n
h,i , pn

h,i , qn
h,i

(i = 1, 2) introduced in (1) for the two parts of the discontinuous functions across Σ n−1. Note that the kinematic-
dynamic interface coupling (14)2–(15) is enforced in a consistent and strongly coupled fashion through Nitsche’s
method (see [29,30]).

Remark 3.1. If the interface has a boundary inside the fluid domain (a so-called tip), we consider the construction
of the fluid and solid discrete spaces proposed in [30] (see [45, Chapter 6] for an extension to the 3D case). A virtual
interface Σ̃ n−1 is introduced by connecting the interface tip with the fluid vertex opposite to the edge intersected
by the interface and therefore the fluid domain is closed. Afterwards, we enforce the kinematic/dynamic continuity
of the fluid on Σ̃ n−1 in a discontinuous Galerkin fashion (see, e.g., [46]). More precisely, the following terms are
added to (21)

−
(
{{σ f(un

h, pn
h )}}n, JvhK

)
Σ̃n−1 −

(
{{σ f(vh, −qh)}}n, Jun

hK
)
Σ̃n−1 +

γµf

h

(
Jun

hK, JvhK
)
Σ̃n−1 .

3.2. Fully Eulerian formalism with immersed thick-walled solids

In a fully Eulerian approach the current displacement d(x, t) is defined by the relation

x − d(x, t) = x̂, (22)

10
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Fig. 5. Example of a locally fitted finite element discretisation with 4 coarse cells.

where x̂ is the corresponding point in the reference configuration Ω s. This means that the displacement can be used
to trace back points x ∈ Ω s(t) to their reference position x̂ in Ω s and hence to determine the domain affiliation of
a point x ∈ Ω at time t . As in the previous section, we use again an explicit approach to avoid the issues related
to geometrical non-linearities

Ω s,n
:=

{
x ∈ Ω ,

⏐⏐ x − dn−1
h ∈ Ω s} , Σ n

:=
{

x ∈ Ω ,
⏐⏐ x − dn−1

h ∈ Σ
}
, Ω f,n

:= Ω \
(
Ω s,n

∪ Σ n) .

Numerically, the domain affiliations can be determined by the Initial Point Set (backward characteristics) method
(see, e.g., [11,25,26]). To evaluate the displacement dn−1

h in points x ∈ Ω f,n−1 near the interface Σ n−1, that could
belong to Ω s,n in the next step, an extension of the solid displacement to a small layer around the interface is
required (see, e.g., [27]). The domain affiliation can be computed in a separate step before setting up the variational
formulation as shown in Algorithm 2, or “on-the-fly” while setting up the finite element formulation.

As an alternative to the unfitted finite element method presented in the previous section, we consider here a fitted
finite element method for spatial discretisation. We briefly describe the locally modified finite element method as
an example in two space dimensions (see [31]). The method is based on a fixed coarse triangulation T2h , which is
independent of the interface position, and a further subtriangulation of the coarse elements P ∈ T2h , which resolves
the interface, see Fig. 5. We restrict ourselves to linear finite elements and a linear interface approximation. A
second-order approximation has been presented recently in [47].

In order to resolve the interface locally, we split each coarse cell cut by the interface into 8 subtriangles
K1, . . . , K8 and move some of the interior vertices to the interface, such that a linear interface approximation
is obtained. The position of the 9 degrees of freedom x1, . . . , x9 in each coarse cell are described by a piecewise
linear reference map from the reference patch P̂ = [0, 1]2

ξP : P̂ ↦→ P, ξP ∈ Q P :=
{
φh ∈ C0(P̂)

⏐⏐ ξ |Ki ∈ P1(Ki ), i = 1, . . . , 8
}

that fulfils the 9 conditions ξP (x̂i ) = xi , i = 1, . . . , 9, where x̂i denotes the (fixed) Lagrangian points on the
reference patch. In elements that are not affected by the interface piecewise bilinear shape functions can be used on
four quadrilaterals alternatively, see the lower left coarse cell in Fig. 5. The locally modified finite element space
is then given by

X lmfem,n
h (Ω ) :=

{
φh ∈ C0(Ω ),

⏐⏐ (φh ◦ ξ−1)|P ∈ Q P ∀P ∈ T2h
}
.

By X lmfem,n
h (Ω i ) we denote the space that results by eliminating all degrees of freedom that do not lie in a subdomain

Ω i
⊂ Ω or on its boundary. Then, we define the spaces

V n
h :=

[
X lmfem,n

h (Ω f,n) ∩ H 1
Γ (Ω f,n)

]2
, Qn

h := X lmfem,n
h (Ω f,n), W n

h :=
[
X lmfem,n

h (Ω s,n) ∩ H 1
Γ (Ω s,n)

]2
.

The space Sh is defined as in Section 3.1. We use an implicit form of the fluid semi-linear form

af,n
h

(
uh, ph; vh, qh

)
:=2µf

(
ϵ(uh), ϵ(vh)

)
Ω f,n + ρf

(
uh · ∇uh, vh

)
Ω f,n − (ph, div vh)Ω f,n

+ (div uh, qh)Ω f,n + sn
p,h(zh; ph, qh).

11
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Algorithm 2 Strongly coupled Eulerian approach for an FSI–contact problem with a thick-walled solid..
For n ≥ 1:

1. Update the domain affiliations

Ω s,n
:=

{
x ∈ Ω ,

⏐⏐ x − dn−1
h ∈ Ω s} , Σ n

:=
{

x ∈ Ω ,
⏐⏐ x − dn−1

h ∈ Σ
}
, Ω f,n

:= Ω \
(
Ω s,n

∪ Σ n) .

2. Find
(
un

h, pn
h ,

.
dn

h, dn
h, Pn

l,h

)
∈ V n

h × Qn
h × W n

h × W n
h × Sh with

.
dn

h = ∂̃δt dn
h and

ρf
(
∂̃δt un

h, vh
)
Ω f,n + af,n

h

(
un

h, pn
h ; vh, qh

)
+ ρs

(
∂̃δt

.
dn

h, wh
)
Ωs,n + as,n(dn

h, wh)

+
γc E

h

([
P̃γc (dn

h)]+, wh · n
)
Σn −

(
σ f(un

h, pn
h )n, vh − wh

)
Σn

−
(
un

h −
.
dn

h, σ f(vh, −qh))n
)
Σn +

γµf

h

(
un

h −
.
dn

h, vh − wh
)
Σn

−(σp, vh · n)Σp + (ϵp Kτ∇τ Pn
l,h, ∇τ ql,h)Σp −

(
un

h,n, ql,h
)
Σp

+
α√
Kτ ϵp

(un
h,τ , vh,τ )Σp = (ρf f f , vh)Ωn + (ρs fs, wh)Ωs,n (23)

for all (vh, qh, wh, ql,h) ∈ V n
h × Qn

h × W n
h × Sh , with the porous stress σp as defined in Algorithm 1 and the

contact term P̃γc defined in (24).

To cope with the lack of inf–sup-stability of the discrete spaces, we use the (anisotropic) CIP pressure stabilisation
developed in [48] for sn

p,h . In contrast to 3.1, we have omitted the convection stabilisation, which will not be needed
in the examples with a thick solid below. Moreover, a ghost-penalty term is not required, as we use a fitted finite
element discretisation.

For the solid, we assume a hyperelastic material law with a corresponding variational formulation of the form

as,n(dh, wh) := (σ s(dh), ∇wh)Ωs,n ,

where σ s denotes the Cauchy stress tensor.
Concerning time discretisation let us first note that the variables un−1

h and dn−1
h are undefined on parts of Ω s,n

and Ω f,n , respectively, as both Ω s and Ω f are time-dependent. Thus, the method of lines cannot be applied in
a straight-forward way. To deal with this issue, we use the dG(0) variant of a family of Galerkin schemes that
incorporates the characteristics of the domain movement in the Galerkin spaces [49]. For the dG(0) variant the
difference to a standard backward Euler scheme lies solely in the discretisation of the time derivative. We introduce
the notation

∂̃δt un
h =

un
h −

(
un−1

h ◦ Ψ
)

δt
− ∂tΨ · ∇un

h,

where Ψ is an (arbitrary) map defined in Ω that maps Ω f,n to Ω f,n−1 and Ω s,n to Ω s,n−1, respectively. Alternatively,
one could use Eulerian time-stepping schemes with suitable extension operators. An implicit extension by means
of ghost-penalties has been studied in [44,50].

Finally, let us note that due to the different meaning of the displacement dn
h in the current frame Ω s,n (see (22)),

the no-penetration condition in (13) becomes

dn
h −

(
dn−1

h ◦ Ψ
)
− g̃n

ϵ ≤ 0

where g̃n
ϵ denotes the current distance to the lower wall Σp minus ϵ and Ψ is a map from Σ n to Σ n−1. The contact

term takes the form

P̃γC (dn
h) = dn

h −
(
dn−1

h ◦ Ψ
)
− g̃n

ϵ − γ −1
C JσnK, (24)

where γC =
γc E

h , E denotes the elasticity modulus of the solid and γc is a (dimensionless) contact parameter. We
note that in contrast to the O(h−2)-weighting in the thin case, a weighting of O(h−1) is needed here. [51] The
resulting numerical method is reported in Algorithm 2.

12
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Fig. 6. (a) Geometric configuration of the idealised valve with contact, (b) Zoom of the leaflet mesh and fluid mesh.

Remark 3.2 (Stability). In [19] a stability result has been derived for a very similar variational formulation with
slip- or no-slip boundary conditions on Σp instead of the porous medium. An analogous result can easily be shown
for both the variational formulations in (21) and (23) using the same technique.

Remark 3.3 (Limit of Vanishing Fluid). In the limit of vanishing fluid density ρf and viscosity νf we recover the
classical contact conditions in pure solid mechanics. This can be seen as follows: For ρf → 0 the pressure p tends
to zero, due to (2)–(3). For νf → 0 the viscous part of the fluid stresses σ f vanishes as well. This means that in the
limit we have λ = σs,n in the case of a thick solid resp. λ = T for a thin solid. The complementarity conditions (13)
become the classical contact conditions with contact force (in the case of a thick solid)

σs,n = −γC
[
d · n − gϵ − γ −1

C σs,n
]
+
.

4. Numerical experiments

In this section, we present two very different numerical examples to investigate the properties and the capabilities
of the numerical approaches. First, we investigate the full fluid–structure–porous–contact problem for a thin-walled
solid by means of a deflected thin elastic valve in Section 4.1. As introduced in Section 3.1, we use an unfitted
discretisation and solve the solid equations on the reference domain Ω s

= Σ . Then, we investigate the case of a
thick solid in Section 4.2, namely an elastic ball that falls down and bounces within a viscous fluid. Here, a Fully
Eulerian approach is used in combination with the locally fitted finite element method, as described in Section 3.2.

4.1. Idealised valve with contact

In this test, we consider a full FSI–contact problem with a thin-walled solid. This numerical example corresponds
to the idealised valve test with possible contact on the porous layer Σp. The geometry is shown in Fig. 6(a). The
computational domain is a rectangle Ω = [0, 8] × [0, 0.805], where the upper boundary is a symmetry axis (we
imagine a second symmetrical valve on top), which means that we impose the “slip” condition σ f,τ = 0 in (10),
letting α = 0. As reference configuration for the solid, Σ , we consider a curve segment with end points A = (4, 0)
and B = (5.112, 0.483), parametrised by the analytical function

y(x) =
1
2

√
1 −

(x − 11/2)2

(3/2)2 , x ∈ [4, 5.112].

Regarding the boundary condition, a no-slip condition is enforced on the lower boundary Γw, zero traction on
the outflow boundary Γout and a traction condition on Γin, in terms of the following time-dependent pressure:

pin(t) =

{
−200 tanh(100t) if 0 < t < 0.7,

200 if t ≥ 0.7.

The final time is T = 1, which corresponds to one full valve oscillation cycle. The fluid and the solid are initially at
rest and the beam is pinched at the bottom tip A. In this test, the solid is described by a non-linear Reissner–Mindlin
curved beam model with a MITC spatial discretisation. The physical parameters are given in Table 1 on the left
and the numerical parameters on the right of the same table. Some of them will be varied in the following, in order

13
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Table 1
Summary of the physical (left) and numerical (right) parameters used
in Section 4.1.

Parameter Symbol Value (CGS)

Fluid density ρf 1
Dynamic viscosity µf 3 · 10−2

Solid density ρs 1.2
Thickness (solid) ϵs 6.5 · 10−2

Young’s modulus E 107

Poisson ration νf 0.4

Conductivity (porous) K = Kn = Kτ 10−3

Thickness (porous) ϵp 10−2

Parameter Symbol Value (CGS)

Ghost penalty γp 1
CIP pressure stab. γp 10−2

CIP convection stab. γν 10−2

Nitsche par. (FSI) γ 102

Contact parameter γc 5 · 10−3

Relaxation param. ϵg 10−2
≈

h
4

Time step δt 10−3

Mesh size h ≈ 10−4

Fig. 7. Velocity magnitude snapshots.

to study the sensitivity of the approach with respect to certain parameters. The contact parameter γc = 5 · 10−3 is
chosen large enough to avoid penetration and small enough to maintain good convergence properties in the Newton
solver (a very large parameter would lead to a stiffening of the solid system).

The fluid mesh has 16 384 triangles and the solid mesh 50 edges. We have h ≈ 0.04. The zoom on both meshes is
presented in Fig. 6(b). The time discretisation parameter is δt = 10−3 and the Nitsche parameter is set to γ = 100.

Let us first consider a test case with K = Kτ = Kn = 10−3. We report in Fig. 7 the velocity magnitude at two
different instants. In Fig. 7(a) we report the approximation obtained at time t = 0.6. At this instant, the valve is
in contact with the upper wall and the fluid velocity decreases globally as a consequence of the closing. The fluid
enters into the porous layer and is transported from the right side to the left. At t = 1 the valve is open and far
from Σp, therefore the fluid flow is reestablished and the velocity increases in the channel. The same comparison is
performed in Fig. 8(a) and (b) for the pressure. We can see the high pressure jump when the valve is in contact with
the wall (Fig. 8(a)), while at t = 1 the discontinuity between the two sides of the interface is weaker (Fig. 8(b)).

Next, we investigate the impact of the parameter K = Kτ = Kn on the contact dynamics. Fig. 9 presents the
time history of the horizontal, Fig. 9(a), and vertical displacement, Fig. 9(b), at the upper solid point B for different

14



E. Burman, M.A. Fernández, S. Frei et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114637

Fig. 8. Pressure elevation snapshots.

Fig. 9. Time evolution of the x and y-displacement for the structure endpoint B.

levels of conductivity. The non-penetration condition with the wall can be seen in Fig. 9(b), whereas Fig. 9(a) shows
that the structure is sliding over the top wall. The interface is bouncing for all tests except the cases of Kτ = Kn = 1
and 10−1. In such cases, the structure reaches contact and the fluid flows abundantly into the porous layer, which
prevents the release of contact. When the inlet pressure increases, the valve opens and the flow is restored. In all
the other tests the interface is bouncing, but with a different reaction time, linked to the conductivity value. There
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Fig. 10. Interfaces location at time t = 0.25 (a), t = 0.45 (b) and t = 1(c).

Fig. 11. Fluid pressure (continuous line) and porous pressure (dash line) on Σp for different value of hydraulic conductivity at time t = 0.25
and t = 0.45.
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Fig. 12. Fluid velocity on Σp .

is a slight difference in the first release time, but the more visible differences are on the second bounce. Both, the
second contact instant and the final release, are considerably sensitive to the changing in Kτ = Kn . Finally, let
notice that taking Kτ → 0 and Kn → 0 we converge to the situation of no porous layer on Σp, as we can see in
Fig. 9.

Similar observations can be inferred from Fig. 10, which shows the interface configuration at time t = 0.25
(during contact), t = 0.45 (after the first release) and t = 1 (when the flow is restored). We can see that
for Kτ = Kn = 1 and 10−1 the valve does not bounce, but it only releases once the inlet pressure increases
(see Fig. 10(c)). Decreasing the conductivity of the porous medium increases the structure sliding at contact (see
Fig. 10(a)) and the bouncing force applied on the structure (see Fig. 10(b)).

Fig. 11 displays the fluid pressure (continuous line) and the porous pressures (dashed line) at time t = 0.25 and
t = 0.45. As expected, both pressures remain close. At time t = 0.25 the structure is in contact with the upper
wall, therefore there is a high pressure gradient that decreases by increasing the conductivity.

Fig. 12 shows the fluid x-velocity along the porous layer Σp at two different instants. As we can see, the
horizontal velocity is not zero also during contact as effect of the porous layer. As expected, the higher the
conductivity the greater is the velocity magnitude and a larger area of the porous layer is leaking or pushing fluid
inside the domain. In Fig. 13 we report the fluid y-velocity on Σp. The effect is more localised near the contact
area except for cases of Kτ = Kn = 1, 0.1, where the porous layer is still leaking and entering also far from the
contact area.

We now explore the results when variations on the porous thickness εp are considered. The porous hydraulic
conductivity is taken Kτ = Kn = 10−3. We explore results for εp ∈ {10−i

}
4
i=1. The outcome is shown in Fig. 14.

For εp → 0 the curves converge towards the results of no porous layer on the top wall.
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Fig. 13. Fluid velocity on Σp .

No particular differences are visible at first contact between the structure and the upper wall. During contact,
the horizontal velocity is lower for higher values of εp, therefore, the bouncing force is also lower. In addition, the
higher is εp, the later is the first release, the lower is the rebound force and, consequently, the earlier is the second
contact and release. For illustration purposes, we report in Fig. 15 a zoom of the y-displacement between the first
release and the second contact instants.

Refinement in space and time. We explore the convergence behaviour taking three levels of space and time
refinement, namely

(
δt, h

)
∈

{
2 · 10−3

· 2−i , 0.07 · 2−i
}2

i=0. The coarser fluid and solid meshes are made of 5 120
triangles and 26 segments, respectively. The second meshes consists of 20 480 triangles and 50 edges, while the
finest one has 81 920 triangles and 102 segments. The porous conductivity is chosen Kτ = Kn = 10−3, and the
contact relaxation parameter εg = εg(h) ∈ {0.02 · 2−i

}
2
i=0.

We show in Fig. 16 the results with these three refinement levels. We observe that the bouncing height is lower
for the coarser mesh and that the intermediate level of refinement provides a reasonable approximation. We can
also observe that, due to different contact relaxation parameters, contact and release occur at different instants and
heights.

4.2. Falling and bouncing elastic ball

In this section, we consider the example of a falling and bouncing elastic ball in a cylinder, which is filled
with a water–glycerin mixture. As we are interested in a detailed numerical study, we restrict ourselves to the
two-dimensional case here and consider a box of size 6 cm × 7.5 cm. The ball has a radius of 1 cm and is kept
initially at rest at a distance of 4 cm from the bottom. The ball falls down due to gravity fs = −9.81 m

s2 and bounces

18



E. Burman, M.A. Fernández, S. Frei et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114637

Fig. 14. Time evolution of the x-displacement (a) and y-displacement (b) for the structure endpoint B for different values of εp .

back after the impact. Due to symmetry, we can reduce the computational domain to the right half by imposing
symmetry boundary conditions on the midplane Γ sym, see Fig. 17.

We use a Fully Eulerian approach to solve the coupled problem, as described in Section 3.2. For simplicity, we
consider here a linear elastic material, where the Cauchy stress tensor σ s is given by

σs(d) = 2µs E(d) + λs tr(E(d))I, E(d) =
1
2

(
∇d + ∇dT )

,

with Lamé parameters λs = 7.64 · 106 kg
ms2 and νs = 1.04 · 106 kg

ms2 .
For time discretisation, we use a variant of the backward Euler method, namely a modified dG(0) time-stepping,

see [12,49]. We start with a time-step size of δt = 2 · 10−3 s, which is reduced in a stepwise procedure up to the
impact, where a small time-step size of δt = 1.25 · 10−4 s is reached.

The (kinematic) viscosity of the water–glycerol mixture is µf = 7 · 10−6 m
s2 , the density ρ f = 1141 kg

m3 and the
solid density ρs = 1351 kg

m3 . Unless stated differently the parameters in the porous medium are chosen as ϵp = 10−4

and K = Kn = Kτ = 10−2 and the numerical contact parameters are γc = 30λs and ϵg =
h
4 . For the Navier–

Stokes–Darcy coupling, we use the Beavers–Joseph–Saffman condition in (10) with α = 1. All the results have
been obtained with the finite element library Gascoigne3d [52]. We use a structured coarse grid T2h , which is
highly refined close to Σp with 3201 vertices in total (unless specified differently). In Fig. 18, we illustrate the
vertical velocities u y and ḋy of the falling ball at 6 instances of time.

Variation of the conductivity K . In Fig. 19 we compare the minimum distance to the ground during the fall and
before and after the impact for different conductivities K with results obtained without a porous model (“No Darcy”),
using either a full slip (σ f,τ = 0) or a Navier-slip condition σ f,τ =

α√
Kτ ϵp

with α = 1 on Σp. Note that in the

19



E. Burman, M.A. Fernández, S. Frei et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114637

Fig. 15. Time evolution of the y-displacement for the structure endpoint B, between first release and second contact (a) and after second
release (b).

latter case this is exactly the same tangential condition which is imposed by the Beavers–Joseph–Saffman coupling.
There, the normal velocity u · n is however not necessarily zero, as the flow can enter into the porous medium.

Depending on K , the ball bounces 4 or 5 times within the time interval [0, 0.8 s] with different bouncing heights
(top right). The last bounces are barely visible in the graphs shown here due to a very small bouncing height.
Moreover, we observe for K → 0 that the results converge towards the results obtained with a Navier-slip-boundary
conditions (“No Darcy”), the curve for K = 10−4 showing no visible differences. For larger K the curves get slightly
closer towards the results for a pure slip boundary condition.

Concerning the time of impact (bottom left of Fig. 19), we observe that the impact happens slightly later, the
smaller the conductivity K . The latest impact is observed for K = 10−4 and the pure Navier-slip condition (“No
Darcy”). This dependence on K is expected, as the resistive fluid forces that act against the contact are higher for
smaller conductivities. The earliest impact is observed for the pure slip condition, followed by K = 1. Moreover,
we observe that a small distance of about 4.3 · 10−5 m, which lies slightly below the imposed gap distance of
ϵg = 5 · 10−5 m, remains in all cases.

From the upper right picture we can infer the bouncing height depending on K . It holds that the earlier the
impact, the higher the impact velocity and hence, we observe a larger bouncing height. Consequently, we observe
the largest bounce for pure slip-conditions, followed by K = 1, and the smallest one for pure no-slip conditions
and K = 10−4.

On the bottom right of Fig. 19 we show the corresponding vertical velocity ḋy within the elastic ball, averaged
in space. We see that the absolute value of the upwards velocity after the first impact is by more than 30% smaller
than the absolute value of the impact velocity in all cases, which shows the dissipative impact of the fluid.
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Fig. 16. Time evolution of the x-displacement (a) and y-displacement (b) for the structure endpoint B, with different levels of refinement.

Fig. 17. Configuration of the numerical example with the falling ball. The computational domain is reduced to the right half due to symmetry
on the axis Γ sym.
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Fig. 18. Illustration of the vertical velocities in the falling ball example at t = 0, 0.28, 0.378 (top, left to right) and t = 0.382, 0.47 and
0.63 (bottom).

Variation of ϵp. In Fig. 20 we vary the thickness ϵp of the porous layer. We obtain 3 to 5 bounces with different
heights depending on ϵp. For ϵp → 0, the curves converge towards the results for a pure Navier-slip condition (“No
Darcy”), as the first equation in (10) implies u · n → 0. This is also what one expects from the physical model,
as a smaller porous layer allows less fluid to diffuse through the layer. In the curve on the right of Fig. 20, we see
that the contact happens earlier the larger ϵp is. This can again be explained by the smaller resistance of the fluid
“against” the contact, when this is allowed to escape through the porous layer. The larger impact velocity for larger
ϵp has again the effect that the bounce is higher for larger ϵp.

Variation of the contact parameter γc. In Fig. 21, we illustrate the influence of the contact parameter γc. As one
would expect the violation of the relaxed contact condition is larger for a smaller γc, see the plot on the top right.
For γc ≥ 10λs the curves are almost identical.

On the bottom, we show the contact force γc[Pγc ]+, which appears on the right-hand side of (18), for the first
four bounces. We see that the values of the force are almost independent of the chosen contact parameter. While
for the smallest contact parameter γc = 0.1λs the contact times are slightly altered, there is (almost) no visible
difference between the results for γc = 10λs and 100λs .

Time discretisation. In Fig. 22, we investigate the influence of the time-step size δt within and around the contact
interval. In each simulation we start with a time-step of δt = 2 ·10−3 at t = 0, which is decreased successively by a
factor of 2 depending on the distance to the ground. We see that a very small time-step is necessary to capture the
contact dynamics. While for the largest time-step δtmin = 1.25 ·10−4, the bounce is considerably reduced compared
to the smaller time-step sizes, the curves seem to converge for δtmin → 0. The reason for the deviation can be
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Fig. 19. Minimal distance dmin to the ground over time for different conductivities K and compared to pure slip and no-slip conditions on
the lower boundary. After the curve over the full time interval [0, 0.8 s] on the top left, two different zooms are provided to illustrate the
bounces (top right) and the time of impact (bottom left). Bottom right: Space-averaged vertical velocity of the elastic ball over time.

Fig. 20. Minimal distance dmin to the ground over time for different thicknesses ϵp of the porous layer and compared to pure slip and
no-slip conditions on the lower boundary.
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Fig. 21. Top: Minimal distance dmin to the ground over time for different contact parameters γc . Bottom: Contact force γc[Pγc ]+ over time
for the first bounce (left) and the second to fourth bounce (right).

Fig. 22. Minimal distance dmin to the ground during the first two bounces (left) and at the first impact period (right) for different minimal
time-step sizes δtmin.
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Fig. 23. Minimal distance dmin to the ground (left) and space-averaged solid velocity (right) over time on different mesh levels.

deduced from the right plot, which shows that for δtmin = 1.25 · 10−4 the time of impact and release, where the
curve shows a kink (i.e. the solution is non-smooth), is not captured accurately.

Space discretisation. In Fig. 23 we investigate the convergence behaviour under refinement of the finite element
mesh. We fix the minimal time-step to δtmin = 3.125 ·10−5 and consider a coarse mesh with a maximum cell size of
h ≈ 0.175cm and 3201 vertices and two finer meshes with 12 545 and 49 665 vertices that are constructed from the
coarse mesh by global mesh refinement. We observe that the results both concerning minimal distance and vertical
velocity are relatively close, even on the coarser mesh level, with an excellent agreement of the results on the finer
meshes.

Comparison with a pure no-slip boundary condition. In Fig. 24, we compare the approach presented in this paper
with a simple relaxed contact approach without porous medium (“No Darcy”), where a no-slip condition (resp.
a Navier-slip condition) is imposed for the fluid on the bottom wall Σp. The no-slip condition is the boundary
condition, which is typically used for viscous fluids in absence of contact. First, we note that the curves for the

no-slip condition and the Navier-slip condition with (small) slip-length
(

α√
Kτ ϵp

)−1

are almost identical. For this

reason the latter curves are omitted in the following graphs.
As observed before, we see in the left picture that the curves obtained with the porous medium approach converge

towards a certain bouncing height for h → 0. Using a no-slip condition on Σp, the bounce get smaller and smaller
and it is to be expected that for h → 0 no bounce takes place at all (which is in agreement with the theoretical
works on Navier–Stokes and contact [1,2,53]). The reason can be inferred from the zoom given on the right of
Fig. 24, where we see that the fall is slowed down significantly right before the impact, while the curves for the
two variants showed very good agreement until a distance of around 10−4 is reached. The reason are the strong
fluid forces, in particular the pressure, that act against contact, when a pure no-slip condition is used. The finer the
mesh, the better these forces are resolved. Interestingly, the results on the coarsest mesh (h ≈ 0.175) show still a
reasonable agreement, which might indicate that (only) on a very coarse mesh no-slip conditions could still yield
physical results within a relaxed contact approach.

Finally, we show in Table 2 the spatially-averaged velocity of the solid at the time of impact ti and the time of
release tr . Here we see quantitatively that the impact velocity is significantly reduced on the finer mesh levels when
using a no-slip condition and thus, a much smaller rebound results.

5. Conclusion

We have introduced a physically consistent model to describe fluid–structure interactions with contact including
seepage. For the latter a Darcy model is used on a thin porous layer of infinitesimal thickness. The approach can
be used in a variety of different physical and numerical settings, including thick- and thin-walled solids, Eulerian
or immersed (mixed-coordinate) descriptions, unfitted or fitted finite element discretisations, etc.
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Fig. 24. Comparison of the contact approach with a porous layer with pure no-slip (“No Darcy”) conditions. Minimal distance dmin to the
ground over time on different mesh levels and two different zooms.

Table 2
Spatially averaged velocity ḋy (t) := |Ωs (t)|−1 ∫

Ωs (t) ḋy (t) dx of the ball at the time of impact t = ti and at the
time of release t = tr for relaxed contact algorithms with a porous medium model and pure no-slip or Navier-slip
conditions on Σp on 3 different mesh levels.

h Porous No-slip Navier-slip

−ḋy (ti ) ḋy (tr ) −ḋy (ti ) ḋy (tr ) −ḋy (ti ) ḋy (tr )

1.75 · 10−3 1.12 · 10−1 8.87 · 10−2 1.11 · 10−1 8.81 · 10−2 1.11 · 10−1 8.81 · 10−2

8.77 · 10−2 1.05 · 10−1 8.48 · 10−2 9.74 · 10−2 7.59 · 10−2 9.74 · 10−2 7.60 · 10−2

4.39 · 10−2 1.03 · 10−1 8.91 · 10−2 7.25 · 10−2 5.98 · 10−2 7.26 · 10−2 5.98 · 10−2

The numerical results show that the approach is numerically stable and (relatively) insensitive to variations of the
numerical parameters, such as γc. The model parameters ϵp and K of the porous layer need to be chosen depending
on the application, e.g., the surface properties of the contacting bodies. Moreover, the results indicate convergence
in both space and time. The time-step δtmin needs to be chosen very small in and around the contact interval to
resolve the contact dynamics accurately.

Due to the relaxation of the contact conditions the approach is relatively easy to implement, in particular in
comparison to approaches where a full topology change in the discrete fluid domain takes place and small numerical
errors can lead to technical issues like unphysical “islands of fluid” appearing within the contact area, see [20].

Future work might focus on the extension to contact between multiple elastic bodies, or to Tresca or Coulomb
friction, see [54,55] Moreover, further developments within the time discretisation schemes on moving (sub-
)domains are desirable including for example adaptive strategies for the time steps δt . or stabilised higher-order
time-discretisation schemes, as discussed in [56].
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ABSTRACT

We evaluate a number of different finite-element approaches for fluid–structure (contact) interaction problems against data from physical
experiments. This consists of trajectories of single particles falling through a highly viscous fluid and rebounding off the bottom fluid tank
wall. The resulting flow is in the transitional regime between creeping and turbulent flows. This type of configuration is particularly challeng-
ing for numerical methods due to the large change in the fluid domain and the contact between the wall and the particle. In the finite-
element simulations, we consider both rigid body and linear elasticity models for the falling particles. In the first case, we compare the results
obtained with the well-established Arbitrary Lagrangian–Eulerian (ALE) approach and an unfitted moving domain method together with a
simple and common approach for contact avoidance. For the full fluid–structure interaction (FSI) problem with contact, we use a fully
Eulerian approach in combination with a unified FSI-contact treatment using Nitsche’s method. For higher computational efficiency, we use
the geometrical symmetry of the experimental setup to reformulate the FSI system into two spatial dimensions. Finally, we show full three-
dimensional ALE computations to study the effects of small perturbations in the initial state of the particle to investigate deviations from a
perfectly vertical fall observed in the experiment. The methods are implemented in open-source finite element libraries, and the results are
made freely available to aid reproducibility.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037971

I. INTRODUCTION

Flows containing particles, i.e., particulate flows or particles set-
tling in a fluid, have many industrial and biological applications.
Examples range from the transport of blood cells in blood flows1 to
the simulation of fluidized bed reactors.2

We shall consider single elastic spherical particles falling freely in
a viscous fluid and rebounding off the bottom wall of the fluid domain
at Reynolds numbers in the transitional regime between creeping and
turbulent flows. The multiphase and fluid–structure interaction (FSI)
problem with solid contact posed by the settling in the fluid and
rebounding off a wall is challenging from both an analytical and a
numerical perspective.

From the theoretical point of view, the correct model for the tran-
sition to contact with the bottom wall is not yet fully understood. In
the case where a rigid solid is assumed, most flow models lead to
results contradicting real world observations. For example, if a creep-
ing flow is assumed such that the linear Stokes equations are applica-
ble, then contact can only occur under singular forces, cf. Ref. 3. When
the non-linear incompressible Navier–Stokes together with no-slip
boundary conditions are taken for the fluid model, then contact can-
not occur and it is impossible to release contact.4 This can however be
overcome; if the boundary condition is modified to a free-slip condi-
tion,5 the rough nature of the surface is taken into account6 or the fluid
is taken to be compressible.7 If the solid model is changed to take the
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elasticity of the body into account, then it is currently assumed that
even with perfectly smooth boundaries and incompressibility,
rebounding without contact can occur due to the storage of energy in
the elastic solid.8–10 This has been refined recently (in the Stokes set-
ting),11 where it has been shown that the internal storage of energy is
not sufficient but that additionally a change in the “flatness” is neces-
sary to achieve physically meaningful rebound without topological
contact.

For numerical methods, the challenge lies in the discretization of
the resultant FSI system.12 It consists of a free boundary value problem
with a moving interface. The most well-established method for this is
the Arbitrary Lagrangian–Eulerian (ALE) approach.13 This approach
leads to very efficient and accurate computations in situations where
the method is usable. However, its usage is limited as it breaks down
when deformations with respect to the reference configuration become
too large and when contact occurs.14 The lattice-Boltzmann method is
an alternative approach that is also able to describe the behavior of set-
tling particles.15 To deal with large deformations, overlapping mesh
techniques have been developed.16 Here, the background fluid domain
and the region around the structure are meshed separately so that the
fluid–solid interface is resolved. The two meshes are then coupled
using unfitted approaches. This then allows a hybrid approach, where
the solid and the near fluid are treated using the ALE framework, while
the remaining fluid is treated in Eulerian coordinates.17 To overcome
both large deformations and contact, fully Eulerian approaches have
lately become the focus of research. In the case of rigid bodies, a num-
ber of different approaches have been considered, for example, based
on fictitious domain methods using Lagrange multipliers,18 XFEM
type approaches,19,20 and most recently, CutFEM approaches21 using
Nitsche’s method.22,23 Here, a major issue remains of achieving a real-
istic rebound effect since an artificial contact/lubrication force is added
to the equation governing the motion of the solid to prevent the over-
lap of the solid regions.18 Nevertheless, topological changes appear to
be unproblematic for the CutFEM type approaches.24

Considering full fluid–structure interactions, immersed
approaches have become popular in recent years.25–28 Here, the fluid
and the solid are treated in their natural Eulerian and Lagrangian coor-
dinate systems, respectively, and the sub-domains are meshed sepa-
rately. The two meshes are then coupled by means of Nitsche’s
method25,27 or using Lagrange multipliers.26,28,29 Another possibility
to handle large deformations and contact is by using fully Eulerian
approaches, where both the solid and fluid equations are formulated
in the Eulerian coordinate framework, which simplifies the coupling
within monolithic algorithms.30–34 All these approaches are however
relatively new and require further development with respect to accu-
racy and robustness.

The aforementioned methods have been applied to different test
cases for numerical validation, and a priori error estimates are also
available in most cases. The established benchmarks for fluid-structure
interaction problems such as those in Ref. 35 completely avoid contact
since the methods that handle contact remain relatively new. For
rigid-body motion, most numerical studies are interpreted qualita-
tively or compared to artificial, analytically derived solutions.
Especially in the cases where artificial forces are introduced in order to
avoid contact of rigid solids, real validation is near impossible as this
introduces model parameters for which there is no a priori knowledge
on a good choice. However, a number of FSI methods have recently

become available that are able to resolve contact.36–40 This then raises
the question of how well the different modeling and discretization
approaches depict the behavior of contact and rebound observed in
physical experiments.

In this work, we take recently published data from experiments
where different solid spherical particles were allowed to settle in a vis-
cous fluid.41,42 We then use a rigid-body ALE, a rigid-body Eulerian
CutFEM, and a fully Eulerian FSI approach to simulate the scenarios
presented by the physical experiments. This aims to show the validity
and the applicability of these different approaches to the different
aspects/problems posed by this process. Furthermore, we will illustrate
how spatially reduced models are able to capture the behavior in com-
parison to full three-dimensional computations. To the best of our
knowledge, there is currently no comparable benchmark that consid-
ers such a multiphase flow/fluid-structure interaction problem with
contact, which is validated against experimental data.

The remainder of this paper is structured as follows: In Sec. II, we
describe the considered problem, that is, a description of the physical
experiment, the mathematical models used to describe the experiment,
the specific setups we will simulate, and the quantities used to compare
the numerical simulations with the experimental data. Section III then
briefly covers the reduced formulation we apply to increase the com-
putational efficiency in our numerical methods. The numerical com-
putations are then presented in Sec. IV; we present the details of the
different numerical approaches in Subsection IVA, and the results are
then presented in Subsection IVB. We discuss the conclusions from
these results in Sec. V and consider the aspects that remain open.
Furthermore, we define and compute two simplified setups in
Appendix B, designed to help others reproduce the presented compu-
tational results.

II. DESCRIPTION

We describe the experimental setup used to gather the data and
the mathematical model that we will use to reproduce the behavior
observed in the experiments, and we define relevant quantities used to
compare the results quantitatively.

A. Physical experiment

The experiments in Ref. 42 capture the settling and impact pro-
cess of spherical particles with different sizes and densities in a cylin-
drical tank. The latter contains a liquid mixture consisting of glycerine
and water at equal volume fractions. At the bottom of the cylindrical
tank, which is made of acrylic glass for optical access, a massive steel
anvil serves as the impact object. Moreover, the cylinder is surrounded
by a rectangular container, filled with refractive index matching liquid,
to compensate for optical distortion coming from the curved cylinder
walls. The filling level allows the observation of the particle settling
along a vertical distance of 140 mm–160mm, depending on the parti-
cle size. Initially, each particle is held in place and submerged in the
liquid by using a vacuum tweezer. The particle is then released by
switching off the vacuum pump. The particle is tracked during the set-
tling process and the impact on the steel anvil, including the rebound,
using a high-speed CMOS-camera. This acquires shadow images at a
frame rate of 1000 fps and a scale factor of 8.89 pixel/mm. An image
processing algorithm coded in MATLAB yields the in-plane particle
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coordinates as a function of time and allows us to extract the instanta-
neous particle settling velocity.

The resulting data are available via Mendeley Data.41 These data
are the basis for our comparison and validation of the numerical code.

B. Mathematical model

We consider a bounded domain X 2 Rd , with d 2 {2, 3}, over a
finite, non-empty, time interval [0, Tend]. This is divided into a
d-dimensional fluid region F , a d-dimensional solid S, and a d � 1-
dimensional interface I dividing the solid and fluid regions. For these,
we have X ¼ F _[ I _[ S.

1. Fluid model

In the time dependent fluid region FðtÞ, we consider the incom-
pressible Navier–Stokes equations. Find a velocity u and a pressure p
such that

qf @tuþ ðu � rÞuð Þ � div r ðu; pÞ ¼ 0; (1a)

divðuÞ ¼ 0 (1b)

with the non-symmetric stress tensor

rðu; pÞ ¼ lfru� pId;

where lf¼ qf �f is the fluid’s dynamic viscosity, �f is the kinematic vis-
cosity, qf is the fluid’s density, and Id is the d-dimensional identity
operator. Appropriate boundary conditions to complete this system
will be discussed later. Note that we use bold face letters to denote vec-
tor/matrix valued quantities, while regular faced letters denote scalar
objects.

2. Elastic solid and fluid–structure interaction

We consider a linear elastic solid model in S for the solid dis-
placement d and the solid velocity _d , given by

qs@t
_d � div rs dð Þ ¼ ðqs � qf Þg; _d ¼ @td; (2)

with the acceleration due to gravity g ¼ �9.807m s�2 and the Cauchy
stress tensor rs defined by

rsðdÞ ¼ 2lsEðdÞ þ kstrðEðdÞÞI; EðdÞ ¼ 1
2
rd þrdTð Þ;

where ls and ks denote the Lam�e parameters. Note that we have sub-
tracted the fluid gravitational force qf g on the right-hand side of the
solid equation to be consistent with the equations for a rigid solid pre-
sented in the following paragraph. Alternatively, this could be added
to the right-hand side of the fluid equations.

Solid and fluid are coupled by means of no-slip coupling condi-
tions on I ,

u ¼ _d ; rðu; pÞn ¼ rsðdÞn: (3)

The current position of the interface IðtÞ is determined by the dis-
placement variable d.

3. Rigid solid

As the solid materials that we consider are relatively hard, the
consideration of a rigid solid yields a good approximation of the FSI
dynamics, at least up to the moment when the solid comes close to the
lower wall. The movement of the solid is governed by Newton’s
second law of motion. Let cSðtÞ be the center of mass of the solid S.
Since we will consider spherical particles, this is then governed by

d2

dt2
cSðtÞ �mS ¼ f s; (4)

where mS is the mass of the solid and fs are the forces acting on the
solid in the horizontal and vertical directions. For simplicity, we
assume that the horizontal forces are negligible. The vertical forces are
then the gravitational pull, buoyancy, and viscous drag,

f s ¼
0

0

mSg � volðSÞqf g þ F3

0BB@
1CCA; (5)

where volðSÞ is the volume of the solid and F3 is the viscous drag force
in the vertical direction. This is the third component of

F ¼
ð
I
rðu; pÞnds: (6)

Note that we added the effects of buoyancy in (5). This would be natu-
rally included in F if we added body force qf grxd to the right-hand
side of the fluid equation (1a). However, since this would only affect
the pressure, it is sufficient to consider the homogeneous equation (1a)
and add the effect of buoyancy to (5). Furthermore, this approach is
more accurate in our case since only pressure-robust methods are able
to reflect this effect of gradient contributions in the forcing term on
the pressure exactly on the numerical level.43

As a result of us neglecting the horizontal movement of the solid,
(4) becomes a scalar ordinary differential equation (ODE). We can
also simplify the terms in (5) so that, in total, we come to the equation

d
dt
vS;3ðtÞ ¼

qs � qf

qs
g þ F3

volðSÞqs
; (7)

where vSðtÞ ¼ d
dt cSðtÞ is the solid’s velocity.

The solid’s motion couples back to the fluid equations through
the boundary condition at the interface I by requiring the continuity
of the velocity, i.e.,

ujI ¼ vS ¼
d
dt

cSðtÞ: (8)

We note that this model neglects rotational effects. As will be shown
below, this does not have a major impact on the quality of the resulting
approximations.

C. Domain description

Since we consider balls of different sizes, we shall keep the
domain description general. The background domain is a cylinder

X ¼ fx ¼ ðx; y; zÞT 2 R3 j x2 þ y2 < R2; 0 < z < Hg for a given
radius R and a given height H. At t ¼ 0, the solid domain is described
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by Sð0Þ ¼ fx ¼ ðx; y; zÞT 2 R3 j x2 þ y2 þ ðz � ðh0 þ rSÞÞ2 < r2Sg
for a given ball radius rS and an initial height of the bottom of the ball
h0. Accordingly, the volume of the solid is given by volðSÞ ¼ 4pr3=3.
An illustration of this can be seen on the left of Fig. 1.

1. Boundary conditions

We denote the top boundary (z ¼ H) of the cylinder as Ctop, the
bottom boundary (z ¼ 0) as Cbottom, and the side of the cylinder (x2

þ y2¼ R2) as Cwall.
On the interface I between the solid and the fluid, the Dirichlet

boundary condition is given by the continuity of the velocity; see (3)
and (8). On the wall and bottom boundaries Cbottom [ Cwall, we shall
impose homogeneous Dirichlet boundary conditions u ¼ 0. In order
to approximate the free surface at the top of the water tank X, we
impose a free-slip boundary condition u3¼ 0 at Ctop.

D. Setup

1. Spatial parameters

We consider two different particles: one with diameter dS
¼ 6mm consisting of polytetrafluoroethylene/teflon (PFTE) and one
with diameter dS ¼ 22mm consisting of rubber. We shall refer to
these two cases as PTFE6 and Rubber22, respectively.

Both particles are considered inside the same cylindrical fluid
tank with radius R ¼ 0.055 m and a height of H ¼ 0.2 m. The spatial
setup for both cases is summarized in Table I.

2. Material parameters

The numerical computation of the above-mentioned scenarios
requires the following material parameters. For the fluid, these are the
density and viscosity. For the solid balls, we require the density and

FIG. 1. The initial spatial configuration:
(a) three-dimensional domain and
(b) rotat ionally reduced domain.

TABLE I. Geometrical parameters of the test cases.

Geometry Boundary conditions

Experiment R (m) H (m) rS (m) h0 (m) Cwall [ Cbottom Ctop I

PTFE6
0.055 0.2

0.003 0.161 661 6
u ¼ 0 ud ¼ 0 u ¼ vSRubber22 0.011 0.146 120 3

TABLE II. Summary of the benchmark setup in standard units.

Material parameters

Experiment g (m s�2) lf (kg m
�1 s�1) qf (kg m

�3) qs (kg m
�3) ks (kg m

�1 s�2) ls (kg m
�1 s�2)

PTFE6 �9.807 0.008 1141
2122 2.638 70 � 109 2.294 52 � 108

Rubber22 1361 3.332 89 � 109 6.667 11 � 105
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the Lam�e parameters. Both fluid and solid parameters are summarized
in Table II.

Remark (source of material parameters). The fluid parame-
ters and the solid densities are given in the original experimental
paper.42 We derived the Lam�e parameters from the Young’s modulus
and Poisson ratio of the used materials. In the case of the PTFE6 ball,
these are about 670 MPa ¼ 670 000 000 kgm�1 s�2 (https://www.ku-
gelpompel.at/upload/2312783_Datenblatt%20Kunststoffkugel%20PTFE
%20V1.01.pdf) and �s ¼ 0.46 (http://www.matweb.com/search/
datasheet_print.aspx?matguid¼4e0b2e88eeba4aaeb18e8820f1444cdb),
respectively.

The chemical analysis of the Rubber22 material suggests this to
be hydrogenated nitrile rubber (HNBR). The Young’s modulus of this
is �1.7 MPa to 20.7 MPa ¼ 1 700 000 kgm�1 s2–20 700 000 kgm�1 s2

(https://eriks.de/content/dam/de/pdf/downloads/dichtungen/o-ringe/
ERIKS_Technisches-Handbuch-O-Ringe_de.pdf, p. 20), and the
Poisson ratio is �s¼ 0.4999.44

E. Quantities of interest

We will use the following quantities to compare our numerical
results with each other and with the experimental data:

t� let t0 ¼ tjcS¼h0 be the time at which the center of mass is at h0,
i.e., when the ball has traveled rS vertically. We define t� as the
time after release when distðI ;CbottomÞ ¼ dS relative to t0, i.e.,
for PTFE6 t� ¼ tjcS¼ð0;0;0:009Þ � t0 and for Rubber22
t� ¼ tjcS¼ð0;0;0:033Þ � t0.

v� the velocity of the ball in the z-direction at t ¼ t� þ t0.
f� the vertical component of the force F acting on the ball at

time t� þ t0.
tcont the time of the first solid contact relative to t0.
tjump the time between contact and the second change in direction

is realized, i.e., the amount of time the balls travels upward
after the first contact.

djump the maximum of distðI ;CbottomÞ after contact, i.e., the size of
the bounce.

An illustration of how these quantities are defined can be seen in
Fig. 2.

Remark (choice of reference values). In the experiments, we
observed that the balls do not immediately start to fall after they are
released. The settling process starts with some distance to the liquid
surface but in the closest vicinity of the vacuum cup. In general, par-
ticles experience an increased drag force when they are moving toward
or away from a solid wall and free fluid-surfaces. Accordingly, the
early stage of the settling process here is dominated by an increased
drag force coming from the vacuum cup and the liquid surface.

Due to the rather slow motion of the sphere at the beginning, the
moment of release cannot be defined well. To be able to compare the
numerical results with the experimental data, we therefore defined the
above-mentioned quantities relative to the point in time at which the
ball has traveled the distance of the ball’s radius. Furthermore, since
we have no measurement of the drag force in in the experiment, f� will
only be used to compare the computations directly.

To establish v�, tcont, dcont, and djump from the experimental data,
we interpolate the height data using a spline of order 3. This spline is
then evaluated to establish the time at which cS ¼ ð0; 0; 3rS=2Þ, the
time of contact, as well as the time and height of the jump. The veloc-
ity is then taken as the first derivative of the spline representing the
height. The resulting reference values for the quantities of interest are
shown together with our numerical results in Tables III and IV,
respectively.

The experimental study42 was conducted so that the horizontal
displacement of the particles was minimal. The dataset that we will
compare against shows a maximal horizontal displacement of less
than 2mm and 0.75mm in the PTFE6 and Rubber22 cases, respec-
tively. This compares with the mean over time of the maximal devia-
tion in the center location between experiment repetitions of
0.192mm and 0.135mm for the PTFE6 and Rubber22 cases, respec-
tively. However, the experiment is only able to give the projection of
the horizontal displacement onto the x–z plane. Thus, it is not possible
to detect the true horizontal motion. Note that we have ignored the
horizontal motion in the computation of the reference values.
However, since overall the horizontal deflection is small, we consider
this to be reasonable for the present purpose.

III. REDUCED MODEL

The setup described in Subsection IIC is symmetric with respect
to rotation if viewed in cylindrical coordinates. The experimental data
presented in Refs. 41 and 42 show a rotational component in the
motion of the solid, and they also show a small deflection of the center
of mass cS from the z axis. However, these effects are small, and since
the material parameters are such that the resulting flow is in the low to
intermediate Reynolds-number regime,42 we assume that the solution
is described sufficiently well by a rotationally symmetric flow in cylin-
drical coordinates. We use this in order to obtain a two-dimensional
reduced formulation that is computationally cheaper compared to full
three-dimensional computations. In Subsection IVB3, we will also
present a fully resolved three-dimensional simulation to have a closer
look at these rotational effects. To distinguish between the full three-
dimensional domains and the reduced two-dimensional domain, we
shall denote objects stemming from the three-dimensional setup with
a superscript “3d” if there is a potential for ambiguity. For the sake of
readability, objects based on the reduced two-dimensional setup will
not have a special notation.FIG. 2. Illustration for the definitions of the quantities of interest.
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With the spaces V3d¼fv2H1ðF 3dÞ jvjI 3d ¼uS3d ;vjC3d
wall[C

3d
bottom

¼0 and vzjC3d
top
¼0g� ½H1ðF 3dÞ�3 and Q3d¼L20ðF 3dÞ, the weak for-

mulation of the Navier–Stokes equation (1) is as follows:

Find ðu; pÞ 2V3d � Q3d such that for all ðv; qÞ 2 V3d � Q3d; it holds

A3d
f ðu; p;v; qÞ :¼ m3dð@tu;vÞ þ a3dðu;vÞ þ c3dðu; u; vÞ

þ b3dðv; pÞ þ b3dðu; qÞ ¼ 0 (9)

with the multilinear forms

m3dðu;vÞ ¼ qf

ð
F 3d

u � vdx;

a3dðu;vÞ ¼ lf

ð
F 3d
ru : rvdx;

c3dðu; v;wÞ ¼ qf

ð
F 3d
ðu � rÞv � wdx;

b3dðq;vÞ ¼ �
ð
F 3d

qr � vdx:

(10)

In order to reduce this three-dimensional flow problem into a
two-dimensional flow problem, we rewrite the problem into cylindri-
cal coordinates r, /, z. The rotational symmetry of a solution umeans
that @/u ¼ 0. We use this to rotate the domain into the rþ � z-plane
and transform the weak formulation (9) accordingly. Now, let

r ¼ @r
@z

� �
and X ¼ X3d \ Rþ �RÞ

�
be the reduced two-

dimensional computational domain. A sketch of the three-
dimensional domain transformed into two dimensions can be seen on
the right of Fig. 1.

At the symmetry boundary (r¼ 0), the boundary conditions

ur ¼ 0; @ruz ¼ 0 (11)

are valid. The reduced spaces are then V ¼fv2H1ðFÞ jvjI ¼
0
vS3

� �
;

vjCwall[Cbottom
¼0;vzjCtop

¼0; and vr jr¼0¼0g�½H1ðFÞ�2 and

Q¼L20ðFÞ. The reduced Navier–Stokes problem then reads as follows:

Find ðu; pÞ 2 V �Q such that for all ðv; qÞ 2 V �Q; it holds

Af ðu; p;v; qÞ :¼ mð@tu;vÞ þ aðu;vÞ þ cðu;u;vÞ þ bðv; pÞ

þ bðu; qÞ ¼ 0 (12)

with the transformed multilinear forms

mðu;vÞ ¼ 2pqf

ð
F
ru � vdx;

aðu;vÞ ¼ 2plf

ð
F
ru : rvþ 1

r
urvrdx;

cðu;v;wÞ ¼ 2pqf

ð
F
rðu � rÞv � wdx;

bðq;vÞ ¼ �
ð
F
qðvr þ rr � vÞdx;
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TABLE IV. Results for the Rubber22 setup. The experimental values have been reproduced with permission from T. Hagemeier, Particle settling-transitional regime, version 1, Mendeley Data, September 2020.
Copyright 2020 Author(s), licensed under a Creative Commons Attribution 4.0 License.

Discretization Results

Method [hmin, hmax] Dt dof nze t� v� f� tcont tjump djump

ALE [0.000 4, 0.004] 1=200 6.9 0.31 0.455 904 5 �0.303 002 1.132 62 � 10�2 … … …
[0.000 2, 0.002] 1=800 21.5 0.99 0.455 355 1 �0.303 552 1.131 07 � 10�2 … … …
[0.000 1, 0.001] 1=3200 73.8 3.45 0.455 333 4 �0.303 616 1.131 17 � 10�2 … … …

Extrapolate 0.455 332 5 �0.303 625 … … … …
order (in h) 4.6 3.1 … … … …

ALE 3D [0.000 8, 0.032] 1=200 18.43 4.05 0.453 695 �0.304 252 1.142 52 � 10�2 … … …
[0.000 4, 0.016] 1=800 68.52 15.37 0.456 145 �0.302 170 1.144 93 � 10�2 … … …
[0.000 2, 0.008] 1=3200 304.4 69.33 0.455 929 �0.302 667 1.135 57 � 10�2 … … …

CutFEM [0.002 00, 0.008] 1=2000 11.46 0.34 0.453 455 �0.309 542 3 1.090 94 � 10�2 0.524 979 0.098 086 7.308 15 � 10�3
[0.001 00, 0.004] 1=2000 38.98 1.16 0.454 081 �0.308 841 2 1.110 82 � 10�2 0.525 502 0.110 672 1.147 72 � 10�2
[0.000 50, 0.002] 1=2000 140.96 4.20 0.453 789 �0.306 220 2 1.129 22 � 10�2 0.526 010 0.121 606 1.368 74 � 10�2

FSI (Es ¼ 5 � 106) [0.001 0, 0.004] ½1=2000; 1=500� 51.4 1.15 0.446 020 �0.320 688 9 … 0.515 197 0.079 14 2.682 98 � 10�3
[0.000 5, 0.002] ½1=2000; 1=500� 204.6 4.72 0.449 821 �0.311 385 1 … 0.521 487 0.083 323 3.719 86 � 10�3

FSI (Es ¼ 2 � 106) [0.001 0, 0.004] ½1=2000; 1=500� 51.4 1.15 0.446 012 �0.320 715 1 … 0.516 197 0.092 5 5.292 47 � 10�3
[0.000 5, 0.002] ½1=2000; 1=500� 204.6 4.72 0.449 827 �0.311 375 9 … 0.522 087 0.090 5 5.501 46 � 10�3

Experiment 0.469 137 �0.309 301 … 0.544 021 0.089 492 4.414 85 � 10�3
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cf. Ref. 45. Since the motion of the solid is partially driven by the fluid
forces acting on it, we also need to transform these. Let (u3d, p3d)
2 V3d � Q3d be a rotationally symmetric solution of (9) and (u, p)
2 V � Q be the solution of (12). We can then transform the weak
boundary integral formulations asð
I3d

r3dðu3d; p3dÞn3d � v3ddS3d ¼ 2p
ð
I
rðlfru� IdpÞn � vdS: (13)

The forces F can then be computed by inserting the appropriate non-
conforming test-functions v into this functional. Using this, we can
compute the motion of the solid as before using (7).

IV. NUMERICAL COMPUTATIONS

We give the details of the different numerical approaches applied
to attempt to reproduce the observed data and present the results
attained with these methods.

The full result datasets of all methods and the source code to
reproduce the rigid-body computations according to the descriptions
in Subsections IVA1 and IVA2 can be found in the zenodo reposi-
tory.63 This also includes the preparatory examples presented in
Appendix B.

A. Discretizations

We provide the details on the formulations of the different dis-
cretization approaches used.

1. Fluid–rigid body interaction in Arbitrary
Lagrangian–Eulerian coordinates

To compute the spatially reduced coupled problem, we formulate
the Navier–Stokes equations in Arbitrary Lagrangian–Eulerian (ALE)
coordinates46 by introducing a reference map,

TALEðcSÞ : F ! FðcSÞ;

and by transforming the Navier–Stokes equation onto the reference
domain F , which is fixed for all times. This setting allows for a direct
finite-element triangulation Xh of F that resolves the interface
between fluid and solid well. ALE approaches are highly efficient and
accurate and well established for fluid–solid interaction problems.
ALE approaches will however fail if the deformation becomes too
large47 or if even contact of the solid with an outer boundary hap-
pens,14 such as it is the case in our context. We refer to the literature
on ALE12,46 and to Appendix A1 for details on our implementation.

2. Fluid–rigid body interaction in Eulerian coordinates

As in Subsection IVA1, we consider the problem as a moving
domain problem for the fluid, assume the solid to be a rigid body, and
decouple the fluid and solid equations. For the resulting moving
domain problem, we use an unfitted Eulerian finite-element method
from Ref. 23 using BDF2 time stepping, together with Taylor–Hood
elements in space, which are inf–sup stable in the CutFEM setting48

with ghost-penalty stabilization.49 In order to obtain the full conver-
gence order of the Taylor–Hood finite-element pair, we use an

isoparametric mapping introduced in Ref. 50 for stationary domains
to realize the higher-order geometry approximation.

a. Transformed nitsche terms. In the CutFEM method used here,
Dirichlet boundary conditions on unfitted boundaries are enforced
using Nitsche’s method.51 For a consistent and stable method, we also
transform these terms into the rotationally symmetric formulation.
Using the standard derivation for Nitsche’s method, we find that the
consistency and penalty terms for the reduced formulation are

ncðu;vÞ ¼ �2plf

ð
C
rðruÞn � vdS

and

nsðu;vÞ ¼ 2plf r
k2

h

ð
C
ru � vdS;

respectively, with a penalty parameter r > 0, the velocity space’s poly-
nomial order k, and the local mesh diameter h. Similarly, we find for
the pressure-coupling operator that the Nitsche term is

npðv; qÞ ¼
ð

C
rqv � ndS:

The necessary Nitsche term for a symmetric and consistent formula-
tion to enforce the Dirichlet conditions u¼ g is therefore

nðu; p; v; qÞ :¼ ncðu;vÞ þ ncðv� g; uÞ þ nsðu� g; vÞ

þ npðv; pÞ þ npðu� g; qÞ:

b. Transformed ghost-penalty operators. The role of the ghost-
penalty operator in the unfitted Eulerian time-stepping scheme used
here is twofold. As in other CutFEM discretizations, it stabilizes arbi-
trary element cuts such that the method is stable and the resulting
matrices are well conditioned.49 Second, appropriately scaled ghosty-
penalties provide the necessary implicit extension for the method-of-
lines approach to the discretization of the time-derivative.22–24

We use the direct-version of the ghost-penalty operator.52 To
define this operator, letfh be a set of facets between neighboring ele-
ments on which the ghost-penalty operator is to act on, cf. Refs. 23
and 24 for further details. For a facet F 2fh such that F ¼ T 1 \ T 2,
we define the facet patch xF ¼ T1 [ T2. The velocity ghost-penalty
operator for the rotationally symmetric formulation is then

ihðu;vÞ ¼ cu
X
F2fh

ð
xF

r
h2
ðu1 � u2Þ � ðv1 � v2Þ

þ 1
r
ður;1 � ur;2Þðvr;1 � vr;2Þdx;

where vi ¼ EPvjTi
with the canonical extension of polynomials

EP : PT ! PRd . The pressure ghost-penalty operator is

jhðp; qÞ ¼ cp
X
F2fh

ð
xF

rðp1 � p2Þðq1 � q2Þdx:

With these transformed ghost-penalty operators, it is easy to show the
standard ghost-penalty results in the appropriately transformed
norms.
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The variational formulation of the CutFEM discretization then
reads as follows:

Find ðu; pÞ 2 Vh � Qh such that for all ðv; qÞ 2 Vh � Qh; it holds

Af ðu; p; v; qÞ þ nðu; p;v; qÞ þ lf þ
1
lf

 !
ihðu;vÞ þ

1
lf

jhðp; qÞ ¼ 0:

c. Contact algorithm. We consider a very basic contact avoidance
scheme, used widely in the literature.18,32,53,54 The idea is to introduce
an artificial (lubrication) force acting on the rigid body in the vicinity
of the contact wall, which increases when the ball comes closer to the
wall and acts in the direction away from the wall. This force is then
added to the forces governing the motion of the rigid solid such that
contact does not occur. We define this force as

fcðSÞ ¼
0 if distðI ;CbottomÞ 	 dist0

cc
dist0 � distðI ;CbottomÞ

distðI ;CbottomÞ
if distðI ;CbottomÞ < dist0;

8><>:
where dist0 and cc are parameters to be chosen and distðI ;CbottomÞ is
the minimal distance between I and Cbottom. We then add this to the
right-hand side of the ODE (4) and carry this thought so that the
right-hand side of (7) becomes qS�qF

qS
g þ Fyþfc

volðSÞqS
. The solution to this

ODE then governs the position on the level set describing the solid
and the Dirichlet condition enforced on the interface.

d. Implementation. This discretization is implemented using the
finite-element library Netgen/NGSolve (see Refs. 55 and 56 and
ngsolve.org) together with the add-on package ngsxfem57 for unfit-
ted finite-element functionality.

The background mesh is constructed by defining a local mesh
parameter hinner on the left of the reduced domain where r < 2dS=3
and then creating a shape regular mesh with h ¼ hmax in the remain-
der of the domain. This is to obtain more accurate boundary integrals,
i.e., when computing the forces acting on the ball. In the Rubber22 set-
ting, we choose hinner ¼ hmax/4 and in the PTFE6 case as hinner
¼ hmax/7. This is to obtain background meshes with a similar number
of elements in each settings. On the active part of the mesh, we con-
sider standard P2=P1 Taylor–Hood elements.

The Nitsche parameter is taken as r ¼ 100, the extension ghost-
penalty parameter is cu,e¼ 0.1, the cut-stability ghost-penalty parame-
ter cu,s ¼ cp,s ¼ 0.01, and the extension strip width parameter is cd
¼ 4. See Ref. 23 for details on these parameters.

The contact parameters are tuned with respect to the PTFE6
jump height since the model cannot be expected to resolve the elastic
nature of rubber. For PTFE6, we take the contact model parameters
dist0 ¼ 2 � 10�5 and cc ¼ 0.38. Since the mass of the Rubber22 ball is
�31.6 times larger than the PTFE6 ball, we take contact model param-
eters that are appropriately larger such that the resulting acceleration
acting on the balls is comparable. For the Rubber22 computations, we
take dist0¼ 2 � 10�5 and cc¼ 12.

Each time step is iterated between the fluid system and the solid
ODE until the system is solved. We consider the system as solved
when the update of the ball velocity in an iteration is less than 10�8.

3. Fluid–structure interaction in fully Eulerian
coordinates

We consider the full fluid–structure interaction problem includ-
ing contact with Cbottom. We adopt here a fully Eulerian approach for

the FSI system in order to enable the transition to contact.31,32,34 To
allow for an implicit inclusion of the contact conditions into the sys-
tem (see below), we use a Nitsche-based method for the FSI coupling
as presented in Ref. 39.

a. Solid bilinear form and FSI coupling. The fluid bilinear form
has already been detailed in (12). To introduce the solid form, we
denote the reduced solid domain by SðtÞ and define the bilinear form
corresponding to the linear elasticity equations in Eulerian coordinates
(2) by

Asðd; _d ;w; zÞ :¼ msð@t _d � _d � r _d ;wÞ þ asðd;wÞ
þm _d ð@td � _d � rd þ _d ; zÞ;

where

msðd;wÞ :¼ 2pqs

ð
S
rd � w dx;

asðd;wÞ :¼ 2p
ð
S
rrrsðdÞ : rw þ rs;rwr dx;

m _d ðd;wÞ :¼ 2p
ð
S
d � w dx;

and

rs ¼ 2lsEðdÞ þ ks trðEðdÞÞ þ 1
r
dr

� �
I;

rs;r ¼
2ls þ ks

r
dr þ kstrðEðdÞÞ:

Moreover, we make use of the Nitsche terms defined in
Subsection IVA2 to impose the FSI coupling conditions (3),

nðu; p; _d ;v; q;wÞ :¼ nsðu� _d ;v� wÞ þ ncðu;v� wÞ
þ ncðv; u� _dÞ þ npðv� w; pÞ � npðu� _d ; qÞ:

Note the negative sign in front of the last term, which is required to
ensure the stability of the FSI formulation; see Ref. 25.

b. Discretization and stabilization. In order to resolve the inter-
face I within the discretization, we use the locally modified finite-
element method introduced in Ref. 58. This fitted finite-element
method is based on a coarse unfitted patch mesh, which is indepen-
dent of the interface location. The coarse cells are then divided in such
a way into sub-triangles and sub-quadrilaterals that the interface is
resolved in a linear approximation. In this work, we use equal-order
locally modified finite elements of first order, in combination with an
anisotropic edge-oriented pressure stabilization term sp(p, q); see Ref.
59 for details. We denote the locally modified finite-element space of
first order by X1

h . The discrete spaces for fluid velocity and pressure Vh

and Qh and for solid displacement and velocity Wh and Zh are given
by applying the respective Dirichlet conditions to the locally modified
finite-element space X1

h and by restricting the degrees of freedom to
the fluid or solid sub-domain, respectively.

In addition, we add a stabilization term sdð _d ; zÞ of artificial diffu-
sion type to the solid equations (see Ref. 32) and a consistent stabiliza-
tion at the boundary Csym corresponding to the rotational axis to
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ensure that the second boundary condition (11) is accurately imposed
in the discrete formulation,

sdð _d ; zÞ ¼ adh2ðrr _d ;rzÞS ;

srðu; vÞ :¼ asymqf lf

ð
Csym

h2nhs@ruz@rdS:

Here, hn and hs refer to the cell-sizes in the normal and tangential
directions, respectively. We summarize the stabilization terms in the
bilinear form,

sðu; p; _d ; v; q; zÞ ¼ spðp; qÞ þ sdð _d ; zÞ þ srðu; vÞ:

For time discretization, we use the modified dG(0) time discreti-
zation presented in Ref. 60, which can be seen as a variant of the
dG(0)/backward Euler methods that considers the movement of the
interface in each space–time slab. The interface positions and the
domain affiliations are updated explicitly based on the displacement
d(tn�1) of the previous time step and using the initial point set/back-
ward characteristics method.31,32 This means that we set

In :¼ Iðdðtn�1ÞÞ; Sn :¼ Sðdðtn�1ÞÞ; F n :¼ Fðdðtn�1ÞÞ:

c. Contact treatment. When a part I c :¼ I \ Cbottom of I enters
into contact with Cbottom, the FSI conditions need to be substituted
with appropriate contact conditions. It has been noted in Refs. 39 and
40 that although the fluid layer between the ball and the lower wall
vanishes (from a macroscopical perspective), an extension of the fluid
forces to the contact surface I c has to be considered to obtain a physi-
cally relevant contact formulation. Here, we use the simplest possible
numerical approach, which is to relax the no-penetration condition by
a small � ¼ �(h) > 0 such that a very thin mesh-dependent fluid layer
remains at all times.

The distance to Cbottom depends on the (Eulerian) displacement
d(tn) in the following way:

dist IðtnÞ;Cbottomð Þ ¼ dist Iðtn�1Þ;Cbottomð Þ
þ dnðtnÞ � dnðtn�1Þ:

The contact conditions, relaxed by a small �¼ �(h)> 0, read as

dist IðtnÞ;Cbottomð Þ 
 �; rn½ �½ � 
 0;

rn½ �½ � dist IðtnÞ;Cbottomð Þ � �ð Þ ¼ 0 on In ¼ Iðtn�1Þ;
(14)

where

rn½ �½ � :¼ nTrsn� nTrf n:

In other words, the relaxation means that the contact conditions are
already applied at an �-distance from Cbottom. The three conditions
(14) can be equivalently formulated in equality form with an arbitrary
cC> 0,61

rn½ �½ � ¼ �cC½dist IðtnÞ;Cbottomð Þ � �� c�1C rn½ �½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:Pcðd; rn½ �½ � Þ

�þ on In; (15)

where [�]þ stands for the positive part of (�). The contact parameter cC
will be chosen as cC ¼ c0Cksh�1 and the relaxation parameter will be

chosen as � ¼ �0hy, where hy denotes the cell size in the vertical direc-
tion at the bottom of the cylinder.

Note that (15) includes both the FSI coupling and the con-
tact condition as in the absence of contact, it is exactly the FSI
interface condition in the normal direction. For this reason, the
transition between FSI coupling and contact conditions can be
included easily in a fully implicit fashion in the variational
formulation.

The final variational formulation reads as follows:

Find ðu; p; d; _dÞ 2 Vh � Qh �Wh � Zh such that for all

ðv; q;w; zÞ 2 Vh � Qh �Wh � Zh; it holds

Af ðu; p;v; qÞ þ Asðd; _d ;w; zÞ þ nðu; p; _d ;v; q;wÞ

þ sðu; p; _d ; v; q; zÞ þ r½Pcðd; rn½ �½ �Þ�þ;wn
� �

I ¼ ðrf s;wÞX:

d. Implementation. The described algorithms and equations have
been implemented in the finite-element library Gascoigne3D.62 We
use a Cartesian finite-element mesh, which is highly refined in the
region where contact occurs.

Concerning time discretization, we start with a relatively
coarse time step Dt ¼ 2 � 10�3, which captures the essential dynam-
ics of the case process. When the ball gets close to the lower wall,
the time step is reduced in order to capture the contact dynamics
and, in particular, to resolve the impact time accurately. We do this
by reducing the time step by a factor of two each time the distance
to the wall drops below certain thresholds di, i ¼ 0, …, m. In the
Rubber22 case, we choose, for example, d0¼ 10�2 m and d1¼ 10�3 m.
For the PTFE6 case, the contact interval is much shorter
(around 10�4 s compared to 4 � 10�3 s for rubber). For this reason,
we specify seven thresholds to reduce the time step in seven steps
until Dt< 10�5 s.

In addition, we use the following numerical parameters:

c0C ¼ 1; r ¼ 105; ad ¼ 1; asym ¼ 103:

The contact relaxation parameter is chosen as �0 ¼ 1
8 for the Rubber22

test case and �0 ¼ 1
4 for PTFE6. For a detailed sensitivity study of the

influence of the contact parameters, we refer to Ref. 39.

B. Results

In the following, we shall abbreviate the methods described in
Subsection IVA1 as ALE, in Subsection IVA2 as CutFEM, and in
Subsection IVA3 as FSI.

Remark. In order to indicate the computational effort needed
to solve the (linearized) systems resulting from our computations,
we give the size and sparsity of these with our quantitative
results. The number fo free degrees of freedom is abbreviated as
dof, and the number of non-zero entries in the system is denoted
by nze.

In the CutFEM method, dof and nze can vary between time steps
since different elements are active in different time steps. We therefore
state the number of unconstrained degrees of freedom and non-zero
entries of the linearized system in the first time step.
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1. PTFE6

Our quantitative results for the PTFE6 setup are presented in
Table III. Figure 3 shows the distance between the bottom of the ball
to the bottom of the fluid domain over time from the experimental
data and all three numerical methods.

If we look at the pre-contact quantities of interest in Table III,
we see that all methods give very similar results for the given quan-
tities. Looking at the velocity of the PTFE6 ball, we see that the
numerical values are within a relative error of 5.1% of the experi-
ment on the finest discretizations. Taking into account that these
results ignore the 2mm deflection from the z axis observed in the
experimental data, we consider this to be acceptable. Since the elas-
tic effects of the particle appear to be negligible in this phase of the
problem and due to the known good approximation properties of
the ALE method, we consider these to be the most accurate values
for future comparison.

Looking at the quantities of interest in the later phase, we see that
in both the CutFEM and FSI methods, contact occurs later than in the
experiment. This is consistent with the smaller speed of the particle
compared to the experiments as observed above. With respect to the
jump, we see that both methods capture the rebound dynamics since
both the point in time at which the peak of the rebound is realized and
the size of the jump are consistent with the experiment. As the
CutFEM contact parameters were tuned with respect to the size of this
jump, this is unsurprising. However, since the contact force only acts
for a very small number of time steps, the fact that the time at which
the rebound is maximal is also captured well shows that even after
contact, the system is still approximated well by the fluid–rigid body
system. Nevertheless, it is clear that the FSI system captures the
dynamics much more accurately and without the need of essentially
unknowable and artificial parameters dist0 and cc in the contact
model.

2. Rubber22

Our results for the Rubber22 problem are presented in
Table IV. The height of the ball over time can be seen in Fig. 4. To
illustrate the applicability of our spatially reduced formulation, we
solve the fluid–rigid body system in full three spatial dimensions
using the ALE approach. The ALE approach has been chosen for
this due to its significantly higher computational performance com-
pared to the CutFEM and FSI methods. These results are also given
in Table IV. To illustrate the flow solution, we show the result of
the CutFEM simulation on the coarsest mesh, rotated into the x–z
plane at t ¼ 0.575 in Fig. 5.

We again start by inspecting the pre-contact results in Table IV.
We observe that t�, v�, and f� are again very similar for all methods.
However, here, the discrepancy between the numeric and experimen-
tal velocity values is significantly smaller, with the relative difference
being between 2.1% and 0.6% on the finest discretizations. We note at
this point that the deviation from the z axis in this experiment was less
than 0.75mm. This shows that even for a more elastic material, a flu-
id–rigid body system can capture the pre-contact dynamics as well as
a full FSI model. Furthermore, we see that with perfect initial data and
spatial symmetry, our spatially reduced model, derived under the
assumption of a rotationally symmetric solution, captures the dynam-
ics as well as the significantly more computationally expensive full
three-dimensional computation.

Looking at the numbers for the contact and rebound dynamics,
we again see that the time of contact is similar for both the CutFEM
and FSI methods, and this matches the experimental time with an
error of less than 5%. For the CutFEM method, we clearly see that the
PTFE tuned parameters are not able to capture the rebound dynamics
well. In fact, the size of the rebound is approximately three times larger
than the physical rebound. This shows that the use of an artificial
lubrication force, as considered in a variety of other literature, can lead

FIG. 3. The distance between the bottom of the ball and the bottom of the tank: Experimental and numerical results for the PFTE6 setup. The experimental data are repro-
duced with permission from T. Hagemeier, Particle settling-transitional regime, version 1, Mendeley Data, September 2020. Copyright 2020 Author(s), licensed under a
Creative Commons Attribution 4.0 License.
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FIG. 4. The distance between the bottom of the ball and the bottom of the tank: experimental and numerical results for the Rubber22 setup. The experimental data are repro-
duced with permission from T. Hagemeier, Particle settling-transitional regime, version 1, Mendeley Data, September 2020. Copyright 2020 Author(s), licensed under a
Creative Commons Attribution 4.0 License.

FIG. 5. Velocity solution (left) and pressure solution (center) at t ¼ 0.575 s rotated into the x–z plane and computational mesh (right) for the Rubber22 case, resulting from the
CutFEM computation with hmax ¼ 0.008 and Dt ¼ 0.005 s.
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to physically meaningful results but is heavily dependent on the
“correct” choice of parameters for which there is no a priori knowl-
edge. For the FSI model, we see that the overall dynamics are cap-
tured well. We also observe that—while the pre-contact dynamics
are essentially independent of the elasticity parameters—a variation
of the elasticity modulus Es changes the rebound height djump sig-
nificantly. Here, a softer material (Es ¼ 2 � 106 Pa) leads to a larger
rebound as more elastic energy is taken up through the deformation
during the impact.

3. Three-dimensional computation including rotational
effects

One of the challenges in performing the experimental study42

was to limit the horizontal deflection of the falling objects, i.e., to keep
them close to the centerline. Identifying the source of these three-
dimensional effects is one of the intriguing questions for future
research. The cause may be found in a complex solution pattern of the
Navier–Stokes equations, in material inaccuracies such as non-
uniform distribution of the mass or the surface roughness but also in
experimental inaccuracies, e.g., during the release process.

Since the reduced formulation presented in Sec. III cannot
depict 3D effects, we add further studies based on the full 3D for-
mulation. Here, we choose the ALE representation again due to its
much better computational performance, even if no contact can be
modeled. However, this is not a significant limitation since effects
of rotation and horizontal deflection happen during the phase of
free fall. The three-dimensional simulations based on the ALE for-
mulation presented above in Subsection IV B 2 did not show any
three-dimensional effect if the configuration is fully symmetric and
the ball is released at the centerline, i.e., cS ¼ 0; 0; dð0Þð Þ. To inves-
tigate the stability of the Navier–Stokes rigid-body system, we con-
sider further numerical simulations based on the Rubber22 case
with distorted initial values. We start the simulation with the initial
data

cS ¼ 10�3vx; 10
�3vy; 0:1461203

� �
m;

vSð0Þ ¼ 4 � 10�3vx; 4 � 10�3vy; 0
� �

ms�1;

xSð0Þ ¼ v1; v2; v2ð Þ 2p � 10�2 s�1;

where vx; vy; v1; v2; v3�
iidNð0; 1Þ are normally distributed random

numbers with mean zero and standard deviation 1.
Figure 6 shows the results for multiple experiments based on ran-

domly chosen initial data. The left plot shows the projection of the
center of mass onto the x–y plane. These results show that numerical
simulations cannot predict a substantial deflection from the centerline
if an initial deflection is prescribed. While the rigid solids are indeed
further removed from the center, the effect is small and the objects
remain within 3mm off the center. On the right, we show the velocity
of the particles. The upper figure shows the horizontal velocity compo-
nent, while the lower plot gives the dominant vertical velocity. Here,
we indeed see a substantial impact of the initial disturbances. When
the solid comes close to the lower boundary, a deflection to the sides
becomes visible. We note that these ALE simulations crash before con-
tact is established. At final time t � 0.64 s, this distance between the
lower boundaries is still slightly larger than radius rS ¼ 0:011m. Since
the horizontal velocity is beginning to increase significantly here, fur-
ther simulations, in which the particle is able to get closer to the bot-
tom boundary, are of interest. We deduce from these results that small
fluctuations during the release process can indeed explain the small
horizontal displacement observed during the experiments for the
PTFE and rubber particles and the discrepancy between the experi-
mental and numerical realizations of our quantities of interest.
However, these computations also show that very large horizontal dis-
placements, as observed in Refs. 41 and 42, for example, for the POM
particle, cannot be solely explained through this.

V. SUMMARY AND CONCLUSION

We have presented two setups for a fluid–structure interaction
problem with solid contact based on the physical experiments

FIG. 6. Left: view from below. Deflection of the center of mass from the centerline (0, 0) for 15 experiments starting with random initial deviations each. Right: velocity of the particles

for six experiments. The upper figure shows the horizontal velocity component
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2S;1 þ v2S;2

q
, and the lower plot gives the vertical velocity close to the bottom for t 	 0.5 s.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 033304 (2021); doi: 10.1063/5.0037971 33, 033304-13

Published under license by AIP Publishing

https://scitation.org/journal/phf


described in Ref. 42 and the data available in Ref. 41. We computed
these setups using a spatially reduced model under the assumption of
rotational symmetry in cylindrical coordinates. For the discretization,
we used a fitted ALE and unfitted CutFEM approach within a fluid–-
rigid body model and a fully Eulerian FSI approach in a fluid–elastic
structure model capable of resolving the solid contact.

We showed how each of these discretizations is able to capture
the pre-contact dynamics observed in the physical experiment within
a margin of 5.1%–0.6%, even though this ignored any horizontal
motion observed in the experimental data. Using a full three-
dimensional ALE discretization, we saw that the spatially reduced
approach did indeed result in meaningful results under the assump-
tion of perfect initial conditions at a fraction of the computational
cost. Furthermore, we presented computation with disturbed initial
data. From these results, we deduced that the observed horizontal
motion in the PTFE and rubber experiments is within the scope
explainable by imperfect starting conditions. This shows that a fluid–-
rigid body model is suitable for this type of problem before solid con-
tact occurs.

With respect to the contact dynamics, we were able to show that
the Eulerian FSI discretization with contact treatment is able to repro-
duce the spatial and temporal dynamics observed in the experiments
very well. This is even though the theoretical modeling of such contact
dynamics is not yet fully understood. The moving domain CutFEM
approach together with the artificial contact treatment showed that
this type of contact treatment can result in physically meaningful
results when the artificial parameters are chosen “correctly” and the
extent to which the artificial parameters are material dependent.

The resulting datasets, the source code for the fluid–rigid body
discretizations, as well as some simplified examples are available in the
zenodo repository.63

We conclude that the two discussed setups are well suited for
the validation of fluid–structure interaction models in the moderate
Reynolds-number fluid regime both before and after contact. To
the best of our knowledge, this is the first example of a computa-
tional FSI setup with rebound contact dynamics, which is validated
by experimental data. We note that the PTFE6 setup is better suited
for validation of contact and rebound models since the model
parameters are known precisely. On the other hand, the Rubber22
scenario is well suited to validate models before or without contact
since there is less deviation from the centerline in the data from the
experiment.

For future research, it remains to be investigated that to what
extent the free surface at the top of the fluid domain plays a role in sys-
tem dynamics. Furthermore, an open question is that of the role of
imperfections in the mass distribution within the solid, of the surface
roughness of the solid, and whether these can explain larger horizontal
displacements and rotation observed, for example, with the POM par-
ticle in Ref. 42.
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APPENDIX A: DETAILS ON THE NUMERICAL
REALIZATION

1. Fluid–rigid body interaction in arbitrary
Lagrangian–Eulerian coordinates

The ALE formulation is based on the reference map

TALEðcSÞ : F ! FðcSÞ;

where cS is the solid’s center of mass relative to the bottom bound-
ary and where

FðcSÞ ¼ ½0; 0:055m� � ½0; 0:2m�

 �

nBrS cSð Þ;
BrS ðcSÞ being the open ball of radius r with midpoint cS. As the ref-
erence domain, we set F :¼ Fð0:05mÞ where the ball is centered at
cS ¼ ð0; 0; 0:5Þ such that the mesh distortion is not too extreme
when the solid comes close to the lower boundary. The mapping
TALEðcSÞ is given analytically by

TALEðcS ; r; zÞ ¼ r; z þ ðcS � 0:05mÞfALEðzÞð Þ;

fALEðzÞ ¼

z
0:05m� 2rS

; z < 0:05m� 2rS

1; 0:05m� 2rS 
 z 
 0:05mþ 2rS
0:2m� z

0:15mþ 2rS
; z > 0:05mþ 2rS

8>>>>><>>>>>:
(A1)

such that TALEðcS ; r; zÞ is a pure translation for all
z 2 ½0:05m� 2rS ; 0:05mþ 2rS�, where the reference ball is
located. We make sure that the lines at z ¼ 0:05m6 2rS are
resolved by the computational mesh such that TALE is differentiable
within all elements. This construction of the domain map does not
allow us to reduce the distance of the ball from the lower boundary
to less than rS .

The reference domain F is the basis for the finite-element dis-
cretization. In cylindrical coordinates, the ALE version of the varia-
tional formulation takes the form

mALEðcS ; u; vÞ ¼ 2pqf

ð
F
rJðcSÞu � vdx;

aALEðcS ; u;vÞ ¼ 2plf

ð
F
JðcSÞru

1 0

0 JðcSÞ�1

 !
: rv

�
1 0

0 JðcSÞ�1

 !
þ JðcSÞ

r
urvrdx;

cALEðcS ; u; v;wÞ ¼ 2pqf

ð
F
rJðcSÞr

1 0

0 JðcSÞ�1

 !
� u� @tTALEðcSÞð Þ � wdx;

bALEðcS ; q;vÞ ¼ �2p
ð
F
JðcSÞq vr þ r@rv1 þ @zv2=JðcSÞð Þdx;

where JðcSÞ ¼ detðrTALEÞ is the determinant of the deformation
gradient.

The discretization is realized by means of quadratic equal-
order finite elements for velocity and pressure on a quadrilateral
mesh of the reference domain F ; we refer to Ref. 12, Sec. 4.4 for
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details on the realization. To stabilize the inf–sup condition, we use
the local projection scheme as introduced by Becker and Braack,64

given, in the ALE formulation, as

sALEðcS ; p; qÞ ¼
ð
F
r

dr 0

0 dz

 !
rjhðpÞ �

JðcSÞ 0

0 JðcSÞ�1

 !

�rjhðqÞ þ
JðcSÞ
r

drjhðpÞjhðqÞdx:

Here, jh:¼ id � i2h is the coarse mesh fluctuation operator that
subtracts the interpolation to the mesh with double spacing and
where dr and dz are local stabilization parameters that depend on
the element diameter h and the time step size k,

dr ¼ 0:1 �
lf

qf h2
þ 1
k

 !�1
; dz ¼ 0:1 �

lf

qf h2JðcSÞ2
þ 1
k

 !�1
:

The different scaling in r- and z-directions reflects the anisotropy
induced by the ALE transformation, cf. Ref. 65 or (Ref. 12, Sec.
5.3.3).

In time, we discretize the Navier–Stokes equations and the
rigid-body problem with BDF2 time stepping in a decoupled itera-
tion taking 10�8 as tolerance for the solid velocity and deformation
update. The forces acting on the solid are evaluated by means of the
Babu�ska–Miller trick66,67 such that quadratic finite elements let us
expect fourth order convergence. Hence, each step of spatial refine-
ment will be accompanied by two refinements of the time step.

a. Fluid–rigid body interaction in arbitrary
Lagrangian–Eulerian coordinates in three dimensions

To clarify the role of fixed body rotations of the solid and
deflections of the center of mass from the z axis, both of which were
observed in the experimental analysis,41,42 we perform full three-
dimensional simulations. The Navier–Stokes equations are formu-
lated in Cartesian coordinates (1), and the motion of the rigid body
is described by

d
dt

cSðtÞ ¼ vSðtÞ;

d
dt
vSðtÞ �mS ¼

0

0

mSg � volðSÞqf g

0BB@
1CCAþ ð

I
rðu; pÞn ds;

d
dt

xSðtÞ � IS þ xSðtÞ � ISxSðtÞ ¼
ð
I
x � cSðtÞð Þ � rðu; pÞn ds;

(A2)

where vSðtÞ 2 R3 is the full velocity vector, cSðtÞ 2 R3 is the sol-
id’s center of mass, and xSðtÞ 2 R3 is the rotational velocity vector;
cf. Eqs. (4)–(6). Assuming a homogeneous distribution of the den-
sity, the moment of inertia is given by

IS ¼
8
15

pqSr
5
S Id:

It follows that the nonlinear term in the rotational ODE (A2) van-
ishes since xSðtÞ � ISxSðtÞ ¼ 8

15 pqSr
5
S xSðtÞ � xSðtÞ ¼ 0. On the

surface of the sphere, the Navier–Stokes Dirichlet conditions are
used to describe the velocity

vðx; tÞ ¼ vSðtÞ þ xSðtÞ � x � cSð Þ on I :

To evaluate the torque correctly through the variational formula-
tion, i.e., by using the Babu�ska–Miller trick,66,67 the symmetric gra-
dient is used instead in (10); hence,

a3dðu; vÞ ¼ lf

ð
X3d
ðruþruTÞ : rv dx:

We cast the problem in standard ALE formulation and refer to Ref.
12, Chap. 5 for further details. The ALE map TALE(t) is chosen simi-
lar to the reduced case (A1), but we must incorporate motion in the
x–y plane and define

TALEðcS ; x; y; zÞ ¼
x þ cS;1 � gALE rðx; yÞð Þ
y þ cS;2 � gALE rðx; yÞð Þ

z þ ðcS;3 � rS � 0:05mÞfALEðzÞ

0B@
1CA;

where fALE(�) is defined in (A1), while r(�, �) and gALE(�) are given by

rðx; yÞ ¼ max 0;min 1;
x � rS
R� rS

� � 
;

gALEðrÞ ¼ 1� 1

1þ exp 1�2r
r�r2
� � :

The function r(�, �) maps the x–y plane to [0, 1] with r(x, y) ¼ 0 forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

 rS and r(x, y) ¼ 1 for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
	 R. Furthermore,

gALE is a smooth transition function mapping (0, 1) to (0, 1), with
all derivatives being zero at 0 and 1. On the other hand, the deriva-
tive of fALE(z) is not defined at z ¼ 0:05m62rS . These two surfaces
are however resolved by the finite-element mesh to give good
approximation characteristics of the ALE formulation.

b. Implementation

Both formulations, the reduced two-dimensional ALE formu-
lation in cylindrical coordinates and the full three-dimensional ALE

TABLE V. Resulting reference quantities for the stationary test scenario.

Discretization Results

Method [hmin, hmax] dof nze Fz

ALE [0.000 30, 0.004 9] 6.9 0.310 �4.432 34 � 10�5
[0.000 15, 0.002 4] 26.7 1.238 �4.429 92 � 10�5
[0.000 08, 0.001 2] 104.9 4.946 �4.429 75 � 10�5

Extrapolate �4.429 74 � 10�5
order (in h) 3.8

CutFEM [0.002 0, 0.008] 11.9 0.361 �4.402 54 � 10�5
[0.001 0, 0.004] 41.3 1.241 �4.423 55 � 10�5
[0.000 5, 0.002] 151.4 4.525 �4.429 19 � 10�5
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formulation, are implemented in the finite-element library
Gascoigne3D.62 The coupling between the Navier–Stokes equation
and the rigid-body motion is resolved in a simple iteration until the
discrepancy in velocity reached a threshold

kvjI � vSk1 < 10�8:

The nonlinearity of the Navier–Stokes equation is solved by a Newton
iteration, and the resulting linear systems of equations are approxi-
mated with a parallel generalized minimal residual method (GMRES)
iteration, preconditioned by a geometric multigrid solver; see Ref. 68.
The meshes are graded with a higher resolution close to the solid.

APPENDIX B: COMPUTATIONAL TEST CASES

We define two simplified test cases. This is intended to make it
easier for others to reproduce the presented results using different
methods and/or implementations.

1. Stationary flow test

For this stationary test, we modify the Rubber22 setup. The
sphere is fixed at cS ¼ ð0; 0; 0:1Þ, i.e., the center of the cylinder. We
impose an inflow boundary condition u ¼ �0:01ð1� ðx21 þ x22Þ=R2Þ

on Ctop, no-slip u ¼ 0 on Cwall [ I , and a homogeneous Neumann
boundary condition r(u, p)n¼ 0 on Cbottom.

We consider the stationary Navier–Stokes problem on this
domain. As reference quantities, we take the vertical stress acting
on the sphere, i.e., testing the reduced formulation in (13) with the
non-conforming, continuous test-functions bw ¼ ð0; 1ÞT on I and 0
on C, respectively.

We compute the problem based on the discretizations dis-
cussed in Subsections IVA 1 and IVA2. The results can be seen in
Table V.

2. Non-stationary flow test with prescribed motion

As a second test case, we keep the Rubber22 setup as the basis.
The material parameters and the cylinder boundary conditions are
as before, i.e., we consider no-slip on Cwall [ Cbottom and a free-slip
condition on Ctop. We prescribe the motion of the sphere as follows:
Over the time interval I ¼ [0, 20], the sphere is located at

cS ¼ 0; 0; dðtÞð Þ with dðtÞ ¼ 0:1þ 0:05 cosð0:1ptÞ:

The boundary condition on the interface is accordingly set to
u ¼ 0; 0; @tdðtÞð Þ. Quantities of interest are the maximal value over

TABLE VI. Resulting reference quantities for the non-stationary moving domain test scenario.

Discretization Results

Method [hmin, hmax] Dt dof nze Fz,max tz,max

ALE [0.000 30, 0.009 9] 1=5 11.1 0.49 1.018 38 � 10�4 4.107 346 91
[0.000 15, 0.005 0] 1=20 25.0 1.10 1.017 48 � 10�4 4.113 563 25
[0.000 08, 0.002 5] 1=80 58.7 2.61 1.017 20 � 10�4 4.106 704 36

CutFEM [0.002 0, 0.008] 1=25 11.9 0.361 1.017 00 � 10�4 4.153
[0.001 0, 0.004] 1=50 41.2 1.240 1.013 95 � 10�4 4.138
[0.000 5, 0.002] 1=100 151.3 4.526 1.016 71 � 10�4 4.111

FIG. 7. Force functionals acting on the sphere with
prescribed motion over time.
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time of the z-component of the force functional in the reduced
formulation.

We compute this again using the reduced formulation with the
rigid-body discretizations. The quantitative results can be seen in
Table VI, while the force functional is shown over time in Fig. 7.

DATA AVAILABILITY

The numerical data supporting the finding of this study are
openly available in Zenodo, Ref. 63. The experimental data, on which
this study is based, is openly available in Mendeley Data, Ref. 41.
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A LOCALLY MODIFIED SECOND-ORDER FINITE ELEMENT METHOD FOR
INTERFACE PROBLEMS AND ITS IMPLEMENTATION IN 2 DIMENSIONS

Stefan Frei1,* , Gozel Judakova2 and Thomas Richter2

Abstract. The locally modified finite element method, which is introduced in Frei and Richter [SIAM
J. Numer. Anal. 52 (2014) 2315–2334], is a simple fitted finite element method that is able to resolve
weak discontinuities in interface problems. The method is based on a fixed structured coarse mesh,
which is then refined into sub-elements to resolve an interior interface. In this work, we extend the
locally modified finite element method in two space dimensions to second order using an isoparametric
approach in the interface elements. Thereby we need to take care that the resulting curved edges do
not lead to degenerate sub-elements. We prove optimal a priori error estimates in the 𝐿2-norm and in
a discrete energy norm. Finally, we present numerical examples to substantiate the theoretical findings.
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1. Introduction

In this paper, we extend the locally modified finite element method introduced in [1–3] to higher order. We
investigate interface problems, where the normal derivative of the solution may have a jump over an interior
interface. Examples of such interface problems are ubiquitous in technology, industry, science and medicine. Some
of the most prominent examples include fluid-structure interactions [2,4] or multiphase flows [5]. Fluid-structure
interactions arise in aerodynamical applications like flow around airplanes or parachutes [6], in biomedical
problems such as blood flow through the cardiovascular system [7–9] or the airflow within the respiratory
system [10] and even in tribological applications [11]. Multiphase problems include gas-liquid and particle-laden
gas flows, rising bubbles [12], droplets in microfluidic devices [13] or the simulation of tumor growth [14]. Another
field of application are shape or topology optimization problems including multi-component structures [15,16].
The simplest possible setting, which is the scope of the present paper, is a diffusion problem where the coefficient
is discontinuous across an interior interface.

We assume that the domain Ω ⊂ R2 is divided into Ω = Ω1 ∪ Γ ∪ Ω2 with an interface Γ ⊂ 𝜕Ω1 ∩ 𝜕Ω2, such
that Γ = 𝜕Ω1 ∩ 𝜕Ω2, and a discontinuous diffusion coefficient 𝜈 > 0 across Γ. In order to simplify the analysis
we will assume that the outer domain Ω is a two-dimensional convex domain with polygonal boundary. Some
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remarks on corresponding three-dimensional methods will be given in Remark 2. We consider the equations

−∇ · (𝜈𝑖∇𝑢) = 𝑓 in Ω𝑖, 𝑖 = 1, 2, (1)
[𝑢] = 0, [𝜈𝜕𝑛𝑢] = 0 on Γ, (2)

𝑢 = 0 on 𝜕Ω, (3)

where 𝜈|Ω𝑖
:= 𝜈𝑖, 𝑖 = 1, 2 and the jump [𝑤] at the interface Γ with normal vector 𝑛 is defined by

[𝑤](𝑥) := lim
𝑠↘0

𝑤(𝑥 + 𝑠𝑛)− lim
𝑠↗0

𝑤(𝑥 + 𝑠𝑛), 𝑥 ∈ Γ.

The corresponding variational formulation of the problem (1) is given by

𝑢 ∈ 𝐻1
0 (Ω) :

2∑︁
𝑖=1

(𝜈𝑖∇𝑢,∇𝜙)Ω𝑖
= (𝑓, 𝜙)Ω ∀𝜙 ∈ 𝐻1

0 (Ω). (4)

This interface problem is intensively discussed in the literature. Babuška [17] shows that a standard finite
element ansatz has low accuracy, regardless of the polynomial degree of the finite element space,

||𝑢− 𝑢ℎ||Ω = 𝒪(ℎ), ||∇(𝑢− 𝑢ℎ)||Ω = 𝒪(ℎ1/2),

where throughout the paper ‖ · ‖Ω := ‖ · ‖𝐿2(Ω) denotes the 𝐿2-norm. To improve the accuracy, the interface
needs to be resolved within the discretization. Frei and Richter [1] presented a locally modified finite element
method based on first-order polynomials with first-order accuracy in the energy norm and second order in the
𝐿2-norm. The method is based on a fixed coarse patch mesh consisting of quadrilaterals, which is independent
of the position of the interface. The patch elements are then divided into sub-elements, such that the interface
is locally resolved. The discretization is based on piecewise linear finite elements which has a natural extension
to higher order finite element spaces.

Due to the fixed background patch mesh this approach is particularly suitable for problems involving moving
interfaces, where functions 𝑢ℎ(𝑡𝑛−1) and 𝑢ℎ(𝑡𝑛) defined on different sub-meshes need to be integrated against
each other within a time-stepping scheme [18]. Due to the implicit adaption of the finite element spaces within
the locally modified finite element method, a costly re-meshing procedure is avoided. Similarly, the locally
modified finite element method might be useful in shape or topology optimization problems, where problems
need to be solved for different interface and boundary positions, while approaching the solution [15,16].

The locally modified finite element method has been used by the authors and co-workers [3, 19–21], and
by Langer and Yang [22] for fluid-structure interaction (FSI) problems, including the transition from FSI to
solid-solid contact [23–25]. Holm et al. [26] and Gangl and Langer [15] used a corresponding approach based on
triangular patches, the latter work being motivated by a topology optimization problem. A pressure stabilization
technique for flow problems has been developed in [27] and a suitable (second-order) time discretization scheme
in [18]. Details of the implementation in deal.ii and the corresponding source code have been published in [28,29].
Extensions to three space dimensions have been developed by Langer and Yang [30], where hexahedral coarse
cells are divided into sub-elements consisting of hexahedra and tetrahedra, and by Höllbacher and Wittum,
where a coarse mesh consisting of tetrahedra is sub-divided into hexahedrons, prisms and pyramids [31,32].

Alternative approaches are unfitted methods, where the mesh is fixed and does not resolve the interface.
Prominent examples are the extended finite element method (XFEM [33–36]) and the generalised finite element
(GFEM [37]), where the finite element space is enriched by suitable functions that contain certain properties of
the solution (for example discontinuities in the function or its derivative). Higher-order approximations within
the XFEM approach have been developed by Cheng and Fries [38] and by Dréau et al. [39]. A conceptionally
different unfitted approach are Cut Finite Elements (CutFEM) [40–44]. Here the main difficulty lies in the
construction of quadrature formulas to represent the interface in the cut cells. Possibilities to obtain higher-
order approximations include the definition of parametric mappings in the cut cells [45–47] or a boundary



A LOCALLY MODIFIED SECOND-ORDER FEM FOR INTERFACE PROBLEMS 1357

value correction based on Taylor expansion [48]. Unfitted discontinuous Galerkin methods within the CutFEM
paradigm have been developed in [49–51]. Areias and Belytschko noted that CutFEM and the discontinuous
variant of the XFEM approach are in fact closely related [52]. A further unfitted approach that circumvents the
problem to construct quadrature formulas is the shifted boundary method [53], where interface conditions are
formulated on neighbouring edges instead of the interface Γ.

For further fitted finite element methods, we refer to [54–58]. Some works are similar to the locally modified
finite element methods in the sense that only mesh elements close to the interface are altered [59, 60]. Fitted
methods with higher order approximations have been developed by Fang [61] and by Omerović and Fries [62].
Recently, a method called Universal Meshes gained certain popularity [63]. Here the idea is to construct a
suitable mapping for the elements in the interface region to resolve the interface.

After this introduction, we describe the locally modified high order finite element approach and show a
maximum angle condition in Section 2. In Section 3, we derive the main results of this work, namely a priori
error estimates in the 𝐿2- and in a discrete energy norm. Section 4 gives some details on the implementation
and in Section 5, we show different numerical examples. The conclusion of our work follows in Section 6.

2. Locally modified high order finite element method

In this section we review the first order approach proposed by Frei and Richter [1] and extend it to a second
order discretization. The splitting into subelements that we propose is slightly different from the one presented
in [1] and leads in general to a better bound for the maximal angles within the triangles.

Let 𝒯𝑃 be a form and shape-regular quadrilateral mesh of the convex domain Ω with polygonal boundary.
The elements 𝑃 ∈ 𝒯𝑃 are called patches and these do not necessarily resolve the partitioning. By a slight abuse
of notation, we will in the following write 𝑃 both for the elements of the triangulation and for the domain
spanned by a patch 𝑃 . The interface Γ may cut the patches. In this case we make the assumption:
Assumption 1 (Interface configuration).
(1) Each patch 𝑃 ∈ 𝒯𝑃 is either cut 𝑃 ∩ Γ ̸= ∅ or not cut 𝑃 ∩ Γ = ∅. If it is cut, the cut goes through exactly

two points on the boundary 𝜕𝑃 , see Figure 1 (left and top right).
(2) The interface does not cut the same edge multiple times and may not enter and leave the patch at the same

edge, see Figure 1 (bottom right).
Given a smooth interface Γ, this assumption is fulfilled after sufficient refinement. The patch mesh 𝒯𝑃 is

the fixed background mesh used in the parametric finite element method described below. We will introduce
a further local refinement of the mesh, denoted 𝒯ℎ, which resolves the interface. However, this refined mesh is
only for illustrative purpose. The numerical realization is based on the fixed mesh 𝒯𝑃 and the “refinement” is
in fact only included in a parametric way within the reference map for each patch 𝑃 ∈ 𝒯𝑃 .

If the interface is matched by one of the edges of the patch, then the patch is considered as not cut. We
will split such patches into four quadrilaterals. If the interface cuts the patch, then the patch splits either in
eight triangles or in four quadrilaterals. In both cases, the patch 𝑃 is first split into four quadrilaterals, denoted
by 𝐾1, . . . ,𝐾4, which are then possibly refined into two triangles each. The resulting sub-cells are denoted by
𝑇1, . . . , 𝑇8 in the case of triangular sub-cells and by 𝑇1, . . . , 𝑇4 in the case of quadrilaterals (In the latter case
these are identical to 𝐾1, . . . 𝐾4). This two-step procedure will simplify the following proofs. We define the
isoparametric finite element space 𝑉ℎ ⊂ 𝐻1

0 (Ω)

𝑉ℎ :=
{︁

𝜙 ∈ 𝐶(Ω) | (𝜙 ∘ 𝜉𝑇 ) ∈ 𝒫𝑟
𝑇 (𝑇 ) for 𝑇 ∈ 𝒯ℎ

}︁
, (5)

where

𝒫𝑟
𝑇 (𝑇 ) :=

{︃
𝑄𝑟(𝑇 ), 𝑇 is a quadrilateral,
𝑃𝑟(𝑇 ), 𝑇 is a triangle,

and 𝜉𝑇 ∈ 𝒫1
𝑇 (𝑇 ) is a transformation from the reference element 𝑇 to 𝑇 . The space 𝑉ℎ is continuous, as the

restriction of a function in 𝑄𝑟(𝑇 ) to a line 𝑒 ⊂ 𝜕𝑇 is in 𝑃𝑟(𝑇 ).
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Figure 1. Left : mesh consisting of four patches, three of which are cut by the interface. Right :
possible configurations (top), and configurations that are not allowed (bottom).

2.1. Maximum angle condition

In order to show optimal-order error estimates, the finite element mesh needs to fulfill a maximum angle
condition in a fitted finite element method. We first analyse the maximum angles of the subtriangles in a
Cartesian patch grid 𝒯𝑃 . A bound for a general regular patch mesh can be obtained by using the regularity of
the patch mesh.

2.1.1. Linear interface approximation

We distinguish between five different types of interface cuts by the fact that the interface intersects a patch
either in 1 or 2 exterior vertices (Config. B and A) or two opposite (C) or adjacent (D and E) edges, see Figure 2.
Let 𝑟, 𝑠 ∈ (0, 1) denote the relative cut positions on an edge 𝑒 (see Fig. 2). In the case of adjacent edges, we
distinguish further between the case that 𝑟 ≤ 1

2 and 𝑠 ≥ 1
2 (D) and the case that one these inequalities is

violated (E). In all cases the patch element can be split in four large quadrilaterals 𝐾1, . . . ,𝐾4 first, which are
then divided into two sub-triangles, if the interface cuts through the patch. Details are given in the appendix.

Considering arbitrary interface positions, anisotropic elements can arise, when the relative cut position 𝑟, 𝑠 ∈
(0, 1) on an edge 𝑒 tends to 0 or 1 (see Fig. 2). We can not guarantee a minimum angle condition for the
sub-triangles, but we can ensure that the maximum angles remain bounded away from 180∘.

Lemma 1 (Linear approximation of the interface). All interior angles of the Cartesian patch elements shown
in Figure 2 are bounded by 135∘ independently of the parameters 𝑟, 𝑠 ∈ (0, 1).

Proof. The proof follows by basic geometrical considerations, see Appendix B. �

Theorem 1. We assume that the patch grid 𝒯𝑃 is Cartesian. For all types of interface cuts (see Fig. 2), the
interior angles of all subelements are bounded by 135∘ independently of the parameters 𝑟, 𝑠 ∈ (0, 1).

Proof. By means of Lemma 1 all interior angles on the reference patch are bounded by 135∘. As all cells are
Cartesian, the same bound holds for the elements 𝑇 ⊂ 𝑃 . �

Remark 1. We have assumed for simplicity that the underlying patch mesh is fully Cartesian. This assumption
can, however, easily be weakened. Allowing more general form- and shape-regular patch meshes a geometric
transformation of each patch to the unit patch will give a bound 𝛼 < 𝛼max < 180∘ for the interior angles 𝛼
(with 𝛼max larger than 135∘).
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Figure 2. Different configurations and splitting into four large quadrilaterals 𝐾1, . . . ,𝐾4. The
red line shows a linear approximation of the interface. In quadrilaterals that are not split by
the interface, we divide in such a way into subtriangles, that the largest angle is split. Note in
particular that the degenerate quadrilateral 𝐾2 in Configuration D will be split into two regular
subtriangles that are used in the definition of finite element spaces. (a) Configuration A. (b)
Configuration B. (c) Configuration C. (d) Configuration D. (e) Configuration E 𝑟 ∈ (0, 1), 𝑠 ∈
(0, 1/2). (f) Configuration E 𝑟 ∈ (1/2, 1), 𝑠 ∈ (0, 1).

2.1.2. Quadratic interface approximation

Next, we define a quadratic approximation of the interface. In each of the subtriangles obtained in the previous
paragraph, we consider 6 degrees of freedom that lie on the vertices and edge midpints of the triangles (see the
dots in Fig. 1, left). In order to guarantee a higher-order interface approximation those that lie on the discrete
interface Γℎ need to be moved. The detailed algorithm is given in Section 4.

In certain “pathological” situations we can not guarantee that the angle conditions imposed above are fulfilled.
This is due to the fact that the curved edges that correspond to a quadratic interface approximation might
intersect other edges, see Figure 3 for an example.

In this case, we use a linear approximation of the interface in the affected patch (i.e. the reference maps 𝜉𝑇

in the finite element space (5) are linear). We denote the set of patches, where a linear interface approximation
is used by 𝒯𝑃,lin and the corresponding set of sub-cells with a linear reference map 𝜉𝑇 by 𝒯ℎ,lin. We will see in
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Figure 3. Each of the eight triangles approximates the interface Γ quadratically. Herefore, the
midpoint of the edge that corresponds to the interface is pulled onto the curve. Left : this is a
valid configuration where a quadratic approximation is possible. Right : in some configurations a
fully quadratic interface approximation would result in a degenerate element with an interface
that is leaving triangle (see the mark on the upper edge). Such triangles are approximated
linearly and cause 𝑛𝑙 > 0.

the numerical examples below that this happens rarely. Moreover, it is reasonable to assume that the maximum
number of such patches remains bounded under refinement independently of ℎ ≤ ℎ0.

We give a heuristic argument for this assumption. Let us consider the situation sketched in Figure 3. The linear
approximation of the interface will never leave the patch by definition. The maximum distance between a linear
and quadratic interface approximation is bounded by 𝒪(ℎ2

𝑃 ). In relation with the patch size 𝒪(ℎ𝑃 ) this means
that – considering arbitrary interface positions – the probability that the quadratic interface approximation
leaves the patch is bounded by 𝒪(ℎ𝑃 ). The number of interface patches, on the other hand, grows like 𝒪(ℎ−1

𝑃 ).
Hence it is reasonable to assume that the number of affected patches behaves like 𝒪(1) for ℎ𝑃 → 0. We will
denote the maximum number of patches with a linear interface approximation by 𝑛𝑙.

2.2. Modified spaces and discrete variational formulation

We define the finite element space

𝑉ℎ :=
{︁

𝜙 ∈ 𝐶(Ω) | (𝜙 ∘ 𝜉𝑇 ) ∈ 𝒫𝑟
𝑇 (𝑇 ) for 𝑇 ∈ 𝒯ℎ

}︁
, (6)

where the map 𝜉𝑇 resolves the interface with order 𝑟 in all but 𝑛𝑙 elements, where the approximation is only
linear:

𝜉𝑇 ∈

{︃
𝒫1

𝑇 (𝑇 ), 𝑇 ∈ 𝒯ℎ,lin,

𝒫𝑟
𝑇 (𝑇 ), else.

The polynomial order of the trial functions (𝜙 ∘ 𝜉𝑇 ) is 𝑟 independent of the interface approximation.
We consider a 𝐶3-parameterized interface Γ, which is not matched by the triangulation 𝒯ℎ. The triangulation

induces a discrete interface Γℎ, which is a quadratic (and in max ·𝑛𝑙 elements a linear) approximation to Γ. The
discrete interface splits the triangulation in subdomains Ω1

ℎ and Ω2
ℎ, such that each subcell 𝑇 ∈ 𝒯ℎ is either

completely included in Ω1
ℎ or in Ω2

ℎ.
We consider the following discrete variational formulation: Find 𝑢ℎ ∈ 𝑉ℎ such that

𝑎ℎ(𝑢ℎ, 𝜑ℎ) = (𝑓ℎ, 𝜑ℎ)Ω ∀𝜑ℎ ∈ 𝑉ℎ, (7)

where we set 𝑓ℎ|Ω𝑖
ℎ

:= 𝑓𝑖, 𝑖 = 1, 2 and 𝑓𝑖 is a smooth extension of 𝑓 |Ω𝑖 to Ω𝑖
ℎ. The bilinear form is given by

𝑎ℎ(𝑢ℎ, 𝜑ℎ) := (𝜈ℎ∇𝑢ℎ,∇𝜑ℎ)Ω,
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where 𝜈ℎ is defined by

𝜈ℎ =

{︃
𝜈1, 𝑥 ∈ Ω1

ℎ

𝜈2, 𝑥 ∈ Ω2
ℎ.

Remark 2. The locally modified finite element method has straight-forward extensions to 3 space dimensions.
One possibility is to use a hexahedral patch mesh, where each hexahedron is subdivided into 8 sub-hexahedra.
The hexahedra affected by the interface are then further subdivided into 6 tetrahedra to resolve the interface. 4
different types of cuts have to be considered, based on the number of patch vertices that remain on each side of
the interface (1 vs. 7, 2 vs. 6, 3 vs. 5 or 4 vs. 4). In order to guarantee a maximum angle condition in pathological
situations some of the patch vertices can be moved, if necessary. Such an approach has been implemented by
Langer and Yang, see [22]. Alternatively, the patches can also be subdivided into polyhedral sub-elements as in
Höllbacher and Wittum [31,32]. For all variants the ideas as well as the analysis presented in this paper have a
straight-forward extension to the three-dimensional method.

3. A PRIORI error analysis

Let ℎ𝑃 be the maximum size of a patch element 𝑃 ∈ 𝒯𝑃 of the regular patch grid. We will denote the
mismatch between Ω𝑖

ℎ and Ω𝑖 by 𝑆𝑖
ℎ, 𝑖 = 1, 2 (see Fig. 4)

𝑆1
ℎ := Ω1

ℎ ∖ Ω1 = Ω2 ∖ Ω2
ℎ,

𝑆2
ℎ := Ω2

ℎ ∖ Ω2 = Ω1 ∖ Ω1
ℎ.

Moreover, we denote the set of elements 𝑇 ∈ 𝒯ℎ that contain parts of 𝑆𝑖
ℎ by

𝑆𝑖
𝑇 :=

{︀
𝑇 ∈ 𝒯ℎ |𝑇 ∩ 𝑆𝑖

ℎ ̸= 0
}︀
, 𝑆𝑇 := 𝑆1

𝑇 ∪ 𝑆2
𝑇 .

Further, we split 𝑆𝑖
ℎ into parts 𝑆𝑖

ℎ,lin with a linear approximation of the interface and parts 𝑆𝑖
ℎ,qu with a quadratic

approximation. Finally, by a slight abuse of notation, we will use the same notation, e.g. 𝑆𝑇 , 𝑆𝑖
𝑇 , for the region

that is spanned by the union of all elements in these sets.
By constants 𝑐 we will denote in the following generic constants that are independent of the mesh size ℎ𝑃 , the

position of the interface, the solution 𝑢 and the number of linearly approximated elements 𝑛𝑙 (but may depend
on the parameters 𝜈𝑖, 𝑖 = 1, 2). We note that within a sequence of inequalities, 𝑐 might even represent different
values on different sides of the inequalities.

3.1. Auxiliary estimates

We begin with some technical estimates that will be needed in order to control the mismatch between
continuous and discrete bilinear forms. To this purpose we will need the following Sobolev imbedding for
2 ≤ 𝑝 < ∞

‖𝑢‖𝐿𝑝(Ω) ≤ 𝑐𝑝
1
2 ‖𝑢‖𝐻1(Ω), (8)

which is valid with a constant 𝑐 independent of 𝑝, see [64]. We will need the following technical result.

Lemma 2. Let 𝛼 ∈ N, ℎ ∈ R+ and 𝐽(𝑝) := ℎ−
𝛼
𝑝 𝑝

1
2 . It holds that

min
𝑝∈[2,∞]

𝐽(𝑝) ≤ 𝑐| ln(ℎ)| 12 .
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Figure 4. Mismatch between Ω𝑖 and Ω𝑖
ℎ, 𝑖 = 1, 2 at two elements along the curved interface.

Proof. The necessary condition for a local minimum is

𝐽 ′(𝑝) = ℎ−
𝛼
𝑝 ln(ℎ)

𝛼

𝑝2
𝑝

1
2 +

1
2
ℎ−

𝛼
𝑝 𝑝−

1
2 = ℎ−

𝛼
𝑝 𝑝−

1
2

(︂
ln(ℎ)

𝛼

𝑝
+

1
2

)︂
!= 0,

which yields 𝑝 = −2𝛼 ln(ℎ). The minimum value is

𝐽(−2𝛼 ln(ℎ)) = −𝑒−
1
2
√

2𝛼 ln(ℎ)1/2.

The fact that lim𝑝→∞ 𝐽(𝑝) = ∞ and 𝐽(2) > 𝐽(−2𝛼 ln(ℎ)) show that the local minimum is in fact a global
one. �

The following lemma will be needed to estimate the mismatch between continuous and discrete bilinear forms.

Lemma 3 (Geometry approximation). Let 𝑇 ∈ 𝑆𝑇 and let 𝑠 be the local approximation order of the interface,
i.e.

dist (Γℎ ∩ 𝑇 ; Γ ∩ 𝑇 ) ≤ 𝑐ℎ𝑠+1
𝑃 . (9)

If the number of elements with a linear interface approximation is bounded by 𝑛𝑙, it holds for the areas of the
regions 𝑆ℎ,lin and 𝑆ℎ,qu that

|𝑆ℎ,lin| ≤ 𝑛𝑙ℎ
3
𝑃 , |𝑆ℎ,qu| ≤ ℎ3

𝑃 . (10)

For 𝑢 ∈ 𝐻1(Ω1 ∪ Ω2) and 𝜑ℎ ∈ 𝒱ℎ we have the bounds

‖∇𝜑ℎ‖𝑆ℎ∩𝑇 ≤ 𝑐ℎ
𝑠
2
𝑃 ‖∇𝜑ℎ‖𝑇 (11)

‖𝑢‖𝑆ℎ∩𝑇 ≤ 𝑐ℎ
𝑠+1
2

𝑃 ‖𝑢‖Γ∩𝑇 + 𝑐ℎ𝑠+1
𝑃 ‖∇𝑢‖𝑆ℎ∩𝑇 . (12)

Moreover, we have for 𝑢 ∈ 𝐻1(Ω1 ∪ Ω2) and 𝑣 ∈ 𝐻2(Ω1 ∪ Ω2)

‖𝑢‖𝑆ℎ,lin ≤ 𝑐ℎ𝑃 ‖𝑢‖𝐻1(Ω1∪Ω2), ‖𝑢‖𝑆ℎ,qu ≤ 𝑐ℎ
3
2
𝑃 ‖𝑢‖𝐻1(Ω1∪Ω2) (13)
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and

‖𝑢‖𝑆ℎ,lin ≤ 𝑐𝑛
1
2
𝑙 ℎ

3
2
𝑃 | ln(ℎ)|1/2‖𝑢‖𝐻1(Ω1∪Ω2), ‖𝑣‖𝑆ℎ,lin ≤ 𝑐𝑛

1
2
𝑙 ℎ

3
2
𝑃 ‖𝑣‖𝐻2(Ω1∪Ω2). (14)

For functions 𝑢 ∈ 𝐻1
0 (Ω) the 𝐻1-norm on the right-hand side of (13) and (14) can be replaced by the 𝐻1-

seminorm.

Proof. Estimates (9), (11) and (12) have been shown in Lemmas 4.32 and 4.34 from [2]1 (10) follows from (9)
and simple geometric arguments. For (11) and (12) a Poincaré-type estimate is used, see Lemma 4.34 of [2]

‖𝑢‖2𝑆ℎ∩𝑇 ≤ 𝑐ℎ𝑠+1
𝑃 ‖𝑢‖2Γℎ∩𝑇 + 𝑐ℎ2𝑠+2

𝑃 ‖∇𝑢‖2𝑆ℎ∩𝑇 . (15)

Summation over all elements in 𝑆𝑇,lin and 𝑆𝑇,qu, respectively, and a global trace inequality for the interface
terms yields (13). To show (14), we use a Hölder inequality for 𝑝 ∈ [2,∞]

‖𝑢‖𝑆ℎ,lin ≤ |𝑆ℎ,lin|
1
2−

1
𝑝 ‖𝑢‖𝐿𝑝(𝑆ℎ,lin). (16)

Due to |𝑆ℎ,lin| ≤ 𝑐𝑛𝑙ℎ
3
𝑃 and the Sobolev imbedding (8) for Ω = Ω𝑖 we have for arbitrary 𝑝 ∈ [2,∞)

‖𝑢‖𝑆ℎ,lin ≤ 𝑐𝑝
1
2 𝑛

1
2
𝑙 ℎ

3
2−

3
𝑝

𝑃 ‖𝑢‖𝐻1(Ω1∪Ω2). (17)

Using Lemma 2, we obtain the first estimate in (14). If 𝑣 ∈ 𝐻2(Ω1 ∪Ω2) we can use (16) for 𝑝 = ∞ due to the
Sobolev imbedding 𝐻2(Ω𝑖) ⊂ 𝐿∞(Ω𝑖) and we obtain

‖𝑢‖𝑆ℎ,lin ≤ 𝑐𝑛
1
2
𝑙 ℎ

3
2
𝑃 ‖𝑢‖𝐻2(Ω1∪Ω2). (18)

Finally, the norms on the right-hand side can be substituted by the 𝐻1-seminorm for 𝑢 ∈ 𝐻1
0 (Ω) by means

of the Poincaré inequality. �

In the following estimates the mismatch between discrete and continuous bilinear form will be the predominant
issue and will lead to some technicalities in the estimates. The continuous solution 𝑢 is regular in Ω1 and Ω2,
while its normal derivative has a jump across Γ. Discrete functions can only have irregularities at the boundaries
of cells 𝜕𝑇 , which means that a discrete function can only resemble a similar discontinuity across the discrete
interface Γℎ.

To cope with this difference, we will need a map 𝜋 : 𝐻3(Ω1 ∪ Ω2) → 𝐻3(Ω1
ℎ ∪ Ω2

ℎ). To define the map,
let 𝑢 ∈ 𝐻3(Ω1 ∪ Ω2) and 𝑢𝑖 := 𝑢|Ω𝑖 ∈ 𝐻3(Ω𝑖) the restriction to the subdomain Ω𝑖, 𝑖 = 1, 2. We use smooth
extensions �̃�𝑖 ∈ 𝐻3(Ω)(𝑖 = 1, 2) to the full domain Ω. Such an extension exists with the properties

�̃�𝑖 = 𝑢 in Ω𝑖, ‖�̃�𝑖‖𝐻𝑚(Ω) ≤ 𝐶‖𝑢‖𝐻𝑚(Ω𝑖), 𝑖 = 1, 2, 𝑚 = 2, 3, (19)

as the interface Γ is smooth, see e.g. the textbook of Stein [65][Section VI.3.1]. We use these extensions to define
a function 𝜋𝑢 ∈ 𝐻3(Ω1

ℎ ∪ Ω2
ℎ):

𝜋𝑢(𝑥) =

{︃
�̃�1(𝑥), 𝑥 ∈ Ω1

ℎ,

�̃�2(𝑥), 𝑥 ∈ Ω2
ℎ.

(20)

It should be noted that 𝜋𝑢 can be discontinuous across Γℎ.
The following estimate analyzes the difference between 𝑢 and 𝜋𝑢 in the 𝐻1-seminorm.

1The proof of Lemma 4.34 in [2] contains a typo. The Poincaré-type inequality is there given as ‖𝑢ℎ‖2𝑆ℎ∩𝑇 ≤ 𝑐ℎ𝑠+1
𝑃 ‖𝑢‖2Γℎ∩𝑇 +

𝑐ℎ2𝑠+1
𝑃 ‖∇𝑢‖2𝑆ℎ∩𝑇 with the non-optimal order 2𝑠 + 1 instead of 2𝑠 + 2. The difference comes from a transmission error in the line

above (4.17) in [2]. Integration of the inequality leading to (4.17) brings the factor ℎ𝑠+1
𝑃 in addition to the factor ℎ𝑠+1

𝑃 , which is
already present by estimation of the distance between Γ and Γℎ. The statement of Lemma 4.34 in [2] is indeed correct and curing
the proof is trivial by just correcting the typo.
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Lemma 4. Let 𝑢 ∈ 𝐻3(Ω1 ∪Ω2), 𝜋𝑢 ∈ 𝐻3(Ω1
ℎ ∪Ω2

ℎ) the function defined by (20) and 𝑛𝑙 the maximum number
of elements with a linear interface approximation. It holds that

‖∇(𝑢− 𝜋𝑢)‖Ω ≤ 𝑐ℎ𝑃

(︁
𝑛

1/2
𝑙 + 1

)︁
‖𝑢‖𝐻2(Ω1∪Ω2) (21)

‖∇(𝑢− 𝜋𝑢)‖Ω ≤ 𝑐ℎ
3/2
𝑃

(︁
𝑛

1/2
𝑙 + 1

)︁
‖𝑢‖𝐻3(Ω1∪Ω2). (22)

Proof. 𝑢 and 𝜋𝑢 differ only in the small strip 𝑆ℎ around the interface. For 𝑢 ∈ 𝐻3(Ω𝑖) we have, using the
Sobolev embedding 𝐻3(Ω𝑖) ⊂ 𝑊 1,∞(Ω𝑖) and the continuity of the extensions (19)

‖∇(𝑢− 𝜋𝑢)‖Ω = ‖∇(𝑢− 𝜋𝑢)‖𝑆ℎ
≤ |𝑆ℎ|

1
2
(︀
‖∇𝑢‖𝐿∞(Ω) + ‖∇𝜋𝑢‖𝐿∞(Ω)

)︀
≤ 𝑐|𝑆ℎ|

1
2 ‖𝑢‖𝐻3(Ω1∪Ω2).

Equation (22) follows by means of (10).
To show (21), we note that 𝑢− 𝜋𝑢 vanishes in cells 𝑇 ∈ 𝒯ℎ ∖ 𝑆𝑇 . Thus, let 𝑇 ∈ 𝑆𝑇 and let 𝑠 ∈ {1, 2} be the

local approximation order of the interface in 𝑇 . We use (12) and the fact that 𝑠 ≥ 1 to get

‖∇(𝑢− 𝜋𝑢)‖𝑇 = ‖∇(𝑢− 𝜋𝑢)‖𝑆ℎ∩𝑇 ≤ 𝑐ℎ
1+𝑠
2

𝑃 ‖∇(𝑢− 𝜋𝑢)‖Γ∩𝑇 + 𝑐ℎ1+𝑠
𝑃

⃦⃦
∇2(𝑢− 𝜋𝑢)

⃦⃦
𝑆ℎ∩𝑇

≤ 𝑐ℎ𝑃 (‖∇𝑢‖Γ∩𝑇 + ‖∇𝜋𝑢‖Γ∩𝑇 ) + 𝑐ℎ2
𝑃

(︁⃦⃦
∇2𝑢

⃦⃦
𝑆ℎ∩𝑇

+
⃦⃦
∇2𝜋𝑢

⃦⃦
𝑆ℎ∩𝑇

)︁
,

where the derivatives on Γ need to be seen from 𝑆ℎ.
After summation over all cells 𝑇 ∈ 𝒯ℎ a global trace inequality and the continuity of the extension (19) yield

‖∇(𝑢− 𝜋𝑢)‖Ω ≤ 𝑐ℎ𝑃

(︀
‖𝑢‖𝐻2(Ω1∪Ω2) + ‖𝜋𝑢‖𝐻2(Ω1∪Ω2)

)︀
≤ 𝑐ℎ𝑃 ‖𝑢‖𝐻2(Ω1∪Ω2).

�

3.2. Interpolation

In this subsection, we will derive interpolation estimates for a Lagrangian interpolant 𝐼ℎ. Let ℒ𝑇 be the set
of Lagrange points that belong to a cell 𝑇 ∈ 𝒯ℎ. In the case of a linear interface approximation, it can happen
that some of these lie on Γℎ, but not on Γ. This means that there are elements with Lagrange points 𝑥𝑖 ∈ ℒ𝑇 ,
that lie in different subdomains Ω1 and Ω2, see Figure 5. Defining the interpolant as 𝐼ℎ𝑢 =

∑︀
𝑖∈ℒ𝑇

𝑢(𝑥𝑖) would
lead to a poor approximation order (𝒪(ℎ𝑃 ) in the 𝐻1-norm), due to the discontinuity of ∇𝑢 across Γ. Each
such point 𝑥𝑖 lies, however, on a line between two points 𝑥*1 and 𝑥*2 on Γ. We use a linear interpolation of the
values 𝑢(𝑥*1) and 𝑢(𝑥*2) in order to define 𝐼ℎ𝑢(𝑥𝑖) := 1

2 (𝑢(𝑥*1) + 𝑢(𝑥*2)), see also equation (6.13) from [3] and
Figure 5.

We have the following approximation properties for this modified Lagrangian interpolant.

Lemma 5 (Interpolation). Let 𝑢 ∈ 𝒰 :=
[︀
𝐻1

0 (Ω)∩𝐻3(Ω1∪Ω2)] and �̃� = 𝜋𝑢 ∈ 𝐻3(Ω1
ℎ∪Ω2

ℎ) the function resulting
from the map 𝜋 defined in (20). Moreover, we assume that Γ is a smooth interface with 𝐶3-parametrization and
that the interface is approximated with second order in all elements 𝑇 ∈ 𝒯ℎ, except for maximum 𝑛𝑙 elements,
where the interface approximation is linear. It holds for the Lagrangian interpolation operator 𝐼ℎ : 𝒰 → 𝑉ℎ that

‖∇𝑚(𝑢− 𝐼ℎ𝑢)‖Ω ≤ 𝑐ℎ2−𝑚
𝑃 ‖𝑢‖𝐻2(Ω1∪Ω2), 𝑚 = 1, 2 (23)

‖∇(�̃�− 𝐼ℎ𝑢)‖Ω ≤
(︁
𝑐𝑙𝑛

1/2
𝑙 | ln(ℎ)|1/2 + 𝑐𝑞

)︁
ℎ2

𝑃 ‖𝑢‖𝐻3(Ω1∪Ω2). (24)

where 𝑐𝑙 and 𝑐𝑞 are generic constants that correspond to patches with a linear and a quadratic interface approx-
imation, respectively. For 𝑢 ∈ 𝑊 2,∞(Ω1 ∪ Ω2) we have further

‖∇(�̃�− 𝐼ℎ𝑢)‖Ω ≤
(︁
𝑐𝑙𝑛

1/2
𝑙 + 𝑐𝑞

)︁
ℎ2

𝑃 ‖𝑢‖𝑊 2,∞(Ω1∪Ω2). (25)
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Figure 5. Interpolation operator at the interface. If the interface is approximated with second
order (right) we use the standard nodal interpolation. For linear interface approximations (left)
we replace the node in the middle of the interface edge by the mean of the two adjacend corner
nodes.

Proof. First, we note that it holds 𝐼ℎ𝑢 = 𝐼ℎ�̃� by construction of the interpolant, as 𝑢(𝑥𝑖) = �̃�(𝑥𝑖) in all Lagrange
points, that are used in the definition of the interpolant 𝐼ℎ.

Next, we note that the proof of all estimates is standard in all elements 𝑇 ∈ 𝒯ℎ ∖ 𝑆𝑇 that are not affected by
the interface, since �̃�|𝑇 = 𝑢|𝑇 , 𝑢 ∈ 𝐻3(𝑇 ) and

‖∇𝑚(𝑢− 𝐼ℎ𝑢)‖𝑇 ≤ 𝑐ℎ2−𝑚
𝑃 ‖𝑢‖𝐻2(𝑇 ) (𝑚 = 1, 2), ‖∇(𝑢− 𝐼ℎ𝑢)‖𝑇 ≤ 𝑐ℎ2

𝑃 ‖𝑢‖𝐻3(𝑇 ). (26)

In elements 𝑇 ∈ 𝑆𝑇,qu there are no Lagrange points on Γℎ ∖ Γ and 𝐼ℎ is the standard Lagrangian interpolant.
As �̃� is smooth in 𝑇 , estimate (24) is also standard

‖∇(�̃�− 𝐼ℎ𝑢)‖𝑇 = ‖∇(�̃�− 𝐼ℎ�̃�)‖𝑇 ≤ 𝑐ℎ2
𝑃 ‖�̃�‖𝐻3(𝑇 ).

In elements 𝑇 ∈ 𝑆𝑇,lin the interpolation is only linear due to the modification described above. Let 𝑇 ∈ 𝑆𝑖
𝑇,lin

with 𝑖 ∈ {1, 2} and let 𝑃 be the patch that contains 𝑇 . The following estimate has been shown in Lemma 6.14
of [3]

‖∇(�̃�− 𝐼ℎ𝑢)‖𝑇 = ‖∇(�̃�− 𝐼ℎ�̃�)‖𝑇 ≤ 𝑐ℎ𝑃 ‖∇2�̃�𝑖‖𝑃 , (27)

where �̃�𝑖 denotes the extension of 𝑢𝑖 to Ω. We sum over all elements 𝑇 ∈ 𝑆𝑖
𝑇,lin and denote by 𝑆𝑖

𝑃,lin the region,
which is spanned by the patches 𝑃 containing elements 𝑇 ∈ 𝑆𝑖

𝑇,lin. It holds with |𝑆𝑖
𝑃,lin| = 𝑛𝑙𝒪(ℎ2

𝑃 )

‖∇(�̃�− 𝐼ℎ𝑢)‖𝑆𝑖
𝑇,lin

≤ 𝑐ℎ𝑃

⃦⃦
∇2�̃�𝑖

⃦⃦
𝑆𝑖

𝑃,lin

≤ 𝑐ℎ𝑃

⃒⃒
𝑆𝑖

𝑃,lin

⃒⃒ 1
2−

1
𝑝 ‖�̃�𝑖‖𝑊 2,𝑝(Ω𝑖)

≤ 𝑐𝑛𝑙ℎ
2− 2

𝑝

𝑃 ‖�̃�𝑖‖𝑊 2,𝑝(Ω𝑖)
.

The estimate (25) follows for 𝑝 = ∞. To show (24), we can estimate further by using the Sobolev imbedding
(8) for 𝑝 < ∞

‖∇(�̃�− 𝐼ℎ𝑢)‖𝑆𝑖
𝑇,lin

≤ 𝑐𝑝1/2𝑛
1/2
𝑙 ℎ

2−2/𝑝
𝑃 ‖𝑢‖𝐻3(Ω𝑖).

The estimate (24) follows by means of Lemma 2. To show (23) we split into

‖∇𝑚(𝑢− 𝐼ℎ𝑢)‖𝑇 ≤ ‖∇𝑚(𝑢− �̃�)‖𝑇 + ‖∇𝑚(�̃�− 𝐼ℎ�̃�)‖𝑇 . (28)

For 𝑚 = 1, the first term has been estimated in Lemma 4, for 𝑚 = 2 we can use the stability of the extension
(19). Equation (23) follows from (27) in 𝑆𝑇,lin and standard interpolation estimates elsewhere. �
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3.3. A priori error estimate

We are now ready to prove the main result of this section. To this end, we introduce the discrete energy norm

|||𝑢− 𝑢ℎ||| :=
(︂⃦⃦⃦

𝜈
1/2
1 ∇

(︀
�̃�1 − 𝑢1

ℎ

)︀⃦⃦⃦2

Ω1
ℎ

+
⃦⃦⃦
𝜈

1/2
2 ∇

(︀
�̃�2 − 𝑢2

ℎ

)︀⃦⃦⃦2

Ω2
ℎ

)︂1/2

,

where �̃�𝑖 are smooth extensions of 𝑢𝑖 = 𝑢|Ω𝑖
to Ω𝑖

ℎ and 𝑢𝑖
ℎ := 𝑢ℎ|Ω𝑖

ℎ
.

Theorem 2 (A priori estimate). Let Ω ⊂ R2 be a convex domain with polygonal boundary, which is resolved
(exactly) by the family of triangulations 𝒯ℎ. We assume a splitting Ω = Ω1 ∪ Γ ∪ Ω2, where Γ is a smooth
interface with 𝐶3-parametrization and that the solution 𝑢 to (4) belongs to 𝐻3(Ω1 ∪ Ω2). Moreover, we denote
by 𝑛𝑙 the maximum number of elements 𝑇 ∈ 𝒯ℎ, where the interface is approximated linearly. For the locally
modified finite element solution 𝑢ℎ ∈ 𝑉ℎ to (7) it holds

|||𝑢− 𝑢ℎ||| ≤
(︁
𝑐𝑙𝑛

1
2
𝑙 | ln(ℎ)|1/2 + 𝑐𝑞

)︁
ℎ2

𝑃 ‖𝑢‖𝐻3(Ω1∪Ω2), (29)

‖𝑢− 𝑢ℎ‖Ω ≤
(︁
𝑐𝑙𝑛𝑙| ln(ℎ)|1/2 + 𝑐𝑞

)︁
ℎ3

𝑃 ‖𝑢‖𝐻3(Ω1∪Ω2). (30)

where 𝑐𝑙 and 𝑐𝑞 are generic constants that correspond to patches with a linear and a quadratic interface approx-
imation, respectively. For 𝑢 ∈ 𝑊 2,∞(Ω1 ∪ Ω2) we have further

|||𝑢− 𝑢ℎ||| ≤
(︁
𝑐𝑙𝑛

1
2
𝑙 + 𝑐𝑞

)︁
ℎ2

𝑃

(︀
‖𝑢‖𝐻3(Ω1∪Ω2) + ‖𝑢‖𝑊 2,∞(Ω1∪Ω2)

)︀
. (31)

Proof. (i) First, we have the following perturbed Galerkin orthogonality by subtracting (7) from (4)

𝑎(𝑢, 𝜑ℎ)− 𝑎ℎ(𝑢ℎ, 𝜑ℎ) = (𝑓 − 𝑓ℎ, 𝜑ℎ)Ω ∀𝜑ℎ ∈ 𝑉ℎ. (32)

We start by estimating the right-hand side in (32). The difference 𝑓 −𝑓ℎ vanishes everywhere besides on 𝑆ℎ.
We have

(𝑓 − 𝑓ℎ, 𝜑ℎ)Ω = (𝑓 − 𝑓ℎ, 𝜑ℎ)𝑆ℎ
≤ (‖𝑓1‖𝑆ℎ

+ ‖𝑓2‖𝑆ℎ
)‖𝜑ℎ‖𝑆ℎ

,

where 𝑓𝑖 denotes a smooth extension of 𝑓 |Ω𝑖 to Ω, 𝑖 = 1, 2.
We split the region 𝑆ℎ into parts with a quadratic interface approximation 𝑆ℎ,qu and parts with a linear
approximation. Equations (13) and (14) yield

‖𝑓𝑖‖𝑆ℎ,qu
+ ‖𝑓𝑖‖𝑆ℎ,lin

≤ 𝑐ℎ𝑃 ‖𝑓‖𝐻1(Ω1∪Ω2) ≤ 𝑐ℎ𝑃 ‖𝑢‖𝐻3(Ω1∪Ω2) and

‖𝑓𝑖‖𝑆ℎ,qu + ‖𝑓𝑖‖𝑆ℎ,lin ≤
(︁
𝑐ℎ

3
2
𝑃 + 𝑐𝑛

1
2
𝑙 ℎ

3
2
𝑃 | ln(ℎ)|1/2

)︁
‖𝑓‖𝐻1(Ω1∪Ω2)

≤
(︁
𝑐ℎ

3
2
𝑃 + 𝑐𝑛

1
2
𝑙 ℎ

3
2
𝑃 | ln(ℎ)|1/2

)︁
‖𝑢‖𝐻3(Ω1∪Ω2).

(33)

The second estimate yields

(𝑓 − 𝑓ℎ, 𝜑ℎ)Ω ≤ 𝑐ℎ
3
2
𝑃

(︁
1 + 𝑛

1
2
𝑙 | ln(ℎ)|1/2

)︁
‖𝑢‖𝐻3(Ω1∪Ω2)‖𝜑ℎ‖𝑆ℎ

. (34)

(ii) For the energy norm estimate we start by splitting into interpolatory and discrete part

|||𝑢− 𝑢ℎ||| ≤
⃦⃦⃦
𝜈

1/2
ℎ ∇(�̃�− 𝐼ℎ𝑢)

⃦⃦⃦
Ω

+
⃦⃦⃦
𝜈

1/2
ℎ ∇(𝐼ℎ𝑢− 𝑢ℎ)

⃦⃦⃦
Ω
. (35)
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The interpolatory part has already been estimated in Lemma 5. For the second term in (35), we use the
perturbed Galerkin orthogonality (32) with 𝜙ℎ := 𝐼ℎ𝑢− 𝑢ℎ⃦⃦⃦

𝜈
1/2
ℎ ∇(𝐼ℎ𝑢− 𝑢ℎ)

⃦⃦⃦2

Ω
= (𝜈ℎ∇(𝐼ℎ𝑢− 𝑢ℎ),∇(𝐼ℎ𝑢− 𝑢ℎ))Ω

= (𝜈ℎ∇𝐼ℎ𝑢− 𝜈∇𝑢,∇(𝐼ℎ𝑢− 𝑢ℎ))Ω + (𝑓 − 𝑓ℎ, 𝐼ℎ𝑢− 𝑢ℎ)Ω. (36)

We split the first part in (36) further

(𝜈ℎ∇𝐼ℎ𝑢− 𝜈∇𝑢,∇(𝐼ℎ𝑢− 𝑢ℎ))Ω = (𝜈ℎ∇(𝐼ℎ𝑢− �̃�),∇(𝐼ℎ𝑢− 𝑢ℎ))Ω
+ (𝜈ℎ∇�̃�− 𝜈∇𝑢,∇(𝐼ℎ𝑢− 𝑢ℎ))Ω.

(37)

For the first part, we use (24) to get

(𝜈ℎ∇(𝐼ℎ𝑢− �̃�),∇(𝐼ℎ𝑢− 𝑢ℎ))Ω ≤ 𝑐ℎ2
𝑃

(︁
𝑛

1
2
𝑙 | ln(ℎ)|1/2 + 1

)︁
‖𝑢‖𝐻3(Ω1∪Ω2)

⃦⃦⃦
𝜈

1/2
ℎ ∇(𝐼ℎ𝑢− 𝑢ℎ)

⃦⃦⃦
Ω
. (38)

The integrand in the second term on the right-hand side of (37) vanishes everywhere besides on 𝑆ℎ. We
obtain by the Sobolev imbedding 𝐻3(Ω𝑖) ⊂ 𝑊 1,∞(Ω𝑖), the continuity of the extension (19), (11) and (10)
from Lemma 3

(𝜈ℎ∇�̃�− 𝜈∇𝑢,∇(𝐼ℎ𝑢− 𝑢ℎ))Ω = (𝜈ℎ∇�̃�− 𝜈∇𝑢,∇(𝐼ℎ𝑢− 𝑢ℎ))𝑆ℎ

≤ 𝑐
(︀
‖∇�̃�‖𝑆ℎ

+ ‖∇𝑢‖𝑆ℎ

)︀⃦⃦⃦
𝜈

1/2
ℎ ∇(𝐼ℎ𝑢− 𝑢ℎ)

⃦⃦⃦
𝑆ℎ

≤ 𝑐|𝑆ℎ|1/2‖𝑢‖𝑊 1,∞(Ω1∪Ω2)ℎ
1/2
𝑃

⃦⃦⃦
𝜈

1/2
ℎ ∇(𝐼ℎ𝑢− 𝑢ℎ)

⃦⃦⃦
𝑆𝑇

≤ 𝑐ℎ2
𝑃

(︁
𝑛

1/2
𝑙 + 1

)︁
‖𝑢‖𝐻3(Ω1∪Ω2)

⃦⃦⃦
𝜈

1/2
ℎ ∇(𝐼ℎ𝑢− 𝑢ℎ)

⃦⃦⃦
Ω
.

(39)

For the second term in (36), we use (33) and (13)

(𝑓 − 𝑓ℎ, 𝐼ℎ𝑢− 𝑢ℎ)Ω ≤ 𝑐ℎ𝑃 ‖𝑢‖𝐻3(Ω1∪Ω2)‖𝐼ℎ𝑢− 𝑢ℎ‖𝑆ℎ

≤ 𝑐ℎ2
𝑃 ‖𝑢‖𝐻3(Ω1∪Ω2)

⃦⃦⃦
𝜈

1/2
ℎ ∇(𝐼ℎ𝑢− 𝑢ℎ)

⃦⃦⃦
Ω1∪Ω2

.

Combining the estimates, we obtain⃦⃦⃦
𝜈

1
2
ℎ∇(𝐼ℎ𝑢− 𝑢ℎ)

⃦⃦⃦
Ω1∪Ω2

≤ 𝑐ℎ2
𝑃 ‖𝑢‖𝐻3(Ω1∪Ω2).

This completes the proof of (29). The proof of (31) follows exactly the same lines, with the only difference
that we use (25) instead of (24) in (38) to get

(𝜈ℎ∇(𝐼ℎ𝑢− �̃�),∇(𝐼ℎ𝑢− 𝑢ℎ))Ω ≤ 𝑐ℎ2
𝑃

(︁
𝑛

1
2
𝑙 + 1

)︁
‖𝑢‖𝑊 2,∞(Ω1∪Ω2)

⃦⃦⃦
𝜈

1/2
ℎ ∇(𝐼ℎ𝑢− 𝑢ℎ)

⃦⃦⃦
Ω
. (40)

(iii) To estimate the 𝐿2-norm error, we define the following adjoint problem. Let 𝑧 ∈ 𝐻1
0 (Ω) be the solution of

(𝜈∇𝜙,∇𝑧) = ‖𝑒ℎ‖−1(𝑒ℎ, 𝜙)Ω ∀𝜙 ∈ 𝐻1
0 (Ω).

The solution 𝑧 lies in in 𝐻1
0 (Ω) ∩𝐻2(Ω1 ∪ Ω2) and satisfies

‖𝑧‖𝐻2(Ω1∪Ω2)
≤ 𝑐𝑠.

By choosing 𝜙 = 𝑢− 𝑢ℎ = 𝑒ℎ and adding and subtracting 𝜈ℎ∇𝑢ℎ, we have

‖𝑒ℎ‖ = (𝜈∇𝑒ℎ,∇𝑧)Ω = (𝜈∇𝑢− 𝜈ℎ∇𝑢ℎ,∇𝑧)Ω + ((𝜈ℎ − 𝜈)∇𝑢ℎ,∇𝑧)Ω. (41)
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For the second term in (41), we have

((𝜈ℎ − 𝜈)∇𝑢ℎ,∇𝑧)Ω = ((𝜈ℎ − 𝜈)∇𝑢ℎ,∇𝑧)𝑆ℎ
≤ 𝐶

(︀
‖𝜈ℎ∇𝑢ℎ‖𝑆ℎ

‖∇𝑧‖𝑆ℎ

)︀
. (42)

We split the first term on the right-hand side further and use the bound for the energy norm error as well
as (14) (Lem. 3)

‖𝜈ℎ∇𝑢ℎ‖𝑆ℎ
≤ ‖𝜈ℎ∇(𝑢ℎ − 𝑢)‖𝑆ℎ

+ ‖𝜈∇𝑢‖𝑆ℎ

≤ 𝑐
(︁
𝑛

1
2
𝑙 + 1

)︁
ℎ

3/2
𝑃 ‖𝑢‖𝐻3(Ω1∪Ω2).

For the last term in (42), we obtain from (13) and (14)

‖∇𝑧‖𝑆ℎ,lin ≤ 𝑐ℎ
3
2
𝑃

(︁
𝑛

1
2
𝑙 | ln(ℎ)|1/2 + 1

)︁
‖𝑧‖𝐻2(Ω1∪Ω2) ≤ 𝑐ℎ

3
2
𝑃

(︁
𝑛

1
2
𝑙 | ln(ℎ)|1/2 + 1

)︁
,

‖∇𝑧‖𝑆ℎ,qu ≤ 𝑐ℎ
3
2
𝑃 ‖𝑧‖𝐻2(Ω1∪Ω2) ≤ 𝑐ℎ

3
2
𝑃 .

Altogether, we obtain for the second term in (41)

((𝜈ℎ − 𝜈)∇𝑢ℎ,∇𝑧)Ω ≤ 𝑐ℎ3
𝑃

(︁
𝑛𝑙| ln(ℎ)|1/2 + 1

)︁
‖𝑢‖𝐻3(Ω1∪Ω2). (43)

Concerning the first term in (41), we add and substract the interpolant ∇𝐼ℎ𝑧, as well as ±𝜈ℎ�̃�

(𝜈∇𝑢− 𝜈ℎ∇𝑢ℎ,∇𝑧)Ω = (𝜈∇𝑢− 𝜈ℎ∇�̃�,∇(𝑧 − 𝐼ℎ𝑧))Ω + (𝜈ℎ∇(�̃�− 𝑢ℎ),∇(𝑧 − 𝐼ℎ𝑧))Ω
+ (𝜈∇𝑢− 𝜈ℎ∇𝑢ℎ,∇𝐼ℎ𝑧)Ω.

(44)

For the first term on the right-hand side, we obtain as in (39)

(𝜈∇𝑢− 𝜈ℎ∇�̃�,∇(𝑧 − 𝐼ℎ𝑧))Ω ≤ 𝑐ℎ
3/2
𝑃

(︁
𝑛

1/2
𝑙 + 1

)︁
‖𝑢‖𝐻3(Ω1∪Ω2)

⃦⃦⃦
𝜈

1/2
ℎ ∇(𝑧 − 𝐼ℎ𝑧)

⃦⃦⃦
𝑆ℎ

We estimate the latter norm using (13), (14) and (23)⃦⃦⃦
𝜈

1/2
ℎ ∇(𝑧 − 𝐼ℎ𝑧)

⃦⃦⃦
𝑆ℎ

≤ 𝑐ℎ
3/2
𝑃

(︁
𝑛

1/2
𝑙 | ln(ℎ)|1/2 + 1

)︁
‖𝑧 − 𝐼ℎ𝑧‖𝐻2(Ω1∪Ω2)

≤ 𝑐ℎ
3/2
𝑃

(︁
𝑛

1/2
𝑙 | ln(ℎ)|1/2 + 1

)︁
.

The second term in (42) is easily estimated with the bound for the energy norm and the interpolation error
(23)

(𝜈ℎ∇(�̃�− 𝑢ℎ),∇(𝑧 − 𝐼ℎ𝑧))Ω ≤ 𝑐
(︁
𝑛

1
2
𝑙 + 1

)︁
ℎ3

𝑃 ‖𝑢‖𝐻3(Ω1∪Ω2).

For the third term in (44), we use the perturbed Galerkin orthogonality (32)

(𝜈∇𝑢− 𝜈ℎ∇𝑢ℎ,∇𝐼ℎ𝑧)Ω = (𝑓 − 𝑓ℎ, 𝐼ℎ𝑧)𝑆ℎ

≤ ‖𝑓1 − 𝑓2‖𝑆ℎ,lin
‖𝐼ℎ𝑧‖𝑆ℎ,lin

+ ‖𝑓1 − 𝑓2‖𝑆ℎ,qu
‖𝐼ℎ𝑧‖𝑆ℎ,qu

.
(45)

For the first part in both terms, we use (13) and (14), respectively

‖𝑓1 − 𝑓2‖𝑆ℎ,lin
+ ‖𝑓1 − 𝑓2‖𝑆ℎ,qu

≤ 𝑐ℎ
3
2
𝑃

(︁
𝑛

1
2
𝑙 | ln(ℎ)|1/2 + 1

)︁
‖𝑓‖𝐻1(Ω1∪Ω2)

≤ 𝑐ℎ
3
2
𝑃

(︁
𝑛

1
2
𝑙 |ln(ℎ)|1/2 + 1

)︁
‖𝑢‖𝐻3(Ω1∪Ω2).
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For the remaining terms in (45), it is sufficient to consider the smallness of |𝑆ℎ|, a Sobolev imbedding and
the continuity of the extension (19)

‖𝐼ℎ𝑧‖𝑆ℎ,lin
≤ |𝑆ℎ,lin|

1
2 ‖𝐼ℎ𝑧‖𝐿∞(Ω) ≤ 𝑐𝑛

1
2
𝑙 ℎ

3
2
𝑃 ‖𝑧‖𝐿∞(Ω) ≤ 𝑐𝑛

1
2
𝑙 ℎ

3
2
𝑃 ‖𝑧‖𝐻2(Ω1∪Ω2) ≤ 𝑐𝑛

1
2
𝑙 ℎ

3
2
𝑃

‖𝐼ℎ𝑧‖𝑆ℎ,qu ≤ |𝑆ℎ,qu|
1
2 ‖𝐼ℎ𝑧‖𝐿∞(Ω) ≤ 𝑐ℎ

3
2
𝑃 .

Altogether this yields the following estimate for the term in (44), which completes the proof of the 𝐿2-norm
estimate

(𝜈∇𝑢− 𝜈ℎ∇𝑢ℎ,∇𝑧)Ω ≤ 𝑐ℎ3
𝑃

(︁
𝑛𝑙| ln(ℎ)|1/2 + 1

)︁
‖𝑢‖𝐻3(Ω1∪Ω2).

�

Remark 3 (Energy norm). There are different possibilities to choose the energy norm in Theorem 2. The result
(29) could also be shown in the corresponding norm defined on the continuous subdomains Ω1 and Ω2

|||𝑢− 𝑢ℎ|||2 :=
(︂⃦⃦⃦

𝜈
1/2
1 ∇

(︀
𝑢1 − �̃�1

ℎ

)︀⃦⃦⃦2

Ω1

+
⃦⃦⃦
𝜈

1/2
2 ∇

(︀
𝑢2 − �̃�2

ℎ

)︀⃦⃦⃦2

Ω2

)︂1/2

, (46)

where 𝑢𝑖 = 𝑢|Ω𝑖 and �̃�𝑖
ℎ denote the canonical extensions of 𝑢𝑖

ℎ := 𝑢ℎ|Ω𝑖
ℎ

to Ω𝑖. If one would consider the norm

|||𝑢− 𝑢ℎ|||3 :=
⃦⃦⃦
𝜈

1/2
ℎ ∇(𝑢− 𝑢ℎ)

⃦⃦⃦
Ω

(47)

a reduced order of convergence, namely 𝒪(ℎ
3
2
𝑃 ) would result, even for a fully quadratic interface approximation

(𝑛𝑙 = 0). The reason is that ∇𝑢 shows a discontinuity across Γ, while ∇𝑢ℎ is discontinuous across the discrete
interface Γℎ. Hence, the error in the gradient is 𝒪(1) in the strip 𝑆ℎ between the interfaces, which is of size
|𝑆ℎ|1/2 = 𝒪(ℎ3/2

𝑃 ). This bound is already optimal in the estimate for ‖∇(𝑢− 𝜋𝑢)‖Ω in (22).
We have chosen the discrete energy norm |||𝑢− 𝑢ℎ||| in Theorem 2, as this is the only norm, which can be easily

evaluated by numerical quadrature. A quadrature formula that evaluates the norms (46) or (47) accurately would
need to resolve the strip 𝑆ℎ, which is non-trivial. Any standard approximation, such as a summed midpoint rule
would lead to an additional quadrature error of 𝒪(ℎ3/2

𝑃 ), which would dominate the overall error.

Remark 4 (Regularity). We have assumed the regularity 𝑢 ∈ 𝐻3(Ω1 ∪ Ω2) (resp. 𝑢 ∈ 𝑊 2,∞(Ω1 ∪ Ω2)) in
Theorem 2. This is guaranteed if both subdomains Ω1 and Ω2 are smooth (precisely 𝑊 3,∞) and the right-
hand side has regularity 𝑓 ∈ 𝐻1(Ω1 ∪ Ω2) (resp. 𝑓 ∈ 𝐿∞(Ω1 ∪ Ω2)). In this work the overall domain Ω is
assumed polygonal in order to avoid additional technicalities associated with the approximation of exterior
curved boundaries. For the latter we refer to the literature, for example [66].

4. Implementation

The locally modified finite element method is based on a patch-wise parametric approach. Let 𝒯𝑃 be the
triangulation in patches. We denote by 𝑃 ∈ 𝒯𝑃 the patches, which are quadrilaterals with 25 degrees of freedom
(see Fig. 6). Depending on the location of the interface, we have two kinds of patches:

– If a patch is not cut by the interface, we divide it into four quadrilaterals 𝑇1, . . . , 𝑇4. In this case we take
the standard space of piecewise biquadratic functions as follows:

�̂� =
{︁

𝜑 ∈ 𝐶(𝑃 ), 𝜑|𝑇𝑖
∈ span

{︀
1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, 𝑥𝑦2, 𝑥2𝑦, 𝑥2𝑦2

}︀
, 𝑖 = 1, . . . , 4

}︁
,

where 𝑃 is the reference patch on the unit square (0, 1)2 consisting of the four quadrilaterals 𝑇1, . . . , 𝑇4.
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Figure 6. Rearrangement of the Lagrangian points on the interface. (a) Shifting cut points.
(b) Shifting a middle point. (c) Shifting other points. (d) Points on the interface.

– If the patch is cut by the interface, we divide into eight triangles 𝑇1, . . . , 𝑇8. Here we define the space of
piecewise quadratic functions as follows:

�̂� =
{︁

𝜑 ∈ 𝐶(𝑃 ), 𝜑|𝑇𝑖
∈ span

{︀
1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2

}︀
, 𝑖 = 1, . . . , 8

}︁
,

where the reference patch 𝑃 consists of eight triangles 𝑇1, . . . , 𝑇8.
In both cases, we have locally 25 basis functions in each patch (see Fig. 6)

𝑄(𝑃 ) := span{𝜑𝑖}, 𝜑𝑖 := 𝜑𝑖 ∘ 𝜉−1
𝑃 , 𝑖 = 1, . . . , 25.

𝜉𝑃 ∈ �̂� is the reference patch map, which is defined in an isoparametric way by

𝜉𝑃 (�̂�) :=
25∑︁

𝑗=1

𝑦𝑗 𝜑𝑗 (48)

for the 25 vertices 𝑦𝑖, 𝑖 = 1, . . . , 25 of 𝑃 .
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4.1. Definining the patch type and movement of mesh nodes

We assume that the interface is given as zero level-set of an implicit level-set function 𝛾(𝑥)

𝛾(𝑥) = 0 ⇔ 𝑥 ∈ Γ.

The patch type and the edges that are cut are determined by the sign of 𝛾(𝑥𝑖) in the exterior vertices 𝑥1, . . . ,𝑥4,
see Figure 6. An edge 𝑒 is cut, if 𝛾(𝑥1) ·𝛾(𝑥2) < 0 for its two end points 𝑥1, 𝑥2. The intersection of the interface
with the edge can the be found by applying Newton’s method locally to find the zero 𝑟 of

𝛾
(︀
𝑥1 + 𝑟(𝑥2 − 𝑥1)

)︀
= 0, (49)

see Figure 6a. The edge midpoints 𝑒1 and 𝑒2 will be moved to the respective position 𝑥1 + 𝑟(𝑥2 − 𝑥1). Next,
we define a preliminary coordinate for the midpoint of the patch 𝑥𝑚 as the midpoint of a segment 𝑒1𝑒2, see
Figure 6b. For a second-order interface approximation, it is necessary to move 𝑥𝑚 to the interface Γ in the
configurations 𝐴 to 𝐷. We use again Newton’s method to move 𝑥𝑚 to the interface along a normal line, see
Figure 6c. Second, we also move the midpoints of the segments 𝑒1𝑥𝑚 and 𝑥𝑚𝑒2 analogously, see Figure 6d.
Finally, we need to specify a criteria to ensure that the resulting sub-triangles with curved boundaries fulfill a
maximum angle condition. Details are given in Appendix C.

Remark 5. A disadvantage of the modified second-order finite element method described above is that the
stiffness matrix can be ill-conditioned for certain anisotropies. In particular, the condition number depends not
only on the mesh size, but also on how the interface intersects the triangulation (e.g. 𝑠, 𝑟 → 0). In Section 5
we consider two examples, where the condition number of the stiffness matrix is not bounded. For this reason
a hierarchical finite element basis was introduced in [1] for linear finite elements and it was shown that the
condition number of the stiffness matrix satisfies the usual bound 𝒪(ℎ−2

𝑃 ) with a constant that does not depend
on the position of the interface. We extend this approach to the second-order finite element method below. We
will see that the condition number for a scaled hierarchical basis is reduced significantly, although we can not
guarantee the optimal bound for the method presented here.

Remark 6 (Comparison with unfitted finite element methods). In contrast to unfitted finite element methods
(e.g. [40]), continuity can be imposed strongly within the finite element spaces in the locally finite element
method, while in unfitted methods a weak imposition based on Nitsche’s method is typically used. Thus, an
advantage of the locally modified finite element method is that it is parameter-free. The most tidious task in the
implementation of unfitted finite element methods is the construction of suitable quadrature formulas. Usually,
the cut cells are sub-divided into sub-cells [43], similarly to the subdivision used within the locally modified finite
element method. For the purpose of quadrature no maximum angle condition is needed, which is required for
the fitted method. This might be considered as an advantage of the unfitted approach, in particular concerning
three dimensional problems. As a remeady in the fitted method, one could allow to move exterior patch vertices
in certain “pathological” situations, as discussed in Remark 2.

5. Numerical examples

The higher order parametric finite element method is based on the finite element framework Gascoigne 3d
[67]. The source code is freely available at https://www.gascoigne.de and published as Zenodo repository [68].
For reproducibility of the numerical results, the following two configurations are implemented and described in
a separate Zenodo repository [69].

5.1. Example 1

We consider a square domain Ω = (−2, 2)2. The domain is split into two domains Ω1 and Ω2 by the interface
Γ={(𝑥, 𝑦) ∈ Ω | 𝑙(𝑥, 𝑦) = 0} with level-set function 𝑙(𝑥, 𝑦) = 𝑦 − 2(𝑥 + 𝛿ℎ)2 + 0.5, where 𝛿 ∈ [0, 1] and ℎ is the

https://www.gascoigne.de
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Figure 7. Example 1. Left : Configuration of the test problem. Right : Sketch of the exact solution.

Table 1. Example 1. Errors in the 𝐿2-norm and the discrete energy norm, including an esti-
mated order of convergence which is computed from two consecutive values in each row for
Example 1 and 𝛿 = 0.

ℎ 𝐿2-error EOC Energy error EOC

1/32 1.74× 10−4 – 2.08× 10−2 –

1/64 2.13× 10−5 3.023 5.22× 10−3 1.998

1/128 2.65× 10−6 3.006 1.31× 10−3 1.999

1/256 3.31× 10−7 3.004 3.26× 10−4 2.000

mesh size. We take 𝜈1 = 4 and 𝜈2 = 1 and choose the exact solution as

𝑢(𝑥, 𝑦) =

{︃
1
𝜈1

sin(𝑙), in Ω1,

1
𝜈2

sin(𝑙), in Ω2,

by setting the right-hand side 𝑓𝑖 = −𝜈𝑖∆𝑢 and Dirichlet boundary data accordingly. We vary 𝛿 ∈ [0, 1], such
that this example includes different configurations with arbitrary anisotropies. The subdomains and the exact
solution for this example are shown in Figure 7.

In this example the interface could be resolved with second order on all refinement levels (𝑛𝑙 = 0). Table 1
shows the discrete energy norm error |||𝑢− 𝑢ℎ||| and the 𝐿2-norm error as well as estimated convergence orders
on several levels of global mesh refinement for the fixed parameter 𝛿 = 0. According to the a priori error estimate
in Theorem 2, we observe fully quadratic convergence in the discrete energy norm and fully cubic convergence
in the 𝐿2-norm. In Figure 8, we plot the discrete energy norm error and the 𝐿2-norm error for 𝛿 ∈ [0, 1] on
several levels of global mesh refinement and observe that the error is bounded independently of 𝛿.

In Figure 9, we show how the condition number depends on the parameter 𝛿 ∈ [0, 1] by moving the interface.
We get the largest condition numbers at 𝛿 = 0.84. Furthermore, we show a zoom-in of the numbers for 𝛿 ∈
[0.83, 0.85] in Figure 9, right. We see that the condition number is reduced by a factor of 100 using a scaled
hierarchical basis, but that is not necessarily bounded for arbitrary anisotropies.

5.2. Example 2

We consider a square domain Ω = (−2, 2)2 that is split into a ball Ω1 = 𝐵𝑟(𝑥0, 𝑦0) with 𝑟 = 0.3 and
(𝑥0, 𝑦0) = (1 + 𝛿ℎ, 1.2), where 𝛿 ∈ [0, 1], and Ω2 = Ω ∖ Ω̄1. We take the exact solution as in example 1, with the
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Figure 8. Example 1. 𝐿2-norm and discrete energy norm errors for Example 1 with 𝑥 = 1.0+𝛿ℎ
and 𝛿 ∈ [0, 1].

Figure 9. Example 1. Condition number of the stiffness matrix depending on the position of
the interface 𝛿. Comparison of the standard Lagrangian basis and a scaled hierarchical basis
for ℎ = 1/32. Left : 𝛿 ∈ [0, 1]. Right : zoom-in for 𝛿 ∈ [0.83, 0.85].

Figure 10. Example 2. Left : configuration of the test problem. Right : sketch of the exact solution

level set function replaced by 𝑙(𝑥, 𝑦) = (𝑥−𝑥0)2 +(𝑦−𝑦0)2−𝑟2. In Figure 10 we show the configuration and the
exact solution of this example. For different 𝛿 ∈ [0, 1], this example includes all configurations A–E introduced
above with different anisotropies.

The 𝐿2-norm and the discrete energy norm errors are shown in Figure 11 for 𝛿 ∈ [0, 1] on several levels of
global mesh refinement. We observe convergence in both norms for 𝛿 > 0. The errors vary slightly depending
on 𝛿. Its magnitude depends mainly on the number of linearly approximated elements (𝑛𝑙): We have 𝑛𝑙 = 0 for
𝛿 = 0 on all mesh levels, while 𝑛𝑙 > 0 for all other values of 𝛿. We observe that the errors increase from 𝛿 = 0
to 𝛿 = 0.01, as 𝑛𝑙 increases from 0 to 8. Moreover, the number of linearly approximated elements increases for
ℎ = 1/64 once more, from 𝑛𝑙 = 8 to 𝑛𝑙 = 16 in the range 𝛿 ∈ [0.74, 0.81]. Again, we observe a slight increase
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Figure 11. Example 2. 𝐿2-norm and discrete energy-norm errors depending on 𝑥 = 1.0 + 𝛿ℎ
with 𝛿 ∈ [0, 1].

Table 2. Example 2. 𝐿2-norm and modified energy norm errors, and convergence order for
𝛿0 = 0 (𝑛𝑙 = 0).

ℎ 𝐿2-error EOC Energy error EOC

1/32 3.44× 10−6 – 4.36× 10−4 –

1/64 3.85× 10−7 3.159 9.69× 10−5 2.170

1/128 4.56× 10−8 3.078 2.28× 10−5 2.085

1/256 5.54× 10−9 3.040 5.52× 10−6 2.048

in the magnitude of the error within this range. This indicates that the constant 𝑐𝑙𝑛
1/2
𝑙 corresponding to the

linearly approximated part in (31) is larger than the constant 𝑐𝑞 arising from the quadratically approximated
elements.

Tables 2–4 show the 𝐿2-norm and the discrete energy norm errors obtained on several levels of global mesh
refinement for the fixed positions 𝑥0 = 1.0 + 𝛿0

64 of the midpoint, with 𝛿0 ∈ {0, 0.01, 0.8}, which results in three
different cases (𝑛𝑙 = 0, 𝑛𝑙 = 8 and 𝑛𝑙 = 16) for ℎ = 1/64.

In Table 2 (𝛿0 = 0) we observe fully quadratic (resp. cubic convergence) in the discrete energy norm (resp.
the 𝐿2-norm) as shown in Theorem 2, as no linearly approximated elements are present. This changes slightly
for the other values of 𝛿0, see Tables 3 and 4.

In Table 3 (𝛿0 = 0.01), we see that 8 linearly approximated elements were required on all mesh levels.
The convergence order in the discrete energy norm seems to be fully quadratic (according to (31)), while in
the 𝐿2-norm error the logarithmic factor | ln(ℎ)|1/2 leads to a slightly reduced convergence, as predicted in
Theorem 2.

For 𝛿0 = 0.8, the number 𝑛𝑙 increases from 8 to 16 between the coarsest and the second-coarsest refinement
level and stays constant from then, see Table 4. This is again reflected in the magnitude of the error: The
reduction factor between the coarsest mesh levels lies below 4 in the energy norm, and below 8 in the 𝐿2-norm
error, which shows again that the term 𝑐𝑙𝑛

1/2
𝑙 | ln(ℎ)|1/2 in front of the linearly approximated part is larger than

the constant 𝑐𝑞 in front of the quadratic counterpart. On the remaining mesh levels, the estimated convergence
is again fully quadratic in the discrete energy norm and due to the logarithmic term slightly below 3 in the
𝐿2-norm, in agreement with Theorem 2.

For 𝛿0 = 0.8 and ℎ𝑃 = 1
32 , we show the resulting finite element mesh in Figure 12, where in 8 of the 18

patches, which are cut by the interface, a linear approximation was required, including a zoom around one
linearly approximated patch on the right.
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Table 3. Example 2. 𝐿2- and discrete energy – norm errors for 𝛿0 = 0.01, including estimated
convergence orders obtained from two consecutive values. PN denotes the number of patches
which are cut by the interface and 𝑛𝑙 the number of the linear approximated elements.

ℎ 𝐿2-error EOC Energy error EOC PN 𝑛𝑙

1/32 1.05× 10−5 – 9.00× 10−4 – 18 8

1/64 1.37× 10−6 2.943 2.15× 10−4 2.066 36 8

1/128 1.81× 10−7 2.920 5.27× 10−5 2.028 76 8

1/256 2.39× 10−8 2.921 1.30× 10−5 2.015 154 8

Table 4. Example 2. 𝐿2 and discrete energy – norm errors, including an estimated convergence
order for 𝛿 = 0.8.

ℎ 𝐿2-error EOC Energy error EOC PN 𝑛𝑙

1/32 1.09× 10−5 – 9.19× 10−4 – 18 8

1/64 2.07× 10−6 2.390 2.57× 10−4 1.839 36 16

1/128 2.73× 10−7 2.924 6.35× 10−5 2.016 76 16

1/256 3.59× 10−8 2.927 1.58× 10−5 2.007 152 16

Figure 12. Example 2. Left : illustration of the sub-elements for ℎ = 1/32 and 𝛿 = 0.8. Right :
zoom of the upper part with linearly approximated elements (top right).

In Figure 13, we show how the condition numbers depend on the parameter 𝛿 ∈ [0, 1] when moving the
interface. We get the largest condition numbers at 𝛿 ≈ 0.04 for ℎ = 1/32 and at 𝛿 ≈ 0.07 for ℎ = 1/64,
respectively. The condition numbers are again reduced by a factor of approx. 100 for the scaled hierarchical
basis compared to the standard Lagrangian basis.

6. Conclusion

We have presented an extension of the locally modified finite element method for interface problems introduced
in [1], to second order. We were able to show optimal-order error estimates of order two in a discrete energy
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Figure 13. Example 2. Condition number of the stiffness matrix depending on the displacement
of the circle. Comparison of the Lagrange and hierarchical scaled basis for ℎ = 1/32 (left) and
ℎ = 1/64 (right).

norm and almost of order three (up to a logarithmic term) in the 𝐿2-norm. Finally, we have presented different
numerical examples that illustrate the convergence behaviour and the performance of the method. In future, we
plan to extend the method to inf-sup stable finite elements for the discretization of interface problems including
the Stokes- and Navier–Stokes equations.

Appendix A. Linear interface approximation

We distinguish between the following five cases, see Figure 2:

– Configuration A: The patch is cut in two opposite nodes.
– Configuration B: The patch is cut at the interior of one edge and in one node.
– Configuration C: The patch is cut at the interior of two opposite edges.
– Configuration D: The patch is cut at the interior of two adjacent edges with 𝑟 ∈

(︀
0, 1

2

)︀
, 𝑠 ∈

(︀
1
2 , 1

)︀
.

– Configuration E: The patch is cut at the interior of two adjacent edges with
∙ 𝑟 ∈ (0, 1) and 𝑠 ∈

(︀
0, 1

2

)︀
∙ 𝑟 ∈

(︀
1
2 , 1

)︀
and 𝑠 ∈ (0, 1).

The subdivisions can be anisotropic with the parameters 𝑟, 𝑠 ∈ (0, 1) in the configurations 𝐵, 𝐶, 𝐷 and 𝐸.
These parameters describe the relative position of the intersection points with the interface on the edges. We
denote by 𝑒𝑖 ∈ R, 𝑖 = 1, 2, 3, 4, the vertices on the edge. When the interface intersects an edge, we move the
corresponding point 𝑒𝑖, 𝑖 = 1, . . . , 4 on the intersected edge to the point of the intersection (see Fig. 2). If
an edge is not intersected by the interface, we take 𝑒𝑖 as midpoint of this edge. By 𝑥𝑚 ∈ R2 we denote the
midpoint of the patch, which has different positions depending on the configurations. Precisely, it is chosen as
intersection of the line connecting 𝑒1 and 𝑒3 with the line connecting 𝑒2 and 𝑒4 for configurations 𝐴, 𝐶 and
𝐸. For configuration 𝐵 we choose the midpoint as intersection of the line connecting 𝑒1 and 𝑒3 with the line
connecting 𝑥1 and 𝑒2. The midpoint for the configuration 𝐷 can be chosen as midpoint of the line segment
𝑒1𝑒2.

In all configurations the patch is first divided into four quadrilaterals. We note that each of these has at
least one right angle. The sub-quadrilaterals are then further divided into two triangles by either resolving the
interface with an interior mesh line or – if this is not necessary – by splitting the largest interior angle of the
quadrilateral.

Appendix B. Proof of Lemma 1

Proof. First, the patch is split into four sub-quadrilaterals 𝐾1, . . . ,𝐾4, each of which is then split into two
triangles. If we can show that all angles of the quadrilaterals are bounded by 135∘, this applies for the sub-
triangles as well. Moreover, if the splitting into triangles in 𝐾𝑖 for some 𝑖 = 1, . . . , 4 is not determined by the
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interface position, we split in such a way that the largest angle of 𝐾𝑖 is divided. In this case the bound for the
maximum angles of the sub-triangles can be further improved.

We consider the configurations A–E shown in Figure 2 separately. In all cases the angles at the vertices
𝑥𝑖, 𝑖 = 1, . . . , 4 are exactly 90∘ and the angles at the edge midpoints 𝑒𝑖, 𝑖 = 1, . . . , 4 lie between 45∘ and 135∘

(Note that this bound is not sharp, if we divide in an optimal way into sub-triangles).
In configuration 𝐴 we have two squares and four right-angled triangles. This case is obvious and the maximum

angle of the sub-triangles is 90∘.
In configuration B and C each quadrilateral 𝐾𝑖(𝑖 = 1, . . . , 4) has two right angles, as the positions of 𝑒1 and

𝑒3, or 𝑒2 and 𝑒4, respectively, are fixed. Let us consider examplarily the configuration shown in Figure 2b. As
mentioned above, the angles in 𝑒2 and 𝑒4 lie between 45∘ and 135∘. By symmetry the angles around 𝑥𝑚 are
exactly the same. Therefore, in both configurations all angles of the sub-triangles lie below 135∘.

In configuration 𝐷, we get one degenerate quadrilateral 𝐾2 with a maximum angle of 180∘. As this angle is
divided by connecting 𝑥𝑚 and 𝑥2 we have the following bounds for the triangles of 𝐾2

cos(∠𝑒1𝑥𝑚𝑥2) =
(𝑒1 − 𝑥𝑚) · (𝑥2 − 𝑥𝑚)
|𝑒1 − 𝑥𝑚| · |𝑥2 − 𝑥𝑚|

=
((𝑟 − 1),−𝑠) · ((1− 𝑟),−𝑠)

(1− 𝑟)2 + 𝑠2

=
−(1− 𝑟)2 + 𝑠2

(1− 𝑟)2 + 𝑠2
∈

(︁
− 3

5
,

3
5

)︁
.

such that ∠𝑒1𝑥𝑚𝑥2 ∈ (53∘, 127∘). The other angles in 𝑥𝑚 are bounded above by 90∘. The angles in 𝑒1, . . . , 𝑒4

are again bounded by 135∘.
In configuration E, the angles in 𝑒1, . . . , 𝑒4 are all between 63∘ and 117∘. A bound on the angles of the

quadrilaterals at 𝑥𝑚 is therefore given by 360∘−2 ·63∘−90∘ = 144∘. This maximum is attained for 𝑟 → 1, 𝑠 → 0
(cf. Fig. 2f). The bound is further improved, as in 𝐾1, 𝐾2 and 𝐾3 the largest angles are divided when splitting
into sub-triangles, resulting in angles below 90∘. For the angle of the subtriangle 𝑇1 at 𝑥𝑚 we have

cos(∠𝑒1𝑥𝑚𝑒2) =
(𝑒1 − 𝑒3) · (𝑒2 − 𝑒4)
|𝑒1 − 𝑒3| · |𝑒2 − 𝑒4|

=
(𝑟 − 1/2,−1) · (1, 𝑠− 1/2)√︀

1 + (𝑟 − 1/2)2 ·
√︀

1 + (𝑠− 1/2)2

=
𝑟 − 𝑠√︀

1 + (𝑟 − 1/2)2 ·
√︀

1 + (𝑠− 1/2)2
∈

(︂
− 1√

5
,

4
5

)︂
such that ∠𝑒1𝑥𝑚𝑒2 ∈ (36∘, 117∘). �

Appendix C. Quadratic interface approximation

For the elements with curved boundaries we need to ensure that all elements are allowed in the sense of
Assumption 1 (see also Fig. 1) and that the maximum angle condition shown above remains valid. As described
in Section 4, we move certain points to the interface in order to obtain a second-order interface approximation.
This is possible if the following criteria are satisified. Otherwise, we leave them in their original positions and
obtain a first-order interface approximation in the respective element. By 𝛼△ we denote the largest angle in a
triangle.

In the first step, we move the midpoint of the patch. If this is possible, we shift the other corresponding
points in a second step (if possible). We use the following criteria for each configuration.

First step: Move the midpoints

– Configuration A: the midpoint of the patch can be moved along the normal line 𝑛 (see Fig. 2a) if 𝛼△ ≤
𝛼max < 180∘.

– Configuration B: the midpoint of the patch can be moved along the line segment 𝑒1𝑒3, if the relative
length 𝑑 = |𝑒1−𝑥𝑚|

|𝑒2−𝑒1| of the line 𝑒1𝑥𝑚 (see Fig. 2b) satisfies 𝜖 < 𝑑 < 1− 𝜖 and 𝛼△ ≤ 𝛼max < 180∘.
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– Configuration C: the midpoint of the patch can be moved along the line segment 𝑒2𝑒4, if the parameter
𝑑 (see Fig. 2c) satisfies 𝜖 < 𝑑 < 1− 𝜖.

– Configuration D: the midpoint of the patch can be moved along the normal line 𝑛 (see Fig. 2d) if
𝛼△ ≤ 𝛼max < 180∘.

– Configuration E: in this configuration we do not need to move the midpoint of the patch (see
Figs. 2e and 2f).

Second step: Move other points

– In the second step, we investigate the other two points that need to be moved in order to obtain a second-
order interface approximation. These are the points between the midpoint of the patch and the points where
exterior edges are intersected. In all configurations, we obtain triangles with one curved edge (see Fig. 3). It
can happen that this curved edge intersects other edges of the element 𝑇 . Thus, we shift the corresponding
points along the normal line to the interface, if and only if the curved edge of the triangle does not cut any
other edges and 𝛼△ ≤ 𝛼max < 180∘.
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[62] S. Omerović and T. Fries, Conformal higher-order remeshing schemes for implicitly defined interface problems. Int. J. Numer.
Methods Eng. 109 (2017) 763–789.

[63] R. Rangarajan and A. Lew, Universal meshes: a method for triangulating planar curved domains immersed in nonconforming
meshes. Int. J. Numer. Methods Eng. 98 (2014) 236–264.

[64] K. Tanaka, K. Sekine, M. Mizuguchi and S. Oishi, Estimation of Sobolev-type embedding constant on domains with minimally
smooth boundary using extension operator. J. Inequalities App. 2015 (2015) 1–23.

[65] E. Stein, Singular Integrals and Differentiability Properties of Functions (PMS-30). Vol. 30. Princeton University Press, Prince-
ton, NJ (2016).

[66] C. Bernardi, Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212–1240.

[67] R. Becker, M. Braack, D. Meidner, T. Richter and B. Vexler, The finite element toolkit Gascoigne 3d. https://www.gascoigne.
de (2021).

[68] R. Becker, M. Braack, D. Meidner, T. Richter and B. Vexler, The finite element toolkit gascoigne (v1.01). (2021). DOI:
10.5281/zenodo.5574969.

[69] T. Richter and G. Judakova, Locally modified second order finite elements. (2021). DOI: 10.5281/ZENODO.5575064.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to
publish this journal in open access in the current year, free of charge for authors and
readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to
the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

https://www.gascoigne.de
https://www.gascoigne.de
https://doi.org/10.5281/zenodo.5574969
https://doi.org/10.5281/ZENODO.5575064
mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o


Numerische Mathematik (2022) 150:423–478
https://doi.org/10.1007/s00211-021-01264-x

Numerische
Mathematik

Eulerian time-stepping schemes for the non-stationary
Stokes equations on time-dependent domains

Erik Burman1 · Stefan Frei2 · Andre Massing3,4

Received: 7 October 2019 / Revised: 30 November 2021 / Accepted: 13 December 2021 /
Published online: 9 January 2022
© The Author(s) 2022

Abstract
This article is concerned with the discretisation of the Stokes equations on time-
dependent domains in an Eulerian coordinate framework. Our work can be seen
as an extension of a recent paper by Lehrenfeld and Olshanskii (ESAIM: M2AN
53(2):585–614, 2019), where BDF-type time-stepping schemes are studied for a
parabolic equation onmoving domains. For space discretisation, a geometrically unfit-
ted finite element discretisation is applied in combination with Nitsche’s method to
impose boundary conditions. Physically undefined values of the solution at previous
time-steps are extended implicitly by means of so-called ghost penalty stabilisations.
Wederive a complete a priori error analysis of the discretisation error in space and time,
including optimal L2(L2)-norm error bounds for the velocities. Finally, the theoretical
results are substantiated with numerical examples.

1 Introduction

Flows on moving domains �(t) ⊂ R
d (d = 2, 3) need to be considered in many

different applications. Examples include particulate flows or flows around moving
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objects like biological or mechanical valves, wind turbines or parachutes. Strongly
related problems are fluid-structure interactions or multi-phase flows.

There exists a vast literature on time discretisation of the non-stationary Stokes
or Navier–Stokes equations on fixed domains, see for example the classical works
of Girault and Raviart [30], Baker et al. [2] and Rannacher and Heywood [39], or
more recently Bochev et al. [5] and Burman and Fernández [11,12] in the context of
stabilised finite element methods. If the computational domain remains unchanged
in each time-step, the same spatial discretisation can be used (unless adaptive mesh
refinement is considered) and finite difference schemes based on the method of lines
can be applied for time discretisation.

In the case of moderate domain movements, these techniques can be transferred to
the moving framework by using the Arbitrary Lagrangian Eulerian (ALE) approach
[22,24,50]. Here, the idea is to formulate an equivalent system of equations on a fixed
reference configuration �̂, for example the initial configuration �(0), by means of a
time-dependent map T(t) : �̂ → �(t). This technique has been used widely for flows
on moving domains, see e.g,. [19,22] and fluid-structure interactions [3,29,53]. The
analysis of the time discretisation error is then very similar to the fixed framework,
as all quantities and equations are formulated on the same reference domain �̂, see
e.g. [54]. For a detailed stability analysis of ALE formulations, we refer to Nobile and
Formaggia [49] and Boffi and Gastaldi [7].

On the other hand, it is well-known that the ALE method is less practical in the
case of large domain deformations [25,53]. This is due to the degeneration of mesh
elements both in a finite element and a finite difference context. A re-meshing of the
domain �(t) becomes necessary. Moreover, topology changes, for example due to
contact of particles within the flow or of a particle with an outer wall [18], are not
allowed, as the map between �̂ and �(t) can not have the required regularity in this
situation.

In such cases an Eulerian formulation of the problem formulated on the moving
domains �(t) is preferable. This is also the standard coordinate framework for the
simulation of multi-phase flows. In the last years a variety of space discretisation
techniques have been designed to resolve curved or moving boundaries accurately.
Examples include the cut finite elementmethod [16,17,33,35,44–46]within a fictitious
domain approach, extendedfinite elements [20,31,36,47] or locally fittedfinite element
techniques [27], to name such a few of the approaches.

Much less analysed is a proper time discretisation of the problem. In the case of
moving domains, standard time discretisation based on the method of lines is not
applicable in a straight-forward way. The reason is that the domain of definition of the
variables changes from time step to time step.

As an example consider the backward Euler discretisation of the time derivative
within a variational formulation

(∂t uh(tn), φ
n
h )�(tn) ≈ 1

�t
(uh(tn) − uh(tn−1), φ

n
h )�(tn).

Note that uh(tn−1) is only well-defined on �(tn−1), but is needed on �(tn).
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One solution to this dilemma are so-called characteristic-based approaches [38].
Similar time-stepping schemes result when applying the ALE method only locally
within one time-step and projecting the system back to the original reference frame
after each step [21], or based on Galerkin time discretisations with modified Galerkin
spaces [28]. The disadvantage of these approaches is a projection between the domains
�(tn−1) and �(tn) that needs to be computed within each or after a certain number
of steps.

Another possibility consists of space-time approaches [37,41], where a d + 1-
dimensional domain is discretised if �(t) ⊂ R

d . The computational requirements of
these approaches might, however, exceed the available computational resources, in
particular within complex three-dimensional applications. Moreover, the implemen-
tation of higher-dimensional discretisations and accurate quadrature formulas pose
additional challenges.

A simpler approach has been proposed recently in the dissertation of Schott [56]
and by Lehrenfeld and Olshanskii [42]. Here, the idea is to define extensions of the
solution uh(tn−1) from the previous time-step to a domain that spans at least �(tn).
On the finite element level these extensions can be incorporated implicitly in the time-
stepping scheme by using so-called ghost penalty stabilisations [10] to a sufficiently
large domain �δ(tn−1) ⊃ �(tn). These techniques have originally been proposed to
extend the coercivity of elliptic bilinear forms from the physical to the computational
domain in the context of CutFEM or fictitious domain approaches [10].

While Schott used such an extension explicitly after each time step to define val-
ues for uh(tn−1) in mesh nodes lying in �(tn)\�(tn−1), Lehrenfeld and Olshanskii
included the extension operator implicitly within each time step by solving a com-
bined discrete system including the extension operator on the larger computational
domain �δ(tn). For the latter approach a complete analysis could be given for the
corresponding backward Euler time discretisation, showing first-order convergence
in time in the spatial energy norm [42]. Moreover, the authors gave hints on how to
transfer the argumentation to a backward difference scheme (BDF(2)), which results
in second-order convergence. We should also mention that similar time discretisation
techniques have been used previously in the context of surface PDEs [43,51], and
mixed-dimensional surface-bulk problems [37] on moving domains.

In this work, we apply such an approach to the discretisation of the non-stationary
Stokes equations on a moving domain, including a complete analysis of the space
and time discretisation errors. Particular problems are related to the approximation
of the pressure variable. It is well-known that stability of the pressure is lost in the
case of fixed domains, when the discretisation changes from one time-step to another.
This can already be observed, when the finite element mesh is refined or coarsened
globally at some instant of time, see Besier and Wollner [4] and is due to the fact that
the old solution un−1

h := uh(tn−1) is not discrete divergence free with respect to the
new mesh. Possible remedies include the use of Stokes or Darcy projections [4,8] to
pass un−1

h to the newmesh. Our analysis will reveal that similar issues hold true for the
case of moving domains, even if the same discretisation is used on �(tn) ∩ �(tn−1).
The reason is that un−1

h is discrete divergence-free with respect to �(tn−1), but not
with respect to �(tn)
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(div un−1
h , φh)�(tn−1) = 0, but (div un−1

h , φh)�(tn) �= 0

for certain φh ∈ Vh .
For space discretisation, we will use the Cut Finite Element framework [35]. The

idea is to discretise a larger domain of simple structure in the spirit of the Fictitious
Domain approach. The active degrees of freedom consist of all degrees of freedom in
mesh elements with non-empty intersection with �δ(tn). Dirichlet boundary condi-
tions are incorporated by means of Nitsche’s method [48].

We will consider both the BDF(1)/backward Euler and the BDF(2) variant of the
approach. To simplify the presentation of the analysis, we will neglect geometry
approximation errors related to the approximation of curved boundaries and, more-
over, focus on the BDF(1) variant. The necessary modifications for the BDF(2) variant
will be sketched within remarks. Finally, we will use a duality technique to prove an
optimal L2(L2)-norm estimate for the velocities.

The structure of this article is as follows: In Sect. 2 we introduce the equations and
sketch how to prove the well-posedness of the system. Then we introduce time and
space discretisation in Sect. 3, including the extension operators and assumptions, that
will be needed in the stability analysis of Sect. 4 and the error analysis in Sect. 5. Then,
we give some three-dimensional numerical results in Sect. 6. We conclude in Sect. 7.

2 Equations

We consider the non-stationary Stokes equations with homogeneous Dirichlet bound-
ary conditions on a moving domain �(t) ⊂ R

d , d = 2, 3 for t ∈ I = [0, tfin]

∂tu − �u + ∇ p = f , div u = 0 in �(t),

u = 0 on ∂�(t), u(x, 0) = u0(x) in �(0).
(1)

We assume that the domain motion can be described by a W 1,∞-diffeomorphism

T(t) : �(0) → �(t). (2)

with the additional regularity

T ∈ W 1,∞(I ,W 2,∞(�(0))). (3)

and that the initial domain �(0) is piecewise smooth and Lipschitz. In order to
formulate the variational formulation we define the spaces

V(t) := H1
0 (�(t))d , L(t) := L2(�(t)), L0(t) := L2

0(�(t)),

VI := {u ∈ L2(I ,V(t))d , ∂tu ∈ L2(I ,L(t)d)}, L0,I := L2(I ,L0(t)).
(4)
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and consider the variational formulation: Find u ∈ VI , p ∈ L0,I such that

(∂tu, v)�(t) + AS(u, p; v, q) = (f , v)�(t) ∀v ∈ V(t), q ∈ L(t) a.e. in t ∈ I ,

u(x, 0) = u0(x) a.e. in �(0),
(5)

where

AS(u, p; v, q) := (∇u,∇v)�(t) − (p, div v)�(t) + (div u, q)�(t). (6)

We assume that f ∈ L∞(I ,L(t)d) a.e. in t ∈ I and u0 ∈ H1(�(0))d .

Remark 2.1 (Boundary conditions) It might seem unnatural at first sight to use homo-
geneous Dirichlet boundary conditions for a Stokes problem on a moving domain
�(t). In fact the assumption that the flow follows the domain motion on ∂�(t) would
be a more realistic boundary condition, i.e.

∂t ũ − �ũ + ∇ p = f̃ , div ũ = 0 in �(t)

ũ = ∂tT(T−1) on ∂�(t).
(7)

Note, however, that for a sufficiently smooth map T(t) that fulfils div(∂tT(T−1)) = 0,
one obtains (1) from (7) foru = ũ−∂tT(T−1) and f := f̃+∂2t T(T−1)−�(∂tT(T−1)).
For this reason and in order to simplify the presentation of the error analysis, we will
consider homogeneous Dirichlet conditions in the remainder of this article.

2.1 Well-posedness

As the spaces in (4) are lacking a tensor product structure, the proof of well-posedness
of (5) is more complicated than on a fixed domain. In the case of a fixed domain exis-
tence and uniqueness of solutions can be shown under weaker regularity assumptions
on the data f and u0 and the domain �(t) in the velocity space

ṼI := {u ∈ L2(I ,V)d , ∂tu ∈ L2(I , (V∗)d)},

where V∗ is the dual space to V. Low regularity is, however, not of interest for the
present paper, as we will require additional regularity of the solution in the error
estimates. On the other hand, workingwith the spaceVI under the additional regularity
assumptions made above simplifies the proof of well-posedness of (5) significantly.

The well-posedness of the Navier–Stokes problem on time-dependent domains,
including an additional nonlinear convective term has in fact been the subject of
a number of papers in literature [6,55]. In order to deal with the additional non-
linearity, additional assumptions on the regularity of the domains are typically made.
For completeness, we give a proof of the following Lemma (5) in the “Appendix”
under the regularity assumptions made above.
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Lemma 2.2 Let �(0) be piecewise smooth and Lipschitz and T(t) a W 1,∞(�(0))
diffeomorphism with regularity T ∈ W 1,∞(I ,W 2,∞(�(0)). For f ∈ L∞(I ,L(t)d)
and u0 ∈ H1(�(0))d , Problem (5) has a unique solution u ∈ VI , p ∈ L0,I .

Proof A proof is given in the “Appendix”. �

3 Discretisation

For discretisation in time, we split the time interval of interest I = [0, tfin] into time
intervals In = (tn−1, tn] of uniform step size �t = tn − tn−1

0 = t0 < t1 < · · · < tN = tfin.

We follow the work of Lehrenfeld and Olshanskii [42] for parabolic problems on
moving domains and use BDF(s) discretisation for s = 1, 2, where s = 1 corresponds
to a backwardEuler time discretisation.Higher-orderBDF formulae are not considered
here, due to their lack of A-stability [34]. Following Lehrenfeld and Olshanskii [42]
we extend the domain �n := �(tn) in each time point tn by a strip of size δ to a
domain �n

δ , which is chosen large enough such that

s⋃

i=0

�n+i ⊂ �n
δ , (8)

see also the left part of Fig. 1. In particular, we will allow

swmax�t ≤ δ ≤ cδswmax�t, (9)

where

wmax := max
t∈I ,x∈∂�(0)

‖∂t T (x, t) · n‖

is the maximum velocity of the boundary movement in normal direction in the
Euclidean norm ‖ · ‖ and cδ > 1 is a constant. If we assume that the domain map T
lies in W 1,∞(I , L∞(�(0))) (see Assumption 3.2 below), the lower bound on δ in (9)
guarantees (8).

The space-time slabs defined by the time discretisation and the space-time domain
are denoted by

Qn := ∪
t∈In

{t} × �(t), Qn
δ := ∪

t∈In
{t} × �δ(t), Q := ∪

t∈I{t} × �(t).

In what follows we denote by c generic positive constants. These are in particular
independent of space and time discretisation (�t, N and h) and of domain velocity
wmax and δ, unless such a dependence is explicitly mentioned.
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Fig. 1 Left: Illustration of �n
δ for s = 1. Right: Illustration of the discretisation and faces

3.1 Space discretisation

Let Tnh,δ be a family of (possibly unfitted) quasi-uniform spatial discretisations of �n
δ

into simplices with maximum cell size h. We assume that Tnh,δ is based on a common
background triangulation Th for all n and may differ only in the elements outside
�(tn) that are not present in Tkh,δ for k �= n. Further, we assume that Tnh,δ consists only
of elements K with non-empty intersection with �n

δ , i.e. K ∩ �n
δ �= ∅. The subset of

cells with non-empty intersection with � is denoted by Tnh . An illustration is given in
Fig. 1. By �n

h,δ we denote the domain spanned by all cells K ∈ Tnh,δ and by �n
h the

domain spanned by all cells K ∈ Tnh .
Further, letFn

h,δ denote the set of interior faces e ofTnh,δ . We split the faces into three

parts: By Fn,int
h , we denote the faces that belong exclusively to elements K ∈ Tnh,δ

that lie in the interior of �n . By Fn,cut
h we denote the set of faces that belong to some

element K ∈ Tnh,δ with K ∩ ∂�n �= ∅ and by Fn,ext
h,δ the set of the remaining faces in

Fn
h,δ , see Fig. 1. Finally, we write F

n,g
h,δ for the union of Fn,cut

h and Fn,ext
h,δ , which will

be used to define the ghost penalty extensions.
For spatial discretisation, we use continuous equal-order finite elements of degree

m ≥ 1 for all variables

Vn
h := {v ∈ C(�n

h,δ), v|K ∈ Pm(K )∀K ∈ Tnh,δ}
Ln
h := {q ∈ C(�n

h), q|K ∈ Pm(K )∀K ∈ Tnh}, Ln
h,0 := Ln

h ∩ L0(tn).

Note that for the pressure space Ln
h an extension beyond �n

h is not required.
To deal with the inf-sup stability, we will add a pressure stabilisation term snh to the

variational formulation. In order to simplify the presentation, wewill restrict ourselves
to the Continuous Interior Penalty method (CIP [14]) in this work, although different
pressure stabilisations are possible. We define the CIP pressure stabilisation as
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snh (p; q) :=
∑

e∈Fn,int
h

h3(�∂n p�, �∂nq�)e+
∑

e∈Fn,cut
h

m∑

k=1

h2k+1(�∂kn p�, �∂
k
nq�)e.

The higher derivatives in the boundary elements are necessary to control the derivatives
∇ ph on the extended computational domain �n

h\�n in the spirit of the ghost penalty
stabilisation [10].

We summarise the properties of the pressure stabilisation that will be needed in the
following: There exists an operator Cn

h : Vn
h ∪ L2(�n) → Vn

h , such that the following
properties are fulfilled for n = 1, . . . , N

snh (q, r) ≤ snh (q, q)1/2snh (r , r)1/2 ∀q, r ∈ Vn
h ∪ H2(�n),

(10)

snh (q, q) ≤ ch2‖q‖2H1(�n)
∀q ∈ Vn

h ∪ H2(�n),

(11)

h2‖∇ ph − Cn
h∇ ph‖2�n

h
≤ csnh (pnh , p

n
h) ∀ph ∈ Vn

h, (12)

‖Cn
h∇ ph‖2�n

h
≤ c

(
‖∇ ph‖2�n + h−2snh (pnh , p

n
h)

)
∀ph ∈ Vn

h . (13)

A suitable projectorCn
h for the CIP stabilisation is given by the the Oswald or Clément

interpolation [14]. For m ≥ 2, we have additionally the consistency property

snh (p, p) = 0 ∀p ∈ Hm(�n). (14)

Remark 3.1 (Pressure stabilisation) In general any pressure stabilisation operator that
leads to a well-posed discrete problem and that fulfils the assumptions (10)–(14) can
be used. The consistency condition snh (p, p) = 0 can be relaxed to a weak consistency
of order ms > 0

snh (p, p) ≤ ch2ms‖p‖2Hms (�n).

which will limit the spatial convergence order in the error estimates. One possibility
is the Brezzi–Pitkäranta stabilisation [9] with order ms = 1. We refer to Burman and
Fernández for a review of further possibilities for pressure stabilisation [12].

3.2 Variational formulation

To cope with the evolving geometry from one time-step to another, we extend the
velocity variable unh to �n

δ , which will be needed in the following time-step, by using
so-called ghost penalty terms gnh .Wewill describe different possibilities to define gnh in
the next subsection. For k = s, . . . , n we define the following time-stepping scheme:
Find unh ∈ Vn

h, p
n
h ∈ Ln

h,0 such that

(D(s)
t unh, vh)�n + An

h(u
n
h, p

n
h ; vh, qh) = (f , vh)�n ∀vh ∈ Vn

h, qh ∈ Ln
h, (15)
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where D(s)
t is an approximation of the time derivative ∂t by the BDF(s) backward

difference formula, i.e.

D(1)
t unh := 1

�t
(unh − un−1

h ),

D(2)
t unh := D(1)

t unh + 1

2
(D(1)

t unh − D(1)
t un−1

h ) = 1

2�t
(3unh − 4un−1

h + un−2
h ).

The bilinear form Ah is defined by

An
h(u

n
h, p

n
h ; vh, qh) := An

S(u
n
h, p

n
h ; vh, qh) + anD(unh, p

n
h ; vh, qh)

+ γgg
n
h (u

n
h, vh) + γps

n
h (pnh , qh). (16)

It includes the Stokes part

An
S(u, p; v, q) := (∇u,∇v)�n − (p, div v)�n + (div u, q)�n (17)

and Nitsche terms to weakly impose the Dirichlet boundary conditions

anD(unh, p
n
h ; vh, qh) := −(∂nunh − pnhn, vh)∂�n − (unh, ∂nvh + qhn)∂�n

+ γD

h

(
unh, vh

)
∂�n . (18)

In (18) the last term can be seen as a penalty term to weakly impose the homogeneous
Dirichlet condition for the velocities. The first term on the right-hand side makes the
variational formulation consistent (in space). Finally, the second term, which vanishes
for unh = 0, yields a formulation, which is symmetric for the velocities, but skew-
symmetric for the pressure. The skew-symmetry in the pressure variable leads to a
stable variational formulation, as the pressure terms cancel out by diagonal testing
(vnh = unh, q

n
h = pnh ), see for example [13]. The parameters γD, γp and γg are positive

constants.
To include the initial condition,we setu0h := π1

h Eu
0,whereπn

h denotes the L
2(�n)-

projection onto Tnh and E denotes an L2-stable extension operator, which is introduced
in the next section. Summing over k = 1, . . . , n in time, the complete system reads
for s = 1

n∑

k=1

{ 1

�t

(
ukh − uk−1

h , vkh
)

�k
+ Ak

h(u
k
h, p

k
h; vkh, qkh )

}
+ 1

�t

(
u0h, v

1
h

)

�1

= 1

�t

(
Eu0, v1h

)

�1
+

n∑

k=1

(f , vkh)�k ∀vkh ∈ Vk
h, q

k
h ∈ Lk

h, k = 1, . . . n. (19)

In order to simplify the presentation, we will assume that the integrals in (19) are
evaluated exactly. If the integrals are only roughly approximated, for example due to
a discrete level-set function φn

h ∈ Vn
h which is only an approximation of a continuous

function φn , an additional geometry approximation error needs to be considered. We
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refer to the work of Lehrenfeld and Olshanskii [42], where these additional error
contributions have been analysed in detail for parabolic problems onmoving domains.
An advantage of the CutFEM methodology compared to standard finite elements is
that besides the geometry approximation no additional discretisation errors related to
the approximation of curved boundaries within the finite element spaces need to be
considered.

To initialise the BDF(2) scheme the value u1h needs to be computed with sufficient
accuracy before the first full BDF(2) step can be made. We will comment on the
specific requirements and on different possibilities below in Remark 5.6.

3.3 Extension operators

Due to the evolution of the domain, wewill frequently need to extend variables defined
on smaller domains to larger ones. Therefore, we will useWk,p-stable extension oper-
ators En : �n → �n

δ to extend functions u(tn) ∈ Wk,p(�n). We make the following
assumption for the regularity of the domains�(t) and the domain movement, depend-
ing on the polynomial degree m of the finite element spaces.

Assumption 3.2 We assume that the boundary of the initial domain �(0) is
piecewise smooth and Lipschitz, and that the domain motion T(t) is a W 1,∞-
diffeomorphism for each t and smooth in the sense thatT ∈ L∞(I ,Wm+1,∞(�(0)))∩
W 1,∞(I ,Wm,∞(�(0))).

If Assumption 3.2 is fulfilled for m ∈ N, suitable extension operators En : �n →
�n

δ exist with the properties

‖Enu − u‖Wm+1,p(�) = 0, ‖Enu‖Wm+1,p(�n
δ ) ≤ c‖u‖Wm+1,p(�n), (20)

‖∂t (Enu)‖Hm (�n
δ ) ≤ c

(‖u‖Hm+1(�n) + ‖∂tu‖Hm (�n)

)
, (21)

‖∂2t (Enu)‖Qn
δ
≤ c‖u‖H2(Qn). (22)

For a proof of (20) we refer to Stein [57], Theorem 6 in Chapter VI. The estimate
(21) has been shown in [42], Lemma 3.3. The estimate (22) follows by the same
argumentation. In order to alleviate the notation we will in the following skip the
operator En frequently and denote the extension also by u(tn).

3.3.1 Ghost penalty extension

The discrete quantities are extended implicitly by adding so-called ghost penalty terms
to the variational formulation. We will consider three variants for the ghost penalty
stabilisation, and refer to [15,32] for amore abstract approach on how to design suitable
ghost penalties for a PDE problem at hand. The first “classical” variant [10,15,45] is
to penalise jumps of derivatives over element edges

gn,jump
h (u, v) :=

∑

e∈Fn,g
h,δ

m∑

k=1

h2k−1(�∂knu�, �∂knv�)e.
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This variant has the advantage that it is fully consistent, i.e. it vanishes for u ∈
Hm+1(�n

δ )
d , which implies �∂knu�|e = 0 for k ≤ m. A disadvantage is that higher

derivatives need to be computed for polynomial degrees m > 1.
To define two further variants, let us introduce the notation Ke,1 and Ke,2 for the

two cells surrounding a face e ∈ Fn,g
h,δ , such that

e = Ke,1 ∩ Ke,2.

We denote the union of both cells by we := Ke,1 ∪ Ke,2 and use the L2-projection
πwe : L2(�n

δ ) → Pm(we), which is defined by

(u − πw,eu, v)we = 0 ∀v ∈ Pm(we).

We define the “projection variant” of the ghost penalty stabilisation [10]

gn,proj
h (uh, vh) := 1

h2
∑

e∈Fn,g
h,δ

(
uh − πweuh, vh − πwevh

)
we

= 1

h2
∑

e∈Fn,g
h,δ

(
uh − πweuh, vh

)
we

.

The last equality is a direct consequence of the definition of the L2-projection.
The third variant, which has first been used in [52], uses canonical extensions of

polynomials to the neighbouring cell instead of the projection πweu. Let us therefore
denote the polynomials that define a function u ∈ Vn

h in a cell Ke,i by ue,i = u|Ke,i .
We use the same notation for the canonical extension to the neighbouring cell, such
that ue,i ∈ Pm(we). Using this notation, we define the so-called “direct method” of
the ghost penalty stabilisation

gn,dir
h (u, v) := 1

h2
∑

e∈Fn,g
h,δ

(
ue,1 − ue,2, ve,1 − ve,2

)
we

.

For the analysis, we extend the definition of the stabilisation to functions u, v ∈
L2(�n

δ ). Here, we set ue,i := πKe,iu|Ke,i for i = 1, 2, where πKe,i denotes the L2-
projection to Pm(Ke,i ) and extend this polynomial canonically to the neighbouring
cell. In contrast to the classical variant, gn,proj

h and gn,dir
h are only weakly consistent,

i.e. they fulfil the estimate

gnh (u,u) ≤ ch2m‖u‖Hm+1(�n
δ ), for u ∈ Hm+1(�n

δ )
d .

Wewill summarise the properties of these stabilisation terms, that wewill need below,
in the following lemma. Therefore, we assume that from each cell K ∈ Tnh,δ with
K ∩ �n = ∅, there exists a path of cells Ki , i = 1, . . . ,m, such that two subsequent
cells share one common face e = Ki ∩ Ki+1, and the final element lies in the interior
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of �n , i.e. Km ⊂ �n . In addition the path shall fulfil the following properties. Let K
be the maximum number of cells needed in the path among all cells K ∈ Tnh,δ . We
assume that

K ≤ (1 + δ/h) ≤ 1 + cδswmax�t

h
, (23)

where the second inequality follows from (9). Moreover, we assume that the number
of cases in which a specific interior element Km ⊂ �n is used as a final element among
all the paths is bounded independently of�t and h. These assumptions are reasonable,
as one can choose for example the final elements by a projection of distance δ towards
the interior. For a detailed justification, we refer to Lehrenfeld and Olshanskii [42],
Remark 5.2.

Lemma 3.3 For vh ∈ Vn
h and the three variants gnh ∈ {gn,jump

h , gn,proj
h , gn,dir

h } it
holds that

‖vh‖2�n
δ

≤ c‖vh‖2�n + Kh2gnh (vh, vh), ‖∇vh‖2�n
δ

≤ c‖∇vh‖2�n + Kgnh (vh, vh)

Further, it holds for u, v ∈ Hm+1(�n
δ ) for m ≥ 1 and vh ∈ Vn

h that

gnh (u, v) ≤ gnh (u,u)1/2gnh (v, v)
1/2, gnh (u,u) ≤ ch2m‖u‖2Hm+1(�n

δ )
, gnh (vh, vh)

≤ c‖∇vh‖2�n
δ
. (24)

Proof The first four properties have been proven for the three possibilities introduced
above by Lehrenfeld and Olshanskii [42]. The last inequality in (24) follows similarly.

�

3.4 Properties of the bilinear form

We start with a continuity result for the combined bilinear form including the Nitsche
terms in the functional spaces.

Lemma 3.4 (Continuity in the functional spaces)For functionsu, v ∈ V(tn)∩H2(�n)d

and p, q ∈ L(tn) ∩ H1(�n), we have

∣∣(An
S+anD)(u, p; v, q)

∣∣ + ∣∣(An
S + anD)(v, q; u, p)

∣∣

≤ c
(
‖∇u‖�n + h−1/2‖u‖∂�n + h‖∇ p‖�n + h1/2‖∂nu‖∂�n

)

·
(
‖∇v‖�n + h−1‖v‖�n + ‖q‖�n + h−1/2‖v‖∂�n + h1/2 (‖∂nv‖∂�n + ‖q‖∂�n )

)
.
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Proof We apply integration by parts in (17)

An
S(u, p; v, q) = (∇u,∇v)�n + (∇ p, v)�n − (p, v · n)∂�n + (div u, q)�n

≤ c (‖∇u‖�n + h‖∇ p‖�n )
(
‖∇v‖�n + h−1‖v‖�n

+‖q‖�n ) − (p, v · n)∂�n .

For the Nitsche terms standard estimates result in

anD(u, p; v, q) ≤ c
(
h−1/2‖u‖∂�n + h1/2‖∂nu‖∂�n

) (
h−1/2‖v‖∂�n + h1/2 (‖∂nv‖∂�n + ‖q‖∂�n )

)

+(p, v · n)∂�n . (25)

The estimate for (An
S + anD)(v, q;u, p) can be shown in exactly the same way by

inverting the role of test and trial functions. �

Next, we show continuity and coercivity of the discrete bilinear form. To this end,
we introduce the triple norm

|||uh |||h,n :=
(
‖∇unh‖2�n + γgg

n
h (u

n
h,u

n
h) + γD

h
‖unh‖2∂�n

)1/2

Lemma 3.5 (Coercivity and Continuity in the discrete setting) For the bilinear form
Ah defined in (16) and uh ∈ Vn

h and ph ∈ Ln
h, it holds for γD sufficiently large

An
h(uh, ph;uh, ph) ≥ 1

2

(
|||uh |||2h,n + γps

n
h (ph, ph)

)
. (26)

Moreover, we have for uh, vh ∈ Vn
h and ph, qh ∈ Ln

h

An
h(uh, ph; vh, qh) ≤

(
|||uh |||h,n + ‖ph‖�n + snh (ph, ph)

1/2
)

(
|||vh |||h,n + ‖qh‖�n + snh (qh, qh)

1/2
)

. (27)

Proof To show coercivity (26), we note that

An
h(uh, ph;uh, ph) = |||uh |||2h,n + γps

n
h (ph, ph) − 2(unh, ∂nu

n
h)∂�n .

To estimate the term −2(unh, ∂nu
n
h)∂�n , we apply a Cauchy-Schwarz and Young’s

inequality for ε > 0, followed by an inverse inequality on �n
h

−2(uh, ∂nuh)∂�n ≥ − 1

εh
‖uh‖2∂�n − εh‖∇uh‖2∂�n ≥ − 1

εh
‖uh‖2∂�n − cε‖∇uh‖2�n

h
.
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Using Lemma 3.3, we obtain

2(uh, ∂nuh)∂�n ≥ − 1

εh
‖uh‖2∂�n − cε

(
‖∇uh‖2�n + Kgnh (uh,uh)

)

≥ −γD

2h
‖uh‖2∂�n − 1

2

(
‖∇uh‖2�n + γgg

n
h (uh,uh)

)

for γD sufficiently large. Concerning continuity, we estimate

An
S(uh, ph; vh, qh) ≤ c (‖∇uh‖�n + ‖ph‖�n ) (‖∇vh‖�n + ‖qh‖�n ) (28)

For the Nitsche terms, we have using inverse inequalities and Lemma 3.3

anD(uh ,ph; vh , qh) = γD

h
(uh , vh)∂�n − (∂nuh − phn, vh)∂�n − (uh , ∂nvh + qhn)∂�n

≤ c

(
γ
1/2
D

h1/2
‖uh‖∂�n + ‖∇uh‖2�n

h
+ ‖ph‖�n

)(
γ
1/2
D

h1/2
‖vh‖∂�n + ‖∇vh‖2�n

h
+ ‖qh‖�n

)

≤ c
(|||uh |||h,n + ‖ph‖�n

) (|||vh |||h,n + ‖qh‖�n
)
. (29)

Finally, Lemma 3.3 and the assumption (10) for the pressure stabilisation yield

gnh (uh, vh) ≤ gnh (uh,uh)
1/2gnh (vh, vh)

1/2,

snh (ph, qh) ≤ snh (ph, ph)
1/2snh (qh, qh)

1/2.

�
Moreover, we have the followingmodified inf-sup condition for the discrete spaces.

Lemma 3.6 Let pnh ∈ Ln
h. There exists a constant β > 0, such that

β‖pnh‖�n ≤ sup
vnh∈Vnh

(div vnh, p
n
h)�n − (vnh · n, pnh)∂�n

|||vnh |||h,n
+ h‖∇ pnh‖�n . (30)

Proof We follow Burman and Hansbo [14] and define vnp ∈ H1
0 (�n)d as solution to

div vnp = − pnh
‖pnh‖�n

on �n . (31)

Such a solution exists, see Temam [58], and fulfils ‖vnp‖H1(�n) ≤ c. We introduce an
L2-stable interpolation inh v

n
p (for example the Clément interpolation) to get

‖pnh‖�n = −(pnh , div v
n
p)�n = −(pnh , div (vnp − inh v

n
p))�n − (pnh , div (inh v

n
p))�n .

(32)
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We apply integration by parts in the first term and use that vnp vanishes in ∂�n

−(pnh , div(v
n
p − inh v

n
p))�n = (∇ pnh , v

n
p − inh v

n
p)�n − (pnhn, vnp − inh v

n
p)∂�n

≤ ch‖∇ pnh‖�n + (pnhn, inh v
n
p)∂�n

(33)

The statement follows by noting that

|||inh vnp|||2h,n = ‖inh∇vnp‖2�n + γD

h
‖inh vnp‖2∂�n + gnh (i

n
h v

n
p, i

n
h v

n
p)

≤ c
(
‖∇vnp‖2�n + γD

h
‖inh vnp − vnp‖2∂�n + ‖∇inh v

n
p‖2�n

h,δ

)
≤ c‖∇vnp‖2�n ≤ c.

�

The well-posedness of the discrete system (15) for sufficiently large γp, γg, γD and
given un−1

h (and un−2
h for BDF(2)) follows by standard arguments, see for example

[14].

4 Stability analysis

In order to simplify the analysis, we restrict ourselves in this and the next section to
the case s = 1 first, i.e., the backward Euler variant of the time discretisation and
comment on the case s = 2 in remarks. In order to abbreviate the notation, we write
for the space-time Bochner norms

‖u‖∞,m,Ik := ‖u‖L∞(Ik ,Hm (�(t))), ‖u‖∞,m := ‖u‖∞,m,I ,

where m ∈ Z and H0(�(t)) := L2(�(t)).
We start with a preliminary result concerning the extension of discrete functions to

�n
δ .

Lemma 4.1 Let v ∈ V, δ ≤ cδswmax�t and Snδ := �n
δ\�n. It holds for arbitrary

ε > 0

‖v‖2Snδ ≤ cδ
(
(ε + ε−1)‖v‖2�n

δ
+ ε‖∇v‖2�n

δ

)
. (34)

For vh ∈ Vn
h, we have further for h sufficiently small

‖vh‖2�n
δ

≤ (1 + c1(wmax)�t) ‖vh‖2�n + �t

2
‖∇vh‖2�n + c2(wmax)�tKgnh (vh, vh)

(35)

with constants c1(wmax) := 1/2 + cs2w2
max, c2(wmax) := cw2

maxh
2 + 1 and c > 0.
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Proof These results follow similarly to Lemmas 3.4 and 5.3 in [42]. Nevertheless, we
give here a sketch of the proof due to the importance of the Lemma in the following
estimates. We define

�n
r := �n ∪ {x ∈ Snδ , dist(x, ∂�n) < r}, �n

r := {x ∈ Snδ , dist(x, ∂�n) = r} = ∂�n
r .

We apply a multiplicative trace inequality and Young’s inequality for arbitrary ε > 0

‖v‖2�n
r

≤ c‖v‖�n
r
‖v‖H1(�n

r )
≤ c0

(
ε−1‖v‖2�n

r
+ ε‖v‖2H1(�n

r )

)

= c0
(
(ε + ε−1)‖v‖2�n

r
+ ε‖∇v‖2�n

r

)
(36)

with a constant c0 depending on the curvature of ∂�n . Integration over r ∈ (0, δ)
yields (34). For a discrete function vh ∈ Vn

h we use Lemma 3.3 to obtain

‖vh‖2Snδ ≤ c0δ(ε + ε−1)‖vh‖2�n
δ
+ c0δε‖∇vh‖2�n

δ

≤ c0δ(ε + ε−1)‖vh‖2�n + c0δε‖∇vh‖2�n + c0δK
(
(ε + ε−1)h2 + ε

)
gnh (vh, vh).

Using (9) and choosing ε = 1
2c0cδswmax

, we have c0δε ≤ �t
2 and

‖vh‖2Snδ ≤ c1(wmax)�t‖vh‖2�n + �t

2
‖∇vh‖2�n + c2(wmax)�tKgnh (vh, vh) (37)

for h < 1with the constants c1(wmax), c2(wmax) given in the statement. The inequality
(35) follows by combining (37) with the equality

‖vh‖2�n
δ

= ‖vh‖2�n + ‖vh‖2Snδ . (38)

�
Now we are ready to show a stability result for the discrete formulation (15).

Theorem 4.2 Let uh = (ukh)
N
k=1, ph = (pkh)

N
k=1 be the solution of (15) for s = 1,

γg ≥ c2(wmax)K, where c2(wmax) denotes the constant from Lemma 4.1 and γD

sufficiently large.
Under the regularity assumptions stated above, it holds for n ≥ 1 that

‖unh‖2�n +
n∑

k=1

‖ukh − uk−1
h ‖2

�k + �t
(
|||ukh |||2h,k + γps

k
h(p

k
h, p

k
h)

)

≤ c exp(c1(wmax)tn)
(
‖u0‖2

�0 + tn‖f‖2∞,0

)
,

(39)

with c1(wmax) given in Lemma 4.1 and u0h := π1
h Eu

0.
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Proof Testing (15) with vh = 2�tunh, qh = 2�tpnh , using the coercivity (26) and the
relation

−2(unh,u
n−1
h )�n = ‖unh − un−1

h ‖2�n − ‖unh‖2�n − ‖un−1
h ‖2�n (40)

yields for n > 1

‖unh‖2�n + ‖unh − un−1
h ‖2�n − ‖un−1

h ‖2�n + �t |||unh |||2h,n + �tγps
n
h (pnh , p

n
h)

≤ 2�t(f ,unh)�n .
(41)

We bring the term ‖un−1
h ‖2�n to �n−1 by using Lemma 4.1

‖un−1
h ‖2�n ≤ (1 + c1(wmax)�t) ‖un−1

h ‖2
�n−1 + �t

2
‖∇un−1

h ‖2
�n−1

+ c2(wmax)K�tgn−1
h (un−1

h ,un−1
h ). (42)

Inserting (42) into (41) we have

‖unh‖2�n + ‖unh − un−1
h ‖2�n + �t

(
|||unh |||2h,n + γps

n
h (pnh , p

n
h)

)

≤ 2�t(f ,unh)�n + (1 + c1(wmax)�t) ‖un−1
h ‖2

�n−1 + �t

2
‖∇un−1

h ‖2
�n−1

+ �tγgg
n−1
h (un−1

h ,un−1
h ) (43)

for γg ≥ c2(wmax)K and γD sufficiently large. For n = 1, we have instead of (41)

‖u1h‖2�1 + ‖u1h − Eu0‖2
�1 − ‖Eu0‖2

�1 + �t
(
|||u1h |||2h,1 + γps

1
h(p

1
h, p

1
h)

)

= 2�t(f ,u1h)�1 .

(44)

In both cases (n ≥ 1) we use the Cauchy–Schwarz and Young’s inequality for the first
term on the right-hand side to get

2�t(f ,unh)�n ≤ �t‖unh‖2�n + �t‖f‖2�n .

Summing over k = 0, . . . , n in (43) and using the L2-stability of the extension of
the initial value yields

‖unh‖2�n +
n∑

k=1

‖ukh − uk−1
h ‖2

�k + �t

2

(
|||ukh |||2h,k + 2γps

k
h(p

k
h, p

k
h)

)

≤ c‖u0‖�0 + 2tn‖f‖2∞,0 + c1(wmax)�t
n−1∑

k=0

‖ukh‖2�k . (45)

Application of a discrete Gronwall lemma yields the statement. �
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Remark 4.3 (BDF(2)) For the BDF(2) variant, we get the stability estimate (39) with
the weaker dissipation ‖ukh −2uk−1

h +uk−2
h ‖2

�k instead of ‖ukh −uk−1
h ‖2

�k . To this end,
one uses the relation

(3unh − 4un−1
h + un−2

h ,unh)�n = 1

2

(‖unh‖2�n − ‖un−1
h ‖2�n + ‖2unh − un−1

h ‖2�n

− ‖2un−1
h − un−2

h ‖2�n + ‖unh − 2un−1
h + un−1

h ‖2�n

)

instead of (40).

4.1 Stability estimate for the pressure

We show the following stability estimates for the L2- and H1-semi-norm of pressure.

Lemma 4.4 Let (unh, p
n
h) be the discrete solution of (15). For n ≥ 1 it holds that

‖pnh‖2�n ≤ c
(
‖D(s)

t unh‖2�n + |||unh |||2h,n + snh (pnh , p
n
h) + ‖f‖2�n

)
, (46)

h2‖∇ pnh‖2�n ≤ c
(
h2‖D(s)

t unh‖2�n + |||unh |||2h,n + snh (pnh , p
n
h) + h2‖f‖2�n

)
, (47)

where u0h = π1
h Eu

0.

Proof First, we derive a bound for h2‖∇ pnh‖2�n . To this end, we extend ∇ pnh by zero
to �n

δ,h\�n
h , using the same notation for the extended function. We insert ±Cn

h∇ pnh ,

where Cn
h : L2(�n

δ,h)
d → Vn

h is the interpolation operator used in (10)-(13), and
integrate by parts

h2‖∇ pnh‖2�n = h2(∇ pnh − Cn
h∇ pnh ,∇ pnh)�n + h2(Cn

h∇ pnh ,∇ pnh)�n

= h2(∇ pnh − Cn
h∇ pnh ,∇ pnh)�n − h2(div(Cn

h∇ pnh), p
n
h)�n

+ h2(Cn
h∇ pnh , p

n
hn)∂�n . (48)

For the first term, we have by means of (12) and Young’s inequality

h2(∇ pnh − Cn
h∇ pnh ,∇ pnh)�n ≤ h2‖∇ pnh − Cn

h∇ pnh‖�n
h
‖∇ pnh‖�n

≤ csnh (pnh , p
n
h) + h2

4
‖∇ pnh‖2�n . (49)

The last term in (49) will be absorbed into the left-hand side of (48). For the second
term on the right-hand side of (48), we use that (unh, p

n
h) solves the discrete system

(15)

−h2(div(Cn
h∇ pnh), p

n
h)�n = − h2

( (
D(s)
t unh,C

n
h∇ pnh

)

�n
+ (∇unh,∇(Cn

h∇ pnh)
)
�n

+ anD(unh, p
n
h ;Cn

h∇ pnh , 0) + γgg
n
h (u

n
h,C

n
h∇ pnh)

− (
f ,Cn

h∇ pnh
)
�n

)
.

(50)
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To estimate the first term on the right-hand side of (50), we use the Cauchy–Schwarz
inequality and (12) to get

−h2
(
D(s)
t unh,C

n
h∇ pnh

)

�n
≤ ch‖D(s)

t unh‖�n

(
h‖∇ pnh‖�n + snh (pnh , p

n
h)

1/2
)

. (51)

Similarly, we get for the last term on the right-hand side of (50)

h2
(
f ,Cn

h∇ pnh
)
�n ≤ ch‖f‖�n

(
h‖∇ pnh‖�n + snh (pnh , p

n
h)

1/2
)

. (52)

For the second-term on the right-hand side of (50), we use an inverse inequality on
�n

h and (12)

−h2
(∇unh,∇(Cn

h∇ pnh)
)
�n ≤ ch2‖∇unh‖�n‖∇(Cn

h∇ pnh)‖�n
h

≤ ch‖∇unh‖�n‖Cn
h∇ pnh‖�n

h

≤ c‖∇unh‖�n

(
h‖∇ pnh‖�n

h
+ snh (pnh , p

n
h)

1
2

)
.

For the Nitsche term anD , we have as in (29)

−h2anD(unh , p
n
h ;Cn

h∇ pnh , 0)

= −h2
(γD

h

(
unh ,C

n
h∇ pnh

)
∂�n − (

∂nunh − pnhn,Cn
h∇ pnh

)
∂�n + (

unh , ∂n(C
n
h∇ pnh )

)
∂�n

)

≤ ch|||unh |||h,n‖Cn
h∇ pnh‖�n

h
− h2

(
pnhn,Cn

h∇ pnh
)
∂�n

≤ c|||unh |||h,n
(
h‖∇ pnh‖�n + snh (pnh , p

n
h )

1/2) − h2
(
pnhn,Cn

h∇ pnh
)
∂�n . (53)

In the last step (12) has been used. Note that the boundary term on the right-hand side
will cancel out with the third term in (48). For the ghost penalty we have by means of
an inverse inequality and (12)

h2gnh (u
n
h,C

n
h∇ pnh) ≤ chgnh (u

n
h,u

n
h)

1/2‖Cn
h∇ pnh‖�n

h,δ

≤ cgnh (u
n
h,u

n
h)

1/2
(
h‖∇ pnh‖�n + snh (pnh , p

n
h)

1/2
)

.
(54)

Altogether, (50)-(51) and (53)-(54) result in

−h2(div(Cn
h∇ pnh ), p

n
h )�n + h2

(
pnhn,Cn

h∇ pnh
)
∂�n

≤ c
(
h‖∇ pnh‖�n + snh (pnh , p

n
h )

1/2) (
h
∥∥D(s)

t unh
∥∥

�n + |||unh |||h,n + h‖f‖�n

)

≤ h2

4
‖∇ pnh‖2�n + c

(
h2

∥∥D(s)
t unh

∥∥2
�n + |||unh |||2h,n + h2‖f‖2�n + snh (pnh , p

n
h )

)
. (55)
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In the last step we have applied Young’s inequality. Combination of (48), (49) an (55)
yields (47). To show (46) we start using the modified inf-sup condition (Lemma 3.6)

β‖pnh‖�n ≤ sup
vh∈Vnh

(div vh, pnh)�n − (vh · n, pnh)∂�n

|||vh |||h,n
+ h‖∇ pnh‖�n . (56)

By (15), we have

(div vh, pnh)�n − (vh · n, pnh)∂�n = (D(s)
t unh, vh)�n + An

h(u
n
h, 0; vh, 0) − (f , vh)�n

(57)

To estimate the right-hand side of (57), we use the continuity of the bilinear formAn
h

(27) and the Cauchy–Schwarz inequality

(D(s)
t unh, vh)�n + An

h(u
n
h, 0; vh, 0) − (f , vh)�n

≤ c
(
‖D(s)

t unh‖�n + ‖f‖�n

)
‖vh‖�n + c|||unh |||h,n|||vh |||h,n

≤ c
(
‖D(s)

t unh‖�n + |||unh |||h,n + ‖f‖�n

)
|||vh |||h,n . (58)

In the last step, we have used that ‖vnh‖�n ≤ c (‖∇vh‖�n + ‖vh‖∂�n ) ≤ c|||vh |||h,n

by a Poincaré- type estimate. Combination of (56)–(58) and (47) yields (46). �
Lemma 4.4 gives a stability result for ‖∇ pkh‖�k , which results in the following

corollary:

Corollary 4.5 Under the assumptions of Theorem (4.2), it holds for s = 1 that

‖unh‖2�n + �t
n∑

k=1

(
|||ukh |||2h,k + 1

�t
‖ukh − uk−1

h ‖2
�k + γps

k
h (p

k
h , p

k
h) + min{h2,�t}‖∇ pkh‖2�k

)

≤ exp(c1(wmax)tn)
(
c‖u0‖�0 + 2tn‖f‖2∞,0

)
. (59)

For s = 2, we have

‖unh‖2�n + �t
n∑

k=1

(
|||ukh |||2h,k + γps

k
h(p

k
h, p

k
h) + min{h2,�t2}‖∇ pkh‖2�k

)

≤ exp(c1(wmax)tn)
(
c‖u0‖�0 + 2tn‖f‖2∞,0

)
.

(60)

Proof We start by proving (59) for s = 1. To this end, we distinguish between the
cases �t ≥ h2 and �t < h2. In the first case, we note that, by (47)

�th2‖∇ pnh‖2�n ≤ c�th2‖D(1)
t unh‖2�n + c�t

(
|||unh |||2h,n + snh (pnh , p

n
h) + ‖f‖2�n

)

≤ c�t2‖D(1)
t unh‖2�n + c�t

(
|||unh |||2h,n + snh (pnh , p

n
h) + ‖f‖2�n

)
.

(61)
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As �t2‖D(1)
t unh‖2�n = ‖unh − un−1

h ‖2�n (59) follows from Theorem 4.2. For �t < h2,
we multiply (61) by �t

h2
to get

�t2‖∇ pnh‖2�n ≤ c�t2‖D(1)
t unh‖2�n + c�t

�t

h2

(
|||unh |||2h,n + snh (pnh , p

n
h) + ‖f‖2�n

)

and use the same argumentation. For s = 2, we do not have control over
�t2‖D(2)

t unh‖2�n . Instead, we use the estimate

�t3‖D(2)
t unh‖2�n ≤ c�t

2∑

k=0

(
‖un−k

h ‖2
�n−k + �t‖∇un−k

h ‖2
�n−k + K�tgn−k

h (un−k
h , un−k

h )
)

that follows from the triangle inequality and (35). The estimate (60) follows by a
similar argumentation by distinguishing between the cases �t ≶ h. �

Concerning the L2-norm of the pressure, Lemma 4.4 gives a stability result only
for

�t2
n∑

k=1

‖pkh‖2�k ,

even in the case s = 1. In the case of fixed domains and fixed discretisations, a stability
estimate for ‖pkh‖ can be derived by showing an upper bound for the right-hand side
in (46), including the term 1

�t ‖unh − un−1
h ‖2�n , see for example Besier and Wollner

[4]. The argumentation requires, however, that the term (div un−1
h , ξnh )�n vanishes for

ξnh ∈ Ln
h . This is not true in the case of time-dependent domains, as un−1

h is not discrete
divergence-free with respect to �n

(div un−1
h , ξnh )�n �= 0

for certain ξnh ∈ Ln
h . Moreover, the domain mismatch �n−1 �= �n causes additional

problems in the transfer of the term |||un−1
h |||h,n �= |||un−1

h |||h,n−1 from one time level
to the previous one. In the error analysis developed in the following section, we will
therefore use the H1-stability results in Corollary 4.5 for the pressure variable.

5 Error analysis

The energy error analysis for the velocities follows largely the argumentation of
Lehrenfeld and Olshanskii [42] and is based on Galerkin orthogonality and the sta-
bility result of Theorem 4.2. We write un := u(tn), pn := p(tn) and introduce the
notation

enu := un − unh, ηnu := un − I nh u
n, ξnh,u := I nh u

n − unh,

enp := pn − pnh , ηnp := pn − inh p
n, ξnh,p := inh p

n − pnh
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for n ≥ 1, where I nh denotes the standard Lagrangian nodal interpolation to Tnh,δ and
inh a generalised L2-stable interpolation (for example the Clément interpolation) to Tnh .
Moreover, we set

e0u = η0u = ξ0h,u = 0.

This is possible, as u0h cancels out in the summed space-time system (19). The follow-
ing estimates for the interpolation errors are well-known

‖ηnu‖Hl (�) ≤ chk−l‖un‖Hk (�) for 0 ≤ l ≤ 1, 2 ≤ k ≤ m + 1, (62)

‖ηnp‖Hl (�) ≤ chk−l‖pn‖Hk (�) for 0 ≤ l ≤ 1, 1 ≤ k ≤ m + 1, (63)

‖ηnp‖Hl (∂�) ≤ chk−l−1/2‖pn‖Hk (�) for 0 ≤ l ≤ 1, 1 < k ≤ m + 1. (64)

We will again make use of the extension operators En introduced in Sect. 3.3. For
better readability, we will sometimes skip the operators En assuming that quantities
that would be undefined on the domains of integration are extended smoothly.

For the error analysis, we assume that the solution (u, p) to (5) lies in
L2(I , Hm+1(�(t))d) × L2(I , Hm(�(t))) for m ≥ 1. Then, we can incorporate the
Nitsche terms in the variational formulation on the continuous level and see that (u, p)
is the solution to

(∂tu, v)�(t) + AS(u, p; v, q) + anD(u, p; v, q)

= (f , v)�(t) ∀v ∈ Ṽ(t), q ∈ L(t) a.e. in t ∈ I , (65)

where

Ṽ(t) := H1(�(t))d .

5.1 Energy error

As a starting point for the error estimation, we subtract (15) from (65) to obtain the
orthogonality relation

(
D(s)
t enu , vh

)
�n + (An

S + anD)(enu , e
n
p; vh , qh) + γgg

n
h (enu , vh) + γps

n
h (ξnh,p, qh)

= (D(s)
t un − ∂tu(tn), vh)�n + γgg

n
h (un, vh) + γps

n
h (inh p

n, qh)︸ ︷︷ ︸
=:Enc (vh ,qh )

∀vh ∈ Vn
h , qh ∈ Ln

h , (66)

for n ≥ s with the consistency error Enc (vh, qh). Note that this relation holds in partic-
ular also for n = s, as we have defined e0u = 0. We have used a different splitting in
the pressure stabilisation snh compared to the other terms, in order to include the case
p ∈ H1(�) (m = 1), where snh (pn, qh) would not be well-defined.
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We further split (66) into interpolation and discrete error parts

(
D(s)
t ξnh,u, vh

)

�n
+ (

An
S + anD

)
(ξnh,u, ξ

n
h,p; vh, qh) + γgg

n
h (ξ

n
h,u, vh) + γps

n
h (ξnh,p, qh)

= −Eni (vh, qh) + Enc (vh, qh) ∀vh ∈ Vn
h, qh ∈ Ln

h,

(67)

where the interpolation error is defined by

Eni (vh, qh) := (D(s)
t ηnu , vh)�n + (

An
S + anD

)
(ηnu , η

n
p; vh, qh) + γgg

n
h (η

n
u , vh). (68)

We will apply the stability result of Theorem 4.2 to (67), which will be the basis of
the error estimate. For better readability, we will restrict restrict ourselves again to the
case s = 1 first. Let us first estimate the consistency and interpolation errors.

Lemma 5.1 (Consistency error) Let u ∈ W 2,∞(In, L2(�n)d)∩ L∞(In, Hm+1(�n)d)

and p ∈ L∞(In, Hm(�n)). Under the assumptionsmade in Sect. 3, includingAssump-
tion 3.2, it holds for s = 1, vh ∈ Vn

h, qh ∈ Ln
h and n ≥ 1 that

|Enc (vh, qh)| ≤ c�t
1
2 ‖∂2t u‖Qn‖vh‖�n

+ chm
(‖u‖Hm+1(�n) + ‖p‖Hm (�n)

) (
gnh (vh, vh)

1/2 + snh (qh, qh)
1/2

)
.

Proof For the first part of the consistency error, we have using integration by parts and
a Cauchy–Schwarz inequality in time

1

�t

(
un − Enun−1) − ∂tu(tn) = − 1

�t

∫ tn

tn−1

∂t (E
nu(t)) − ∂t (E

nu(tn)) dt

= − 1

�t

∫ tn

tn−1

(t − tn−1)∂
2
t (Enu(t)) dt

≤ 1

�t

(∫ tn

tn−1

(t − tn−1)
2dt

)1/2 (∫ tn

tn−1

∂2t (Enu(t))2dt

)1/2

≤ �t1/2
(∫ tn

tn−1

∂2t (Enu(t))2dt

)1/2

.

Using (22) this implies

∣∣∣
1

�t

(
un − Enun−1, vh

)

�n
− (∂tu(tn), vh)�n

∣∣∣ ≤ c�t1/2‖∂2t (Enu)‖Qn
δ
‖vh‖�n

≤ c�t1/2‖∂2t u‖Qn‖vh‖�n . (69)

The extension operator En is needed, as the integration domain in the left-hand side
of (69) includes parts, that lie outside the physical domain Qn . For the ghost penalty
part, we have with Lemma 3.3 and the Hm+1-stability of the extension (20)

gnh (u
n, vh) ≤ gnh (u

n,un)1/2gnh (vh, vh)
1/2 ≤ chm‖un‖Hm+1(�n)g

n
h (vh, vh)

1/2
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Concerning the pressure stabilisation, we note that for pn ∈ H1(�n) the term
snh (pn, pn) is not well-defined. For this reason we distinguish between the cases
m = 1 and m ≥ 2. In the first case, we estimate using (10) and the H1-stability
of the interpolation

snh (inh p
n, qh) ≤ ch‖inh pn‖H1(�n)s

n
h (qh, qh)

1/2 ≤ ch‖pn‖H1(�n)s
n
h (qh, qh)

1/2.

For m ≥ 2, we insert ±pn and use (10), (14) and the interpolation error estimate (64)

snh (inh p
n, qh) ≤

(
snh (ηnp, η

n
p)

1/2 + snh (pn, pn)1/2
)
snh (qh, qh)

1/2

≤ chm‖pn‖Hm (�n)s
n
h (qh, qh)

1/2.

�
Lemma 5.2 (Interpolation error) Let u ∈ L∞(In, Hm+1(�(t))d), ∂tu ∈ L∞(In, Hm

(�(t))d), p ∈ L∞(In, Hm(�(t)). Under the assumptions made in Sect. 3, including
Assumption 3.2, it holds for vh ∈ Vn

h and qh ∈ Ln
h that

|Eni (vh, qh)| ≤ chm
(‖u‖∞,m+1,In + ‖∂tu‖∞,m,In

+‖p‖Hm (�n)

) (|||vh |||h,n + h‖∇qh‖�n
)
.

Proof We estimate the interpolation error (68) term by term. For the first term we use
that we can exchange time derivative and interpolation operator ∂t Ihun = Ih∂tu(tn)

∣∣ 1

�t
(ηnu − ηn−1

u , vh)�n
∣∣ ≤ 1

�t
‖ηnu − ηn−1

u ‖�n‖vh‖�n

= 1

�t

∥∥∥
∫ tn

tn−1

∂t (u(t) − Ihu(t)) dt
∥∥∥

�n
‖vh‖�n

≤ hm‖∂t (Enu)‖∞,m,In‖vh‖�n . (70)

We note again that the integration domain in the first norm on the right-hand side
includes parts, that might lie outside the physical domain Qn . By means of (21) we
conclude

∣∣∣
1

�t
(ηnu − ηn−1

u , vh)�n

∣∣∣ ≤ chm
(‖∂tu‖∞,m + ‖u‖∞,m+1

) ‖vh‖�n

For the second term in (68), we use Lemma 3.4

(An
S + anD)(ηnu , η

n
p; vh , qh)

≤ c
(
‖∇ηnu‖�n + h−1‖ηnu‖�n + h−1/2‖ηnu‖∂�n + h1/2

(
‖ηnu‖∂�n + ‖ηnp‖∂�n

)
+ ‖ηnp‖�n

)

· (‖∇vh‖�n + h−1/2‖vh‖∂�n + h1/2‖∂nvh‖∂�n + h‖∇qh‖�n
)

≤ chm
(‖un‖Hm+1(�n ) + ‖pn‖Hm (�n )

) (|||vh |||h,n + h‖∇qh‖�n
)

(71)
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Finally, we get for the ghost penalty part from (24) and the Hm+1-stability of the
extension

gnh (η
n
u , vh) ≤ chm‖un‖Hm+1(�n

δ )g
n
h (vh, vh)

1/2 ≤ chm‖un‖Hm+1(�n)g
n
h (vh, vh)

1/2.

�
Now, we are ready to show an error estimate for the velocities.

Theorem 5.3 Let uh = (ukh)
n
k=1, ph = (pkh)

n
k=1 be the discrete solution of (15) for

s = 1 and (u, p) the continuous solution of (5). Further, let γg ≥ c2(wmax)K with
c2(wmax) defined in Lemma 4.1, γD, γp sufficiently large and �t ≥ ch2 for some
c > 0. Under the assumptions stated in Sect. 3, including Assumption 3.2, it holds for
the error eku = uk − ukh, e

k
p = pk − pkh for n ≥ 1

‖enu‖2�n +
n∑

k=1

{
‖eku − ek−1

u ‖2
�k + �t

(
|||eku |||2h,k + h2‖∇ekp‖2�k

)}

≤ c exp(c1(wmax)tn)
(
�t2‖∂2t u‖2Q + h2m

(‖u‖2∞,m+1 + ‖∂tu‖2∞,m + ‖p‖2∞,m

) )
,

where e0u := 0 and c1(wmax) is defined in Lemma 4.1.

Proof As in the stability proof (Theorem 4.2, (43)), we obtain from (67) for n ≥ 1

‖ξnh,u‖2�n + ‖ξnh,u − ξn−1
h,u ‖2�n + �t

(
|||ξnh,u |||2h,n + γps

n
h (ξnh,p, ξ

n
h,p)

)

≤ (1 + c1(wmax)�t) ‖ξn−1
h,u ‖2

�n−1 + �t

2
‖∇ξn−1

h,u ‖2
�n−1 + �tγgg

n−1
h (ξn−1

h,u , ξn−1
h,u )

+ 2�t
(∣∣Enc (ξnh,u, ξ

n
h,p)

∣∣ + ∣∣Eni (ξnh,u, ξ
n
h,p)

∣∣
)

. (72)

for γg ≥ c2(wmax)K. A bound for ‖∇ξnh,p‖�n can be obtained from (66) as in the
proof of Lemma 4.4 (compare (47))

�th2‖∇ξnh,p‖2�n ≤ c�t
(
h2‖D(1)

t ξnh,u‖2�n + |||ξnh,u |||2h,n + snh (ξnh,p, ξ
n
h,p)

+ ∣∣Enc (ξnh,u, ξ
n
h,p)

∣∣ + ∣∣Eni (ξnh,u, ξ
n
h,p)

∣∣
)
.

(73)

We multiply (73) by ε > 0 and add it to (72). Due to the assumption �t ≥ ch2 the
first three terms on the right-hand side of (73) can be absorbed into the left-hand side
of (72) for sufficiently small ε

‖ξnh,u‖2�n + 3

4
‖ξnh,u − ξn−1

h,u ‖2�n + 3�t

4

(
|||ξnh,u |||2h,n + γps

n
h (ξnh,p, ξ

n
h,p) + εh2‖∇ξnh,p‖2�n

)

≤ (1 + c1(wmax)�t) ‖ξn−1
h,u ‖2

�n−1 + �t

2
‖∇ξn−1

h,u ‖2
�n−1 + �tγgg

n−1
h (ξn−1

h,u , ξn−1
h,u )

+ 2�t
(∣∣Enc (ξnh,u, ξ

n
h,p)

∣∣ + ∣∣Eni (ξnh,u, ξ
n
h,p)

∣∣
)

.

(74)
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Next, we use Lemmata 5.1 and 5.2 in combination with Young’s inequality to estimate
Enc and Eni

(1 − �t)‖ξnh,u‖2�n

+ 1

2
‖ξnh,u − ξn−1

h,u ‖2�n + �t

2

(
|||ξnh,u |||h,n + γps

n
h (ξnh,p, ξ

n
h,p) + εh2‖∇ξnh,p‖2�n

)

≤ (1 + c1(wmax)�t) ‖ξn−1
h,u ‖2

�n−1 + �t

2
‖∇ξn−1

h,u ‖2
�n−1 + �tγgg

n−1
h (ξn−1

h,u , ξn−1
h,u )

+ c�t
(
�t‖∂2t u‖2Qn + h2m

(
‖u‖2∞,m+1,In + ‖∂tu‖2∞,m,In + ‖p‖2Hm (�n)

) )
.

(75)

We sum over k = 1, . . . , n and apply a discrete Gronwall lemma to find

‖ξnh,u‖2�n +
n∑

k=1

(
‖ξ kh,u − ξ k−1

h,u ‖�k + �t
(
|||ξ kh,u |||2h,k + γps

k
h (ξ

k
h,p, ξ

k
h,p) + h2‖∇ξ kh,p‖2�k

))

≤ c exp(c1(wmax)tn)
(
�t2‖∂2t u‖2Q + h2m

(‖u‖2∞,m+1 + ‖∂tu‖2∞,m + ‖p‖2∞,m

) )
.

(76)

Finally, the interpolation estimates (62)–(64) and the argumentation used in (70)
yield

‖ηnu‖2�n +
n∑

k=1

(
‖ηku − ηk−1

u ‖�k + �t
(
|||ηku |||2h,k + h2‖∇ηkp‖2�k

))

≤ ch2m
(
‖u‖2∞,m+1 + ‖∂tu‖2∞,m + ‖p‖2∞,m

)
.

(77)

Addition of (76) and (77) proves the statement. �

Remark 5.4 (Optimality) The energy norm estimate is optimal under the inverse CFL
condition�t ≥ ch2. This condition is needed to control the pressure error h‖∇ξnh,p‖�n

using Lemma 4.4, see Corollary 4.5. If the Brezzi-Pitkäranta stabilisation would be
used instead of the CIP pressure stabilisation, this term would be controlled by the
pressure stabilisation in Theorem 4.2, as h‖∇ξnh,p‖�n = snh (ξnh,p, ξ

n
h,p)

1/2. Hence, an
unconditional error estimate of first order in space would result.

Remark 5.5 (BDF(2)) For s = 2we obtain a similar result under the stronger condition
�t ≥ ch This is needed to get control over h‖∇ξ kh,p‖�k , see Corollary 4.5 (60). Under
this assumption, we can show the following result for n ≥ 2:
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‖enu‖2�n + �t
n∑

k=1

(
|||eku |||2h,k + h2‖∇ekp‖2�k

)

≤ c exp(c1(wmax)tn)

×
(
�t4‖u‖2H3(I ,L2(�n))

2 + h2m
(
‖u‖2∞,m+1 + ‖∂tu‖2∞,m + ‖p‖2∞,m

) )

+ c
(
‖e1u‖2�1 + �t |||e1u |||2h,1

)
.

which is of second order in time �t , if we assume that the initial error is bounded by

‖e1u‖2�1 + �t |||e1u |||2h,1

≤ c
(
�t4‖u‖2H3(I ,L2(�n))

+ h2m
(
‖u‖2∞,m+1,I1 + ‖∂tu‖2∞,m,I1 + ‖p‖2Hm (�1)

))
.

(78)

The initialisation will be discussed in the following remark. The main modifications
in the proof concern the approximation of the time derivative in Lemmas 5.1 and 5.2.
In (69) we estimate

(
D(2)
t un − ∂tu(tn), vh

)

�n
≤ c�t3/2‖∂3t u‖Qn‖vh‖�n ,

see [12,34]. In order to estimate the analogue of (70), we use

D(2)
t unh = 3

2
D(1)
t unh + 1

2
D(1)
t un−1

h . (79)

Then the argumentation used in (70) can be applied to both terms on the right-hand
side of (79).

Remark 5.6 (Initialisation of BDF(2)) To initialise the BDF(2) scheme, the function
u1h needs to be computed with sufficient accuracy. The simplest possibility is to use
one BDF(1) step by solving

1

�t

(
u1h, v

1
h

)

�k
+ A1

h(u
1
h, p

1
h; v1h, q1h ) = 1

�t

(
Eu0, v1h

)

�1

+ (f , v1h)�1 ∀v1h ∈ V1
h, q

1
h ∈ L1

h

for (u1h, p
1
h) ∈ (V1

h × L1
h,0). Similar to the proof of Theorem 5.3, the error after one

BDF(1) step can be estimated by

‖e1u‖2�1 + �t |||e1u |||2h,1

≤ c
(
�t3‖∂2t u‖2Q1 + �t h2m

(
‖u‖2∞,m+1,I1 + ‖∂tu‖2∞,m,I1 + ‖p‖2Hm (�1)

))

≤ c
(
�t4‖u‖2H3(I ,L2(�n))

+ �t h2m
(
‖u‖2∞,m+1,I1 + ‖∂tu‖2∞,m,I1 + ‖p‖2Hm (�1)

))
,
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where in the last step a Sobolev inequality has been applied in time to show ‖∂2t u‖2
Q1 ≤

�t‖∂2t u‖2∞,0,I1
≤ c�t‖u‖2

H3(I ,L2(�n))
.

5.1.1 L2(L2)-norm error of pressure

The energy estimate in Theorem 5.3 includes an optimal bound for the H1-norm of
the pressure. To show an optimal bound in the L2-norm seems to be non-trivial, due
to the fact that un−1

h is not discrete divergence-free with respect to �n and Vn
h , see the

discussion in Sect. 4.1. We show here only a sub-optimal bound for s = 1. An optimal
estimate is subject to future work.

Lemma 5.7 Under the assumptions of Theorem 5.3 it holds for s = 1

(
�t

n∑

k=1

‖ekp‖2�k

)1/2

≤ c exp(c1(wmax)tn)

(
�t1/2‖∂2t u‖Q + hm

�t1/2
(‖u‖∞,m+1 + ‖∂tu‖∞,m + ‖p‖∞,m

) )
,

where e0u := 0.

Proof We use the modified inf-sup condition for the discrete part ξnh,p = inh p
n − pnh

and standard interpolation estimates

β‖ξnh,p‖�n ≤ sup
vnh∈Vnh

(div vnh, ξ
n
h,p)�n − (vnh · n, ξnh,p)∂�n

|||vnh |||h,n
+ h‖∇ξnh,p‖�n

≤ sup
vnh∈Vnh

(div vnh, e
n
p)�n − (vnh · n, enp)∂�n

|||vnh |||h,n

+ sup
vnh∈Vnh

(div vnh, η
n
p)�n − (vnh · n, ηnp)∂�n

|||vnh |||h,n

+ h
(
‖∇enp‖�n + ‖∇ηnp‖�n

)

≤ sup
vnh∈Vnh

(div vnh, e
n
p)�n − (vnh · n, enp)∂�n

|||vnh |||h,n

+ h‖∇enp‖�n + chm‖pn‖Hm (�n). (80)

The second term on the right-hand side is bounded by the energy estimate. For the first
term, we use Galerkin orthogonality (66), followed by Cauchy–Schwarz and Poincaré
inequalities
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(div vnh, e
n
p)�n − (vnh · n, enp)∂�n

= −(D(1)
t enu, vh)�n − (An

S + anD)(enu, 0; vh, 0) − γgg
n
h (e

n
u, vh)

+ γgg
n
h (u

n, vh) + (D(1)
t un − ∂tu(tn), vh)�n

≤ c
{
‖D(1)

t enu‖�n + |||enu |||h,n + hm‖un‖Hm+1(�n) + �t‖∂2t un‖�n

}
|||vh |||h,n .

After summation in (80), we obtain

�t
n∑

k=1

‖ξ kh,p‖2�k ≤ c
n∑

k=1

{ 1

�t
‖eku − ek−1

u ‖2
�k + �t

(
|||eku |||2h,k + h2‖∇ekp‖2�k

)

+�th2m
(
‖uk‖2Hm+1(�k)

+ ‖pk‖2Hm (�k)

)
+ �t3‖∂2t uk‖2�k

}
.

(81)

Using the standard interpolation estimate‖ηkp‖2�k ≤ ch2m‖pk‖2Hm (�k)
,we see that (81)

holds for ξ kh,p replaced by e
k
p . Finally, Theorem5.3 yields the statement. Unfortunately,

the factor 1
�t in front of the first term on the right-hand side of (81) leads to a loss of

�t−1/2 in the final estimate. �
Remark 5.8 (BDF(2)) For s = 2 we can only control �t3‖D(2)

t enu‖2�n = �t
2 ‖3enu −

4en−1
u + en−2

u ‖2�n (compared to �t2‖D(1)
t enu‖2�n for s = 1), which leads to a further

loss of �t−1 in the above estimate:

(
�t

n∑

k=1

‖ekp‖2�k

)1/2

≤ c exp(c1(wmax)tn)
(
�t‖∂2t u‖Q

+ hm

�t

(‖u‖∞,m+1 + ‖∂tu‖∞,m + ‖p‖∞,m
) )

.

Remark 5.9 The estimate in Lemma 5.7 is balanced, if we choose �t ∼ hm , which
yields a convergence order ofO(�t1/2) = O(hm/2). This means that the convergence
order is reduced by O(hm/2) compared to the situation on a fixed domain �(t) = �.
For BDF(2) the estimate is balanced for�t2 ∼ hm and we obtain a convergence order
of O(�t) = O(hm/2). The inverse CFL conditions in Theorem 5.3 and Remark 5.5
are automatically fulfilled for these choices, if m ≥ 2 or m = s = 1.

5.2 L2(L2)-norm error of velocity

To obtain an optimal bound for the velocity error in the L2-norm, we introduce a dual
problem. The argumentation of Burman and Fernández [12], that does not require a
dual problem, but is based on a Stokes projection Ph(u, p) of the continuous solution,
can not be transferred in a straight-forward way to the case of moving domains,
as it requires an estimate for the time derivative ∂t (u − Pu

h u). Time derivative and
Stokes projection do, however, not commute in the case of moving domains, as Pu

h u(t)
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depends on the domain�(t). For this reason an estimate for the time derivative is non-
trivial.

We focus again on the case s = 1 first and remark on how to transfer the argu-
mentation to the case s > 1 afterwards. The argumentation will be based on a
semi-discretised (in time) dual problem. Before we introduce the dual problem, let
us note that the semi-discretised primal problem is given by: Find (uk, pk)nk=1 with
uk ∈ H1

0 (�k), pk ∈ L2
0(�

k) such that

n∑

k=1

{
(uk − Ek−1uk−1, ψk

u )�k + �tAk
S(u

k,pk;ψk
u , ψk

p)
} + (E0u0, ψ1

u )�1

=
(
E0u0, ψ1

u

)

�1
+ �t

n∑

k=1

(
f , ψk

u

)

�k
∀ψk

u ∈ H1
0 (�k)d ,

ψk
p ∈ L2(�k), k = 1, . . . , n, (82)

where Ek denotes the smooth extension operator to �k
δ introduced in Sect. 3.3.

The corresponding semi-discretised dual problem, which will be needed in the
following, reads: Find (zku, z

k
p)

n
k=1 with zku ∈ H1

0 (�k), zkp ∈ L2
0(�

k) such that

�t
n∑

k=1

(
eku, φ

k
u

)

�k
=

n∑

k=1

{
(φk

u − Ek−1φk−1
u , zku)�k + �tAk

S(φ
k
u , φ

k
p; zku, zkp)

}

+ (E0φ0
u , z

1
u)�1 ∀φk

u ∈ H1
0 (�k)d , φk

p ∈ L2
0(�

k), k = 1, . . . , n. (83)

Note that the Dirichlet conditions are imposed strongly in this formulation and the
bilinear form Ak

S does not include the Nitsche terms.
We start by showing the well-posedness of the problem (83).

Lemma 5.10 Let s = 1, eku ∈ L2(�k) for k = 1, . . . , n and assume Assumption 3.2.
The semi-discrete dual problem (83) defines unique solutions (zku, z

k
p)

n
k=1 with regu-

larity zku ∈ H2(�k), zkp ∈ H1(�k). Moreover, the following regularity estimates are

valid, where Skδ := �k
δ \ �k and D(1)

t zk+1
u = 1

�t (E
kzk+1

u − zku)

‖zku‖H2(�k ) + ‖zkp‖H1(�k ) ≤ c

(
‖D(1)

t zk+1
u ‖�k + 1

�t
‖Ekzk+1

u ‖Skδ + ‖eku‖�k

)
for k < n,

(84)

‖znu‖H2(�n) + ‖znp‖H1(�n) ≤ c

(
1

�t
‖znu‖�n + ‖enu‖�n

)
. (85)

Proof By testing (83) with φ̃
l
u = δkl φ

k
u , φ̃

l
p = δklφ

k
p, l = 1, . . . , n, where δkl is the

Kronecker delta, we observe that the system splits into n separate time steps, where
each step corresponds to a stationary Stokes systemwith an additional L2-term coming
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from the discretisation of the time derivative. For k < n we have

1

�t
(φk

u , z
k
u)�k + Ak

S(φ
k
u , φ

k
p; zku, zkp) = 1

�t
(Ekφk

u , z
k+1
u )�k+1 +

(
eku, φ

k
u

)

�k

∀φk
u ∈ H1

0 (�k)d , φk
p ∈ L2

0(�
k), (86)

and for k = n

1

�t

(
φn
u , znu

)
�n + An

S(φ
n
u , φn

p; znu, znp) = (
enu, φ

n
u

)
�n ∀φn

u ∈ H1
0 (�n)d , φk

p ∈ L2
0(�

n).

(87)

As the corresponding reduced problems are coercive in the velocity space V0(tk) (cf.
Sect. 2.1), existence and uniqueness of solutions zku ∈ H1

0 (�k), zkp ∈ L2
0(�

k) follow
inductively by standard arguments for k = n, . . . , 1, see e.g.Temam [58], Section I.2.

To show the regularity estimates (84) and (85), let us re-formulate the problems
(86) and (87) in the following way: For k < n we have

Ak
S(φ

k
u , φ

k
p; zku, zkp) = 1

�t

(
(Ekφk

u , z
k+1
u )�k+1 − (φk

u , z
k
u)�k

)
+

(
eku, φ

k
u

)

�k︸ ︷︷ ︸
=:Fk (φk

u )

∀φk
u ∈ H1

0 (�k)d , φk
p ∈ L2

0(�
k),

(88)

and for k = n

An
S(φ

n
u , φn

p; znu, znp) = (
enu, φ

n
u

)
�n − 1

�t

(
φn
u , znu

)
�n

︸ ︷︷ ︸
=:Fn(φn

u )

∀φn
u ∈ H1

0 (�n)d , φk
p ∈ L2

0(�
n).

If we can prove that Fk lies in the dual space [L2(�k)d ]∗, Proposition I.2.2 in
Temam’s book [58] guarantees the regularity estimate

‖zku‖H2(�k) + ‖zkp‖H1(�k) ≤ c sup
φk
u∈L2(�k)

Fk(φk
u)

‖φk
u‖�k

. (89)

We need to show that the right-hand side is bounded. Splitting the first integral on the
right-hand side into an integral over �k and Skδ , we have for k < n

Fk(φ
k
u) ≤ ‖φk

u‖�k‖D(1)
t zk+1

u ‖�k + 1

�t
‖Ekφk

u‖Skδ ‖E
kzk+1

u ‖Skδ + ‖eku‖�k‖φk
u‖�k .

and thus,

Fk(φ
k
u) ≤ c

(
‖D(1)

t zk+1
u ‖�k + 1

�t
‖Ekzk+1

u ‖Skδ + ‖eku‖�k

)
‖φk

u‖�k . (90)
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For k = n, we obtain

Fn(φ
n
u ) ≤ c

(
1

�t
‖znu‖�n + ‖enu‖�n

)
‖φn

u‖�n . (91)

The boundedness of Fk follows by induction for k = n, . . . , 1 and by using the
stability of the extension operator Ek . Combination of (89) and (90), resp. (91), yield
the regularity estimates (86) and (87). �

Next, we derive a stability estimate for the semi-discretised dual problem (83). We
remark that a stability estimate for the continuous dual problem, including the first
time derivative ∂t z, could be obtained as well. This is however not enough to bound
the consistency error of the time derivative in a sufficient way for an optimal L2-norm
error estimate.

Lemma 5.11 Let the assumptions made in Sect. 3 be valid, including Assumption 3.2.
For sufficiently small �t < ξ , where ξ depends only on cδ , wmax and the domains
�k, k = 1, . . . , n, the solution (zku, z

k
p)

n
k=1 to the semi-discretised dual problem (83)

for s = 1 fulfils the stability estimate

‖∇z1u‖2�1 + 1

�t
‖∇znu‖2�n +

n−1∑

k=1

{
‖∇(zku − Ekzk+1

u )‖2
�k + ‖D(1)

t zk+1
u ‖2

�k

}

+ �t
n∑

k=1

{
‖zku‖2H2(�k)

+ ‖zkp‖2H1(�k )

}
≤ cw2

max�t
n∑

k=1

‖eku‖2�k .

Proof Weshowa stability estimate for the first derivatives∇zku first. For better readabil-
ity we will in the following skip the extension operators Ek and denote the extension
Ekzk+1

u still by zk+1
u and similarly for other variables.

Diagonal testing in (83) with φk
u = zku, φ

k
p = zkp results in

n∑

k=1

{
(zku − zk−1

u , zku)�k + �t‖∇zku‖2�k

}
+ (z0u, z

1
u)�1 = �t

n∑

k=1

(
eku, z

k
u

)

�k
,

or equivalently

n−1∑

k=1

{
‖zku‖2�k − (zku, z

k+1
u )�k+1 + �t‖∇zku‖2�k

}
+ ‖znu‖2�n + �t‖∇znu‖2�n

= �t
n∑

k=1

(
eku, z

k
u

)

�k
. (92)

123



Eulerian time-stepping schemes for the non-stationary… 455

As zku vanishes on ∂�k , a Poincaré-like estimate gives in combination with (9) and the
stability of the extension operator

‖zku‖Skδ ≤ cp
(
δ1/2‖zku‖∂�k + δ‖∇zku‖Skδ

)
≤ cpcδwmax�t‖∇zku‖�k , (93)

where cp denotes a constant depending on the domain �k and cδ > 1 is the constant
in (9). Using Young’s inequality, this implies for �t ≤ (2c2pc

2
δw

2
max)

−1

‖zku‖Skδ ‖z
k+1
u ‖Skδ ≤ 1

2
c2pc

2
δw

2
max�t2

(
‖∇zku‖2�k + ‖∇zk+1

u ‖2
�k+1

)

≤ �t

4

(
‖∇zku‖2�k + ‖∇zk+1

u ‖2
�k+1

)
.

We obtain

‖zku‖2�k−(zku, z
k+1
u )�k+1 ≥ (zku, z

k
u − zk+1

u )�k − ‖zku‖Skδ ‖z
k+1
u ‖Skδ

≥ 1

2

(
‖zku‖2�k + ‖zku − zk+1

u ‖2
�k − ‖zk+1

u ‖2
�k+1

)

− �t

4

(
‖∇zku‖2�k + ‖∇zk+1

u ‖2
�k+1

)
. (94)

For the right-hand side in (92), we apply the Cauchy-Schwarz, a Poincaré and Young’s
inequality to get

�t
n∑

k=1

(
eku, z

k
u

)

�k
≤

n∑

k=1

�t

4
‖∇zku‖2�k + c�t‖eku‖2�k . (95)

Using (94) and (95), (92) writes

‖z1u‖2�1 + ‖znu‖2�n +
n−1∑

k=1

‖zku − zk+1
u ‖2

�k +
n∑

k=1

�t‖∇zku‖2�k ≤ c�t
n∑

k=1

‖eku‖2�k . (96)

Next, we use the regularity estimates in Lemma 5.10 to get a bound for the second
derivatives of zku . For k = n we have

‖znu‖H2(�n) + ‖znp‖H1(�n) ≤ c

(
1

�t
‖znu‖�n + ‖enu‖�n

)
.

For k < n Lemma 5.10 gives us

‖zku‖H2(�k) + ‖zkp‖H1(�k) ≤ c

(
‖D(1)

t zk+1
u ‖�k + 1

�t
‖zk+1

u ‖Skδ + ‖eku‖�k

)
.
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We estimate the term on Skδ by using a Poincaré-type inequality with a domain-
dependent constant cp > 0 as in (93), followed by (34) for ε = 1 and the stability of
the extension

c‖zk+1
u ‖Skδ ≤ ccpδ‖∇zk+1

u ‖Skδ ≤ ccpδ
3/2‖zk+1

u ‖H2(�k
δ )

≤ ccpδ
3/2‖zk+1

u ‖H2(�k+1).

Using (9) we get for �t < (4c2c2pc
3
δw

3
max)

−1

c‖zk+1
u ‖Skδ ≤ ccp(cδwmax�t)3/2‖zk+1

u ‖H2(�k+1) ≤ �t

2
‖zk+1

u ‖H2(�k+1), (97)

and hence

‖zku‖H2(�k) + ‖zkp‖H1(�k) ≤ c
(
‖D(1)

t zk+1
u ‖�k + ‖eku‖�k

)
+ 1

2
‖zk+1

u ‖H2(�k+1).

Summation over k = 1, . . . , n results in

�t
n∑

k=1

{
‖zku‖2H2(�k)

+ ‖zkp‖2H1(�k )

}

≤ c0

(
1

�t
‖znu‖2�n +

n−1∑

k=1

‖D(1)
t zk+1

u ‖2
�k

)
+ c�t

n∑

k=1

‖eku‖�k , (98)

where c0 denotes a constant. It remains to derive a bound for the discrete time derivative
on the right-hand side. Therefore, note that for k < n we can write (88) equivalently
by using the density of H1(�k) in L2(�k) as

−(�zku,φ
k
u)�k + (∇zkp, φ

k
u)�k − (zku,∇φk

p)�k

= 1

�t

(
(Ek+1φk

u , z
k+1
u )�k+1 − (φk

u , z
k
u)�k

)

+
(
eku, φ

k
u

)

�k
∀φk

u ∈ L2(�k)d , φk
p ∈ H1(�k). (99)

For k = n we have

− (�znu, φ
n
u )�n + (∇znp, φ

n
u )�n − (znu,∇φn

p)�n

= (
enu, φ

n
u

)
�n − 1

�t

(
φn
u , znu

)
�n ∀φn

u ∈ L2(�n)d , φn
p ∈ H1(�n). (100)

For k < n we test (99) with φk
u = zku − zk+1

u , φk
p = 0

−(�zku, z
k
u − zk+1

u )�k + (∇zkp, z
k
u − zk+1

u )�k + 1

�t

(‖zku − zk+1
u ‖2

�k+1

+ (zku − zk+1
u , zk+1

u )�k\�k+1 − (zku − zk+1
u , zk+1

u )�k+1\�k

) =
(
eku, z

k
u − zk+1

u

)

�k
.

(101)

123



Eulerian time-stepping schemes for the non-stationary… 457

Using integration by parts and the fact that zku |∂�k = 0, the first term in (101) writes

−(�zku, z
k
u − zk+1

u )�k =
(
∇zku, ∇(zku − zk+1

u )
)

�k
+

(
∂nzku, z

k+1
u

)

∂�k
.

For the second term in (101) we note that (∇zkp, z
l
u)�l = 0 for l = k, k + 1

(∇zkp, z
k
u − zk+1

u )�k= (∇zkp, z
k
u)�k

︸ ︷︷ ︸
=0

− (∇zkp, z
k+1
u )�k+1

︸ ︷︷ ︸
=0

+(∇zkp, z
k+1
u )�k+1\�k − (∇zkp, z

k+1
u )�k\�k+1 .

Setting Bk
δ := (�k+1\�k) ∪ (�k\�k+1) we obtain further

(∇zkp, z
k
u − zk+1

u )�k ≥ −‖∇zkp‖Bk
δ
‖zk+1

u ‖Bk
δ
.

Using the Cauchy–Schwarz and Young’s inequality, we obtain from (101)

1

2�t

(∥∥∥zku − zk+1
u

∥∥∥
2

�k
−

∥∥∥zku − zk+1
u

∥∥∥
Bk

δ

∥∥∥zk+1
u

∥∥∥
Bk

δ

)
+

(
∇zku,∇(zku − zk+1

u )
)

�k

− (∂nzku, z
k+1
u )∂�k − ‖∇zkp‖Bk

δ
‖zk+1

u ‖Bk
δ

≤ c�t‖eku‖2�k .

(102)

To estimate the second term on the left-hand side, we apply the triangle inequality and
Young’s inequality to get

1

�t

∥∥∥zku − zk+1
u

∥∥∥
Bk

δ

∥∥∥zk+1
u

∥∥∥
Bk

δ

≤ c

�t

(∥∥∥zku
∥∥∥
2

Bk
δ

+
∥∥∥zk+1

u

∥∥∥
2

Bk
δ

)
(103)

Next, we note that, due to (8) for n = k and n = k + 1, the maximum width of the
strip Bk

δ is of size O(δ) as for Skδ . Thus, we can use a Poincaré-type estimate with
a constant cp > 0 as in (93). In combination with the fact that zlu = 0 on ∂�l for
l = k, k + 1, we obtain

c

�t

∥∥∥zlu
∥∥∥
2

Bk
δ

≤ cc2p
δ

�t

(∥∥∥zlu
∥∥∥
2

∂�
+ δ

∥∥∥∇zlu
∥∥∥
2

Bk
δ

)
= cc2p

δ2

�t

∥∥∥∇zlu
∥∥∥
2

Bk
δ

(104)

Using (34) followed by (9) and the stability of the extensions, we obtain further for
ε < 1

cc2p
δ2

�t

∥∥∥∇zlu
∥∥∥
2

Bk
δ

≤ cc2p
δ3

�t

(
ε−1

∥∥∥∇zlu
∥∥∥
2

�k
δ

+ ε

∥∥∥∇2zlu
∥∥∥
2

�k
δ

)

≤ cc2pc
3
δw

3
max�t2

(
ε−1

∥∥∥∇zlu
∥∥∥
2

�l
+ ε

∥∥∥∇2zlu
∥∥∥
2

�l

)
.

(105)
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For sufficiently small �t < 1
cc2pc

3
δw

3
max

we obtain from (103)-(105)

1

�t

∥∥∥zku − zk+1
u

∥∥∥
Bk

δ

∥∥∥zk+1
u

∥∥∥
Bk

δ

≤ �t
k+1∑

l=k

(
ε−1

∥∥∥∇zlu
∥∥∥
2

�l
+ ε

∥∥∥∇2zlu
∥∥∥
2

�l

)
. (106)

For the third term in (102), we use a telescope argument

(
∇zku,∇(zku − zk+1

u )
)

�k
= 1

2

(
‖∇zku‖2�k + ‖∇(zku − zk+1

u )‖2
�k − ‖∇zk+1

u ‖2
�k

)
.

To bring the last term to �k+1, we estimate using (34)

‖∇zk+1
u ‖2

�k ≤ ‖∇zk+1
u ‖2

�k+1 + ‖∇zk+1
u ‖2

Skδ
≤ (1 + cc2δw

2
maxε

−1�t)‖∇zk+1
u ‖2

�k+1

+ ε�t‖∇2zk+1
u ‖2

�k+1

For the boundary term in (102), we use Green’s theorem on Skδ

(∂nzku, z
k+1
u )∂�k ≤ −(∂nzku, z

k+1
u︸︷︷︸
=0

)∂�k+1 + ‖∇zku‖Skδ ‖∇zk+1
u ‖Skδ + ‖�zku‖Skδ ‖z

k+1
u ‖Skδ

(107)

For the second term on the right-hand side in (107) we use (34) twice with ε < 1,
followed by (9), the stability of the extensions and Young’s inequality

‖∇zku‖Skδ ‖∇zk+1
u ‖Skδ

≤ cδ
(
ε−1/2‖∇zku‖�k

δ
+ ε1/2‖∇2zku‖�k

δ

)

×
(
ε−1/2‖∇zk+1

u ‖
�k+1

δ
+ ε1/2‖∇2zk+1

u ‖
�k+1

δ

)

≤ ccδwmax�t
(
ε−1/2‖∇zku‖�k + ε1/2‖∇2zku‖�k

)

×
(
ε−1/2‖∇zk+1

u ‖�k+1 + ε1/2‖∇2zk+1
u ‖�k+1

)

≤ �t
k+1∑

l=k

(
cc2δw

2
maxε

−1‖∇zlu‖2�l + ε‖∇2zlu‖2�l

)
.

For the last term in (107) we obtain as in (104)

‖�zku‖Skδ ‖z
k+1
u ‖Skδ ≤ cδ‖�zku‖Skδ ‖∇zk+1

u ‖Skδ
≤ ε�t‖�zku‖2�k + cc2δw

2
maxε

−1�t‖∇zk+1
u ‖2

�k+1 . (108)
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In the last inequality, we have used (9) and Young’s inequality. Together, (107)–(108)
yield the estimate

(∂nzku, z
k+1
u )∂�k ≤ �t

k+1∑

l=k

(
cc2δw

2
maxε

−1‖∇zlu‖2�l + ε‖∇2zlu‖2�l

)
.

To estimate the pressure term in (102), we obtain as in (108)

‖∇zkp‖Bk
δ
‖zk+1

u ‖Bk
δ

≤ �t
(
ε‖∇zkp‖2�k + cc2δw

2
maxε

−1‖∇zk+1
u ‖2

�k+1

)
.

To summarise we have shown that

1

2�t

∥∥∥zku − zk+1
u

∥∥∥
2

�k
+ 1

2

(
(1 − cε−1w2

max�t)‖∇zku‖2�k + ‖∇(zku − zk+1
u )‖2

�k

)

≤ 1

2
(1 + cε−1w2

max�t)‖∇zk+1
u ‖2

�k+1

+ ε�t
(
‖∇zkp‖2�k + ‖∇2zku‖2�k + ‖∇2zk+1

u ‖2
�k+1

)
+ c�t‖eku‖2�k . (109)

For k = n we obtain from (100) tested with φn
u = znu and φn

p = znp that

1

2�t

∥∥znu
∥∥2

�n + 1

2
‖∇znu‖2�n ≤ �t

2
‖enu‖2�n . (110)

Summation in (109) over k = 1, . . . , n−1 and addition of (110) and (98)multiplied
by a factor of 3ε yields for ε < 1

12c0

‖∇z1u‖2�1 + ‖∇znu‖2�n + 1

�t
‖znu‖2�n +

n−1∑

k=1

{
1

�t

∥∥∥zku − zk+1
u

∥∥∥
2

�k
+ ‖∇(zku − zk+1

u )‖2
�k

}

+ ε�t
n∑

k=1

{
‖zku‖2H2(�k )

+ ‖zkp‖2H1(�k )

}
≤ c�t

n∑

k=1

{
‖eku‖2�k + w2

max‖∇zku‖2�k

}
.

(111)

Using (96) we can estimate the last term by

w2
max�t

n∑

k=1

‖∇zku‖2�k ≤ cw2
max�t

n∑

k=1

‖eku‖2�k ,

which completes the proof. �

Now we are ready to prove an error estimate for the L2(L2)-norm of the velocities.
First, we note that, due to the regularity proven in Lemma 5.10, the solution (zku, z

k
p)

n
k=1
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of (83) is also the unique solution to the Nitsche formulation: Find (zku, z
k
p)

n
k=1, where

zku ∈ H2(�k)d , zkp ∈ H1(�) ∩ L2
0(�

k) such that

�t
n∑

k=1

(
eku, φ

k
u

)

�k
=

n∑

k=1

{
(φk

u − Ekφk−1
u , zku)�k + �t

(
Ak

S + akD

)
(φk

u , φ
k
p; zku, zkp)

}

+ (φ0
u , z

1
u)�1 ∀φk

u ∈ H1(�k), φk
p ∈ L2(�k), k = 1, . . . , n. (112)

Theorem 5.12 We assume that the solution (u, p) of (5) fulfils the regularity assump-
tions u(tk) ∈ Hm+1(�k)d and p(tk) ∈ Hm(�k) for k = 1, . . . n and s = 1. Under
the assumptions of Theorem 5.3 and the inverse CFL condition �t ≥ ch2 for some
c > 0, it holds that

(
�t

n∑

k=1

‖eku‖2�k

)1/2

≤ cwmax exp(c1(wmax)tn)(
�t‖∂2t u‖Q + hm+1 (‖u‖∞,m+1 + ‖∂tu‖∞,m + ‖p‖∞,m

) )
,

with c1(wmax) specified in Lemma 4.1.

Proof We test (112) with φk
u = eku, φ

k
p = ekp, k = 0, . . . , n to get

�t
n∑

k=1

‖eku‖2�k =
n∑

k=1

{
(eku − ek−1

u ), zku)�k + �t
(
Ak

S + akD

)
(eku, e

k
p; zku, zkp)

}

+ (e0u, z
1
u)�1 .

We define

ηkz,u := zku − I kh z
k
u, ηkz,p := zkp − i kh z

k
p

and use Galerkin orthogonality to insert the interpolants I kh z
k
u and i kh z

k
p

�t
n∑

k=1

‖eku‖2�k =
n∑

k=1

{
(eku − ek−1

u ), ηkz,u)�k + �t
(
Ak

S + akD

)
(eku, e

k
p; ηkz,u, η

k
z,p)

}

+ �t
n∑

k=1

{
D(1)
t u(tk) − ∂tu(tk), i

k
h z

k
u)�k + γgg

k
h(u

k
h, i

k
h z

k
u) + γps

k
h (p

k
h, i

k
h z

k
p)

}

(113)
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We use the continuity of the bilinear form Ak
S + akD (Lemma 3.4) and standard inter-

polation estimates

(Ak
S + akD)(eku, e

k
p; ηkz,u, η

k
z,p) ≤ c

(
‖∇eku‖�k + h−1/2‖eku‖∂�k + h1/2‖∂neku‖∂�k + h‖∇ekp‖�k

)

·
(
‖∇ηkz,u‖�k + h−1‖ηkz,u‖�k + ‖ηkz,p‖�k + h−1/2‖ηkz,u‖∂�k + h1/2

(
‖∂nηkz,u‖∂�k + ‖ηkz,p‖∂�k

))

≤ ch
(
‖∇eku‖�k + h−1/2‖eku‖∂�k + h1/2‖∇eku‖∂�k + h‖∇ekp‖�k

) (
‖∇2zku‖�k + ‖∇zkp‖�k

)
.

To estimate h1/2‖∇eku‖∂�k we split into a discrete and an interpolatory part and use
an inverse inequality and Lemma 3.3

h1/2‖∇eku‖∂�k ≤ h1/2
(
‖∇ηku‖∂�k + ‖∇ξ kh,u‖∂�k

)
≤ chm‖u‖Hm+1(�k ) + c‖∇ξ kh,u‖�k

h

≤ chm‖u‖Hm+1(�k ) + c‖∇eku‖�k
h

≤ chm‖u‖Hm+1(�k ) + c|||eku |||h,k .

(114)

This yields

(Ak
S + akD)(eku, e

k
p; ηkz,u, η

k
z,p)

≤ ch
(
|||eku |||h,k + h‖∇ekp‖�k + hm‖uk‖Hm+1(�k)

) (
‖∇2zku‖�k + ‖∇zkp‖�k

)
.

For the consistency error of the time derivative on the right-hand side of (113), we
obtain as in Lemma 5.1

∣∣∣
(
D(1)
t u(tk) − ∂tu(tk), i

k
hz

k
u

)

�n

∣∣∣ ≤ c�t‖∂2t u‖Qk‖zku‖�k .

For the ghost penaltywe insert± zku and±u(tk) and use Lemma 3.3 aswell as standard
estimates for the interpolation

gkh(u
k
h, i

k
hz

k
u) = gkh(e

k
u, η

k
z,u) − gkh(u(tk), η

k
z,u) − gkh(e

k
u, z

k
u) + gkh(u(tk), zku)

≤ ch
(
gkh(e

k
u, e

k
u)

1/2 + hm‖u‖Hm+1(�k )

)
‖zku‖H2(�k ).

For the pressure stabilisation we distinguish between the cases m = 1 and m > 1, the
latter implying by assumption that pk ∈ H2(�k). For m = 1, the following estimate
is optimal

skh(p
k
h, i

k
h z

k
p) ≤ ch2‖∇ pkh‖�k‖∇zkp‖�k ≤ ch2

(
‖∇ pk‖�k + ‖∇ekp‖

)
‖∇zkp‖�k .
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For m > 1 we insert ±pk and use (10), (11) and (14)

skh(p
k
h, i

k
h z

k
p) = −skh(e

k
p, i

k
h z

k
p) + skh(p

k, i kh z
k
p)

≤ skh(e
k
p, e

k
p)

1/2skh(i
k
h z

k
p, ih z

k
p)

1/2) + skh(p
k, pk)

︸ ︷︷ ︸
=0

1/2
skh(i

k
h z

k
p, i

k
h z

k
p)

1/2

≤ ch2‖∇ekp‖�k‖∇zkp‖�k .

It remains to estimate the terms corresponding to the discrete time derivative in (113).
We use a standard interpolation estimate and the inverse CFL condition h2 ≤ c�t to
get

(eku − ek−1
u , ηkz,u)�k ≤ ch2‖eku − ek−1

u ‖�k‖∇2zku‖�k

≤ ch‖eku − ek−1
u ‖�k�t1/2‖∇2zku‖�k . (115)

By combining the above estimates, we have from (113)

�t
n∑

k=1

‖eku‖2�k ≤ c�th
n∑

k=1

{(|||eku |||k,h + h‖∇ekp‖�k + hm
(
‖uk‖Hm+1(�k ) + ‖pk‖Hm (�k )

) )

·
(
‖zku‖H2(�k ) + ‖∇zkp‖�k

) }

+ c�t2
n∑

k=1

{
‖∂2t u‖Qk‖zku‖�k

}
+ ch

n−1∑

k=1

{
‖eku − ek−1

u ‖�k�t1/2‖∇2zku‖�k

}

≤ ch2
( n∑

k=1

‖eku − ek−1
u ‖2

�k + �t
{
|||eku |||2k,h + h2‖∇ekp‖2�k + �t2‖∂2t u‖2Qk

+ h2m
(
‖uk‖2Hm+1(�k )

+ ‖pk‖2Hm (�k )

) })1/2
(

�t
n∑

k=1

‖zku‖2H2(�k )
+ ‖∇zkp‖2�k

)1/2

.

(116)

The last inequality follows by the Cauchy–Schwarz inequality. Now, the statement
follows from Theorem 5.3 and Lemma 5.11.

�
Remark 5.13 An analogous result can be shown for the BDF(2) variant under slightly
stronger conditions. For �t ≥ ch, which is needed for the energy estimate, the fol-
lowing estimate can be shown

(
�t

n∑

k=1

‖eku‖2�k

)1/2

≤ cwmax exp(c1(wmax)tn)
(
�t2‖∂3t u‖Q

+ hm+1 (‖u‖∞,m+1 + ‖∂tu‖∞,m + ‖p‖∞,m
) )

. (117)
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Themain difference in the proof is that the energy norm estimate does not give a bound
for �t‖D(2)

t eku‖�k , see Remark 5.5. We have using (34) with ε = 1

�t(D(2)
t eku, η

k
z,u)�k ≤ ch2

2∑

i=0

‖ek+i
u ‖�k‖∇2zku‖�k

≤ ch2
2∑

i=0

(
‖ek+i

u ‖�k+i + ‖ek+i
u ‖Skδ

)
‖∇2zku‖�k

≤ c�t2
2∑

i=0

(
‖ek+i

u ‖�k+i + h‖∇ek+i
u ‖�k+i

)
‖∇2zku‖�k .

The L2-term on the right-hand side can then be absorbed into the left-hand side of
(116) to obtain (117).

6 Numerical example

To substantiate the theoretical findings, we present numerical results for polynomial
degreesm = 1, 2 and BDF formulas of order s = 1, 2. The results have been obtained
using the CutFEM library [16], which is based on FeNiCS [1].

We consider flow through a 3-dimensional rectangular channel with amoving upper
and lower wall in the time interval is I = [0, 2]. The moving domain is given by

�(t) = (0, 4) ×
(

−1 + sin(t)

10
, 1 − sin(t)

10

)
× (−1, 1).

Due to the simple polygonal structure of the domain �(t), the integrals in (19) are
evaluated exactly within the CutFEM library [16] and we can expect higher-order
convergence in space for m ≥ 2.

The data f and uD is chosen in such a way that the manufactured solution

u(x, y, z; t) =
(
sin(t) ·

(
(1 − sin(t)

10
)2 − y2

)
(1 − z2), 0, 0

)
,

p(x, y, z; t) = sin(t) · (8 − 2x)

solves the system (5). We impose the corresponding Dirichlet boundary conditions
uD on the left inflow boundary (given by x = 0), a do-nothing boundary condition
∂nu − pn = 0 on the right outflow boundary (given by x = 4) and no-slip boundary
conditions on the remaining boundary parts, including the moving upper and lower
boundary. The initial value is homogeneousu0(x) = 0.We choose aNitsche parameter
γD = 500, stabilisation parameters γg = γp = 10−3 and δ = wmaxs�t , where
wmax = max

t∈I ,x∈∂�(t)
‖∂tT ·n‖ = 0.1. The background triangulations Th are constructed

from a uniform subdivision of the box [0, 4] × [−1.1, 1.1] × [−1, 1] into hexahedra

123



464 E. Burman et al.

Fig. 2 Top: L2- and H1-norm error of velocity, bottom: L2-and H1 norm error of pressure over time for
different time-step sizes and mesh levels, where �t = 0.8h. All the norms are normalised by the maximum
(in time) of the respective norm of the continuous functions

and a subsequent split of each of the hexahedral elements into 6 tetrahedra. These
background triangulations are then reduced in each time-step by eliminating those
elements that lie outside of �n

δ .

6.1 P1 - BDF(1)

First, we use P1 finite elements (m = 1) and theBDF(1) variant (s = 1). The computed
errors ‖u−uh‖�, ‖∇(u−uh)‖�, ‖pk−pkh‖� and ‖∇(pk−pkh)‖� are plotted over time
in Fig. 2 for�t = 0.8h, where each of the norms has been normalised by the L∞(L2)-
norm of the respective continuous functions, e.g. ‖u − uh‖�/‖u‖∞,0,I . We observe
convergence in all norms for all times as �t = 0.8h → 0. Moreover, no oscillations
are visible in any of the norms. While the error bounds shown in the previous sections
include an exponential growth in time, coming from the application of Gronwall’s
lemma, the error does not accumulate significantly over time in the numerical results
presented here.

To study the convergence orders in space and time, we show values for four differ-
ent time-step and four different mesh sizes in Table 1. For P1 finite elements, the finest
mesh contains approximately 143.000 degrees of freedom. We observe that the tem-
poral error is barely visible in the L2(L2)-norm and L2(H1)-semi-norm of velocities,
as the spatial error is dominant. The spatial component of the velocities converges as
expected by the theory (Theorems 5.3, 5.12) with orders 2 and 1.
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On the other hand, the temporal error shows up clearly in the pressure norms. To
compute an estimated order of convergence (eoc), let us assume that the overall error
can be separated into a temporal and a spatial component

g(�t, h) = g�t (�t) + gh(h) = chh
eoch + c�t�teoc�t . (118)

To estimate for instance the temporal order of convergence eoc�t , we fit the three
parameters gh, c�t and eoc�t of the function

g(�t, ·) = gh + c�t�teoc1t

for a fixed mesh size h ∈ { 12 , 1
4 ,

1
8 ,

1
16 } against the computed values. This is done

by means of a least-squares fit using gnuplot [40]. The values for gh and eoc�t in
the first row are for example computed by fitting the previous values in the same
row (i.e. those obtained with h = 1

2 for different time-step sizes). A spatial order of
convergence eoch is estimated similarly using the values for a fixed time-step size
�t ∈ {0.4, 0.2, 0.1, 0.05}, i.e. those in the same column.

For the pressure norms the estimated temporal order of convergence is very close to
1 in both the L2- and the H1 semi-norm. This is expected for the L2(H1)-semi-norm
by Theorem 5.3, but better than proven in Lemma 5.7 for the L2(L2)-norm. The spatial
component of the error converges much faster than expected with eoch around 2 for
both norms (compared to O(1), which has been shown for the H1-semi-norm, and
O(h) for the L2-norm). This might be due to superconvergence effects, as frequently
observed for CIP stabilisations (see e.g. [26]), and possibly due to the sub-optimality
of the pressure estimates.

The convergence orders of both pressure norms are very similar, especially for larger
h and �t . Here it seems that due to the superconvergence of the L2(H1)-semi-norm
the simple Poincaré estimate

‖ekp‖�k ≤ cP‖∇ekp‖�k

is optimal for the L2(L2)-norm. Only for smaller �t and h, the convergence of the
L2(L2)-norm seems to be slightly faster compared to the L2(H1)-semi-norm.

6.2 P2-BDF(1)

In order to increase the visibility of the temporal error component, we increase the
order of the spatial discretisation first. In Table 2 we show results for P2 finite elements
and BDF(1) (m = 2, s = 1) on three different mesh levels. For P2 the finest mesh
level has again around 143.000 degrees of freedom, which is similar to P1 elements on
the next-finer mesh level. Again the spatial error is dominant in the velocity norms on
coarser meshes and shows convergence orders of approximately 3 in the L2(L2)-norm
and 2 in the L2(H1)-semi-norm, as shown in Theorems 5.12 and 5.3. In contrast to P1
elements, the temporal error is however visible on the finest mesh level, where eoc�t

is close to 1, as expected.
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In the L2(L2)-norm of pressure, the temporal error is dominant and shows again a
convergence order of O(�t). Due to the dominance of the temporal component, it is
less clear to deduce the spatial error contribution. From the values and the eoch it seems
to converge again faster as predicted. Concerning the L2(H1)-norm of pressure, the
assumption (118) that the spatial and temporal error are separated, which was assumed
in order to compute eoc�t and eoch , is not valid, as the extrapolated values gh and
g�t do not or converge only very slowly towards zero. For this reason, the computed
convergence orders eoc�t and eoch are not meaningful in this case. This does not
contradict the theory, as Theorem 5.3 guarantees only the bound

(
n∑

k=1

�t‖∇ekp‖2�k

)1/2

≤ O
(

�t

h

)
+ O(h).

6.3 P2-BDF(2)

Finally, we show results for m = 2 and s = 2 in Tables 3 and 4 . In Table 3, we
use an extension of the analytically given solution u(x, t) to t < 0 for initialisation,
i.e.we use the starting values u0 = 0 and u−1 := u(−�t) in the first time step. Due to
the (expected) second-order convergence in time, the temporal error is barely visible
in the velocity norms on the finer mesh levels, in contrast to the results for BDF(1).
The estimated order of convergence of the spatial component lies slightly below the
orders 3 and 2 in the L2(L2)-norm and L2(H1)-semi-norm, respectively, that have
been shown analytically.

In the L2(L2)-norm of pressure both temporal and spatial errors are visible. Both
eoch and eoc�t are around 2, which has been shown in Sect. 5.1.1 for the spatial part.
For the temporal part only a reduced order of convergence of O(�t) has been shown
theoretically. This bound seems not to be sharp in the numerical example studied
here. In the L2(H1)-semi-norm of pressure the spatial error is dominant, which is in
contrast to the BDF(1) results. However, the assumption (118) that the error allows
for a separation into spatial and temporal error components is again not valid, which
makes the computed values of eoc�t and eoch meaningless.

In Table 4 we show results, where -instead of analytical values- one BDF(1) step
has been used for initialisation, according to the discussion in Remark 5.6. We see
that for large �t the errors are slightly larger, due to the additional initial error. In fact
the velocity norm errors are still relatively close, in particular for smaller �t , while a
stronger impact is visible in the pressure norms. These deviations get, however, smaller
for �t → 0. Moreover and most importantly, the estimated orders of convergence
are very similar in the velocity norms and lie still significantly above the theoretical
predictions in the pressure norms. This confirms numerically that the initialisation
with BDF(1) is indeed sufficient to preserve the theoretically predicted convergence
orders.
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Table 2 Errors for the fully discrete solutions for P2 finite elements and BDF(1) for different mesh and
time-step sizes

h � \�t � 0.4 0.2 0.1 0.05 gh eoc�t

‖u − ukh‖Q/‖u‖Q
1/2 9.15 × 10−3 8.92 × 10−3 8.88 × 10−3 8.88 × 10−3 8.87 × 10−3 2.40

1/4 3.20 × 10−3 1.97 × 10−3 1.50 × 10−3 1.38 × 10−3 1.28 × 10−3 1.50

1/8 3.12 × 10−3 1.62 × 10−3 8.52 × 10−4 4.78 × 10−4 8.59 × 10−5 0.99

g�t 3.12 × 10−3 1.60 × 10−3 7.90 × 10−4 3.55 × 10−4 0 0.99

eoch 6.08 4.31 3.51 3.06 2.82

‖∇(u − ukh)‖Q/‖∇u‖Q
1/2 5.55 × 10−2 5.55 × 10−2 5.55 × 10−2 5.55 × 10−2 5.55 × 10−2 –

1/4 1.67 × 10−2 1.58 × 10−2 1.56 × 10−2 1.56 × 10−2 1.56 × 10−2 1.91

1/8 7.51 × 10−3 5.18 × 10−3 4.36 × 10−3 4.12 × 10−3 3.97 × 10−3 1.56

g�t 4.66 × 10−3 1.30 × 10−3 −4.82 × 10−5 −5.17 × 10−4 0 2.13

eoch 2.08 1.90 1.83 1.80 1.85

‖p − pkh‖Q/‖p‖Q
1/2 5.35 × 10−2 2.87 × 10−2 1.57 × 10−2 9.20 × 10−3 2.06 × 10−3 0.95

1/4 5.08 × 10−2 2.64 × 10−2 1.37 × 10−2 7.18 × 10−3 1.10 × 10−3 0.95

1/8 5.00 × 10−2 2.57 × 10−2 1.30 × 10−2 6.53 × 10−3 −5.40 × 10−4 0.95

g�t 4.97 × 10−2 2.54 × 10−2 1.26 × 10−2 6.22 × 10−3 0 0.99

eoch 1.75 1.72 1.51 1.64 1.71

‖∇(p − pkh)‖Q/‖∇ p‖Q
1/2 6.29 × 10−2 4.13 × 10−2 3.20 × 10−2 2.83 × 10−2 2.54 × 10−2 1.24

1/4 5.43 × 10−2 3.18 × 10−2 2.17 × 10−2 1.78 × 10−2 1.45 × 10−2 1.21

1/8 5.25 × 10−2 2.99 × 10−2 1.97 × 10−2 1.60 × 10−2 1.27 × 10−2 1.23

g�t 5.20 × 10−2 2.94 × 10−2 1.92 × 10−2 1.56 × 10−2 0 0.67

eoch 2.26 2.32 2.36 2.54 -

The experimental orders of convergence (eoc) have been computed as in Table 1

7 Conclusion

We have derived a detailed a priori error analysis for two Eulerian time-stepping
schemes based on backward difference formulas applied to the non-stationary Stokes
equations on time-dependent domains. Following Schott [56] and Lehrenfeld and
Olshanskii [42] discrete quantities are extended implicitly by means of ghost penalty
terms to a larger domain, which is needed in the following step of the time-stepping
scheme.

In particular, we have shown optimal-order error estimates for the L2(H1)-semi-
norm and the L2(L2)-norm error for the velocities. The main difficulties herein
consisted in the transfer of quantities between domains �n and �n−1 at different
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Table 3 Errors for the fully discrete solutions for P2 finite elements and BDF(2) for different mesh and
time-step sizes with analytical values for the initialisation

h � \�t � 0.4 0.2 0.1 0.05 gh eoc�t

‖u − ukh‖Q/‖u‖Q
1/2 8.91 × 10−3 8.89 × 10−3 8.89 × 10−3 8.89 × 10−3 8.89 × 10−3 3.47

1/4 1.44 × 10−3 1.35 × 10−3 1.35 × 10−3 1.35 × 10−3 1.35 × 10−3 5.04

1/8 6.38 × 10−4 2.77 × 10−4 2.33 × 10−4 2.29 × 10−4 2.28 × 10−4 3.06

g�t 5.41 × 10−4 9.90 × 10−5 3.87 × 10−5 3.32 × 10−5 0 2.31

eoch 3.22 2.81 2.75 2.75 2.71

‖∇(u − ukh)‖Q/‖∇u‖Q
1/2 5.60 × 10−2 5.60 × 10−2 5.60 × 10−2 5.60 × 10−2 5.60 × 10−2 2.74

1/4 1.56 × 10−2 1.56 × 10−2 1.56 × 10−2 1.56 × 10−2 1.56 × 10−2 3.60

1/8 4.23 × 10−3 4.06 × 10−3 4.05 × 10−3 4.05 × 10−3 4.05 × 10−3 3.91

g�t −2.23 × 10−4 −5.54 × 10−4 −5.74 × 10−4 −5.74 × 10−4 0 –

eoch 1.83 1.81 1.81 1.81 1.86

‖p − pkh‖Q/‖p‖Q
1/2 7.78 × 10−3 3.32 × 10−3 2.96 × 10−3 2.95 × 10−3 2.94 × 10−3 3.67

1/4 7.27 × 10−3 1.86 × 10−3 9.41 × 10−4 8.91 × 10−4 8.29 × 10−4 2.66

1/8 7.27 × 10−3 1.79 × 10−3 5.34 × 10−4 3.28 × 10−4 2.28 × 10−4 2.18

g�t 7.27 × 10−3 1.79 × 10−3 4.31 × 10−4 1.16 × 10−4 0 1.97

eoch 10.01 4.38 2.31 1.87 1.83

‖∇(p − pkh)‖Q/‖∇ p‖Q
1/2 3.43 × 10−2 3.31 × 10−2 3.29 × 10−2 3.29 × 10−2 3.29 × 10−2 3.35

1/4 1.96 × 10−2 1.81 × 10−2 1.80 × 10−2 1.80 × 10−2 1.80 × 10−2 4.04

1/8 1.86 × 10−2 1.71 × 10−2 1.70 × 10−2 1.70 × 10−2 1.70 × 10−2 4.05

g�t 1.85 × 10−2 1.70 × 10−2 1.69 × 10−2 1.69 × 10−2 0 –

eoch 3.88 3.91 3.90 3.90 –

The experimental orders of convergence (eoc) have been computed as in Table 1

time-steps and in the estimation of the pressure error. Optimal L2(H1)-norm errors
for the pressure can be derived under the inverse CFL conditions �t ≥ ch2 for the
CIP pressure stabilisation and BDF(1) (�t ≥ ch for BDF(2)), or unconditionally,
when the Brezzi-Pitkäranta pressure stabilisation is used. Fortunately, these estimates
are sufficient to show optimal bounds for the velocities in both the L2(H1)- and the
L2(L2)-norms. All these estimates are in good agreement with the numerical results
presented.

For the L2(L2)-norm error of the pressure, we have shown suboptimal bounds in
terms of the time step�t . The derivation of optimal bounds seems to be non-trivial and

123



Eulerian time-stepping schemes for the non-stationary… 471

Table 4 Errors for the fully discrete solutions for P2 and BDF(2), when one BDF(1) step is used for
initialisation

h � \�t � 0.4 0.2 0.1 0.05 gh eoc�t

‖u − ukh‖Q/‖u‖Q
1/2 8.95 × 10−3 8.90 × 10−3 8.89 × 10−3 8.89 × 10−3 8.89 × 10−3 3.23

1/4 1.75 × 10−3 1.39 × 10−3 1.36 × 10−3 1.35 × 10−3 1.35 × 10−3 3.27

1/8 1.20 × 10−3 4.29 × 10−4 2.54 × 10−4 2.32 × 10−4 2.17 × 10−4 2.22

g�t 1.15 × 10−3 2.87 × 10−4 6.56 × 10−5 3.76 × 10−5 0 2.00

eoch 3.69 2.96 2.77 2.76 2.71

‖∇(u − ukh)‖Q/‖∇u‖Q
1/2 5.60 × 10−2 5.60 × 10−2 5.60 × 10−2 5.60 × 10−2 5.60 × 10−2 –

1/4 1.57 × 10−2 1.56 × 10−2 1.56 × 10−2 1.56 × 10−2 1.56 × 10−2 3.31

1/8 4.71 × 10−3 4.12 × 10−3 4.06 × 10−3 4.05 × 10−3 4.05 × 10−3 3.27

g�t 5.51 × 10−4 −4.11 × 10−4 −5.13 × 10−4 −5.21 × 10−4 0 –

eoch 1.87 1.82 1.81 1.81 1.86

‖p − pkh‖Q/‖p‖Q
1/2 2.40 × 10−2 8.33 × 10−3 3.90 × 10−3 3.07 × 10−3 2.55 × 10−3 1.91

1/4 2.36 × 10−2 7.79 × 10−3 2.68 × 10−3 1.23 × 10−3 4.52 × 10−4 1.66

1/8 2.36 × 10−2 7.79 × 10−3 2.58 × 10−3 9.09 × 10−4 6.89 × 10−5 1.61

g�t 2.36 × 10−2 7.79 × 10−3 2.57 × 10−3 9.04 × 10−4 0 1.60

eoch 4.17 6.29 3.53 6.16 2.51

‖∇(p − pkh)‖Q/‖∇ p‖Q
1/2 4.14 × 10−2 3.40 × 10−2 3.31 × 10−2 3.29 × 10−2 3.29 × 10−2 2.98

1/4 2.99 × 10−2 1.96 × 10−2 1.82 × 10−2 1.80 × 10−2 1.80 × 10−2 2.83

1/8 2.92 × 10−2 1.87 × 10−2 1.72 × 10−2 1.71 × 10−2 1.70 × 10−2 2.80

g�t 2.91 × 10−2 1.87 × 10−2 1.72 × 10−2 1.70 × 10−2 0 –

eoch 3.96 4.01 3.97 4.61 –

The experimental orders of convergence (eoc) have been computed as in Table 1

needs to be investigated in future work. Moreover, it would be interesting to further
investigate if the exponential growth in the stability and error estimates can indeed
be observed in numerical computations, for example by considering more complex
domain motions.

Further directions of research are the application of the approach to the non-linear
Navier–Stokes equations, multi-phase flows and fluid-structure interactions, as well
as the investigation of different time-stepping schemes, such as Crank–Nicolson or
the fractional-step θ scheme within the framework presented and investigated in the
present work.
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Appendix: Proof of Lemma 2.2

Proof Our proof is similar to the one given in [6] for the non-linear Navier–Stokes
equations. As usual, we start by showing existence and uniqueness for the velocities
u by considering a reduced problem in the space of divergence-free trial and test
functions

V0(t) := {u ∈ V(t), div u = 0 a.e. in �(t)},
V0,I := {u ∈ L2(I ,V0(t)), ∂tu ∈ L2(I ,L(t)d)}. (119)

The reduced problem is given by: Find u ∈ V0,I such that

(∂tu, v)�(t) + (∇u,∇v)�(t) = (f , v)�(t) ∀v ∈ V0(t) a.e. in t ∈ I , (120)

u(x, 0) = u0(x) a.e. in �(0). (121)

It can be easily seen that u ∈ V0,I is a solution to (120) if and only if it is the velocity
part of a solution to (5).

(i) Transformation By means of the map T in (2), we can transform the system of
equations to an equivalent system on �(0): Find û ∈ V̂0,I such that

(
J (t)(∂t û − F−1(t)∂tT(t) · ∇̂û), v̂

)

�(0)
+ (J (t)∇̂ûF(t)−1, ∇̂ v̂F(t)−1)�(0)

= (J (t)f̂ , v̂)�(0) ∀v̂ ∈ V̂0 a.e. in t ∈ I ,

û(x, 0) = û0(x) a.e. in �(0),

(122)

where F = ∇̂T, J = det F , ∇̂ denotes derivatives with respect to�(0) and quantities
with a “hat” correspond to their counterparts without a hat by the relation

û(x, t) = u(T(x, t), t) for x ∈ �(0).
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Test and trial spaces are defined as

V̂0(t) := {û ∈ V(0), ˆdiv(J (t)F(t)−1û) = 0 a.e. in �(0)},
V̂0,I := {û ∈ L2(I , V̂0(t)), ∂t û ∈ L2(I ,L(0)d)}.

Given that T is a W 1,∞-diffeomorphism, it can be shown that [23]

u ∈ V0(t) ⇔ û ∈ V̂0(t), u ∈ V0,I ⇔ û ∈ V̂0,I .

We will show the well-posedness of (122) by a Galerkin argumentation. A basis{
ŵ j

}
j∈N of the time-dependent space V̂0(t) is given by the inverse Piola transform of

an L2-orthonormal basis
{
φ̂ j

}

j∈N of the space V̂0(0)

ŵ j (t) = J (t)−1F(t)φ̂ j , j ∈ N.

Under the given regularity assumptions on the domainmovement T , the basis functions
lie in W 1,∞(I , H1(�(0))d).

(ii) Galerkin approximation The ansatz

ûl =
l∑

j=1

α j (t)ŵ j (t)

with coefficients α j (t) ∈ R leads to the Galerkin problem

(
J (t)(∂t ûl − F−1(t)∂tT(t) · ∇̂ûl), ŵk

)

�(0)
+ (J (t)∇̂ûl F(t)−1, ∇̂ŵk F(t)−1)�(0)

= (J (t)f̂ , ŵk)�(0) k = 1, . . . , l,

ûl(x, 0) = û0l (x) a.e. in �(0),

(123)

where û0l is an L
2-orthogonal projection of û0 onto span{ŵ1, . . . , ŵl}. This is a system

of ordinary differential equation for the coefficients α j (t), j = 1, . . . , l

l∑

j=1

α′
j (t)

(
J (t)ŵ j , ŵk

)
�(0)︸ ︷︷ ︸

M(t)

+α j (t)
(
J (t)(∂t ŵ j − F−1(t)∂tT(t) · ∇̂ŵ j ), ŵk

)

�(0)︸ ︷︷ ︸
B(t)

+ α j (t) (J (t)∇̂ŵ j F(t)−1, ∇̂ŵk F(t)−1)�(0)︸ ︷︷ ︸
A(t)

= (J (t)f̂ , ŵk)�(0)︸ ︷︷ ︸
b(t)

k = 1, . . . , l.

(124)
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The assumption that T describes a W 1,∞(�(0)) diffeomorphism implies that

0 < Jmin < J (t) < Jmax < ∞, Jmin, Jmax ∈ R.

It follows that the matrix M(t) is invertible for all t ∈ I and we can write (124) as

α′ = −M(t)−1(A(t) + B(t))α + M(t)−1b(t). (125)

Due to the time regularity of the basis functions ∂t ŵ j = ∂t (J−1F)φ̂ j ∈
L∞(I , H1(�(0))d) the right-hand side in (125) is Lipschitz. Hence, the Picard-
Lindelöf theorem guarantees a unique solution to (123).

(iii) A priori estimate We test (122) with ŵ = ûl . After some basic calculus, we
obtain the system

(
∂t (J

1/2ûl), J 1/2ûl
)
�(0) −

(
∂t (J

1/2)ûl + J 1/2F−1∂tT · ∇̂ûl , J 1/2ûl
)

�(0)

+ (J 1/2∇̂ûl F−1, J 1/2∇̂ûl F−1)�(0) = (J 1/2 f̂ , J 1/2ûl)�(0),

where we have skipped the dependencies of J and F on time for better readability.
Integration in time gives the estimate

∥∥J 1/2(tfin)ûl(tfin)
∥∥2

�(0) +
∫ tfin

0

∥∥∥J 1/2∇̂ûl F−1
∥∥∥
2

�(0)
dt

≤ ∥∥ûl(0)
∥∥2

�(0) + c‖∂tT‖W 1,∞(�(0))

∫ tfin

0
‖J 1/2ûl‖2�(0) dt

+ c
∫ tfin

0

∥∥∥J 1/2 f̂
∥∥∥
2

�(0)
dt .

Using Gronwall’s lemma, we obtain the first a priori estimate

∥∥J 1/2(tfin)ûl(tfin)
∥∥2

�(0) +
∫ tfin

0

∥∥∥J 1/2∇̂ûl F−1
∥∥∥
2

�(0)
dt

≤ c exp
(
c‖∂tT‖W 1,∞(�(0))tfin

) (∥∥ûl(0)
∥∥2

�(0) + c
∫ tfin

0

∥∥∥J 1/2 f̂
∥∥∥
2

�(0)
dt .

)

(126)

This implies that ûl is bounded in L∞(I , L2(�(0))d) and L2(I , V̂0). This implies the
existence of convergent subsequences and limit functions û, û∗ in the following sense

ûl ′ → û∗ weak star in L∞(I , L2(�(0))d),

ûl ′ → û weakly in L2(I , V̂0)) and strongly in L2(I , L2(�(0))d).
(127)

It is not difficult to prove that û∗ = û, see [58], Section III.1.3.
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(iv) A priori estimate for the time derivative In principle, we would like to test (123)
with ∂t ûl . Unfortunately, this is not possible, as in general ∂t ûl /∈ span(ŵ1, . . . , ŵl)

due to the time-dependence of the basis functions. Instead, we can test with
J−1FT ∂t (J F−T ûl), as

J−1F∂t (J F
−1ûl) =

l∑

j=1

J−1F∂t (J F
−1α j ŵ j ) =

l∑

j=1

J−1F∂t (α j φ̂ j )

=
l∑

j=1

α′
j J

−1F φ̂ j =
l∑

j=1

α′
j ŵ j .

We obtain

(
∂t ûl , F∂t (J F

−1ûl)
)
�(0) −

(
∂tT · ∇̂ûl , ∂t (J F−1ûl)

)

�(0)

+ (J ∇̂ûl F−1, ∇̂(J−1F∂t (J F
−1ûl )F−1)�(0) = (f̂ , F∂t (J F

−1ûl))�(0).

(128)

The third term on the left-hand side is well-defined under the regularity assumptions
stated, as J F−1 is the cofactor matrix to F , which can be written in terms of T . Using
the product rule, we see that the first term on the left-hand side is bounded below by

(
∂t ûl , F∂t (J F

−1ûl)
)
�(0) = (

∂t ûl , J∂t ûl
)
�(0) + (

∂t ûl , F∂t (J F
−1)ûl

)
�(0)

≥
∥∥∥J 1/2∂t ûl

∥∥∥
2

�(0)
− c(T)

∥∥∥J 1/2∂t ûl
∥∥∥

�(0)

∥∥∥J 1/2ûl
∥∥∥

�(0)

For the third term on the left-hand side, we have

(J ∇̂ûl F−1, ∇̂(J−1F∂t (J F
−1ûl)F−1)�(0)

= (J ∇̂ûl F−1, ∇̂∂t ûl F−1)�(0) + (J ∇̂ûl F−1, ∇̂ (
J−1F∂t (J F

−1)ûl
)
F−1)�(0)

=
(
J 1/2∇̂ûl F−1, ∂̂t

(
J 1/2∇̂ûl F−1

))

�(0)
−

(
J 1/2∇̂ûl F−1, ∇̂ (

ûl∂t (J 1/2F−1)
))

�(0)

+ (J ∇̂ûl F−1, ∇̂ (
J−1F∂t (J F

−1)ûl
)
F−1)�(0)

≥ 1

2
∂t

∥∥∥J 1/2∇̂ûl F−1
∥∥∥
2

�(0)
− c(T)

∥∥∥J 1/2∇̂ûl F−1
∥∥∥
2

�(0)

Using a similar argumentation and Young’s inequality, we can show the bounds

(
∂tT · ∇̂ûl , ∂t (J F−1ûl)

)

�(0)
≤ c(T)

∥∥∥J 1/2∇̂ûl F−1
∥∥∥
2

�(0)
+ 1

4

∥∥∥J 1/2∂t ûl
∥∥∥
2

�(0)
(
f̂ , F∂t (J F

−1ûl)
)

�(0)
≤ c(T)

(∥∥∥J 1/2 f̂
∥∥∥
2

�(0)
+

∥∥∥J 1/2∇̂ûl F−1
∥∥∥
2

�(0)

)

+ 1

4

∥∥∥J 1/2∂t ûl
∥∥∥
2

�(0)
.
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Integration over t ∈ I in (123) gives the estimate

∥∥∥J 1/2(tfin)∇̂ûl(tfin)F−1(tfin)
∥∥∥
2

�(0)
+

∫ tfin

0

∥∥∥J 1/2∂t ûl
∥∥∥
2

�(0)
dt

≤
∥∥∥∇̂ûl(0)

∥∥∥
2

�(0)
+ c(T)

∫ tfin

0

∥∥∥J 1/2 f̂
∥∥∥
2

�(0)
+

∥∥∥J 1/2∇̂ûl F−1
∥∥∥
2

�(0)
dt .

Using Gronwall’s lemma we obtain

∥∥∥J 1/2(tfin)∇̂ûl(tfin)F−1(tfin)
∥∥∥
2

�(0)
+

∫ tfin

0

∥∥∥J 1/2∂t ûl
∥∥∥
2

�(0)
dt

≤ c exp(c(T)tfin)

(∥∥∥∇̂ûl(0)
∥∥∥
2

�(0)
+

∫ tfin

0

∥∥∥J 1/2 f̂
∥∥∥
2

�(0)
dt

)
.

This shows the boundedness of ∂t ûl in L2(I , L2(�(0))d) and the convergence of a
subsequence (see Temam [58], Proposition III.1.2, for the details)

∂t ûl ′ → ∂t û weakly in L2(I , L2(�(0))d). (129)

(v)ConclusionThe a priori bounds shown in (ii) and (iii) and the resulting convergence
behaviour allows us to pass to the limit l → ∞ in (123). The convergences (127) and
(129) imply that ûl(x, 0) → û0 (l → ∞).We find that the limit û is a solution to (122).
Uniqueness is easily proven by testing (122)with v̂ = û and the a priori estimate (126).
Due to the equivalence of (122) and (120), the pullback u = û ◦ T−1 ∈ V0,I is the
unique solution to (120).

(vi) Pressure Finally, the unique existence of a pressure for a.e. t ∈ I follows by
showing the existence of a weak pressure gradient that fulfils

grad p(t) = f (t) + �u(t) − ∂tu(t) in �(t)

using the de Rham theorem. We refer to [58], Proposition III.1.2, for the details. �
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An implicitly extended Crank-Nicolson scheme for the heat
equation on a time-dependent domain

Stefan Frei ∗, Maneesh Kumar Singh †

Abstract

We consider a time-stepping scheme of Crank-Nicolson type for the heat equation on a
moving domain in Eulerian coordinates. As the spatial domain varies between subsequent time
steps, an extension of the solution from the previous time step is required. Following Lehrenfeld
& Olskanskii [ESAIM: M2AN, 53(2): 585-614, 2019], we apply an implicit extension based on
so-called ghost-penalty terms. For spatial discretisation, a cut finite element method is used. We
derive a complete a priori error analysis in space and time, which shows in particular second-
order convergence in time under a parabolic CFL condition. Finally, we present numerical
results in two and three space dimensions that confirm the analytical estimates, even for much
larger time steps.

1 Introduction

Partial differential equations (PDEs) posed on moving domains are significant in many areas of
science and engineering. They arise for example in flow problems around moving structures, such
as pumps [4], wind or water turbines [54], within moving objects [15], or as sub-problems in fluid-
structure interactions or multiphase flows. Fluid-structure interactions arise in aerodynamical
applications like flow around airplanes or parachutes [58], in biomedical problems such as blood
flow through the cardiovascular system [53, 60, 25] or the airflow within the respiratory system [62]
and even in tribological applications [46]. Multiphase problems include for instance gas-liquid and
particle-laden gas flows [36, 19, 45], rising bubbles [43], droplets in microfluidic devices [17] or the
simulation of tumor growth [34]. For further details and applications we refer to the textbooks [55, 3]
and [35], respectively.

In this article we consider the time discretisation of a parabolic model problem (namely the
heat equation) which is posed on a moving domain Ω(t) ⊂ Rd (d = 2, 3) that evolves smoothly in
time for t ∈ I = [0, tmax]:

ut −∆u = f in Ω(t), u = 0 on ∂Ω(t), u(x, 0) = u0(x) in Ω(0). (1.1)

In literature, two major numerical approaches can be found for the simulation of partial differ-
ential equations on moving domains: the Arbitrary Lagrangian Eulerian (ALE) [21, 22] approach,
where the equations are transformed to an arbitrary reference domain which is independent of
time, and Eulerian approaches, where the equations are solved in the time-dependent Eulerian
framework [23, 27, 48].

∗Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany, stefan.frei@uni-
konstanz.de (Corresponding author)

†Department of Mathematics, Imperial College London, SW7 2AZ, London, UK, maneesh-
kumar.singh@imperial.ac.uk
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The ALE approach is a popular technique for the numerical simulation of PDEs on moving
domains, in particular for flow problems [42, 41]. For details, we refer to the textbooks [3, 55]
and reference cited therein. Convection-diffusion problems on moving domains were, for example,
solved in [33, 57] using a stabilised ALE method. The ALE approach is very attractive in the
case of moderate domain movements, but shows problems when the shape of the domain changes
significantly in time. In particular, topology changes of Ω(t), as occurring for example in contact
problems or considering the separation or union of bubbles can not be modelled by means of an
ALE approach [55, 17, 8, 9]. Another example of extreme variations of Ω(t) are so-called fingering
phenomena, which can be frequently observed in multi-phase flows or even for tumor growth [34].

In such cases, a numerical approach that discretises the equations directly in the moving Eulerian
coordinate framework is preferable. The Eulerian framework is also the coordinate framework,
which is typically used to model flow problems and consequently, in multi-phase flows [35] and
fluid-structure interactions with large displacements [23, 10, 27]. However, as the domains Ω(t)
to be discretised vary with time t, additional difficulties arise concerning a proper and accurate
discretisation, both in space and in time.

In recent decades, a great amount of works have been contributed concerning the spatial dis-
cretisation of curved or moving boundaries by means of finite elements. The techniques can be
categorised in fitted and unfitted finite element methods. In fitted methods, the boundary ∂Ω(t) is
resolved in each time step by the finite element mesh [24, 5, 30]. If the domain is time-dependent,
this means that new meshes need to be created in each time step. Several approaches have been
proposed to alleviate this issue, such as the locally fitted finite element method [30, 29], which is
based on a fixed coarse and a variable fine mesh. However, different issues might arise, such as
anisotropic fine cells that complicate the numerical discretisation [28].

The idea in unfitted finite element methods, on the other hand, is to use the same finite element
mesh for all times t, independently of the position of the boundary ∂Ω(t). A popular approach is the
cut finite element method (CutFEM) [7, 13, 38, 51, 37, 64], where cells of the finite element mesh
are cut into parts that lie inside Ω(t) and parts outside for numerical integration. Boundary values
are then incorporated weakly by means of Nitsche’s method [52]. The method shows similarities
to the extended finite element method [20, 16, 32] and the generalised finite element method [2],
where the finite element spaces are enriched by suitable functions to account for the position of the
boundary.

Much less works can be found in literature concerning a proper time discretisation on moving
domains. In the case of moving domains, standard time discretisation based on the method of
lines is not directly applicable. The reason is that the domain of definition of the variables changes
from time step to time step. As an example consider the finite difference discretisation of the time
derivative within a variational formulation (∆t = tn − tn−1)

(∂tuh(tn), φnh)Ω(tn) ≈
1

∆t
(uh(tn)− uh(tn−1), φnh)Ω(tn).

The function uh(tn−1) is only well-defined on Ω(tn−1), but is needed on Ω(tn).
A possible remedy is to use characteristic-based approaches based on trajectories that follow

the motion of the domain, see e.g. [40]. Similar time-stepping schemes result when applying the
ALE method only locally within one time step and projecting back to the original reference frame
after each step [18], or based on Galerkin time discretisations with modified Galerkin spaces [31].
The disadvantage of these approaches is the necessity for a projection that needs to be computed
within each or after a certain number of steps.

A further alternative are space-time approaches [39, 47], where a d + 1-dimensional domain is
discretised. These are, however, computationally demanding, in particular within complex three-

2



dimensional applications. The implementation of higher-dimensional discretisations and accurate
quadrature formulas pose additional challenges. If a discontinuous Galerkin approach is applied in
time for the test functions, the formulation decouples in certain time intervals and can be seen as
an Eulerian time-stepping scheme [39, 64, 26].

In this work, we follow a slightly different approach first used by Schott [56] and later analysed
by Lehrenfeld & Olshanskii [48]. Here, the idea is to define extensions of the solution u(tn−1) from
previous time steps to a domain Ωδ(tn−1) that spans at least Ω(tn). On the finite element level these
extensions can be incorporated implicitly in the time-stepping scheme by so-called ghost penalty
stabilisations [6] to a sufficiently large domain. These techniques have originally been proposed to
extend the coercivity of elliptic bilinear forms from the physical to the computational domain in
the context of CutFEM or fictitious domain approaches [6].

Lehrenfeld & Olshanskii [48] analysed the so extended Backward Euler method in detail for a
convection-diffusion problem and gave hints on how to transfer the argumentation to the second-
order backward difference scheme (BDF2). Recently, the analysis has been extended to higher
order in space and time using an isoparametric finite element approach [49]. In [11, 61], extended
BDF time-stepping schemes were applied and analysed for the non-stationary Stokes equations on
moving domains.

The reason why only BDF-type time-stepping schemes have been considered in previous works,
is that in these schemes spatial derivatives appear only on the ”new” time step, i.e.∇u(tn). We will
see below that the appearance of additional derivatives on u(tn−1) will complicate the error analysis
severely. This paper gives a first step towards the analysis of time-stepping schemes that require
derivatives at different time instants, such as the Crank-Nicolson method, the Fractional-step-θ-,
implicit Runge-Kutta- or Adams-Bashforth schemes.

As a first step, we focus in this work on the popular Crank-Nicolson time-stepping scheme. Up
to now, it has been largely open, if and under what conditions a Crank-Nicolson-type scheme can
be used within an Eulerian time discretisation on moving domains. We give a detailed stability
and convergence analysis. While the analysis requires a strong parabolic CFL condition of type
∆t ≤ ch2, our numerical results indicate that the scheme is stable also for much larger time steps.

The article is organised as follows: In Section 2, we introduce the discretisation of the model
problem (1.1) in time and space. Section 3 presents a stability analysis for the fully discrete scheme
using a CFL condition. In Section 4, we show a detailed a priori convergence analysis. Numerical
experiments in two and three space dimensions are presented in Section 5. Section 6 summarises
this article with some concluding remarks.

2 Discretisation

In this section, we present the numerical approximation of the model problem (1.1). We start with
discretisation in time, and continue with the spatial discretisation of the resulting time-discrete
formulation.

2.1 Temporal discretisation

For time discretisation, we divide the time interval of interest I = [0, tmax] in intervals In =

(tn−1, tn]. For simplicity, we take a uniform time step ∆t =
tmax
N

and define tn = n∆t. We define

the domain Ωn := Ω(tn) with boundary Γn := Γ(tn) and write un = u(tn) for the exact solution of
the continuous problem (1.1) at time tn.

3
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Figure 1: Illustration of the domains Ωn, Ωn+1 and the extension Ωn
δ .

A δ-neighborhood of Ω(t) at time step n is chosen large enough such that (Ωn ∪ Ωn+1) ⊂ Ωn
δ ,

see Figure 1. Therefore we choose

δ ≥ wmax∆t, wmax = sup
t∈I, x∈∂Ω(0)

‖∂tT (x, t) · n‖.

The required regularity of the domain mapping T will be ensured in Assumption 1 below. For the
error analysis we will also assume the upper bound

δ ≤ cδwmax∆t (2.1)

with a constant cδ > 1. Finally, we introduce the following notations for some space-time domains

Q := ∪
t∈I
{t} × Ω(t), Qn := ∪

t∈In
{t} × Ω(t) Qnδ := ∪

t∈In
{t} × Ωδ(t), Q̂ = Ω(0)× [0, tmax].

Now, the Crank-Nicolson method applied to (1.1) writes formally

un − un−1

∆t
− 1

2
(∆un + ∆un−1) =

1

2
(fn + fn−1), x ∈ Ωn. (2.2)

The main issue of this formulation is that un−1 is needed on Ωn, while it is defined on Ωn−1. Thus,
we will add implicit extension operators below to define un on Ωn

δ ⊃ Ωn+1, where it is needed in the
following time step. Similarly, fn−1 might be undefined on Ωn \Ωn−1. If fn−1 is given analytically,
it can typically be extended in a canonical way to Ωn. To cover different scenarios, we do not
want to restrict the analysis in this work to a particular extension, but assume only that fn−1 is
smoothly extended to Ωn.

In this article, we will use the abbreviation c to refer to a generic positive constant, which is
independent of discretisation parameters (∆t, h) and the relative positions of the boundary with
respect to the mesh.
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2.1.1 Extension operator

In this part, we introduce an extension operator of the exact solution u to extend variables to
larger domains, as the spatial domain evolves. We make the following assumption (see also [11,
Assumption 3.2]) for the analysis of this article.

Assumption 1 The boundary of the initial domain Ω(0) is assumed to be piecewise smooth and
Lipschitz, and the domain motion T (t) is a W 1,∞-diffeomorphism for each t, that fulfills T ∈
W r,∞(Q̂), where r = max{3,m + 1} and m is the polynomial degree of the finite element space
defined in the following subsection.

By using assumption 1, there exist W r,∞-stable extension operators En from Ωn to Ωn
δ that

satisfy the following analytical properties:

‖Enu− u‖Wm+1,p(Ω) = 0, ‖Enu‖Wm+1,p(Ωnδ ) ≤ c‖u‖Wm+1,p(Ωn), (2.3)

‖∂tEnu‖Hm(Ωnδ ) ≤ c
(
‖u‖Hm+1(Ωn) + ‖∂tu‖Hm(Ωn)

)
, (2.4)

‖∂3
tE

nu‖L∞(Qnδ ) ≤ c‖u‖W 3,∞(Q). (2.5)

The properties (2.3) and (2.4) are discussed in [11]. In an analogous way, one can derive the
estimate for the third-order time derivative in (2.5).

2.2 Spatial discretisation

For spatial discretisation, we introduce a polygonal domain D, which is chosen large enough, such
that Ωn

δ ⊂ D for all n. We introduce a quasi-uniform family of triangulations (Th)h>0 of D with
maximum cell size h, which will serve as background meshes.

In each time step, we extract from Th all cells of non-empty intersection with Ωn
δ and define

T nh,δ := {K ∈ Th : K ∩ Ωn
δ 6= ∅}.

We write Ωn
h,δ for the domain spanned by all cells K ∈ T nh,δ and define the following finite element

space:
V n,m
h := {v ∈ C(Ωn

h,δ), v|K ∈ Pm(K) ∀K ∈ T nh,δ}, m ≥ 1.

The set of elements that lie (at least partially) outside of Ωn−1, but in Ωn, will be of particular
interest in the analysis. The domain spanned by them will be denoted by

Sn,n−1
h := ∪

K∈T n,n−1
h

K, where T n,n−1
h :=

{
K ∈ T nh,δ, K ∩ (Ωn \ Ωn−1) 6= ∅

}
.

Moreover, we introduce the following notations for the facets of T nh,δ, see Figure 2 for an illus-
tration:

• Fnh,δ : the set of interior facets of T nh,δ.

• Fn,inth,δ : the set of facets that belong exclusively to elements K ∈ T nh,δ that lie completely in
the interior of Ωn.

• Fn,cuth,δ : the set of facets that belong to some element K ∈ T nh,δ with K ∩ ∂Ωn 6= ∅.
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∂Ωn
δ ∂Ωn

K ∈ T n
h ∪ T n

h,δ

K ∈ T n
h,δ

e ∈ F
n,int
h

e ∈ F
n,cut
h

e ∈ F
n,ext
h,δ

∂Ωn∂Ωn−1

Ω
n \ Ωn−1

K ∈ Sn,n−1

h

K1K2

e1,2

Figure 2: Left: Illustration of the triangulations T nh and T nh,δ and the sets of facets Fnh,δ =

Fn,inth,δ ∪ Fn,cuth,δ ∪ Fn,exth,δ . Right: Set of boundary cells Sn,n−1
h .

• Fn,exth,δ : the set of remaining facets of Fnh,δ, i.e. Fn,exth,δ := Fnh,δ \
(
Fn,inth,δ ∪ Fn,cuth,δ

)
• Fn,gh,δ := Fn,cuth,δ ∪ Fn,exth,δ .

Assumption 2 (CFL condition) We assume the parabolic CFL condition ∆t ≤ cCFLh
2, where

cCFL is an arbitrary constant for m = 1, while we assume cCFL sufficiently small for m > 1.

The inequality (2.1) and the CFL condition (Assumption 2) lead to

δ ≤ cδwmax∆t ≤ cwmaxh2. (2.6)

Remark 2.1 The inequality (2.6) implies that the distance between ∂Ωn and ∂Ωn−1 is bounded by
O(h2). This implies the following property, which will be needed in the analysis below: For each
cell K ∈ Sn,n−1

h , there exists a path of cells Ki, i = 1, . . . ,M , such that Ki ∩ Ki+1 is a facet in

Fg,nh,δ ∩ F
g,n−1
h,δ and the final cell KM lies fully in the interior of Ωn. Furthermore, the number of

cases, in which an element KM ⊂ Ωn is utilised as a final element among all paths, can be bounded
independently of h and ∆t.

2.2.1 Discrete variational formulation

In the numerical approximation, the boundary condition of the discrete problem (2.7) is imple-
mented weakly by means of Nitsche’s method. Moreover, the function unh is extended by means of
a ghost penalty term gnh(·, ·). In each time step n = 1, 2, . . . , N , we consider the following discrete
variational formulation: Find unh ∈ V

n,m
h such that

A(unh, u
n−1
h ; vh) = (f

n− 1
2

h , vh), ∀vh ∈ V n,m
h , (2.7)
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where

A(unh, u
n−1
h ; vh) :=

(
D−∆tu

n
h, vh

)
Ωn

+
1

2
anh(unh, vh) +

1

2
anh(un−1

h , vh) +
γD
h

(unh, vh)∂Ωn + γgg
n
h(unh, vh)

(2.8)

and

D−∆tu
n
h =

unh − u
n−1
h

∆t
, anh(ukh, vh) = (∇ukh,∇vh)Ωn − (∂nu

k
h, vh)∂Ωn , fn−

1
2 =

fn + fn−1

2
.

We assume that all integrals in (2.8) are evaluated exactly. For a consideration of additional
quadrature errors, that result when cut cells are approximated linearly in the computation of the
integrals, we refer to [48].

The ghost penalty stabilization is defined by

gnh(wh, vh) =
∑

e∈Fn,gh,δ

m∑
k=1

h2k−1

k!2

∫
e
[[∂knwh]] · [[∂knvh]] ds, (2.9)

where [[·]] is the jump operator and ∂n the exterior normal derivative. For further possibilities
for the extension gnh , we refer to [48]. The variant chosen here based on the jump of derivatives
over edges has the advantage that it is fully consistent, in the sense that gnh(u, v) vanishes for
u ∈ Hm+1(Ωn

δ ). The purpose of the ghost penalty is twofold: First, it serves to extend the solution
unh implicitly to Ωn

h,δ. Secondly, it ensures the discrete coercivity of the formulation (2.7) on T nh,δ.
To incorporate the initial condition, we set u0

h := E1u0 in (2.8) for n = 1, where E1u0 is a
smooth, e.g. a canonical extension, of the initial value u0. This corresponds to the following Ritz
projection of the initial value u0

∆t−1(u0
h, vh)Ω1 + a1(u0

h, vh) = ∆t−1(E1u0, vh)Ω1 + a1(E1u0, vh) ∀vh ∈ V 1
h ,

The following lemma is the key to extend the discrete coercivity to Ωn
δ :

Lemma 2.2 Given Assumption 2, any discrete function vnh ∈ V
n,m
h satisfies

‖vnh‖2Ωnh,δ ≤ c‖v
n
h‖2Ωn + ch2gnh(vh, vh), ‖∇vnh‖2Ωnh,δ ≤ c‖∇v

n
h‖2Ωn + cgnh(vh, vh).

In addition, for v, w ∈ Hm+1(Ωn
δ ), m ≥ 1, it holds

gnh(v, w) ≤ gnh(v, v)1/2gnh(w,w)1/2, gnh(v, v) ≤ ch2m‖v‖2Hm+1(Ωnδ ).

Proof. A proof of this lemma is given in [48].

At the end of this section, we briefly show that the variational formulation (2.7) is well-posed
for each n. We define the discrete energy as

En(unh, u
n−1
h ) =

(
1

2
‖∇unh +∇un−1

h ‖2Ωn +
1

∆t
‖unh − un−1

h ‖2Ωn +
γD
h
‖unh‖2∂Ωn + γgg

n
h(unh, u

n
h)

)1/2

.

(2.10)
and the energy norm as

|||unh|||n := En(unh, 0).
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We will show the coercivity relation

|||unh|||2n ≤
1

4
A(unh, 0;unh), unh ∈ V

m,n
h . (2.11)

for sufficiently large γg, γD. The well-posedness of (2.7) follows then by standard arguments.
From the definition of the bilinear form A(unh, 0;unh), we have

A(unh, 0;unh) =
1

∆t
‖unh‖2Ωn +

1

2
‖∇unh‖2Ωn −

1

2
(∂nu

n
h, u

n
h)∂Ωn +

γD
h
‖unh‖2∂Ωn + γgg

n
h(unh, u

n
h).

The term −1
2(∂nu

n
h, u

n
h)∂Ωn is estimated by means of Young’s inequality, an inverse inequality and

Lemma 2.2 as follows for sufficiently small ε > 0:

−1

2
(∂nu

n
h, u

n
h)∂Ωn ≥ −

εh

4
‖∇unh‖2∂Ωn −

1

4εh
‖unh‖2∂Ωn

≥ −cε‖∇unh‖2Ωnh −
1

4εh
‖unh‖2∂Ωn .

For sufficiently large parameters γD, γg, we have

−1

2
(∂nu

n
h, u

n
h)∂Ωn ≥ −

1

4

(
‖∇unh‖2Ωn + γgg

n
h(unh, u

n
h)
)
− γD

4h
‖unh‖2∂Ωn .

This proves the coercivity (2.11).

3 Stability analysis

In this section, a detailed stability analysis of the discrete problem (2.7) is developed. One of the
main issues in the analysis is that the discrete functions un−1

h and ∇un−1
h appear on Ωn in the n-th

time step, whereas bounds are only available for ‖un−1
h ‖Ωn−1 and ‖∇un−1

h ‖Ωn−1 from the previous
time step. We start with some technical lemmas that will enable us to deal with this issue.

3.1 Auxiliary estimates

Lemma 3.1 Let Assumptions 2 be valid. Any discrete functions vnh ∈ V
n,m
h , vn−1

h ∈ V n−1,m
h satisfy

the following inequality:

‖∇vnh −∇vn−1
h ‖2Ωn\Ωn−1 ≤

2

∆t
‖vnh − vn−1

h ‖2Ωn + cgnh(vnh , v
n
h) + cgn−1

h (vn−1
h , vn−1

h ). (3.1)

Proof. For m = 1,∇vnh −∇v
n−1
h is constant on a cell T ∈ T nh . Due to the quasi-uniformity of the

background mesh, we have |T | ≥ chd and from (2.1) |T ∩ (Ωn \ Ωn−1)| ≤ chd−1∆t. It follows that

‖∇vnh −∇vn−1
h ‖2Ωn\Ωn−1 ≤ c

∆t

h
‖∇vnh −∇vn−1

h ‖2Sn,n−1
h

. (3.2)

In the general case (m > 1), we have still

‖∇vnh −∇vn−1
h ‖2Ωn\Ωn−1 ≤ ‖∇vnh −∇vn−1

h ‖2Sn,n−1
h

. (3.3)

Now let K1 ∈ Sn,n−1
h . By Remark 2.1, there is a set of neighbouring cells K2, ...,KM , such that

(Ki ∩Ki+1) ∈ (Fg,nh,δ ∩ F
g,n−1
h,δ ) and KM lies fully in the interior of Ωn. Let e1,2 be the edge that
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separates the cells K1 and K2, see Figure 2. Then, using arguments from [50, Lemma 5.1] and [48,
Lemma 5.2], we can deduce that

‖∇vnh −∇v
n−1
h ‖2K1

≤ c‖∇vnh −∇vn−1
h ‖2K2

+ c
m∑
k=1

∫
e1,2

h2k−1[[∇kvnh −∇kvn−1
h ]]2ds

≤ c‖∇vnh −∇vn−1
h ‖2K2

+ c
m∑
k=1

∫
e1,2

h2k−1[[∇kvnh ]]2ds+ c

∫
e1,2

h2k−1[[∇kvn−1
h ]]2ds.

(3.4)
We follow this process from K2 to KM by crossing edges e2,3 to eM−1,M to obtain

‖∇vnh −∇vn−1
h ‖2K1

≤c‖∇vnh −∇vn−1
h ‖2KM

+
m∑
k=1

M∑
j=2

(∫
ej−1,j

h2k−1[[∇kvnh ]]2ds+ c

∫
ej−1,j

h2k−1[[∇kvn−1
h ]]2ds

)
.

(3.5)

For the first term on the right-hand side of (3.5), we use an inverse inequality and the CFL condition
with a sufficiently small constant cCFL

‖∇vnh −∇vn−1
h ‖2KM ≤

c

h2
‖vnh − vn−1

h ‖2KM ≤
2

∆t
‖vnh − vn−1

h ‖2KM . (3.6)

As all edges ej−1,j belong to both Fg,nh,δ and Fg,n−1
h,δ , we obtain after summation over all cells in

Sn,n−1
h from (3.3), (3.5) and (3.6)

‖∇vnh −∇vn−1
h ‖2Ωn\Ωn−1 ≤

2

∆t
‖vnh − vn−1

h ‖2Ωn + c
(
gnh(vnh , v

n
h) + gn−1

h (vn−1
h , vn−1

h )
)
.

Using (3.2) instead of (3.3) form = 1, the same result follows under the CFL condition ∆t ≤ cCFLh2

for an arbitrary constant cCFL.

We note that the CFL condition is required to estimate the “mismatch” ‖∇vn−1
h ‖2Ωn\Ωn−1 by

means of the discrete time derivative 1
∆t‖v

n
h − v

n−1
h ‖2Ωn (see the following lemma).

Next, we discuss how the term ‖∇un−1
h ‖Ωn can be bounded by ‖∇un−1

h ‖Ωn−1 plus further terms
that can be controlled in the following stability analysis.

Lemma 3.2 Under the assumptions of Lemma 3.1 it holds for vnh ∈ V
n,m
h , vn−1

h ∈ V n−1,m
h that

∆t‖∇vn−1
h ‖2Ωn\Ωn−1 ≤ ∆t

2
‖∇vnh +∇vn−1

h ‖2Ωn\Ωn−1 + ‖vnh − v
n−1
h ‖2Ωn

+c∆tgnh(vnh , v
n
h) + c∆tgn−1

h (vn−1
h , vn−1

h ).

(3.7)

Proof. By the triangle inequality, we have

‖∇vn−1
h ‖Ωn\Ωn−1 ≤

1

2
‖∇vnh +∇vn−1

h ‖Ωn\Ωn−1 +
1

2
‖∇vnh −∇vn−1

h ‖Ωn\Ωn−1 .

By means of the inequality (a+ b)2 ≤ 2a2 + 2b2 this implies

∆t‖∇vn−1
h ‖2Ωn\Ωn−1 ≤

∆t

2
‖∇vnh +∇vn−1

h ‖2Ωn\Ωn−1 +
∆t

2
‖∇vnh −∇vn−1

h ‖2Ωn\Ωn−1 . (3.8)
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The statement follows by using Lemma 3.1 for the second term in (3.8)

∆t

2
‖∇vnh −∇vn−1

h ‖2Ωn\Ωn−1 ≤ ‖vnh − vn−1
h ‖2Ωn + c∆tgnh(vnh , v

n
h) + c∆tgn−1

h (vn−1
h , vn−1

h ). (3.9)

Next, we provide the following Poincaré-type estimate:

Lemma 3.3 Let u ∈ W 1,p(Ω) for 1 ≤ p <∞ and let the CFL condition (Assumption 2) be valid.
It holds for l ∈ {n− 1, n}

‖u‖p
Lp(Ωn\Ωn−1)

≤ c∆t‖u‖p
Lp(∂Ωl)

+ c∆t2‖∇u‖p
Lp(Ωn\Ωn−1)

. (3.10)

Proof. The proof follows the lines of [55, Lemma 4.34] and uses the fact that dist(Ωn,Ωn−1) ≤ c∆t.

Using this, we can derive bounds for ‖vn−1
h ‖2Ωn\Ωn−1 and ‖vnh‖2Ωn\Ωn−1 :

Lemma 3.4 Under the assumptions of Lemma 3.1 it holds for vlh ∈ V
l,m
h , l ∈ {n− 1, n}

‖vlh‖2Ωn\Ωn−1 ≤ c
(

∆t‖vlh‖2∂Ωl
+ ∆t‖vnh − v

n−1
h ‖2Ωn + ∆t2‖∇vnh +∇vn−1

h ‖2Ωn

+∆t2gn−1
h (vn−1

h , vn−1
h ) + ∆t2gnh(vnh , v

n
h)
)

(3.11)

Proof. By means of Lemma 3.3 for p = 2 we have for l ∈ {n− 1, n}

‖vlh‖2Ωn\Ωn−1 ≤ c∆t‖vlh‖2∂Ωl + c∆t2‖∇vlh‖2Ωn\Ωn−1 (3.12)

The statement follows by applying Lemma 3.2 to the second term in (3.12).

3.2 Stability result

Before discussing the stability result, we introduce some abbreviations for the space-time Bochner
norms to simplify the mathematical expressions

‖u‖∞,m,Ik := ‖u‖L∞(Ik,Hm(Ω(t))), ‖u‖∞,m := ‖u‖∞,m,I ,

where m ∈ N ∪ {0} and H0(Ω(t)) := L2(Ω(t)).
Now we are ready to prove the following stability result.

Theorem 3.5 (Stability) Let Assumptions 2 be valid and let f ∈ L∞(I, L2(Ω(t))), u0 ∈ H1(Ω0)
and let the mapping T be a W 1,∞-diffeomorphism. For sufficiently large γg, γD the solution {ukh}nk=1

of the discrete problem (2.7) fulfills

‖unh‖2Ωn + ∆t‖unh‖2Ωn + ∆t
n∑
k=1

Ek(ukh, u
k−1
h ) ≤ c exp(c tn)

(
‖u0‖2Ω0 + tn‖∇u0‖2Ω0 + tn‖f‖2∞,0

)
. (3.13)

Proof. We test (2.7) with vh = 2∆tunh to obtain

2
(
unh − u

n−1
h , unh

)
Ωn

+ ∆t
(
∇unh +∇un−1

h ,∇unh
)

Ωn
+

2γD∆t

h
(unh, u

n
h)∂Ωn

−∆t(∂nu
n
h + ∂nu

n−1
h , unh)∂Ωn + 2∆tγgg

n
h(unh, u

n
h) = 2∆t(fn−

1
2 , unh).

(3.14)
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We estimate the fourth term in (3.14) by means of Young’s inequality with a sufficiently small ε > 0
followed by an inverse inequality

∆t(∂nu
n
h + ∂nu

n−1
h , unh)∂Ωn ≤

∆tεh

16
‖∂nunh + ∂nu

n−1
h ‖2∂Ωn +

4∆t

εh
‖unh‖2∂Ωn

≤ ∆t

16
‖∇unh +∇un−1

h ‖2Ωn +
γD∆t

2h
‖unh‖2∂Ωn ,

where γD ≥ 8/ε. By using the relation 2(a + b, a) = (a + b)2 + a2 − b2 for the first two terms
in (3.14), we obtain that

‖unh‖2Ωn + ‖unh−un−1
h ‖2Ωn +

∆t

2
‖∇unh‖2Ωn +

7∆t

16
‖∇unh +∇un−1

h ‖2Ωn +
3γD∆t

2h
‖unh‖2∂Ωn

+ 2∆tγgg
n
h(unh, u

n
h) ≤ ‖un−1

h ‖2Ωn +
∆t

2
‖∇un−1

h ‖2Ωn + 2∆t(fn−1/2, unh).

(3.15)

For n > 1, we bring the terms ‖un−1
h ‖Ωn and ‖∇un−1

h ‖Ωn to the domain Ωn−1. By employing
Lemmas 3.2 and 3.4, we have

‖un−1
h ‖2Ωn +

∆t

2
‖∇un−1

h ‖2Ωn ≤ ‖un−1
h ‖2Ωn−1 + c∆t‖un−1

h ‖2∂Ωn−1 +
∆t

2
‖∇un−1

h ‖2Ωn−1

+

(
∆t

4
+ c∆t2

)
‖∇unh +∇un−1

h ‖2Ωn +

(
1

2
+ c∆t

)
‖unh − un−1

h ‖2Ωn

+ c∆tgnh(unh, u
n
h) + c∆tgn−1

h (un−1
h , un−1

h ).

(3.16)

Inserting (3.16) into (3.15) and using 2∆t(fn−1/2, unh)Ωn ≤ ∆t
(
‖fn−1/2‖2Ωn + ‖unh‖2Ωn

)
gives for

sufficiently large γg

(1−∆t)‖unh‖2Ωn +
∆t

2
‖∇unh‖2Ωn +

1

4
‖unh − un−1

h ‖2Ωn +
∆t

8
‖∇unh +∇un−1

h ‖2Ωn

+
3γD∆t

2h
‖unh‖2∂Ωn + ∆tγgg

n
h(unh, u

n
h)

≤ ‖un−1
h ‖2Ωn−1 +

∆t

2
‖∇un−1

h ‖2Ωn−1 + c∆t‖un−1
h ‖2∂Ωn−1

+ c∆tgn−1
h (un−1

h , un−1
h ) + ∆t‖fn−

1
2

h ‖2Ωn .

(3.17)

For n = 1, we obtain from (3.15) and the stability of the extension E1

(1−∆t)‖u1
h‖2Ω1 + ‖u1

h − u0
h‖2Ω1 +

∆t

2
‖∇u1

h‖2Ω1 +
3∆t

8
‖∇u1

h +∇u0
h‖2Ω1

+
3γD∆t

2h
‖u1

h‖2∂Ω1 + 2∆tγgg
1
h(u1

h, u
1
h)

≤ ‖E1u0‖2Ω1 +
∆t

2
‖∇(E1u0)‖2Ω1 + ∆t‖f

1
2
h ‖

2
Ω1

≤ c‖u0‖2Ω0 + c∆t‖∇u0‖2Ω0 + ∆t‖f
1
2
h ‖

2
Ω1 .

(3.18)
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Taking the sum over k = 1, 2, . . . , n, this yields for sufficiently large γg and γD

‖unh‖2Ωn + ∆t‖∇unh‖2Ωn +
∆t

4

n∑
k=1

Ek(ukh, u
k−1
h )

≤ c‖u0
h‖2Ω0 + ctn‖∇u0

h‖2Ω1 + 2tn‖f‖2∞,0 + c∆t
n∑
k=2

‖uk−1
h ‖2Ωk−1 .

(3.19)

The statement follows by means of the discrete Gronwall lemma.

Remark 3.6 (CFL condition) For m = 1, the stability result in Theorem 3.5 could be shown
under the weaker CFL condition ∆t ≤ cCFLh

3/2 for sufficiently small cCFL. This is due to the
possibility to use the estimate

‖∇vn−1
h ‖2Ωn\Ωn−1 ≤ c

∆t

h
‖∇vn−1

h ‖2
Ωn−1
h,δ

(3.20)

in (3.2) (Note that, for m = 1, ∇vn−1
h is constant in each cell T ). However, in the following section

the stronger CFL condition ∆t ≤ cCFLh
2 with arbitrary cCFL (see Assumption 2) will be used in

order to show optimal-order convergence estimates. The CFL condition is needed to estimate the
term ‖∇vn−1

h ‖2Ωn\Ωn−1 by the discrete time derivative ∆t−1‖vnh−v
n−1
h ‖2Ωn, see (3.6) and Lemma 3.2.

4 A priori error analysis

In this section, we show an a priori error estimate for the discrete problem (2.7). We define the
discretisation error as

en := un − unh, n ≥ 1, (4.1)

where un := u(tn) is assumed to be at least in H2(Ωn). Further regularity assumptions on u will be
made below. The error is decomposed into an interpolation error ηn and a discrete error ξnh terms
defined by

ηn := un − Inhun, ξnh := Inhu
n − unh, (4.2)

where Inhu
n denotes the standard Lagrangian nodal interpolation of un on T nh,δ. For n = 0 we have,

by definition of u0
h, that e0 = u0 − u0

h = 0 in Ω0 and thus, we also set η0 = ξ0
h = 0. We will make

use of the following standard interpolation estimates for n ≥ 1

‖ηn‖Hl(Ω) ≤ chk−l‖un‖Hk(Ω), for 0 ≤ l ≤ 1, 2 ≤ k ≤ m+ 1, (4.3)

‖ηn‖Hl(∂Ω) ≤ chk−l−1/2‖un‖Hk(Ω), for 0 ≤ l ≤ 1, 2 ≤ k ≤ m+ 1. (4.4)

4.1 Consistency error

The exact solution u ∈ H1(Ω(t)) of the continuous problem (1.1) satisfies the following weak
formulation:

(ut, v)Ω(t) + a(u, v) = (f, v)Ω(t), t ∈ In (4.5)

for v ∈ H1(Ω(t)) and the bilinear form

a(u, v) = (∇u,∇v)Ω(t) − (∂nu, v)∂Ω(t).

12



At time tn−1, we have

(ut(tn−1), v)Ωn−1 + an−1(un−1, v) = (fn−1, v)Ωn−1 (4.6)

where
an−1(un−1, v) = (∇un−1,∇v)Ωn−1 − (∂nu

n−1, v)∂Ωn−1 .

To estimate the consistency error, we will need an analogous equality for un−1 on Ωn instead of
Ωn−1. Therefore, we define ũ as a smooth extension of the exact solution u to Qnδ . Moreover, we
define a smooth extension of the source term f as follows:

f̃(tn−1) = ũt(tn−1)−∆ũ(tn−1), on Ωn
δ . (4.7)

It holds
f̃(tn−1) = f(tn−1) on Ωn−1

However, as we have allowed an arbitrary smooth extension of f to Ωn−1
δ in Section 2, this does

not necessarily hold in Ωn−1
δ \ Ωn−1. By using a test function vh ∈ V n,m

h , we get

(ũn−1
t , vh)Ωn + (∇ũn−1,∇vh)Ωn − (∂nũ

n−1
h , vh)∂Ωn = (f̃n−1, vh)Ωn . (4.8)

By adding the equations (4.5) and (4.8), we obtain

(unt + ũn−1
t , vh)Ωn + (∇un +∇ũn−1,∇vh)Ωn − (∂nu

n
h + ∂nũ

n−1
h , vh)∂Ωn = (fn + f̃n−1, vh)Ωn . (4.9)

We note that the right-hand side in (4.9) differs from the discrete formulation (2.7) by (f̃n−1 −
fn−1, vh)Ωn\Ωn−1 . Hence, (4.9) can be rewritten as(

unt + ũn−1
t

2
, vh

)
Ωn

+
1

2
anh(un, vh) +

1

2
an−1
h (ũn−1, vh) =

1

2
(fn + fn−1, vh)Ωn +

1

2
En−1
f (vh), (4.10)

where En−1
f (vh) is given by

En−1
f (vh) = (f̃n−1 − fn−1, vh)Ωn\Ωn−1 . (4.11)

In the next lines, we will discuss a bound for the term En−1
f .

Lemma 4.1 Under the assumptions of Lemma 3.1, the error term En−1
f defined in (4.11) satisfies

the following estimate for vnh ∈ V
n,m
h and sufficiently regular u:

∆t
∣∣En−1
f (vnh)

∣∣ ≤ c∆t5RC(u)2 +
1

32

(
∆t‖∇vnh +∇vn−1

h ‖2Ωn + ‖vnh − vn−1
h ‖2Ωn (4.12)

+ ∆t2‖vnh‖2∂Ωn + ∆tgnh(vnh , v
n
h) + ∆tgn−1

h (vn−1
h , vn−1

h )
)
,

where RC(u) = ‖u‖∞,3,I + ‖∂tu‖∞,1,I .

Proof. We apply Lemma 3.3 to u = (fn−1 − f̃n−1)vnh for p = 1

∆t
∣∣(fn−1 − f̃n−1, vnh)Ωn\Ωn−1

∣∣ ≤ ∆t‖(fn−1 − f̃n−1)vnh‖L1(Ωn\Ωn−1)

≤ c∆t2‖(fn−1 − f̃n−1)vnh‖L1(∂Ωn−1)

+c∆t3
∥∥∥∇[(fn−1 − f̃n−1)vnh

]∥∥∥
L1(Ωn\Ωn−1)

.

(4.13)
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As fn−1 = f̃n−1 on ∂Ωn−1, the first term in (4.13) vanishes. By definition of f̃ in (4.7) we can
estimate further

∆t
∣∣(fn−1 − f̃n−1, vnh)Ωn\Ωn−1

∣∣ ≤ c∆t3 [‖(fn−1 − f̃n−1)‖Ωn\Ωn−1‖∇vnh‖Ωn\Ωn−1

]
+c∆t3

[
‖∇(fn−1 − f̃n−1)‖Ωn\Ωn−1‖vnh‖Ωn\Ωn−1

]
≤ c∆t3RC(u)

[
‖∇vnh‖Ωn\Ωn−1 + ‖vnh‖Ωn\Ωn−1

]
.

(4.14)

Now, by employing Lemmas 3.2 and 3.4, we obtain

‖∇vnh‖2Ωn\Ωn−1 + ‖vnh‖2Ωn\Ωn−1 ≤
(

1

2
+ c∆t2

)
‖∇vnh +∇vn−1

h ‖2Ωn\Ωn−1 +
c

∆t
‖vnh − v

n−1
h ‖2Ωn

+c∆t‖vnh‖2∂Ωn + cgnh(vnh , v
n
h) + cgn−1

h (vn−1
h , vn−1

h ).
(4.15)

Inserting these estimates into (4.14) and using Young’s inequality and Assumption 2, we obtain

∆t
∣∣(fn−1 − f̃n−1, vnh)Ωn\Ωn−1

∣∣ ≤ c∆t3RC(u)
[
‖∇vnh‖Ωn\Ωn−1 + ‖vnh‖Ωn\Ωn−1

]
≤ c∆t5RC(u)2 +

1

32

(
∆t‖∇vnh +∇vn−1

h ‖2Ωn + ‖vnh − v
n−1
h ‖2Ωn + ∆t2‖vnh‖2∂Ωn

+∆tγgg
n
h(vnh , v

n
h) + ∆tγgg

n−1
h (vn−1

h , vn−1
h )

)
.

(4.16)

Now we are ready to estimate the consistency error related to the discrete problem (2.7). By
subtracting (2.7) from (4.10), the global error term en satisfies the equality(
D−∆te

n, vh
)

Ωn
+

1

2
anh(en, vh)+

1

2
an−1
h (en−1, vh)+

γD
h

(en, vh)∂Ωn+γgg
n
h(en, vh) =

1

2
En−1
f (vh)+Enc (vh),

(4.17)
where the consistency error Enc (vh) is given by

Enc (vh) =
(
D−∆tu

n − ∂tEnu(tn−1/2), vh
)

Ωn︸ ︷︷ ︸
I1

−
(
ut(tn) + ∂tE

nu(tn−1)

2
− ∂tEnu(tn−1/2), vh

)
Ωn︸ ︷︷ ︸

I2

+
γD
h

(Enun, vh)∂Ωn︸ ︷︷ ︸
I3

+ γgg
n
h(Enun, vh)︸ ︷︷ ︸

I4

.

(4.18)
The terms I3 and I4 vanish due to the homogeneous boundary condition and the regularity

assumption on the exact solution un ∈ H2(Ωn) and its extension Enun ∈ H2(Ωn
δ ). The remaining

terms are estimated in the following lemma.

Lemma 4.2 Let u ∈ W 3,∞(Qn). Under Assumption 1, the consistency error for vh ∈ V n,m
h is

bounded by

∆t|Enc (vnh)| ≤ c∆t5‖u‖2W 3,∞(Qn) +
∆t

16
‖vnh‖2Ωn . (4.19)
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Proof. First, we will show a bound for the term I1. By following the argumentation in [59,
Chapter 1], we have∣∣∣∣(un − Enun−1

∆t
− ∂tEnu(tn−1/2)

)∣∣∣∣ ≤ 1

∆t

∣∣∣∣∣
∫ tn

tn−1/2

(tn − s)2

3!
∂3
tE

nu(s)ds

∣∣∣∣∣
+

1

∆t

∣∣∣∣∫ tn−1/2

tn−1

(s− tn−1)2

3!
∂3
tE

nu(s)ds

∣∣∣∣
≤ c∆t2 sup

t∈[tn−1,tn]
|∂3
tE

nu(t)|.

Using the stability of the extension operator En given in (2.5) and the Cauchy-Schwarz inequality,
we have ∣∣∣∣(un − Enun−1

∆t
− ∂tEnu(tn−1/2), vnh

)
Ωn

∣∣∣∣ ≤ c∆t2‖∂3
tE

nun‖L∞(Qnδ )‖vnh‖Ωn

≤ c∆t2‖u‖W 3,∞(Qn)‖vnh‖Ωn .
(4.20)

A bound for the second term I2 follows in a similar way, see also [59, Chapter 1]. The statement
follows using Young’s inequality.

4.2 Interpolation error

To derive an interpolation error estimate, we devise a discrete problem associated with the discrete
error ξnh . By definition of ξnh (4.2) and using (4.17), we have for vh ∈ V n,m

h(
D−∆tξ

n
h , vh

)
Ωn

+
1

2
anh(ξnh , vh) +

1

2
anh(ξn−1

h , vh) +
γD
h

(ξnh , vh)∂Ωn

+γgg
n
h(ξnh , vh) =

1

2
En−1
f (vh) + Enc (vh)− EnI (vh),

(4.21)

where the interpolation error EnI (vh) is given by

EnI (vh) =
(
D−∆tη

n, vh
)

Ωn
+

1

2
anh(ηn, vh) +

1

2
anh(ηn−1, vh) +

γD
h

(ηn, vh)∂Ωn + γgg
n
h(ηn, vh). (4.22)

We remark that we are using smooth extensions of, e.g., ηn−1, in the following without further
notice, whenever variables would be undefined on parts of Ωn.

Lemma 4.3 (Interpolation error) Let u ∈ L∞(In, H
m+1(Ω(t)), ut ∈ L∞(In, H

m(Ω(t)) and
vh ∈ V n,m

h . Based on the assumptions 1 and 2, the interpolation error is bounded by

∆t|EnI (vnh)| ≤ c∆t h2mRI(u)2 +
∆t

8
‖vnh‖2Ωn +

∆t

32
‖∇vnh +∇vn−1

h ‖2Ωn +
1

32
‖vnh − v

n−1
h ‖2Ωn

+
∆t

16h
‖vnh‖2∂Ωn +

∆t

8
gnh(vnh , v

n
h),

(4.23)
where RI(u) = ‖ut‖∞,m + ‖u‖∞,m+1.
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Proof. The first term in the interpolation error EnI (vh) from (4.22) is estimated as follows:∣∣(ηn − ηn−1, vnh
)

Ωn

∣∣ ≤ ‖ηn − ηn−1‖Ωn‖vnh‖Ωn

=

∥∥∥∥∥
∫ tn

tn−1

ηt(s)ds

∥∥∥∥∥
Ωn

‖vnh‖Ωn ≤ ∆thm‖∂tEnu‖∞,m,In‖vnh‖Ωn .
(4.24)

Using the stability of the extension (2.4), we obtain∣∣(ηn − ηn−1, vnh
)

Ωn

∣∣ ≤ c∆t hm (‖ut‖∞,m + ‖u‖∞,m+1) ‖vnh‖Ωn . (4.25)

Next, we use interpolation estimates (4.3) and (4.4) in combination with (2.3) to deduce for k ∈
{n− 1, n} that

∆t

2

∣∣anh(ηk, vnh)
∣∣ ≤ ∆t

2
‖∇ηk‖Ωn‖∇vnh‖Ωn + ∆t‖∂nηk‖∂Ωn‖vnh‖∂Ωn

≤ c∆t hm‖uk‖Hm+1(Ωk)‖∇vnh‖Ωn + c∆t hm−1/2‖uk‖Hm+1(Ωk)‖vnh‖∂Ωn .

(4.26)

Using that, by an inverse inequality and the CFL condition ∆t ≤ cCFLh2,

‖∇vnh‖Ωn ≤
1

2
‖∇vnh +∇vn−1

h ‖Ωn +
1

2
‖∇vnh −∇vn−1

h ‖Ωn

≤ 1

2
‖∇vnh +∇vn−1

h ‖Ωn +
c

h
‖vnh − vn−1

h ‖Ωn

≤ 1

2
‖∇vnh +∇vn−1

h ‖Ωn +
c

∆t1/2
‖vnh − vn−1

h ‖Ωn

we obtain further

∆t

2

∣∣anh(ηk, vnh)
∣∣ ≤ c∆t1/2 hm‖uk‖Hm+1(Ωn)

(
∆t1/2

2
‖∇vnh +∇vn−1

h ‖Ωn + ‖vnh − v
n−1
h ‖Ωn

)

+c∆t1/2 hm‖uk‖Hm+1(Ωn)
∆t1/2

h1/2
‖vnh‖∂Ωn .

(4.27)
For the Nitsche penalty term, we have

∆t
∣∣∣γD
h

(ηn, vnh)∂Ωn

∣∣∣ ≤ c∆tγD
h
‖ηn‖∂Ωn‖vnh‖∂Ωn ≤ c∆t1/2 hm‖un‖Hm+1(Ωn)

∆t1/2

h1/2
‖vnh‖∂Ωn .

(4.28)
Finally, the ghost-penalty term is approximated by using gnh(ηn, vnh) ≤ gnh(ηn, ηn)1/2gnh(vnh , v

n
h)1/2

and an interpolation estimate

∆t |γggnh(ηn, vnh)| ≤ c∆t hm‖un‖Hm+1(Ωn)g
n
h(vnh , v

n
h)1/2. (4.29)

The statement (4.23) follows by combining estimates (4.25)-(4.29) and using Young’s inequality.

4.3 Convergence estimate

Lemma 4.4 (Discrete error) Let u ∈ L∞(In, H
m+1(Ω(t))) ∩W 1,∞(In, H

m(Ω(t)) ∩W 3,∞(Q) be
the solution of (1.1) and {ukh}nk=1 the discrete solution of (2.7), respectively. Under Assumptions 1
and 2, the discrete error term ξn satisfies for γg, γD sufficiently large

‖ξn‖2Ωn + ∆t‖∇ξn‖2Ωn + ∆t

n∑
k=1

Ek(ξkh, ξ
k−1
h ) ≤ exp(cT4.4tn)

(
∆t4 + h2m

)
R(u)2, (4.30)
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where R(u) = RC(u) +RI(u) + ‖u(tn)‖W 3,∞(Q), with RC and RI specified in Lemma 4.1 and 4.3,
respectively.

Proof. By taking vh = 2∆tξnh in (4.21) and using the argumentation from the stability proof
(Theorem 3.5), see (3.17), we obtain that

‖ξnh‖2Ωn +
1

4
‖ξnh − ξ

n−1
h ‖2Ωn +

∆t

2
‖∇ξnh‖2Ωn +

∆t

8
‖∇ξnh +∇ξn−1

h ‖2Ωn +
3γD∆t

2h
‖ξnh‖2∂Ωn

+2∆tγggh(ξnh , ξ
n
h) ≤ ‖ξn−1

h ‖2Ωn−1 +
∆t

2
‖∇ξn−1

h ‖2Ωn−1 + c∆t‖ξn−1
h ‖2∂Ωn−1

+c∆tgn−1
h (ξn−1

h , ξn−1
h ) + 2∆t

(
|En−1
f (ξnh)|+ |Enc (ξnh)|+ |EnI (ξnh)|

)
.

(4.31)

By combining results from Lemmas 4.1, 4.2 and 4.3 we have

2∆t
(
|En−1
f (ξnh)|+ |Enc (ξnh)|+ |EnI (ξnh)|

)
≤ c∆t

(
∆t4 + h2m

)
R(u) +

∆t

4
‖ξnh‖2Ωn +

∆t

16
‖∇ξnh +∇ξn−1

h ‖2Ωn +
1

16
‖ξnh − ξn−1

h ‖2Ωn

+
∆t

8h
‖ξnh‖2∂Ωn + c∆tgnh(ξnh , ξ

n
h) + c∆tgn−1

h (ξn−1
h , ξn−1

h ).

(4.32)

Inserting (4.32) into (4.31) and absorbing terms into the left-hand side yields for n > 1 and γD, γg
sufficiently large(

1− ∆t

4

)
‖ξnh‖2Ωn +

1

4
‖ξnh − ξn−1

h ‖2Ωn +
∆t

4
‖∇ξnh‖2Ωn +

∆t

16
‖∇ξnh +∇ξn−1

h ‖2Ωn

+
γD∆t

h
‖ξnh‖2∂Ωn + ∆tγggh(ξnh , ξ

n
h) ≤ ‖ξn−1

h ‖2Ωn−1 +
∆t

2
‖∇ξn−1

h ‖2Ωn−1 + c∆t‖ξn−1
h ‖2∂Ωn−1

+ c∆tgn−1
h (ξn−1

h , ξn−1
h ) + c∆t

(
∆t4 + h2m

)
R(u).

(4.33)

As ξ0
h = 0, we obtain for n = 1(

1− ∆t

4

)
‖ξ1
h‖2Ω1 +

1

4
‖ξ1
h − ξ0

h‖2Ω1 +
∆t

4
‖∇ξ1

h‖2Ω1 +
∆t

16
‖∇ξ1

h +∇ξ0
h‖2Ω1

+
γD∆t

h
‖ξ1
h‖2∂Ω1 + ∆tγgg

1
h(ξ1

h, ξ
1
h) ≤ c∆t

(
∆t4 + h2m

)
R(u).

Now, summing over k = 1, 2, . . . , n, we deduce that

‖ξnh‖2Ωn + ∆t‖∇ξnh‖2Ωn +
∆t

8

n∑
k=1

Ek(ξkh, ξ
k−1
h ) ≤ c tn

(
∆t4 + h2m

)
R(u) + c∆t

n∑
k=2

‖ξk−1
h ‖2Ωk−1 .

(4.34)
Finally, we use the discrete Gronwall lemma to conclude the result. This completes the proof.
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Theorem 4.5 (Global error) Based on the assumption made in Lemma 4.4, the global error
ek = uk − ukh, k = 1, ..., n satisfies

‖en‖2Ωn + ∆t‖∇en‖2Ωn + ∆t

n∑
k=1

Ek(ek, ek−1) ≤ exp(cT4.5tn)
(
∆t4 + h2m

)
R(u)2, (4.35)

where R(u) is defined in Lemma 4.4.

Proof. Using the interpolation error estimates (4.3), (4.4) and (4.25), we deduce that

‖ηnh‖2Ωn + ∆t‖∇ηnh‖2Ωn + ∆t
n∑
k=1

Ek(ηkh, η
k−1
h ) ≤ c h2mRI(u)2. (4.36)

In combination with Lemma 4.4, this proves (4.35).

5 Numerical results

In this section, we show numerical results in two and three space dimensions to verify the theoretical
findings and the practical behaviour of the numerical method. All the numerical experiments have
been obtained using the CutFEM library [7], which is based on FEniCS [1].

To verify the theoretical results, we will analyse the error terms ek = uk−ukh, k = 1, ..., n in the
following norms

‖en‖L2(Ωn), ‖e‖L2(L2) =

(
∆t

n∑
k=1

‖ek‖2L2(Ωk)

)1/2

, ‖e‖L2(H1
av) =

(
∆t

n∑
k=1

‖∇ek +∇ek−1‖2Ωk

)1/2

.

Given the respective CFL condition (Assumption 2), Theorem 4.5 guarantees second-order conver-
gence in time and convergence of order m in space in the L2-norm at the end time ‖en‖L2(Ωn) and
in the averaged L2(H1)-norm ‖e‖L2(H1

av).

5.1 2d example

Example 5.1 We consider a circle traveling with constant velocity w = (1, 0) towards the right.
The domain is given by

Ω(t) = {(x, y) : (x− 0.5− t)2 + (y − 0.5)2 ≤ 0.9}

in the time interval I = [0, 0.1]. The data of the model example is chosen in such a way that the
exact solution is

u(x, y, t) = exp(−4π2t) cos(2πx) cos(2πy).

An illustration of the numerical solution is given in Figure 3. As background domain D, we
use the unit square, i.e.D = [0, 1]2. The background triangulations Th are created by a uniform
subdivision of the unit square into triangles and successive refinement. For each time step n, the
active triangulation T nh,δ is then extracted from Th, as described in Section 2. We use δ = 4∆t.
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Figure 3: Illustration of the numerical solution u at t = 0 (left), t = 0.05 (center) and t = 0.1
(right).

Estimated orders of convergence We will show results for different time-step sizes ∆ti =
1/50 · 2−i, i = 0, ..., 4 and mesh sizes hj = 1/32 · 2−j , j = 0, ..., 3. From the computed errors, we will
estimate the temporal and spatial order of convergence. Therefore, we assume that the total error
can be decomposed into a temporal and a spatial component as follows

g(∆t, h) = g∆t(∆t) + gh(h) = c∆t∆t
eoc∆t + chh

eoch

with constants c∆t, ch and estimated orders of convergence eoc∆t, eoch. For a fixed mesh size hj ,
this relation becomes

g(∆t, ·) = ghj + c∆t∆t
eoc∆t (5.1)

with a fixed spatial error part ghj . We will use (5.1) to estimate the order of convergence in time
eoc∆t by means of a least-squares fit of all available error values for a fixed hj to find the three
parameters ghj , c∆t and eoc∆t. Analogously, we estimate the spatial order of convergence eoch by
a least-squares fit of the function

g(·, h) = g∆ti + chh
eoch (5.2)

against all available error values for a fixed time-step size ∆ti.
Finally, we will also compute estimated orders of convergence for the ”diagonal values”, which

correspond to fixing ∆t = c̄h for c̄ ∈ {32/50, 32/100}. Here we fit the two parameters c∆t,h and eoc∆t,h

of the function

g(c̄h, h) = c∆t,hh
eoc∆t,h . (5.3)

against the computed error values.

5.1.1 P1 finite elements

Firstly, we consider P1 finite elements. We choose the numerical parameters as γD = 1 and
γg = 10−3. The errors in the L2-norm at the end time, the L2(L2)-norm and the L2(H1

av)-norm
are shown in Table 1 for different ∆t and h. The estimated orders of convergence are shown, if the
asymptotic standard error (computed by gnuplot [63]) was below 20%; otherwise we draw a ’-’.

We observe estimated spatial convergence orders close to two in the L2-norms and close to one
in the L2(H1

av)-norm. Note that Theorem 4.5 guarantees only first-order convergence in space. We
expect, however, that using a duality argument second-order convergence in space could be shown
in the L2(L2)-norm, as in [11].
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End-time error ‖en‖L2(Ωn)

h ↓ /∆t→ 1/50 1/100 1/200 1/400 1/800 eoc∆t

1/32 1.93e-03 5.40e-04 3.14e-04 2.78e-04 2.68e-04 2.62
1/64 1.21e-03 2.77e-04 1.08e-04 7.84e-05 7.17e-05 2.46
1/128 8.88e-04 1.96e-04 4.95e-05 2.54e-05 1.96e-05 2.29
1/256 7.78e-04 1.57e-04 3.18e-05 1.15e-05 6.18e-06 2.35

eoch 1.26 1.55 1.80 1.91 1.92
eoc∆t,h 2.79 2.30

Error ‖e‖L2(L2)

h ↓ /∆t→ 1/50 1/100 1/200 1/400 1/800 eoc∆t

1/32 1.44e-03 8.42e-04 7.12e-04 6.87e-04 6.83e-04 2.25
1/64 9.69e-04 3.62e-04 2.21e-04 1.89e-04 1.82e-04 2.11
1/128 8.35e-04 2.37e-04 9.13e-05 5.72e-05 4.89e-05 2.04
1/256 7.97e-04 2.01e-04 5.75e-05 2.30e-05 1.45e-05 2.05

eoch 1.81 1.91 1.92 1.92 1.92
eoc∆t,h 1.99 1.93

Error ‖e‖L2(H1
av)

h ↓ /∆t→ 1/50 1/100 1/200 1/400 1/800 eoc∆t

1/32 4.77e-02 4.53e-02 4.50e-02 4.49e-02 4.49e-02 2.83
1/64 2.64e-02 2.36e-02 2.33e-02 2.33e-02 2.33e-02 3.33
1/128 1.65e-02 1.23e-02 1.19e-02 1.19e-02 1.19e-02 3.32
1/256 1.26e-02 6.72e-03 6.06e-03 6.01e-03 6.00e-03 3.21

eoch 1.17 0.96 0.93 0.93 0.93
eoc∆t,h 1.00 0.96

Table 1: L2(T ), L2(L2) and L2(H1
av)-norm errors for P1 finite elements applied to Example 5.1.

The estimated orders of convergence are computed according to (5.1)-(5.3). The diagonal orders
are computed from the underlined error values.

The estimated temporal orders of convergence are close to two or larger in the L2-norms. This is
in agreement with Theorem 4.5. In the L2(H1

av)-norm the estimated eoc∆t seems to be even larger
than three. This has to be read carefully, however, as the spatial error part clearly dominates the
overall error in this case.

Finally, the diagonal orders are around two in the L2(L2)-norm and even slightly higher in the
L2-norm at the end time. In the L2(Hav)-norm the spatial part is dominant and we obtain eoc∆t,h

close the one, in agreement with Theorem 4.5.

5.1.2 P2 finite elements

Next, we consider Example 5.1 with P2 finite elements. We increase the Nitsche parameter to
γD = 10, as for higher polynomial degree a larger Nitsche parameter is required, see e.g. [44]. The
ghost-penalty parameter γg is still chosen as 10−3, but now, according to (2.9), second derivatives
are included in the ghost-penalty term. The L2-norm errors at the end time, the L2(L2)- and the
L2(H1

av)-norm errors are shown in Table 2.
Firstly, we observe that the absolute values of the errors are significantly smaller compared to

20



End-time error ‖en‖L2(Ωn)

h ↓ /∆t→ 1/100 1/200 1/400 1/800 1/1 600 eoc∆t

1/32 1.16e-04 3.09e-05 1.08e-05 5.80e-06 4.66e-06 2.06
1/64 1.17e-04 2.66e-05 7.33e-06 2.78e-06 1.44e-06 2.18
1/128 1.11e-04 2.43e-05 6.23e-06 1.76e-06 6.78e-07 2.22
1/256 1.12e-04 2.31e-05 5.78e-06 1.54e-06 4.36e-07 2.29

eoch – 0.91 1.60 1.68 2.01
eoc∆t,h 2.12 2.08

Error ‖e‖L2(L2)

h ↓ /∆t→ 1/100 1/200 1/400 1/800 1/1 600 eoc∆t

1/32 1.89e-04 5.35e-05 2.13e-05 1.27e-05 1.10e-05 2.04
1/64 1.84e-04 4.66e-05 1.36e-05 5.09e-06 3.16e-06 2.03
1/128 1.82e-04 4.50e-05 1.16e-05 3.32e-06 1.28e-06 2.03
1/256 1.82e-04 4.45e-05 1.12e-05 2.88e-06 8.32e-07 2.03

eoch 1.72 2.00 1.99 2.09 2.05
eoc∆t,h 2.02 1.98

Error ‖e‖L2(H1
av)

h ↓ /∆t→ 1/100 1/200 1/400 1/800 1/1 600 eoc∆t

1/32 3.42e-03 2.25e-03 2.17e-03 2.17e-03 2.17e-03 3.88
1/64 2.81e-03 9.11e-04 6.22e-04 6.03e-04 6.03e-04 2.82
1/128 2.80e-03 7.26e-04 2.45e-04 1.77e-04 1.72e-04 2.22
1/256 2.81e-03 7.14e-04 1.87e-04 6.84e-05 5.30e-05 2.03

eoch – 2.91 2.11 1.89 1.86
eoc∆t,h 1.90 1.85

Table 2: L2(T ), L2(L2) and L2(H1
av)-norm errors for P2 finite elements applied to Example 5.1.

P1 finite elements. The spatial orders of convergence are close to two in all norms for smaller ∆t.
We note that in Theorem 4.5 second order in space has been shown for the end-time L2-norm and
the L2(H1

av)-norm. Using a duality argument, one could even hope for convergence order three in
the L2(L2)-norm. We need to consider, however, that for these results the quadrature error related
to a curved boundary has not been taken into account. In the CutFEM library used here, the
geometry is approximated linearly in the set-up of the quadrature rule, see [7]. This can lead to a
reduced order of convergence, namely order 1.5 in the H1-norms and 2 in the L2-norms, see [12] for
results for a CutFEM approach applied to an elliptic problem on curved domains. This reduction
can also be observed in the L2-norm errors in the example considered here.

The estimated temporal orders of convergence are again close to two in the L2-norms, which
confirm the estimates in Theorem 4.5. In the L2(H1

av)-norm the error is still clearly dominated by
the spatial part for h ≥ 1

64 . This changes, however, on the finer levels, where the temporal part
gets dominant and the eoc∆t is very close to two, in agreement with Theorem 4.5.

The spatial and temporal convergence orders are confirmed by the ”diagonal” orders, which are
close to two in all cases.
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Figure 4: Illustration of the numerical solution of Example 5.2 at time t = 0 (left) and t = 1
(right).

5.2 3d example

Example 5.2 We consider a 3-dimensional rectangular channel with a moving upper and lower
wall in the time interval I = [0, 1], inspired by a pump. The moving domain is given by

Ω(t) = (0, 4)× (−1 + 0.1 sin t, 1− 0.1 sin t)× (−1, 1).

The source term and boundary data is chosen in such a way that the exact solution of the model
problem (1.1) is

u(x, y, z, t) = exp(−t)
(
(1− 0.1 sin t)2 − y2

)
.

As background domain D, we use the box [0, 4]× [−1.1, 1.1]× [−1, 1]. The background triangu-
lations Th are created by uniform subdivisions of D into tetrahedra and successive refinement. We
use again δ = 4∆t and choose γg = 0.1 for P1 and γg = 1 for P2 finite elements, respectively and
γD = 10 in both cases. We note that in this example the quadrature error is zero, as the boundary
∂Ωk consists of plane surfaces for all k. An illustration of the numerical solution at times t = 0
and t = 1 is given in Figure 4.

5.2.1 P1 finite elements

As the numerical experiments in three space dimensions are much more time-consuming compared
to two dimensions, we focus on simultaneous refinement in space and time by choosing hi = ∆ti

10 =
2−i−1 for i = 0, ..., 3. The resulting errors in the four norms introduced above are plotted in Figure 5
over the mesh size (blue curves) and compared to linear (red) and quadratic convergence (pink).
We observe second-order convergence in the L2-norms and first-order convergence in the L2(H1

av)-
norm. We note that for m = 1 first-order convergence in space has been shown in Theorem 4.5 in
the L2-norm at the end time and in the L2(H1

av)-norm. The numerical results indicate again that
second-order convergence in space could be shown in the L2(L2)-norm using a duality argument.
The first-order convergence in the L2(H1

av)-norm is optimal, as the spatial error part dominates the
overall error.
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Figure 5: Errors for example 5.2 (3d) for P1 finite elements under simultaneous refinement in
space and time (∆t = h/10) for P1 finite elements. Top left: L2-norm at the end time. Top
right: L2(L2)-norm. Bottom: L2(H1

av)-norm.

5.2.2 P2 finite elements

In Figure 6, we illustrate the errors under simultaneous refinement (hi = ∆ti
10 ) for P2 finite ele-

ments. We observe again (at least) second-order convergence in the L2-norms, in agreement with
Theorem 4.5. The convergence in the L2(H1

av)-norm lies between linear and quadratic convergence
and decreases slightly for finer mesh sizes. This reduction in the convergence rate could be related
to a violation of the CFL condition, which has been used in the error analysis. On the other hand,
we did not find any stability issues in our computations.

6 Concluding remarks

We have analysed a Crank-Nicolson variant of the implicitly extended Eulerian time-stepping
scheme for the heat equation on time-dependent domains. Theoretically, stability and optimal-
order convergence estimates were derived in the energy norm under the assumption of a parabolic
CFL condition. In the numerical results, on the other hand, we did not observe any stability issue
related to a violated CFL condition. The three-dimensional results for second-order polynomials
indicate that a violated CFL condition could result in a slightly reduced convergence order in the
L2(H1

av)-norm.
To our knowledge this is the first work, in which an implicitly extended Eulerian time-stepping

scheme is applied with a scheme that requires derivative information at different time steps. As
mentioned in the introduction, this could be the basis for an analysis of a whole zoo of time-stepping
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Figure 6: Errors for example 5.2 (3d) for P2 finite elements under simultaneous refinement in
space and time (∆t = h/10) for P1 finite elements. Top left: L2-norm at the end time. Top
right: L2(L2)-norm. Bottom: L2(H1

av)-norm.

schemes, such as the Fractional-step-θ method, implicit Runge-Kutta- or Adams-Bashforth schemes.
Moreover, we plan to apply the developed time-stepping scheme to flow problems on time-dependent
domains and to fluid-structure interactions with large displacements, see e.g. [27, 14].
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WEAK IMPOSITION OF SIGNORINI BOUNDARY CONDITIONS
ON THE BOUNDARY ELEMENT METHOD\ast 

ERIK BURMAN\dagger , STEFAN FREI\ddagger , AND MATTHEW W. SCROGGS\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We derive and analyze a boundary element formulation for boundary conditions
involving inequalities. In particular, we focus on Signorini contact conditions. The Calder\'on projector
is used for the system matrix, and boundary conditions are weakly imposed using a particular
variational boundary operator designed using techniques from augmented Lagrangian methods. We
present a complete numerical a priori error analysis and present some numerical examples to illustrate
the theory.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . boundary element methods, Nitsche's method, Signorini problem, Calder\'on pro-
jector

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65N38, 65R20, 74M15

\bfD \bfO \bfI . 10.1137/19M1281721

1. Introduction. The application of Nitsche techniques to deal with variational
inequalities has received increasing interest recently, starting from a series of works
by Chouly, Hild, and Renard for elasticity problems with contact [7]. Their approach
goes back to an augmented Lagrangian formulation, that was first introduced by Alart
and Curnier [1].

In a previous paper [2], we have shown how Nitsche techniques can be used to
impose Dirichlet, Neumann, mixed Dirichlet--Neumann, or Robin conditions weakly
within boundary element methods. By using the Calder\'on projector, we were able to
derive a unified framework that can be used for different boundary conditions.

The purpose of this article is to extend these techniques to boundary conditions
involving inequalities, such as Signorini contact conditions. In particular, we consider
the Laplace equation with mixed Dirichlet and Signorini boundary conditions: Find
u such that

 - \Delta u = 0 in \Omega ,(1.1a)

u = gD on \Gamma D,(1.1b)

u \leqslant gC and
\partial u

\partial \bfitnu 
\leqslant \psi C on \Gamma C,(1.1c) \biggl( 

\partial u

\partial \bfitnu 
 - \psi C

\biggr) \biggl( 
u - gC

\biggr) 
= 0 on \Gamma C.(1.1d)

Here \Omega \subset \BbbR 3 denotes a polyhedral domain with outward pointing normal \bfitnu and
boundary \Gamma := \Gamma D \cup \Gamma C. We assume for simplicity that the boundary between \Gamma D
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WEAK IMPOSITION OF SIGNORINI CONDITIONS ON BEM 2335

and \Gamma C coincides with edges between the faces of \Gamma . Whenever it is ambiguous, we
will write \bfitnu \bfitx for the outward pointing normal at the point \bfitx . We assume that

g =

\Biggl\{ 
gD in \Gamma D

gC in \Gamma C

\in L2(\Gamma ) and \psi C \in H1/2(\Gamma C).

Observe that when \Gamma C = \varnothing , there exists a unique solution to (1.1) by the Lax--
Milgram lemma. In the case that meas(\Gamma C) > 0, the theory of Lions and Stampacchia
[12] for variational inequalities yields existence and uniqueness of solutions. We as-
sume that u \in H3/2+\epsilon (\Omega ) for some \epsilon > 0.

Boundary element methods for Signorini problems were first studied by Han [11].
A variational formulation involving the Calder\'on projector was presented in [10]. An
alternative formulation is based on Steklov--Poincar\'e operators [20, 22]. The numerical
approaches to solve such formulations include a penalty formulation [15], operator
splitting techniques [17, 23], or semi-smooth Newton methods [20, 22]. Besides the
usual energy norm estimates, the latter reference includes an L2(\Gamma )-error estimate
based on a duality argument. Maischak and Stephan [13] presented a posteriori error
estimates and an hp-adaptive algorithm for the Signorini problem. A priori error
estimates for a penalty-based hp algorithm were shown by Chernov, Maischak, and
Stephan [6]. Recently, an augmented Lagrangian approach has been presented in
combination with a semi-smooth Newton method [22], and variational inequalities
have been successfully used for time-dependent contact problems [9].

We will consider an approach where the full Calder\'on projector is used and the
boundary conditions are included by properly adding scaled penalty terms to the two
equations. This results in formulations similar to the ones obtained for weak impo-
sition of boundary conditions using Nitsche's method [14]. The proposed framework
is flexible and allows for the design of a range of different methods depending on the
choice of weights and residuals.

An outline of this paper is as follows. In section 2, we introduce the basic bound-
ary operators that will be needed and review some of their properties. Then, in
section 3, we introduce the variational framework and review the results from [2] for
the pure Dirichlet problem. In section 4, we show how the framework can be applied to
Signorini boundary conditions and the mixed problem (1.1). The method is analyzed
in section 5. We conclude by showing some numerical experiments in section 6.

2. Boundary operators. We define Green's function for the Laplace operator
in \BbbR 3 by

(2.1) G(\bfitx ,\bfity ) =
1

4π| \bfitx  - \bfity | 
.

In this paper, we focus on the problem in \BbbR 3. Similar analysis can be used for problems
in \BbbR 2, in which case this definition should be replaced by G(\bfitx ,\bfity ) =  - log | \bfitx  - \bfity | /2π.

In the standard fashion (see, e.g., [19, Chapter 6]), we define the single layer
potential operator, \scrV : H - 1/2(\Gamma ) \rightarrow H1(\Omega ), and the double layer potential, \scrK :
H1/2(\Gamma )\rightarrow H1(\Omega ) for v \in H1/2(\Gamma ), \mu \in H - 1/2(\Gamma ), and \bfitx \in \Omega \setminus \Gamma by

(\scrV \mu )(\bfitx ) :=
\int 
\Gamma 

G(\bfitx ,\bfity )\mu (\bfity ) d\bfity ,(2.2)

(\scrK v)(\bfitx ) :=
\int 
\Gamma 

\partial G(\bfitx ,\bfity )

\partial \bfitnu \bfity 
v(\bfity ) d\bfity .(2.3)
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2336 ERIK BURMAN, STEFAN FREI, AND MATTHEW W. SCROGGS

We define the space H1(\Delta ,\Omega ) := \{ v \in H1(\Omega ) : \Delta v \in L2(\Omega )\} , and the Dirichlet and
Neumann traces, \gamma D : H1(\Omega )\rightarrow H1/2(\Gamma ) and \gamma N : H1(\Delta ,\Omega )\rightarrow H - 1/2(\Gamma ), by

\gamma Df(\bfitx ) := lim
\Omega \ni \bfity \rightarrow \bfitx \in \Gamma 

f(\bfity ),(2.4)

\gamma Nf(\bfitx ) := lim
\Omega \ni \bfity \rightarrow \bfitx \in \Gamma 

\bfitnu \bfitx \cdot \nabla f(\bfity ).(2.5)

We recall that if the Dirichlet and Neumann traces of a harmonic function are
known, then the potentials (2.2) and (2.3) may be used to reconstruct the function in
\Omega using the following relation:

(2.6) u =  - \scrK (\gamma Du) + \scrV (\gamma Nu).

It is also known [19, Lemma 6.6] that for all \mu \in H - 1/2(\Gamma ), the function

(2.7) u\scrV \mu := \scrV \mu 

satisfies  - \Delta u\scrV \mu = 0 and

(2.8) \| u\scrV \mu \| H1(\Omega ) \leqslant c\| \mu \| H - 1/2(\Gamma ).

Similarly, in [19, Lemma 6.10] the function

(2.9) u\scrK v := \scrK v

satisfies  - \Delta u\scrK v = 0 for all v \in H1/2(\Gamma ) and

(2.10) \| u\scrK v \| H1(\Omega ) \leqslant c\| v\| H1/2(\Gamma ).

We define \{ \gamma Df\} \Gamma and \{ \gamma Nf\} \Gamma to be the averages of the interior and exterior
Dirichlet and Neumann traces of f . We define the single layer, double layer, ad-
joint double layer, and hypersingular boundary integral operators, \sansV : H - 1/2(\Gamma ) \rightarrow 
H1/2(\Gamma ), \sansK : H1/2(\Gamma ) \rightarrow H1/2(\Gamma ), \sansK \prime : H - 1/2(\Gamma ) \rightarrow H - 1/2(\Gamma ), and \sansW : H1/2(\Gamma ) \rightarrow 
H - 1/2(\Gamma ), by

(\sansK v)(\bfitx ) := \{ \gamma D\scrK v\} \Gamma (\bfitx ), (\sansV \mu )(\bfitx ) := \{ \gamma D\scrV \mu \} \Gamma (\bfitx ),(2.11a)

(\sansW v)(\bfitx ) :=  - \{ \gamma N\scrK v\} \Gamma (\bfitx ), (\sansK \prime \mu )(\bfitx ) := \{ \gamma N\scrV \mu \} \Gamma (\bfitx ),(2.11b)

where \bfitx \in \Gamma , v \in H1/2(\Gamma ), and \mu \in H - 1/2(\Gamma ) [19, Chapter 6].
Next, we define the Calder\'on projector by

(2.12) \sansC :=

\biggl( 
(1 - \sigma )\sansI \sansd  - \sansK \sansV 

\sansW \sigma \sansI \sansd + \sansK \prime 

\biggr) 
,

where \sigma is defined for \bfitx \in \Gamma by [19, equation 6.11],

(2.13) \sigma (\bfitx ) = lim
\epsilon \rightarrow 0

1

4π\epsilon 2

\int 
\bfity \in \Omega :| \bfity  - \bfitx | =\epsilon 

d\bfity .

Recall that if u is a solution of (1.1), then it satisfies

(2.14) \sansC 

\biggl( 
\gamma Du
\gamma Nu

\biggr) 
=

\biggl( 
\gamma Du
\gamma Nu

\biggr) 
.
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WEAK IMPOSITION OF SIGNORINI CONDITIONS ON BEM 2337

Taking the product of (2.14) with two test functions, and using the fact that
\sigma = 1

2 almost everywhere, we arrive at the following equations:

\langle \gamma Du, \mu \rangle \Gamma =
\bigl\langle 
( 12 \sansI \sansd  - \sansK )\gamma Du, \mu 

\bigr\rangle 
\Gamma 
+ \langle \sansV \gamma Nu, \mu \rangle \Gamma \forall \mu \in H - 1/2(\Gamma ),(2.15)

\langle \gamma Nu, v\rangle \Gamma =
\bigl\langle 
( 12 \sansI \sansd + \sansK \prime )\gamma Nu, v

\bigr\rangle 
\Gamma 
+ \langle \sansW \gamma Du, v\rangle \Gamma \forall v \in H1/2(\Gamma ).(2.16)

For a more compact notation, we introduce \lambda = \gamma Nu, u = \gamma Du, and the Calder\'on
form

(2.17) \scrC [(u, \lambda ), (v, \mu )] :=
\bigl\langle 
( 12 \sansI \sansd  - \sansK )u, \mu 

\bigr\rangle 
\Gamma 
+ \langle \sansV \lambda , \mu \rangle \Gamma 

+
\bigl\langle 
( 12 \sansI \sansd + \sansK \prime )\lambda , v

\bigr\rangle 
\Gamma 
+ \langle \sansW u, v\rangle \Gamma .

We may then rewrite (2.15) and (2.16) as

(2.18) \scrC [(u, \lambda ), (v, \mu )] = \langle u, \mu \rangle \Gamma + \langle \lambda , v\rangle \Gamma .

We will also frequently use the multitrace form, defined by

(2.19) \scrA [(u, \lambda ), (v, \mu )] :=  - \langle \sansK u, \mu \rangle \Gamma + \langle \sansV \lambda , \mu \rangle \Gamma + \langle \sansK \prime \lambda , v\rangle \Gamma + \langle \sansW u, v\rangle \Gamma .

Using this, we may rewrite (2.18) as

(2.20) \scrA [(u, \lambda ), (v, \mu )] = 1
2 \langle u, \mu \rangle \Gamma + 1

2 \langle \lambda , v\rangle \Gamma .

To quantify the two traces, we introduce the product space

\BbbV := H1/2(\Gamma )\times H - 1/2(\Gamma )

and the associated norm

\| (v, \mu )\| \BbbV := \| v\| H1/2(\Gamma ) + \| \mu \| H - 1/2(\Gamma ).

The continuity and coercivity of \scrA are immediate consequences of the properties
of the operators \sansV , \sansK , \sansK \prime , and \sansW :

Lemma 2.1 (continuity \& coercivity). There exists C > 0 such that

| \scrA [(w, \eta ), (v, \mu )]| \leqslant C\| (w, \eta )\| \BbbV \| (v, \mu )\| \BbbV \forall (w, \eta ), (v, \mu ) \in \BbbV .

There exists \alpha > 0 such that

\alpha 
\Bigl( 
| v| 2

H
1/2
\ast (\Gamma )

+ \| \mu \| 2H - 1/2(\Gamma )

\Bigr) 
\leqslant \scrA [(v, \mu ), (v, \mu )] \forall (v, \mu ) \in \BbbV .

Proof. See [2] for the proof.

3. Discretization and weak imposition of Dirichlet boundary condi-
tions. In this section, we introduce the discrete spaces and review briefly how (non-
homogeneous) Dirichlet boundary conditions can be imposed weakly within the vari-
ational formulations introduced above. For a detailed derivation, and for different
boundary conditions, we refer to [2].

To reduce the number of constants that appear, we introduce the following nota-
tion:

\bullet If \exists C > 0 such that a \leqslant Cb, then we write a \lesssim b.
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Fig. 1. A grid (left), the barycentric refinement of the grid (center), and the dual grid (right).
In a typical example, the initial grid will not be flat, and so the elements of the dual grid will not
necessarily be flat.

\bullet If a \lesssim b and b \lesssim a, then we write a \eqsim b.
We assume that \Omega is a polygonal domain with faces denoted by \{ \Gamma i\} Mi=1. We

introduce a family of conforming, shape regular triangulations of \Gamma , \{ \scrT h\} h>0, indexed
by the largest element diameter of the mesh, h. We let T1, . . . , Tm \in \scrT h be the
triangles of a triangulation.

We consider the following finite element spaces:

Pkh(\Gamma ) := \{ vh \in C0(\Gamma ) : vh| Ti
\in \BbbP k(Ti) for every Ti \in \scrT h\} ,

DPlh(\Gamma ) := \{ vh \in L2(\Gamma ) : vh| Ti \in \BbbP l(Ti) for every Ti \in \scrT h\} ,\widetilde DP
l

h(\Gamma ) := \{ vh \in DPlh(\Gamma ) : vh| \Gamma i \in C0(\Gamma i) for i = 1, . . . ,M\} ,

where \BbbP k(Ti) denotes the space of polynomials of order less than or equal to k on the
triangle Ti.

In addition, we consider the space DUAL0
h(\Gamma ) of piecewise constant functions on

the barycentric dual grid, as shown in Figure 1. On nonsmooth domains, these spaces
have lower order approximation properties than the standard space DP0

h(\Gamma ), as given
in the following lemma.

Lemma 3.1. Let \mu \in Hs(\Gamma ). If \Gamma consists of a finite number of smooth faces
meeting at edges, then

inf
\eta h\in DUAL0

h(\Gamma )
\| \mu  - \eta h\| H - 1/2(\Gamma ) \lesssim h\xi +1/2\| \mu \| H\xi (\Gamma ),

where \xi = min( 12 , s). If \Gamma is smooth, then the same result holds with \xi = min(1, s).

Proof. See [16, Appendix 2] for the proof.

We observe that Pkh(\Gamma ) \subset H1/2(\Gamma ), DPlh(\Gamma ) \subset L2(\Gamma ), \widetilde DP
l

h(\Gamma ) \subset L2(\Gamma ), and
DUAL0

h(\Gamma ) \subset L2(\Gamma ). We define the discrete product space

\BbbV h := Pkh(\Gamma )\times \Lambda lh,

where \Lambda lh can be any of the spaces DPlh(\Gamma ), \widetilde DP
l

h(\Gamma ), or DUAL0
h(\Gamma ).

3.1. Dirichlet boundary conditions. Let us, for the moment, assume that
\Gamma \equiv \Gamma D. Then, the basic idea is to add the following suitably weighted boundary
residual to the weak formulation:

(3.1) R\Gamma D
(uh, \lambda h) := \beta 

1/2
D (gD  - uh).
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WEAK IMPOSITION OF SIGNORINI CONDITIONS ON BEM 2339

This is defined such that R\Gamma D
(uh, \lambda h) = 0 is equivalent to the boundary condition

(1.1b). We obtain an expression of the form

(3.2) \scrC [(uh, \lambda h), (vh, \mu h)] = \langle uh, \mu h\rangle \Gamma + \langle \lambda h, vh\rangle \Gamma + \langle R\Gamma D
(uh, \lambda h), \beta 1vh + \beta 2\mu h\rangle \Gamma ,

or equivalently,

(3.3) \scrA [(uh, \lambda h), (vh, \mu h)] = 1
2 \langle uh, \mu h\rangle \Gamma +

1
2 \langle \lambda h, vh\rangle \Gamma +\langle R\Gamma D

(uh, \lambda h), \beta 1vh + \beta 2\mu h\rangle \Gamma ,

where \beta 1 and \beta 2 are problem dependent scaling operators that can be chosen as a
function of the physical parameters in order to obtain robustness of the method.

For the Dirichlet problem, we choose \beta 1 = \beta 
1/2
D , \beta 2 = \beta 

 - 1/2
D , where different

choices for \beta D in the range 0 \leqslant \beta D \lesssim h - 1 are possible. Inserting this into (3.3), we
obtain the formulation

(3.4) \scrA [(u, \lambda ), (vh, \mu h)] - 1
2 \langle \lambda h, vh\rangle \Gamma D

+ 1
2 \langle uh, \mu h\rangle \Gamma D

+ \langle \beta Duh, vh\rangle \Gamma D

= \langle gD, \beta Dvh + \mu h\rangle \Gamma D
.

By formally identifying \lambda h with \partial \nu uh and \mu h with \partial \nu vh, we obtain the classical (non-
symmetric) Nitsche's method (up to the multiplicative factor 1

2 ).
For a more compact notation, we introduce the boundary operator associated

with the nonhomogeneous Dirichlet condition

(3.5) \scrB D[(uh, \lambda h), (vh, \mu h)] :=  - 1
2 \langle \lambda h, vh\rangle \Gamma D

+ 1
2 \langle uh, \mu h\rangle \Gamma D

+ \langle \beta Duh, vh\rangle \Gamma D
,

the operator corresponding to the left-hand side

(3.6) \scrA D[(uh, \lambda h), (vh, \mu h)] := \scrA [(uh, \lambda h), (vh, \mu h)] + \scrB D[(uh, \lambda h), (vh, \mu h)]

and the operator associated with the right-hand side

(3.7) \scrL D(vh, \mu h) := \langle gD, \beta Dvh + \mu h\rangle \Gamma D
.

Using these and (3.4), we arrive at the following boundary element formulation:
Find (uh, \lambda h) \in \BbbV h such that

\scrA D[(uh, \lambda h), (vh, \mu h)] = \scrL D(vh, \mu h) \forall (vh, \mu h) \in \BbbV h.(3.8)

We introduce the following \scrB D-norm:

\| (v, \mu )\| \scrB D
:= \| (v, \mu )\| \BbbV + \beta 

1/2
D \| v\| \Gamma D

,

and summarize the properties of the bilinear form \scrA D in the following lemma.

Lemma 3.2 (properties of the bilinear form). Let \BbbW be a product Hilbert space for
the primal and flux variables, such that \BbbV \subset \BbbW . The bilinear form has the following
properties:

Property 1 (coercivity). If \beta D = 0 or if there exists \beta min > 0 (independent of
h) such that \beta D > \beta min, then there exists \alpha > 0 such that \forall (v, \mu ) \in \BbbW ,

\alpha \| (v, \mu )\| \scrB D
\leqslant \scrA D[(v, \mu ), (v, \mu )].

Property 2 (continuity). There exists M > 0 such that \forall (w, \eta ), (v, \mu ) \in \BbbW ,

| \scrA D[(v, \mu ), (w, \eta )]| \leqslant M\| (v, \mu )\| \scrB D
\| (w, \eta )\| \scrB D

.

Proof. See [2, section 4.1] for the proof.
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4. Weak imposition of Signorini boundary conditions. Recently, Chouly,
Hild, and Renard [7, 8] showed how contact problems can be treated in the context
of Nitsche's method. We will show here how we may use arguments similar to theirs
in the present framework to integrate unilateral contact seamlessly. The result is a
nonlinear system to which one may apply Newton's method or a fixed-point iteration
in a straightforward manner. We prove existence and uniqueness of solutions to the
nonlinear system and optimal order error estimates.

For the derivation of the formulation on the contact boundary we will first omit
the Dirichlet part, letting \Gamma = \Gamma C. To impose the contact conditions, we recall the
following relations, introduced by Alart and Curnier [1], with [x]\pm := \pm max(0,\pm x):

(u - gC) =
\bigl[ 
(u - gC) - \tau  - 1(\lambda  - \psi C)

\bigr] 
 - on \Gamma C,(4.1)

(\lambda  - \psi C) =  - [\tau (u - gC) - (\lambda  - \psi C)]+ on \Gamma C(4.2)

for all \tau > 0. It is straightforward [7] to show that each of these two conditions is
equivalent to the contact boundary conditions (1.1c) and (1.1d).

To simplify the notation, we introduce the operators

P \tau (uh, \lambda h) := \tau (uh  - gC) - (\lambda h  - \psi C) and P \tau 0 (uh, \lambda h) := \tau uh  - \lambda h.

Using (4.1), we arrive at the following boundary term for the contact conditions:

(4.3) R1
\Gamma C

(uh, \lambda h) = (gC  - uh) + \tau  - 1 [P \tau (uh, \lambda h)] - .

Alternatively, by using (4.2), we arrive at the following boundary term:

(4.4) R2
\Gamma C

(uh, \lambda h) = \tau  - 1
\bigl( 
(\psi C  - \lambda h) - [P \tau (uh, \lambda h)]+

\bigr) 
.

By using the fact that x = [x]++[x] - , it can be shown that (4.3) and (4.4) are equal.
Substituting (4.3) into (3.3) and using the weights \beta 1 = \tau and \beta 2 = 1, we obtain

(4.5) \scrA [(uh, \lambda h), (vh, \mu h)] + 1
2 \langle \mu h, uh\rangle \Gamma C

+
\bigl\langle 
\tau uh  - 1

2\lambda h, vh
\bigr\rangle 
\Gamma C

 - 
\bigl\langle 
[P \tau (uh, \lambda h)] - , vh + \tau  - 1\mu h

\bigr\rangle 
\Gamma C

= \langle gC, \tau vh + \mu h\rangle \Gamma C
.

Using (4.4), we have

(4.6) \scrA [(uh, \lambda h), (vh, \mu h)] + 1
2 \langle \lambda h, vh\rangle \Gamma C

+
\bigl\langle 
\tau  - 1\lambda h  - 1

2uh, \mu h
\bigr\rangle 
\Gamma C

+
\bigl\langle 
[P \tau (uh, \lambda h)]+ , vh + \tau  - 1\mu h

\bigr\rangle 
\Gamma C

=
\bigl\langle 
\psi C, vh + \tau  - 1\mu h

\bigr\rangle 
\Gamma C
.

We see that (4.6) is similar to the nonsymmetric version of the method proposed in
[8] and (4.5) is similar to the nonsymmetric Nitsche formulation for contact discussed
in [5]. As pointed out in the latter reference, the two formulations are equivalent,
with the same solutions. In what follows, we focus exclusively on the variant (4.6).
Defining

\scrB C[(uh, \lambda h), (vh, \mu h)] := 1
2 \langle \lambda h, vh\rangle \Gamma C

+
\bigl\langle 
\tau  - 1\lambda h  - 1

2uh, \mu h
\bigr\rangle 
\Gamma C

+
\bigl\langle 
[P \tau (uh, \lambda h)]+ , vh + \tau  - 1\mu h

\bigr\rangle 
\Gamma C
,

(4.7)

\scrL C(vh, \mu h) :=
\bigl\langle 
\psi C, vh + \tau  - 1\mu h

\bigr\rangle 
\Gamma C
,(4.8)

\scrA C[(uh, \lambda h), (vh, \mu h)] := \scrA [(uh, \lambda h), (vh, \mu h)] + \scrB C[(uh, \lambda h), (vh, \mu h)],(4.9)

we arrive at the boundary element method formulation: Find (uh, \lambda h) \in \BbbV h such that

\scrA C[(uh, \lambda h), (vh, \mu h)] = \scrL C(vh, \mu h) \forall (vh, \mu h) \in \BbbV h.(4.10)
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4.1. Mixed Dirichlet and contact boundary conditions. Combining the
formulations for the Dirichlet and contact conditions, we arrive at the following bound-
ary element method for the problem (1.1): Find (uh, \lambda h) \in \BbbV h such that

(4.11) \scrA D[(uh, \lambda h), (vh, \mu h)] + \scrB C[(uh, \lambda h), (vh, \mu h)] = \scrL D(vh, \mu h) + \scrL C(vh, \mu h)

\forall (vh, \mu h) \in \BbbV h,

where \scrA D, \scrL D, \scrB C, and \scrL C are defined in (3.6), (3.7), (4.7), and (4.8). For dis-
cretization, we use the assumptions and spaces introduced in section 3. Note that
the formulation (4.11) is consistent, i.e., the continuous solution (u, \lambda ) to (1.1) fulfills
(4.11) for all (vh, \mu h) \in \BbbV h.

5. Analysis. In this section, we prove the existence of unique solutions to the
nonlinear system of equations (4.11) as well as optimal error estimates.

We assume that the solution (u, \lambda ) of (1.1) lies in \BbbW := H1+\epsilon (\Gamma ) \times H\epsilon (\~\Gamma ) for
some \epsilon \in (0, 1/2], where \~\Gamma = \cup Mi=1\Gamma i \setminus \partial \Gamma i is the set of boundary points that lie in the
interior of the faces \Gamma i. As the normal vectors \bfitnu \bfitx are discontinuous between faces, we
cannot expect a higher global regularity for \lambda .

We define the distance function dC and norm \| \cdot \| \ast for (v, \mu ), (w, \eta ) \in \BbbW , by

dC ((v, \mu ), (w, \eta )) := \| (v  - w, \mu  - \eta )\| \scrB D

+ \| \tau  - 1
2

\bigl( 
\mu  - \eta + [P \tau (v, \mu )]+  - [P \tau (w, \eta )]+

\bigr) 
\| \Gamma C ,(5.1)

\| (v, \mu )\| \ast := \| (v, \mu )\| \scrB D
+ \| \tau 1

2 v\| \Gamma C + \| \tau  - 1
2\mu \| \Gamma C .(5.2)

We note that due to the appearance of [\cdot ]+ in its second term, dC is not a norm. dC
does provide a bound on the error; however, as for all (v, \mu ) \in \BbbW , dC ((v, \mu ), (0, 0)) \geqslant 
\| (v, \mu )\| \scrB D \geqslant \| (v, \mu )\| \BbbV .

When proving this section's results, we will use properties of the [\cdot ]+ function
that are given in the following lemma.

Lemma 5.1. For all a, b \in \BbbR ,\bigl( 
[a]+  - [b]+

\bigr) 2
\leqslant 

\bigl( 
[a]+  - [b]+

\bigr) 
(a - b),(5.3)

| [a]+  - [b]+ | \leqslant | a - b| .(5.4)

Proof. For a proof of these well-known properties, see, e.g., [7].

We now prove a result analogous to the coercivity assumption in [2].

Lemma 5.2. If there is \beta min > 0, independent of h, such that \beta D > \beta min, then
there is \alpha > 0 such that for all (v, \mu ), (w, \eta ) \in \BbbW ,

\alpha (dC ((v, \mu ), (w, \eta )))
2 \leqslant (\scrA + \scrB D)[(v  - w, \mu  - \eta ), (v  - w, \mu  - \eta )]

+ \scrB C[(v, \mu ), (v  - w, \mu  - \eta )] - \scrB C[(w, \eta ), (v  - w, \mu  - \eta )].

Proof. From the analysis of the Dirichlet problem (Lemma 3.2) we know that
when \beta D > \beta min > 0,

(5.5) \alpha \| (v  - w, \mu  - \eta )\| 2\scrB D
\leqslant (\scrA + \scrB D)[(v  - w, \mu  - \eta ), (v  - w, \mu  - \eta )].

Introducing the notation \delta P := [P \tau (v, \mu )]+  - [P \tau (w, \eta )]+, we have

(5.6) \scrB C[(v, \mu ), (v  - w, \mu  - \eta )] - \scrB C[(w, \eta ), (v  - w, \mu  - \eta )]
= \tau  - 1\| \mu  - \eta \| 2\Gamma C

+
\bigl\langle 
\delta P, v  - w + \tau  - 1(\mu  - \eta )

\bigr\rangle 
\Gamma C
.
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To estimate the expression on the right-hand side, we use

\tau  - 1\| \mu  - \eta + \delta P\| 2\Gamma C
= \tau  - 1

\bigl( 
\| \mu  - \eta \| 2\Gamma C

+ \| \delta P\| 2\Gamma C
+ 2 \langle \mu  - \eta , \delta P \rangle \Gamma C

\bigr) 
.

Using (5.3), this implies the bound

\tau  - 1\| \mu  - \eta + \delta P\| 2\Gamma C

\leqslant \tau  - 1
\bigl( 
\| \mu  - \eta \| 2\Gamma C

+ \langle \delta P, P \tau 0 (v  - w, \mu  - \eta )\rangle \Gamma C
+ 2 \langle \mu  - \eta , \delta P \rangle \Gamma C

\bigr) 
.

Observing that P \tau 0 (v  - w, \mu  - \eta ) + 2(\mu  - \eta ) = \tau (v  - w) + \mu  - \eta , we infer that

(5.7) \tau  - 1\| \mu  - \eta + \delta P\| 2\Gamma C
\leqslant \scrB C[(v, \mu ), (v  - w, \mu  - \eta ) - \scrB C[(w, \eta ), (v  - w, \mu  - \eta )].

We conclude the proof by noting that

(dC ((v, \mu ), (w, \eta )))
2 \lesssim \| (v  - w, \mu  - \eta )\| 2\scrB D

+ \tau  - 1\| \mu  - \eta + [P \tau (v, \mu )]+  - [P \tau (w, \eta )]+ \| 
2
\Gamma C
,

and applying (5.5) and (5.7).

Next, we prove a result analogous to the discrete coercivity assumption in [2].

Lemma 5.3. If there is \beta min > 0, independent of h, such that \beta D > \beta min, then
there is \alpha > 0 such that for all (vh, \mu h) \in \BbbV h,

\alpha 
\Bigl( 
\| (vh, \mu h)\| \scrB D

+ \| \tau  - 1
2

\bigl( 
\mu h + [P \tau (vh, \mu h)]+

\bigr) 
\| \Gamma C

\Bigr) 2

\leqslant (\scrA + \scrB D + \scrB C)[(vh, \mu h), (vh, \mu h)] - 
\bigl\langle 
[P \tau (vh, \mu h)]+ , gC  - \tau 

 - 1\psi C

\bigr\rangle 
\Gamma C
.

Proof. The proof is similar to that of Lemma 5.2, but with \mu h and vh instead of
\mu  - \eta and v  - w. The appearance of the data term in the right-hand side is due to
the relation

\tau  - 1\| [P \tau (vh, \mu h)]+ \| 
2
\Gamma C

+ 2\tau  - 1
\bigl\langle 
\mu h, [P

\tau (vh, \mu h)]+
\bigr\rangle 
\Gamma C

+ \tau  - 1\| \mu h\| 2\Gamma C

= \tau  - 1
\bigl\langle 
[P \tau (vh, \mu h)]+ , P

\tau (vh, \mu h)
\bigr\rangle 
\Gamma C

+ \tau  - 1\| \mu h\| 2\Gamma C

=
\bigl\langle 
[P \tau (vh, \mu h)]+ , uh + \tau  - 1\mu h

\bigr\rangle 
\Gamma C

 - 
\bigl\langle 
[P \tau (vh, \mu h)]+ , gC  - \tau 

 - 1\psi C

\bigr\rangle 
\Gamma C

+ \tau  - 1\| \mu h\| 2\Gamma C

= \scrB C[(vh, \mu h), (vh, \mu h)] - 
\bigl\langle 
[P \tau (vh, \mu h)]+ , gC  - \tau 

 - 1\psi C

\bigr\rangle 
\Gamma C
.

Using Lemmas 5.2 and 5.3, we may now prove that (4.11) is well-posed.

Theorem 5.4. The finite dimensional nonlinear system (4.11) admits a unique
solution.

Proof. To prove the existence of a solution, we show the continuity and the posi-
tivity of the nonlinear operator \scrA +\scrB D+\scrB C. This allows us to apply Brouwer's fixed
point theorem; see, e.g., [21, Chapter 2, Lemma 1.4].

We define \sansF : \BbbV h \rightarrow \BbbV h for (vh, \mu h) \in \BbbV h, by

\langle \sansF (vh, \mu h), (wh, \eta h)\rangle \Gamma = (\scrA + \scrB D + \scrB C)[(vh, \mu h), (wh, \eta h)]
 - \scrL D(wh, \eta h) - \scrL C(wh, \eta h)
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for all (wh, \eta h) \in \BbbV h. We may write the nonlinear system (4.11) as

\langle \sansF (vh, \mu h), (wh, \eta h)\rangle \Gamma = 0 \forall (wh, \eta h) \in \BbbV h.(5.8)

For fixed h, by the equivalence of norms on discrete spaces, there exist c1, c2 > 0 such
that for all (vh, \mu h) \in \BbbV h,

c1\| (vh, \mu h)\| \Gamma \leqslant \| (vh, \mu h)\| \scrB D
\leqslant c2\| (vh, \mu h)\| \Gamma .

To show positivity, we let (vh, \mu h) \in \BbbV h. Using Lemma 5.3, we see that

\langle \sansF (vh, \mu h), (vh, \mu h)\rangle \Gamma \geqslant \alpha \| (vh, \mu h)\| 2\scrB D
+ \alpha \tau  - 1\| \mu h + [P \tau (vh, \mu h)]+ \| 

2
\Gamma C

+
\bigl\langle 
[P \tau (vh, \mu h)]+ , gC  - \tau 

 - 1\psi C

\bigr\rangle 
\Gamma C
 - \scrL D(vh, \mu h) - \scrL C(vh, \mu h).

Using the Cauchy--Schwarz inequality and an arithmetic-geometric inequality, we see
that there exists CgC\psi C

> 0 such that\bigl\langle 
[P \tau (vh, \mu h)]+ , gC  - \tau 

 - 1\psi C

\bigr\rangle 
\Gamma C
 - \scrL D(vh, \mu h) - \scrL C(vh, \mu h)

=
\bigl\langle 
[P \tau (vh, \mu h)]+ + \mu h, gC  - \tau  - 1\psi C

\bigr\rangle 
\Gamma C
 - 

\bigl\langle 
\mu h, gC  - \tau  - 1\psi C

\bigr\rangle 
\Gamma C

 - \langle gD, \beta Dvh + \mu h\rangle \Gamma D
 - 

\bigl\langle 
\psi C, vh + \tau  - 1\mu h

\bigr\rangle 
\Gamma C

\geqslant  - C2
gC\psi C

 - \alpha 
2

\bigl( 
\| (vh, \mu h)\| 2\scrB D

+ \tau  - 1\| \mu h + [P \tau (vh, \mu h)]+ \| 
2
\Gamma C

\bigr) 
.

Using norm equivalence, we obtain

\langle \sansF (vh, \mu h), (vh, \mu h)\rangle \Gamma 
\geqslant \alpha 

2

\bigl( 
\| (vh, \mu h)\| 2\scrB D

+ \tau  - 1\| \mu h + [P \tau (vh, \mu h)]+ \| 
2
\Gamma C

\bigr) 
 - C2

gC\psi C

\geqslant C \prime \| (vh, \mu h)\| 2\Gamma  - C2
gC\psi C

for some C \prime > 0. We conclude that for all (vh, \mu h) \in \BbbV h with

\| (vh, \mu h)\| 2\Gamma >
C2
gC\psi C

C \prime + 1,

there holds \langle \sansF (vh, \mu h), (vh, \mu h)\rangle \Gamma > 0.
To show continuity, let (v1h, \mu 

1
h), (v

2
h, \mu 

2
h) \in \BbbV h. We have for all (wh, \eta h) \in \BbbV h,\bigl\langle 

\sansF (v1h, \mu 
1
h) - \sansF (v2h, \mu 

2
h), (wh, \eta h)

\bigr\rangle 
\Gamma 

=
\Bigl\langle \bigl[ 
P \tau (v1h, \mu 

1
h)
\bigr] 
+
 - 
\bigl[ 
P \tau (v2h, \mu 

2
h)
\bigr] 
+
, wh + \tau  - 1\eta h

\Bigr\rangle 
\Gamma C

+ 1
2

\bigl\langle 
\mu 1
h  - \mu 2

h, wh + \tau  - 1\eta h
\bigr\rangle 
\Gamma 
 - 1

2

\bigl\langle 
v1h  - v2h, \mu 1

h  - \mu 2
h

\bigr\rangle 
\Gamma C

+ (\scrA + \scrB D)[(v1h  - v2h, \mu 1
h  - \mu 2

h), (wh, \eta h)]

\leqslant 
\bigl( 
\tau \| v1h  - v2h\| \Gamma C

+ \| \mu 1
h  - \mu 2

h\| \Gamma C

\bigr) \bigl( 
\| wh\| \Gamma C

+ \tau  - 1\| \eta h\| \Gamma C

\bigr) 
,

where we have used (5.4). By norm equivalence, this means that\bigl\langle 
\sansF (v1h, \mu 

1
h) - \sansF (v2h, \mu 

2
h), (wh, \eta h)

\bigr\rangle 
\Gamma 

\| (wh, \eta h)\| \Gamma 
\leqslant C\| (v1h  - v2h, \mu 1

h  - \mu 2
h)\| \Gamma 

showing that \sansF is continuous.
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It then follows by Brouwer's fixed point theorem [21, Chapter 2, Lemma 1.4] that
there exists a solution to (5.8) and hence also to (4.11).

Uniqueness is an immediate consequence of Lemma 5.2. Assume that (u1h, \lambda 
1
h)

and (u2h, \lambda 
2
h) are solutions to (4.11). We immediately see that

\alpha 
\bigl( 
dC

\bigl( 
(u1h, \lambda 

1
h), (u

2
h, \lambda 

2
h)
\bigr) \bigr) 2

= 0,

and we conclude that the solution is unique.

We now proceed to prove the following best approximation result.

Lemma 5.5. Let (u, \lambda ) \in \BbbW be the solution of (1.1) and (uh, \lambda h) \in \BbbV h the solution
of (4.11). Then there holds

dC ((u, \lambda ), (uh, \lambda h)) \leqslant C inf
(vh,\mu h)\in \BbbV h

\| (u - vh, \lambda  - \mu h)\| \ast .

Proof. Using Lemma 5.2 and Galerkin orthogonality, we see that for arbitrary
(vh, \mu h) \in \BbbV h,

\alpha (dC ((u, \lambda ), (uh, \lambda h)))
2

\leqslant (\scrA + \scrB D)[(u - uh, \lambda  - \lambda h), (u - uh, \lambda  - \lambda h)]
+ \scrB C[(u, \lambda ), (u - uh, \lambda  - \lambda h)] - \scrB C[(uh, \lambda h), (u - uh, \lambda  - \lambda h)]

= (\scrA + \scrB D)[(u - uh, \lambda  - \lambda h), (u - vh, \lambda  - \mu h)]
+ \scrB C[(u, \lambda ), (u - vh, \lambda  - \mu h)] - \scrB C[(uh, \lambda h), (u - vh, \lambda  - \mu h)].

Next, we use

\scrB C[(u, \lambda ), (u - vh, \lambda  - \mu h)] - \scrB C[(uh, \lambda h), (u - vh, \lambda  - \mu h)]
=

\bigl\langle 
\lambda  - \lambda h + [P \tau (u, \lambda )]+  - [P \tau (uh, \lambda h)]+ , (u - vh) + \tau  - 1(\lambda  - \mu h)

\bigr\rangle 
\Gamma C

 - 1
2 \langle u - uh, \lambda  - \mu h\rangle \Gamma C

 - 1
2 \langle \lambda  - \lambda h, u - vh\rangle \Gamma C

to show that

(\scrA + \scrB D)[(u - uh, \lambda  - \lambda h), (u - uh, \lambda  - \lambda h)]
+ \scrB C[(u, \lambda ), (u - uh, \lambda  - \lambda h)] - \scrB C[(uh, \lambda h), (u - uh, \lambda  - \lambda h)]

= (\scrA + \scrB D)[(u - uh, \lambda  - \lambda h), (u - vh, \lambda  - \mu h)]\underbrace{}  \underbrace{}  
(I)

 - 1
2 \langle u - uh, \lambda  - \mu h\rangle \Gamma C

 - 1
2 \langle \lambda  - \lambda h, u - vh\rangle \Gamma C\underbrace{}  \underbrace{}  

(II)

+
\bigl\langle 
\lambda  - \lambda h + [P \tau (u, \lambda )]+  - [P \tau (uh, \lambda h)]+ , (u - vh) + \tau  - 1(\lambda  - \mu h)

\bigr\rangle 
\Gamma C\underbrace{}  \underbrace{}  

(III)

.

We estimate the three parts of the right-hand side separately. For the first term,
we use the continuity of \scrA + \scrB D (Lemma 3.2) to obtain

(I) \leqslant M\| (u - uh, \lambda  - \lambda h)\| \scrB D\| (u - vh, \lambda  - \mu h)\| \scrB D .

For the second line, we use H1/2(\Gamma )--H - 1/2(\Gamma ) duality and the Cauchy--Schwarz in-
equality to obtain

(II) \leqslant \| (u - uh, \lambda  - \lambda h)\| \scrB D
\| (u - vh, \lambda  - \mu h)\| \scrB D

.
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For the last term, we use the Cauchy--Schwarz inequality to get

(III) \leqslant \| \tau  - 1/2
\bigl( 
\lambda  - \lambda h + [P \tau (u, \lambda )]+  - [P \tau (uh, \lambda h)]+

\bigr) 
\| \Gamma C

\cdot 
\Bigl( 
\| \tau 1/2(u - vh)\| \Gamma C + \| \tau  - 1/2(\lambda  - \mu h)\| \Gamma C

\Bigr) 
.

Collecting these bounds, we see that

dC ((u, \lambda ), (uh, \lambda h))
2 \lesssim dC ((u, \lambda ), (uh, \lambda h)) \| (u - vh, \lambda  - \mu h)\| \ast .

Dividing through by dC ((u, \lambda ), (uh, \lambda h)) and taking the infimum yields the desired
result.

We now prove the main result of this section, an a priori bound on the error of
the solution of (4.11).

Theorem 5.6. Let (u, \lambda ) \in Hs(\Gamma ) \times Hr(\~\Gamma ) for some s \geqslant 1, r \geqslant 0, and let
(uh, \lambda h) \in Pkh(\Gamma ) \times \Lambda lh be the solutions of (1.1) and the discrete problem (4.11),
respectively. If there is \beta min > 0 such that \beta min < \beta D \lesssim h - 1 and \tau \eqsim h - 1, then

\| (u - uh, \lambda  - \lambda h)\| \BbbV \leqslant dC ((u, \lambda ), (uh, \lambda h))

\lesssim h\zeta  - 1/2| u| H\zeta (\Gamma ) + h\xi +1/2| \lambda | H\xi (\~\Gamma ),

where \zeta = min(k + 1, s) and \xi = min(l + 1, r) for \Lambda lh \in \{ DPlh(\Gamma ), \widetilde DP
l

h(\Gamma )\} and
\zeta = min(2, s) and \xi = min( 12 , r) for \Lambda lh = DUAL0

h(\Gamma ). Additionally,

\| \~u - \~uh\| H1(\Omega ) \lesssim h\zeta  - 1/2| u| H\zeta (\Gamma ) + h\xi +1/2| \lambda | H\xi (\~\Gamma ),

where \~u and \~uh are the solutions in \Omega defined by (2.6).

Proof. First, we observe that for all (v, \mu ) and (w, \eta ) in \BbbW ,

\| (v  - w, \mu  - \eta )\| \BbbV \leqslant dC ((v, \mu ), (w, \eta )) .

Using standard approximation results for \Lambda lh \in \{ DPlh(\Gamma ),
\widetilde DP

l

h(\Gamma )\} (see, e.g., [19,
Chapter 10]) and Lemma 3.1 for \Lambda lh = DUAL0

h(\Gamma ), we see that

inf
(vh,\mu h)\in \BbbV h

\| (u - vh, \lambda  - \mu h)\| \BbbV = inf
vh\in Pk

h(\Gamma )
\| u - vh\| H1/2(\Gamma ) + inf

\mu h\in \Lambda l
h(\Gamma )
\| \lambda  - \mu h\| H - 1/2(\Gamma )

\lesssim h\zeta  - 1/2| u| H\zeta (\Gamma ) + h\xi +1/2| \lambda | H\xi (\~\Gamma ),

inf
vh\in Pk

h(\Gamma )
\| u - vh\| \Gamma \lesssim h\zeta | u| H\zeta (\Gamma ), inf

\mu h\in \Lambda l
h

\| \lambda  - \mu h\| \Gamma \lesssim h\xi | \lambda | H\xi (\~\Gamma ).

Applying these to the definition of \| \cdot \| \ast gives

inf
(vh,\mu h)\in \BbbV h

\| (u - vh, \lambda  - \mu h)\| \ast \lesssim h\zeta  - 1/2| u| H\zeta (\Gamma ) + h\xi +1/2| \lambda | H\xi (\~\Gamma )

+ \beta 
1/2
D h\zeta | u| H\zeta (\Gamma ) + \tau 1/2h\zeta | u| H\zeta (\Gamma ) + \tau  - 1/2h\xi | \lambda | H\xi (\~\Gamma ).

By means of Lemma 5.5 and the given choice of the parameters \tau and \beta D, we prove
the first assertion. The estimate in the domain \Omega follows by using the relations (2.8)
and (2.10).

If \lambda is smooth enough and k = l, the bounds on \tau can be replaced with h \lesssim \tau \lesssim 
h - 1 without reducing the order of convergence.
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6. Numerical results. We now demonstrate the theory with a series of nu-
merical examples. In this section, we consider the following test problem. Let
\Omega = [0, 1] \times [0, 1] \times [0, 1] be the unit cube, \Gamma C := \{ (x, y, z) \in \Gamma : z = 1\} , and
\Gamma D := \Gamma \setminus \Gamma C. Let

gD = 0,(6.1a)

gC =

\Biggl\{ 
sin(\pi x) sin(\pi y) sinh(

\surd 
2\pi ), x \leqslant 1

2 ,

sin(\pi y) sinh(
\surd 
2\pi ), x > 1

2 ,
(6.1b)

\psi C =

\Biggl\{ \surd 
2\pi sin(\pi x) sin(\pi y) cosh(

\surd 
2\pi ), x \geqslant 1

2 ,\surd 
2\pi sin(\pi y) cosh(

\surd 
2\pi ), x < 1

2 .
(6.1c)

It can be shown that

u(x, y, z) = sin(\pi x) sin(\pi y) sinh(
\surd 
2\pi z)

is the solution to (1.1) with these boundary conditions.
To solve the nonlinear system (4.10), we will treat the nonlinear term explicitly.

Therefore, we define

\scrB \prime C[(u, \lambda ), (v, \mu )] := 1
2 \langle \lambda , v\rangle \Gamma C

+
\bigl\langle 
\tau  - 1\lambda  - 1

2u, \mu 
\bigr\rangle 
\Gamma C
.(6.2)

Note that \scrB \prime C differs from \scrB C only by the missing nonlinear term.
We pick initial guesses (u0, \lambda 0) \in \BbbV h and define (un+1, \lambda n+1) \in \BbbV h, for n \in \BbbN , to

be the solution of

(6.3) (\scrA + \scrB D + \scrB \prime C)[(un+1, \lambda n+1), (vh, \mu h)]

= \scrL C(vh, \mu h) - 
\bigl\langle 
[P \tau (un, \lambda n)]+ , vh + \tau  - 1\mu h

\bigr\rangle 
\Gamma C

\forall (vh, \mu h) \in \BbbV h.

This leads us to Algorithm 6.1, an iterative method for solving the contact problem.
In all of the computations in this section, we preconditioned the GMRES solver

using a mass matrix preconditioner applied blockwise from the left, as described in
[3].

Algorithm 6.1. Iterative algorithm for solving the contact problem.

Input (u0, \lambda 0), tol, maxiter
for n\leftarrow 0 to maxiter do
(un+1, \lambda n+1)\leftarrow solution of (6.3), calculated using GMRES
if \| (un+1, \lambda n+1) - (un, \lambda n)\| \BbbV < tol then

return (un+1, \lambda n+1)
end if

end for

Inspired by the parameter choices in [2], we fix \beta D = 0.01 and look for suitable
values of the parameter \tau . Figure 2 shows how the error, number of outer iterations,
and the average number of GMRES iterations inside each outer iteration change
as the parameter \tau is varied for both \BbbV h = P1

h(\Gamma ) \times DUAL0
h(\Gamma ) (left, blue) and

\BbbV h = P1
h(\Gamma ) \times DP0

h(\Gamma ) (right, orange). Here, we see that the error and number of
outer iterations are lowest when \tau is between around 1 and 10.
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Fig. 2. The dependence of the error, number of outer iterations, and the average number of
GMRES iterations on \tau for the problem (1.1) with boundary conditions (6.1) on the unit cube with
h = 2 - 2 (triangles), h = 2 - 3.5 (diamonds), and h = 2 - 5 (pentagons). Here we take u0 = \lambda 0 = 0,
\beta D = 0.01, tol = 0.05, and maxiter = 50. On the left (blue), we take (un, \lambda n), (vh, \mu h) \in 
P1
h(\Gamma ) \times DUAL0

h(\Gamma ); on the right (orange), we take (un, \lambda n), (vh, \mu h) \in P1
h(\Gamma ) \times DP0

h(\Gamma ). (Figure
in color online.)

Motivated by Figure 2 and the bounds in Theorem 5.6, we take \tau = 0.5/h, and
look at the convergence as h is decreased. Figure 3 shows how the error and iteration
counts vary as h is decreased when \BbbV h = P1

h(\Gamma ) \times DUAL0
h(\Gamma ) (left, blue circles) and

\BbbV h = P1
h(\Gamma )\times DP0

h(\Gamma ) (right, orange squares).
For \BbbV h = P1

h(\Gamma ) \times DUAL0
h(\Gamma ), we observe slightly higher than the order 1 con-
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Fig. 3. The error, number of outer iterations and average number of inner GMRES iteration
for the problem (1.1) with boundary conditions (6.1) on the unit cube as h is reduced. Here we
take u0 = \lambda 0 = 0, \beta D = 0.01, tol = 0.05, maxiter = 200, and \tau = 0.5/h. On the left (blue
circles), we take (un, \lambda n), (vh, \mu h) \in P1

h(\Gamma ) \times DUAL0
h(\Gamma ); on the right (orange squares), we take

(un, \lambda n), (vh, \mu h) \in P1
h(\Gamma ) \times DP0

h(\Gamma ). The dashed lines show order 1 convergence (left) and order
1.5 convergence (right). (Figure in color online.)

vergence predicted by Theorem 5.6. In this case, the mass matrix preconditioner is
effective, as the number of GMRES iterations required inside each outer iteration is
reasonably low, and only grows slowly as h is decreased. We believe that the effec-
tiveness of the preconditioner for this choice of spaces is due to the spaces P1

h(\Gamma ) and
DUAL0

h(\Gamma ) forming an inf-sup stable pair [18, Lemma 3.1].
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When \BbbV h = P1
h(\Gamma ) \times DP0

h(\Gamma ), Theorem 5.6 tells us to expect order 1.5 conver-
gence. However, we observe a slightly lower order. This appears to be due to the
ill-conditioning of this system, and the mass matrix preconditioner being ineffective,
leading to an inaccurate solution when using GMRES. In this case, the spaces P1

h(\Gamma )
and DP0

h(\Gamma ) do not form an inf-sup stable pair, and so the mass-matrix between them
is not guaranteed to be invertible leading to a less effective preconditioner.

In order to obtain order 1.5 convergence with a well-conditioned system, we could
look for (uh, \lambda h) \in P1

h(\Gamma )\times DP0
h(\Gamma ) and test with (vh, \mu h) \in DUAL1

h(\Gamma )\times DUAL0
h(\Gamma ),

where DUAL1
h(\Gamma ) is the space of piecewise linear functions on the dual grid that forms

an inf-sup stable pair with the space DP0
h(\Gamma ), as defined in [4]. With this choice of

spaces, we obtain the higher order convergence as in Theorem 5.6, while having stable
dual pairings and hence more effective mass matrix preconditioning.

For the problems discussed in [2], we have run numerical experiments using this
space pairing and observe the full order 3

2 convergence in a low number of iterations.
A deeper investigation of this method using these dual spaces, and the adaption of
the theory to this case, warrants future work.

7. Conclusions. Based on our work in [2], we have analyzed and demonstrated
the effectiveness of Nitsche type coupling methods for boundary element formulations
of contact problems.

An open problem is preconditioning. While the iteration counts in the presented
examples were already practically useful, for large and complex structures precondi-
tioning is still essential. The hope is to use the properties of the Calder\'on projector
to build effective operator preconditioning techniques for the presented Nitsche type
frameworks.

Avenues of future research include looking at how this approach could be applied
to problems in linear elasticity, and an extension of this method to problems involving
friction.
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EFFICIENT APPROXIMATION OF FLOW PROBLEMS WITH
MULTIPLE SCALES IN TIME∗

S. FREI† AND T. RICHTER‡

Abstract. In this article we address flow problems that carry a multiscale character in time.
In particular we consider the Navier–Stokes flow in a channel on a fast scale that influences the
movement of the boundary which undergoes a deformation on a slow scale in time. We derive an
averaging scheme that is of first order with respect to the ratio of time scales ε. In order to cope with
the problem of unknown initial data for the fast-scale problem, we assume near-periodicity in time.
Moreover, we construct a second-order accurate time discretization scheme and derive a complete
error analysis for a corresponding simplified ODE system. The resulting multiscale scheme does
not ask for the continuous simulation of the fast-scale variable and shows powerful speedups up to
1:10 000 compared to a resolved simulation. Finally, we present some numerical examples for the full
Navier–Stokes system to illustrate the convergence and performance of the approach.

Key words. temporal multiscale, Navier–Stokes, finite elements, time discretization, periodic
solutions, a priori analysis

AMS subject classifications. 65N12, 65L20, 76D05

DOI. 10.1137/19M1258396

1. Introduction. We are interested in the numerical approximation and long
term simulation of flow problems that carry a multiscale character in time. Such prob-
lems appear for example in the formation of atherosclerotic plaque in arteries, where
flow dynamics acting on a scale of milliseconds to seconds have an effect on plaque
growth in the vessel, which typically takes place within a range of several months.
Another application is the investigation of chemical flows in pipelines, where long-
time effects of weathering, accelerated by the transported substances, cause material
alteration.

These examples have in common, that it is computationally infeasible to resolve
the fast scale over the whole time interval of interest. In the case of atherosclerotic
plaque growth, a suitable time step of 1

20 s would require nearly 109 steps to cover the
period of interest, which is at least 6 months.

Inspired by the temporal dynamics of atherosclerotic plaque growth, we will con-
sider the flow in a channel whose boundary is deformed over a long time scale. This
deformation is controlled by the concentration variable u(t) that is governed by a
simple reaction equation and that depends on the fluid forces:

(1)
v(0) = v0, div v = 0, ρ(∂tv + (v · ∇)v)− divσ(v, p) = f in Ω(u(t)),

u(0) = 0, u′ = εR(u,v).

Here, ρ is the density of the fluid, σ = ρν(∇v +∇vT ) − pI the Cauchy stress with
the kinematic viscosity ν, and R(v, u) ≥ 0 a reaction term describing the influence of
the fluid forces (namely, the wall shear stress) on the boundary growth. The growth

∗Received by the editors April 26, 2019; accepted for publication (in revised form) March 30,
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2)

(15,−3/2)

(15, 3/2)

Fig. 1. Configuration of the test case. We study flow in a channel with a boundary Γ that
depends on a concentration variable u. This u follows a simple reaction law with a right-hand side
depending on the wall shear stress on Γwall.

term R(·, ·) is modeled such that |R(·, ·)| = O(1):

R(u,v) :=
(
1 + u

)−1(
1 + |σWSS(v)|2

)−1
,

σWSS(v) := σ−1
0

∫
Γ

ρν
(
Id − ~n~nT

)
(∇v +∇vT )~ndo,

(2)

where ~n denotes the outward facing unit normal vector at the boundary Γ. The
parameter σ0 > 0 will be tuned to give |σWSS(v)| = O(1); see section 5. The domain
Ω = Ω(u(t)) depends explicitly on the concentration u(t). We show a sketch of the
configuration in Figure 1. The flow problem is driven by a periodic oscillating inflow
profile of period 1 s:

v = vD on Γin with vD(t) = vD(t+ 1s).

This period describes the fast scale of the problem. By ε � 1 we denote a small
parameter that controls the time scale of the (slow) growth of the concentration, i.e.,
|u′| = O(ε) and T = O(ε−1) is the expected long term horizon. While the problem
itself is strongly simplified compared to the detailed nonlinear mechano-chemical fluid-
structure interaction model of plaque growth [8, 50, 17], we choose the parameters in
such a way that the temporal dynamics are very similar.

The structure of this article is as follows: In section 2 we introduce a simple model
problem consisting of two coupled ODEs, that are related to (1), and for which we
will be able to conduct a complete error analysis. Moreover, we discuss some of the
available approaches in literature and outline the multiscale algorithm developed in
this article. In section 3 we derive the effective long term equations and give an error
analysis on the continuous level. In section 4 we describe the temporal discretization
of the multiscale scheme and show optimal order convergence in all discretization
parameters: mesh size h, time step size k for the fast problem and time step size
K for the slowly evolving variable. In section 5 we apply the multiscale scheme to
the complex problem introduced in section 2, which is based on the Navier–Stokes
equations. We show numerically optimal order convergence in agreement with the
theoretical findings for the simplified system. We conclude with a short summary and
a discussion of some open problems.

2. Time scales. In this section we start by analyzing the temporal multiscale
character of the plaque formation problem. We simplify the coupled problem and
introduce a model problem coupling two ODEs. Then, we present various approaches
for the numerical treatment of temporal multiscale problems that are discussed in
literature. Finally we sketch the idea of the multiscale scheme that is considered in
this work, which fits into the framework of the heterogeneous multiscale method.
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2.1. A model problem. To start with, we introduce a simple model problem,
a system of two ODEs that shows the same coupling and temporal multiscale charac-
teristics as the full plaque growth system:

u(0) = u0, u′(t) = εR(u(t), v(t)),(3a)

v(0) = v0, v′(t) + λ(u(t))v(t) = f(t),(3b)

where f(t) = f(t+ 1) is periodic and R(·, ·) is given by

(4) R(u, v) :=
(
1 + u

)−1(
1 + v2

)−1
.

For the reaction term it holds |R(u, v)| ≤ 1. The parameter λ(u) ≥ λ0 > 0 depends
on the concentration u. We will assume that the relation u → λ(u) is differentiable

and that the derivative dλ(u)
du remains bounded.

In section 5.2 we will argue that this system can indeed be considered as a sim-
plification of the full plaque growth system by neglecting the nonlinearity and by
diagonalizing the resulting Stokes equation with respect to an orthonormal eigenfunc-
tion basis. Moreover, if we introduce τ := εt, vτ (τ) := v(t), uτ (τ) := u(t), as well as
fτ (τ) := f(t) we can scale this system to

(5) vτ (0) = v0, uτ (0) = u0, v′τ + ε−1λ(uτ )vτ = ε−1fτ , u
′
τ = R(uτ , vτ ),

which reveals the typical character of ODE systems with multiple scales in time as
discussed in [14, 1]. In the language of the heterogeneous multiscale method (HMM)
(see also [15]), such a problem is called a type B problem and it is characterized
by the acting of fast and slow scales throughout the whole (long) time span [0, T ]
in contrast to problems with localized singular behavior. Since |R| = O(1) it holds
|u′τ | = O(1) and uτ describes the slow variable while |v′τ | = O(ε−1) indicates the fast
and oscillatory variable.

2.2. Numerical approaches for temporal multiscale problems. While
multiscale problems in space are extensively studied in literature (see, e.g. [10, 38]),
fewer works are found on problems with multiscale character in time. Some literature
exists that uses a homogenization approach based on asymptotic expansions in time
for viscoelastic, viscoplastic, or elasto-viscoplastic solids [22, 52, 3, 24]. Under suitable
assumptions, the short-scale part of the multiscale algorithm becomes stationary for
this class of equations, such that difficulties to define initial values on the short scale
are avoided.

Multirate time-stepping methods [20] split the system into slow and large compo-
nents and use different time step sizes according to the dominant scales. All scales are
still resolved on the complete time interval. Since the fast scale of problem (1) which
requires a small time step is the computationally intensive Navier–Stokes equations
and since the scales are vastly separated, such multirate methods are not appropriate
for the problem under investigation.

In the context of continuum damage mechanics, processes with high frequent os-
cillatory impact can be approached by block cycle jumping techniques [33], where
a large number of cycles are skipped and replaced by a linear approximation of the
damage effect. An overview of different techniques is given in the first two introduc-
tionary sections of [7]. These approaches do not resolve the complete system on a
full temporal interval but reside on local solutions. This gives rise to the problem of
finding initial values.
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If the time scales are close enough that the short-scale dynamics can be re-
solved within one time step of the long-scale discretization, the variational multiscale
method [28, 6] or approaches that construct long-scale basis functions from the short-
scale information [39, 2] are applicable. Similar algorithms are also used to construct
parallel-in-time integrators, for example, the parareal method [35]. In this work, we
are interested in problems with a stronger scale separation, where the resolution of
the short scale within a long-scale interval is very costly up to being computationally
unfeasible.

Only very few numerical works can be found concerning flow problems with multi-
ple scales in time. An exception are the works of Masud and Khurram [36, 31], where
the variational multiscale method is applied, assuming again that the time scales are
sufficiently close. On the other hand, several theoretical works exist that show con-
vergence towards averaged equations for specific flow configurations in the situation
that the ratio of time scales ε = tfast

Tlong
tends to zero (see, e.g., [29, 9, 34]), however,

without considering practical numerical algorithms or discretization.
A common numerical approach is to replace the fast problem by an averaged one

using a fixed-in-time inflow profile [50, 8]. It is however widely accepted and also
confirmed in numerical studies [17] that such a simple averaging does not necessarily
reproduce the correct dynamics. In [17] we presented a first multiscale scheme for
the approximation of such a problem, however, with a focus on the modeling of a
full closure of the channel and without any analysis on the robustness and accuracy.
Similar algorithms can be found in Sanders, Verhulst, and Murdock [44] and by Crouch
and Oskay [11] in different applications. In this work, we will derive an improved
algorithm in a mathematically rigorous way, including a detailed error analysis for
both modeling and discretization errors. To our knowledge this is the first time that
the interplay between modeling errors of the temporal multiscale scheme and temporal
discretization errors on both scales is analyzed.

One of the most prominent class of techniques is the HMM [15, 14, 1, 16] that aims
at an efficient decoupling of macroscale and microscale, where the latter one enters
the macroscale problem in terms of temporal averages. Typically, the procedure is
as follows: one determines the fast and the slow variables of the coupled problem.
For the slow variables an integrator with a long time step ∆T := Tn+1 − Tn and
good stability properties is used. At each of these macro-time-steps, the fast-scale
problem is initialized based on the current slow variable and solved on the interval
Iηn := [Tn, Tn + η]. Finally, the fast variable output on Iηn is averaged to yield the
effective operator for the slow-scale problem.

The efficiency of the resulting HMM scheme depends on the choice of η which
indicates the scale to allow for equilibration and adjustment of the micro model. Too
large values will reduce the efficiency, too small values will limit the accuracy. The
underlying problem is the lack of initial values at the new macrostep for the fast scale,
which in our case (1) or (3), is the oscillatory velocity v(t) and v(t), respectively. The
realization presented in this article is based on time-periodic solutions to the micro
problem. Instead of solving the microscale problem on an interval Iηn at macrostep Tn
we aim at a localized solution of the fluid problem that satisfies a periodicity condition
in time. This approach allows us to conduct a complete error analysis of the resulting
scheme when applied to the simplified model problem (3).

2.3. Outline of the multiscale scheme. We conclude this section by briefly
describing the multiscale algorithm that is considered in this article. The derivation
given here is based on problem (3). We start by defining the slow variable as an
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average of the concentration u(t),

(6) U(t) :=

∫ t+1 s

t

u(s) ds.

This gives rise to the averaged equation for the long term dynamics

(7) U ′(t) =

∫ t+1

t

εR(u(s), v(s)) ds.

A time integration formula with a macro-time-step is used to approximate this equa-
tion. Two approximation steps are performed to reach an effective equation. First,
the reaction term in (7) is evaluated in U(t) instead of u(s) and, second, the fast com-
ponent v(s) will be replaced by the localized solution of the time-periodic problem
obtained for a fixed value of U(t):

(8) v′U(t) + λ(U(t))vU(t) = f in [0, 1] with vU(t)(1) = vU(t)(0).

These approximations will be discussed and analyzed in the following section. Assum-
ing that (7), approximated in these two steps, is integrated with the forward Euler
method, a macro-time-step is given by

(9) Un = Un−1 + (Tn − Tn−1)

∫ Tn

Tn−1

εR(Un−1, vUn−1
(s)) ds.

2.3.1. Motivation for the locally periodic approximations. Due to the
nonlinearity of the reaction term R(·, ·), the microscale variations in v(s) cannot
simply be averaged. Instead the velocities v(s) need to be computed on the fast scale in
each macrostep Tn−1 → Tn in order to obtain a good approximation of the integral on
the right-hand side of (7). A computation of v(s) over the complete interval [Tn−1, Tn]
is, however, unfeasible for small ε. For this reason, the imposition of accurate initial
values v(Tn) for the fast-scale problem is not straightforward. Neither the short-scale
velocity v(Tn−1) from the previous macro-time-step nor an averaged quantity V (Tn)
can guarantee a sufficiently good approximation for v(Tn). In practice, a relaxation
time η is frequently introduced (see, for example, [16, 1]), in order to improve the
initial values by means of a few forward iterations.

As an alternative, we propose to introduce the time-periodic fast-scale problem
(8). This has the advantage that in principle only one period of the fast-scale problem
needs to be resolved per macrostep. We can show theoretically (Lemma 8) that
the approximation error introduced by the periodic problem is of order ε. Efficient
approximations of these time-periodic problems will be discussed in section 4.3.

2.3.2. Abstract multiscale scheme. We conclude this section by formulating
the abstract multiscale scheme that can be applied to both problems, the plaque
growth system and the simplified model problem.

Algorithm 1 (abstract multiscale scheme). Let 0 = T0 < T1 < · · · < TN = T
be a partition of the macrointerval with uniform step size K := Tn − Tn−1. Further,
let U0 := u0 be the initial value of the slow variable. Iterate for n = 1, 2, . . .

1. Solve the time-periodic problem (12) or (13) for vUn−1
.

2. Evaluate the reaction term

Rn−1 :=

∫ 1

0

R(Un−1,vUn−1(s)) ds.
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3. Forward the slow variable with an (explicit) one-step scheme

Un = F(K;Un−1;Rn−1).

The structure of the time integrator F depends on the system of equations and
the time-stepping method. For simplicity, we have formulated the algorithm for an
explicit time integrator in the slow variable. The use of an implicit time-stepping
scheme would require an iterated evaluation of the periodic problem for updated
values of Un. In the case of r-step schemes periodic solutions vUn−k

would be required
for k = 1, . . . , r.

Remark 2. We note that the proposed algorithm does not compute an average of
the fast variable v. An approximation to v is only computed on the short periodic
interval of the fast scale as vUn−1 (step 1). The slow variable u, on the other hand, is
only computed on the slow scale as the average U (step 3).

The typical behavior of the slow and fast variables is illustrated in Figure 2
(top). On the bottom of Figure 2, the multiscale algorithm is visualized, including
the transfer of quantities between the slow and the fast scales. For ease of presentation
a large ε has been chosen for the purpose of visualization.

To conclude this section we anticipate the main result of the analysis given below.
For the combination of the second-order Adams–Bashforth rule for the discretization
of the slow problem and the Crank–Nicolson scheme for the fast problem we will show
optimal convergence of the resulting multiscale scheme:

|UN − u(T )| = O(ε) +O(ε2K2) +O(k2) +O(tolP ).

By K we denote the step size of the macro solver, k is the step size of the micro solver,
and by tolP we denote the tolerance of the periodicity constraint: maxn |vUn

(1) −
vUn

(0)| < tolP .

3. Derivation and analysis of the effective equations. In this section we
derive the temporal multiscale scheme that has been outlined in the previous section.
We will discuss the coupled Navier–Stokes problem on the evolving domain Ω(u),
problem (1), and the reduced ODE system (3) side by side. Whenever results apply
to the ODE system only, we will clearly mention this. We start by collecting some
preliminary assumptions on the underlying problems.

3.1. Preliminaries.

Assumption 3 (reaction term). Let umax <∞ be a maximum concentration. Let
0 ≤ u ≤ umax and v ∈ X (X = R for the model problem, X = H2(Ω) for the plaque
growth problem). The reaction term is bounded

(10) |R(u,v)| ≤ CA3a,

and Lipschitz continuous in both arguments

(11) |R(u1,v)−R(u2,v)| ≤ CA3b|u1−u2|, |R(u,v1)−R(u,v2)| ≤ CA3b‖v1−v2‖X ,

where the constant C does not depend on ε.

Assumption 3 is easily verified for the simplified reaction term (4). A proof for
the Navier–Stokes case will be given in section 5.2.



948 S. FREI AND T. RICHTER

0 5 10 15 20

u(t)

T = O(ε−1)

O(ε)

P = 1s

v(t)

Layout of the multiscale problem. The fast variable v(t) (top) and the slow variable u(t) (bottom)

couple on the complete long time interval I = [0, T ]. The slow variable is also oscillating, but the

oscillations are small, of size O(ε). The fast variable is locally nearly periodic.

T0 = 0 T1 = 5 T2 = 10 T3 = 15 T4 = 20

U0

U1

U2

U3

R(vU0
)

R(vU1
)

R(vU2
)

R(vU3
)

T = O(ε−1)

vU0
(t) vU1

(t) vU2
(t) vU3

(t)

Fig. 2. Construction of the multiscale scheme: 0. The slow variable U(t) is discretized with a
time-stepping scheme with macro-step-size K � 1. 1. In each step the current slow state Un−1 is
transferred to the fast problem (top) and a periodic solution vUn−1

is computed on [Tn−1, Tn−1 + 1]
as an approximation for v(t). 2. The averaged reaction term Rn−1 = R(vUn−1

) is computed from
vUn−1

and transferred to the slow problem (bottom). 3. The slow variable Un is updated by the
macrostep Tn−1 → Tn.

Remark 4 (generic constants). Throughout this manuscript we use generic con-
stants C. These constants may depend on the domain Ω, the maximum concentration
umax, the right-hand side f , and the Dirichlet data. They do not, however, depend
on the solution, the scale parameter ε, or the discretization parameters that will be
introduced in the remainder of this article.

We further assume that the isolated micro problems allow for a unique periodic
solution.

Assumption 5 (periodic solution). Let u ∈ R with 0 ≤ u ≤ umax. We assume
that there exist unique periodic solutions vu ∈ C([0, 1]) to

(12) ∂tvu + λ(u)vu = f in [0, 1], vu(1) = vu(0),

as well as solutions vu ∈ H2(Ω(u), pu ∈ H1(Ω(u)) to the incompressible Navier–Stokes
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equations

∇ · vu = 0, ρ(∂tvu + (vu · ∇)vu)− divσ(vu, pu) = f in [0, 1]× Ω(u),

(13a)

vu = vDu on [0, 1]× ∂Ω(u),(13b)

vu(1) = vu(0) in Ω(u).(13c)

Both solutions are uniformly bounded in time

(14) sup
t∈[0,T ]

|vu(t)| ≤ C, sup
t∈[0,T ]

(
‖vu(t)‖H2(Ω) + ‖pu(t)‖H1(Ω)

)
≤ C.

For the ODE problem (12), the existence of a unique periodic solutions follows
from the evolution of w(t) = v(t + 1) − v(t) which fulfills w′ + λ(u)w = 0 and thus
vanishes; see [42]. For a discussion on the Navier–Stokes equations we refer to sec-
tion 5.2.

3.2. Derivation of an effective equation. We introduce the averaged con-
centration

U(t) :=

∫ t+1

t

u(s) ds.

Using (1) and (3), respectively, and inserting ±R(U(t),v(s)), we have

U ′(t) =

∫ t+1

t

εR
(
u(s),v(s)

)
ds

=

∫ t+1

t

εR
(
U(t),v(s)

)
ds−

∫ t+1

t

ε
(
R
(
U(t),v(s)

)
−R

(
u(s),v(s)

))
ds.

Lemma 6 (averaging error). Let u ∈ C1([0, T ]), v ∈ C([0, T ];X), and let As-
sumption 3 be satisfied. Then, it holds

max
t

∣∣∣∣∫ t+1

t

(R(U(t),v(s))−R(u(s),v(s))) ds

∣∣∣∣ ≤ Cε
with a constant C > 0 that depends on Assumption 3.

Proof. By Lipschitz continuity of R(·, ·) in the first argument (11) it holds

(15) |R(U(t),v(s))−R(u(s),v(s))| ≤ C|u(s)− U(t)|.

We estimate∫ t+1

t

|u(s)− U(t)|ds =

∫ t+1

t

∣∣∣∣∫ t+1

t

(u(s)− u(r)) dr

∣∣∣∣ ds

=

∫ t+1

t

∣∣∣∣∫ t+1

t

∫ s

r

u′(x) dxdr

∣∣∣∣ ds ≤ Cε,
(16)

where we used (10), such that a combination of (15) and (16) shows the assertion.

We can thus approximate the averaged evolution equation for U by

(17) U ′(t) =

∫ t+1

t

εR(U(t),v(s)) ds+O
(
ε2
)
.
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The benefit of introducing the periodic solution lies in a localization of the fast-
scale influences. Given an approximation Un at time Tn, the microscale influence
(vUn

, pUn
) can be determined independently of the last approximation (vUn−1

, pUn−1
).

We approximate the averaged equation (17) by inserting the periodic solution vU(t)(s)
for a fixed value U(t):

U ′(t) =

∫ t+1

t

εR(U(t),vU(t)(s)) ds

+

∫ t+1

t

ε
(
R(U(t),v(s))−R(U(t),vU(t)(s))

)
ds+O

(
ε2
)
.

(18)

We will show that the second remainder

(19) max
t

∣∣∣∣∫ t+1

t

ε
(
R(U(t),v(s))−R(U(t),vU(t)(s))

)
ds

∣∣∣∣
is also of order O(ε2). The analysis is presented for the ODE system (3) in the fol-
lowing section (Lemmas 8, 9, and 10). Extensions to the full system (1) are discussed
in section 5. Having shown that the average U(t) satisfies the equation

(20) U ′(t) =

∫ t+1

t

εR
(
U(t),vU(t)(s)

)
ds+O

(
ε2
)
,

we define the effective equation for the approximation of U(t) by neglecting the re-
mainder of order O(ε2), i.e., by the equation

(21) U ′(t) =

∫ t+1

t

εR
(
U(t),vU(t)(s)

)
ds, U(0) = u0.

In Lemma 10, we will estimate the error resulting from skipping the remainder O(ε2)
in (20). We further note that the initial values U(0) = u0 and the averaged initial∫ 1

0
u(s) ds do not necessarily coincide. Instead, (21) deals with an offset of order O(ε):

(22)

∫ 1

0

u(t) dt =

∫ 1

0

u(0) +

∫ s

0

u′(s) dsdt = u0 +O (ε) .

3.3. Analysis of the averaging error for the model problem. In this sec-
tion, we outline the ideas for showing convergence of the multiscale scheme, Algo-
rithm 1. As mentioned above the analysis for the Navier–Stokes/ODE system is
beyond the scope of this work. Instead we consider problem (3). One reason is the
lack of unique periodic solutions (vU(t)(s), pU(t)(s)) for larger Reynolds numbers. Sec-
ond, the following analysis is based on the linearity of the model problem. In addition
to Assumptions 3 and 5 we assume the following.

Assumption 7. We assume that the map u 7→ λ(u) is differentiable with a bounded
derivative

(23)

∣∣∣∣dλ(u)

du

∣∣∣∣ ≤ CA7, u ∈ [0, umax].

Algorithm 1 applied to the model problem (3) calls for the solution of the following
averaged slow problem

(24) U ′(t) =

∫ t+1

t

εR
(
U(t), vU(t)(s)

)
ds, U(0) = u0,
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and the corresponding time-periodic micro problems

(25) v′U (t) + λ(U)vU (t) = f(t), vU (1) = vU (0),

for each fixed parameter 0 ≤ U ≤ umax.

Lemma 8 (periodic solutions). Let 0 ≤ u ≤ umax be fixed and let Assumption 7
hold. For the solution to the periodic problem (25) it holds

(26) |vu(t)| ≤ CL8a.

Further, for 0 ≤ u, η ≤ umax let vu(t), vη(t) be two such periodic solutions. It holds

(27) |vu(t)− vη(t)| ≤ CL8b|λ(u)− λ(η)|,

where C depends on f and λ0 > 0.

Proof. (i) To show (26) we skip the index u for better readability. The general
solution to the ODE is given by

(28) v(t) = e−λt
(
v(0) +

∫ t

0

f(s)eλs ds

)
,

which we estimate by

(29) |v(t)| ≤ e−λt|v0|+
1

λ
‖f‖L∞([0,1]).

Since v(t) is periodic, v(1) = v(0), we obtain by (28)

(30) v(0) =
e−λ

1− e−λ

∫ 1

0

f(s)eλs ds ⇒ |v(0)| ≤ 1

λ
‖f‖L∞([0,1]).

Inserting (30) into (29) we get for all t ∈ [0, 1]

(31) |v(t)| ≤ 1 + e−λt

λ
‖f‖L∞([0,1]) ≤

2

λ
‖f‖L∞([0,1]),

which gives (26) since λ ≥ λ0.
(ii) Let w(t) := vu(t)− vη(t). It holds

w′(t) + λ(u)w(t) =
(
λ(η)− λ(u)

)
vη(t), w(1) = w(0) = vu(0)− vη(0).

Note that the right-hand side of this ODE is time periodic. Hence, we use (31) twice
and obtain the estimate

|w(t)| ≤ 2

λ(u)
|λ(η)− λ(u)| max

t∈[0,1]
|vη(t)| ≤ 4

λ(u)λ(η)
|λ(η)− λ(u)|‖f‖L∞([0,1]).

The following essential lemma sets the foundation for replacing the dynamic fast
component v(t) by localized periodic-in-time solutions. For a given slow function u(t)
we will compare the corresponding dynamic fast scale v(t) with the family of periodic
solutions vu(t)(s).
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Lemma 9. Let u ∈ C([0, T ]) be given with

(32) u(0) = 0, 0 ≤ u′(t) ≤ CA3aε, t ∈ [0, T ].

Then, let v(t) be the dynamic solution to (3b), i.e.,

(33) v(0) = v0, ∂tv(t) + λ
(
u(t)

)
v(t) = f(t) for t ∈ [0, T ],

and let vu(t)(s) be the family of time-periodic solutions to

vu(t)(0) = vu(t)(1)

∂svu(t)(s) + λ
(
u(t)

)
vu(t)(s) = f(s) for s ∈ [0, 1] and for all t ∈ [0, T ].

(34)

Finally, let v0 = vu(0)(0), i.e., the initial values to (33) and (34) at time t = 0 agree.
Let λ(·) satisfy Assumption 7. Then it holds

|v(t)− vu(t)(t)| ≤ CL9ε

with a constant C > 0 that depends on f , λ0, and on Assumptions 3 and 7.

Proof. For vu(t)(t) it holds by the chain rule

d

dt
vu(t)(t) = v′u(t)(t) +

dvu(t)

du(t)
(t)u′(t),

such that vu(t)(t) is governed by

∂tvu(t)(t) +
dvu(t)

du(t)
(t)u′(t) + λ

(
u(t)

)
vu(t)(t) = 0, vu(0)(0) = v0.

Thus, it holds for the difference w(t) := v(t)− vu(t)(t),

∂tw(t) + λ
(
u(t)

)
w(t) = −dvu(t)

du(t)
(t)u′(t), w(0) = 0

with the solution

(35) w(t) = −
∫ t

0

dvu(s)

du(s)
(s)u′(s) exp

(
−
∫ t

s

λ
(
u(r)

)
dr

)
ds.

To estimate the derivative
dvu(s)

du(s) we consider two such time-periodic solutions vu(t)

and vη(t) for fixed 0 ≤ u, η ≤ umax. We estimate their distance by (27) in Lemma 8:

(36)
|vu − vη|
|u− η| ≤

4

λ2
0

‖f‖L∞([0,1])

∣∣∣∣λ(u)− λ(η)

u− η

∣∣∣∣ .
This bound is uniform in u, η, and t, such that differentiability of λ(u), (23), gives∣∣∣∣dvu(t)

du(t)
(t)

∣∣∣∣ = lim
η→u

|vu(t) − vη(t)|
|u− η| ≤ 4CA7

λ2
0

‖f‖L∞([0,1]).

This allows us to estimate (35) by

|w(t)| = |v(t)− vu(t)(t)| ≤
4CA7CA3a

λ2
0

‖f‖L∞([0,1])ε.
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In the previous lemma we investigated the coupling from a fixed slow variable
u(t) to the fast components v(t) and vu(t)(t). This last lemma will study the different
evolutions of the slow variable u(t) governed by (3a), (3b) and of the averaged variable
U(t) that is determined by (24) with periodic micro influences (25).

Lemma 10. Let (u(t), v(t)) and (U(t), vU(t)(t)) be defined by (3a), (3b) and (24),
(25), respectively, with the initial values u(0) = U(0) = 0 and v(0) = vU(0)(0). For
0 ≤ t ≤ T = O(ε−1) it holds that

|U(t)− u(t)| ≤ Cε
with a constant C > 0 that depends on the constants from Lemma 8, 9, and 10, as
well as Assumption 3.

Proof. We introduce

w(t) := U(t)−
∫ t+1

t

u(s) ds,

which is governed by

w′(t) =

∫ t+1

t

ε
(
R
(
U(t), vU(t)(s)

)
−R

(
u(s), v(s)

))
ds,

w(0) = U(0)−
∫ 1

0

u(s) ds =: w0.

The initial error is small, |w0| = O(ε); compare (22). We insert ±R(U(t), v(s)):

w′(t) =

∫ t+1

t

ε
(
R
(
U(t), vU(t)(s)

)
−R

(
U(t), v(s)

))
+ ε
(
R
(
U(t), v(s)

)
−R

(
u(s), v(s)

))
ds.

(37)

Lipschitz continuity of R(·, ·), Assumption 3, gives

(38) |w′(t)| ≤ CA3bε

∫ t+1

t

|vU(t)(s)− v(s)|ds+ CA3bε

∫ t+1

t

|U(t)− u(s)|ds.

The second term is estimated by inserting ±
∫ t+1

t
u(r) dr and by using |u′| ≤ CA3aε:∫ t+1

t

|U(t)− u(s)|ds

≤
∫ t+1

t

∣∣∣∣U(t)−
∫ t+1

t

u(r) dr

∣∣∣∣ ds+

∫ t+1

t

∣∣∣∣∫ t+1

t

(
u(r)− u(s)

)
dr

∣∣∣∣ ds

=

∫ t+1

t

|w(t)|ds+

∫ t+1

t

∣∣∣∣∫ t+1

t

∫ r

s

u′(x) dxdr

∣∣∣∣ ds ≤ |w(t)|+ CA3aε.

(39)

To estimate the first term in (38) we introduce ±vu(s)(s) and use Lemmas 8 and 9,
Assumption 7 (differentiability of λ(u)), and finally (39):∫ t+1

t

|vU(t)(s)− v(s)|ds ≤
∫ t+1

t

(
|vU(t)(s)− vu(s)(s)|+ |vu(s)(s)− v(s)|

)
ds

≤ CL8bCA7

∫ t+1

t

|U(t)− u(s)|ds+ CL9ε

≤ CL8bCA7

(
|w(t)|+ CA3aε

)
+ CL9ε.

(40)
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With C = C(CA3a, CA3b, CA7, CL8a, CL8b, CL9) we combine (37)–(40) to find the re-
lation

−C (ε+ |w(t)|) ε ≤ w′(t) ≤ C (ε+ |w(t)|) ε.

An estimate for |w(t)| follows by the a bound of the solution to the corresponding
ODE with initial value w(0) = w0, where |w0| ≤ C3aε:

(41) |w(t)| ≤ CεeCεt,

which satisfies |w(t)| = O(ε) for t ≤ T = O(ε−1). Finally,

|U(t)− u(t)| ≤ |w(t)|+
∣∣∣∣∫ t+1

t

u(s)− u(t) ds

∣∣∣∣ ≤ Cε.
4. Time discretization. In this section we introduce second-order time-stepping

schemes to approximate the coupled problem. As in the previous section, where we
derived the multiscale algorithm, we start with the full plaque growth problem (1).
Then, the error analysis for estimating the discretization error is based on the simpli-
fied model equations (3).

The discretization is based on the second-order Adams–Bashforth scheme for the
slow scale and a Crank–Nicolson scheme for the fast scale. Both choices are exemplarly
and can in principle be substituted for by any suitable time-stepping scheme. We
choose an explicit scheme for the slow scale in order to avoid that several fast-scale
problems have to be solved in each time step; see Remark 13 below.

4.1. Second-order multiscale schemes. First, we split the time interval I =
[0, T ] into subintervals of equal size

(42) 0 = T0 < T1 < · · · < TN , K := Tn − Tn−1.

We define approximations Un := U(Tn) based on the second-order Adams–Bashforth
multistep method

(AB)
Un+1 − Un

K
=

3

2

∫ 1

0

εR(Un,vUn;k) ds− 1

2

∫ 1

0

εR(Un−1,vUn−1;k) ds.(43)

In order to compute the required starting value U1 for the Adams–Bashforth scheme,
we put one forward Euler step at the beginning of the iteration, which is sufficient to
obtain second-order convergence.

These schemes are formally explicit; they depend, however, on the averaged fast-
scale influences R(Un,vUn;k) To compute these terms, we introduce a (for simplicity
again, uniform) temporal subdivision of the fast periodic interval IP = [0, 1] of step
size k,

(44) 0 = t0 < t1 < · · · < tM = 1, k := tm − tm−1.

Given a fixed value 0 ≤ U ≤ umax, we introduce the notation vU,m := vU ;k(tm)
and we approximate the periodic solution on the fast scale with the Crank–Nicolson
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time-stepping scheme

(45)

∇ · vU,m = 0, ρk−1
(
vU,m − vU,m−1

)
+
ρ

2

(
(vU,m−1 · ∇)vU,m−1 + (vU,m · ∇)vU,m

)
− 1

2
div
(
σ(vU,m−1) + σ(vU,m)

)
=

1

2

(
f(tm−1) + f(tm)

)
m = 1, . . . ,M

such that |vuM − vu0 | ≤ tolP .

Based on the approximations made in the previous section, we introduce the
following multiscale method.

Algorithm 11 (explicit temporal multiscale method). Given subdivisions (42)
and (44) of I = [0, T ] and IP = [0, 1]. Let U0 = 0. Iterate for n = 1, . . . , N

1. For U := Un−1 solve the periodic problem (45) to obtain (vUn−1,m, pUn−1,m)
for m = 1, 2, . . . ,M .

2. Compute the averaged feedback

(46) Rn−1 :=
k

M

M∑
m=1

R(Un−1,vUn−1,m).

3. Step forward Un−1 → Un with the Adams–Bashforth method (43)

(47) Un := Un−1 +
3K

2
εRn−1 −

K

2
εRn−2

or, in the first step, with the forward Euler method

(48) U1 := U0 +KεR0.

Remark 12. In practice we ensure in step 1 that the solution is periodic up to
a certain threshold ‖vuM − vu0‖ ≤ tolP . The box rule used to compute the averaged
wall shear stress in step 2 of the algorithm is therefore equivalent to the second-order
trapezoidal rule (up to the small error O(k tolP )).

The main computational cost comes from the approximation of the periodic solu-
tions (vU,m, pu,m) for a fixed value of U . The efficient computation of these periodic
problems is discussed below.

Remark 13 (implicit multiscale schemes). We are considering the rather simple
interaction of the Navier–Stokes equations with a scalar ODE. For more detailed
models, for example, a boundary PDE to model the spatially diverse accumulation of
u(x, t) along the boundary Γ(u) or even a full PDE/PDE model considering dynam-
ical fluid-structure interactions and a detailed modeling of the biochemical processes
causing plaque growth, as introduced by Yang [49] and Yang et al. [50], stiffness issues
may call for implicit discretizations of the equation for u. To realize an implicit mul-
tiscale method, e.g., based on the Crank–Nicolson scheme for both temporal scales,
an outer iteration must be introduced. We refer to [37] for a first application of the
multiscale scheme to a PDE/PDE coupled flow problem.

4.2. Error analysis for the model problem. We consider the system of equa-
tions (3a)–(3b), its multiscale approximation (24)–(25), and the discrete problem
(45)–(48). Concerning the short-scale problem, we make the following assumption.

Assumption 14 (approximation of the periodic problem). Let tolP > 0 be the
tolerance for reaching periodicity. We assume that there exists a constant C > 0 such
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that the Crank–Nicolson discretization (45) to the flow problem satisfies the bound

‖vU,M − vU,0‖+ max
m=1,...,M

‖vU (tm)− vU,m‖ ≤ Ck2 + tolP ,

where the constant C in particular does not depend on ε and U .

Remark 15 (approximation of the periodic problem). Considering ODEs, the er-
ror estimate for the trapezoidal scheme is standard and can be found in many text-
books. Applied to the Navier–Stokes equations optimal order estimates under realistic
regularity assumptions are given in [26]. Similar estimates that also include second-
order-in-time estimates for the pressure (which might be required for a stress-based
feedback) are given in [45]. For algorithms to control the periodicity error, we refer
to section 4.3 below.

Lemma 16 (regularity of the solution). Let U(t) be the solution to (24) for vU ∈
C(0, T ) and 0 ≤ U ≤ umax. Moreover, let the map U 7→ λ(U) be twice differentiable
with bounded second derivatives. It holds that

U ∈ C3(I), max
[0,T ]
|U ′′| = O

(
ε2
)
, max

[0,T ]
|U ′′′| = O

(
ε3
)
.

Proof. Let us first note that U ′ is bounded due to the continuity of the right-hand
side R(U(t), vU(t)(s)) of (24). Next, we consider the (total) temporal derivative of the
right-hand side. The chain rule gives

dt

∫ 1

0

R
(
U(t), vU(t)(s)

)
ds = R

(
U(t), vU(t)(1)

)
−R

(
U(t), vU(t)(0)

)
+

∫ 1

0

dtR
(
U(t), vU(t)(s)

)
ds.

The first part vanishes due to the periodicity of vU(t). For the second part we have
with (4)

dtR
(
U(t), vU(t)(s)

)
= − U ′(t)

1 + U(t)2

∫ 1

0

1

1 + (vU(t)(s))2
ds

− 1

1 + U(t)

∫ 1

0

2vU(t)(s)dtvU(t)(s)(
1 + (vU(t)(s))2

)2 ds.

As in the proof of Lemma 9 we show

∣∣dtvU(t)

∣∣ =

∣∣∣∣dvU(t)

dU
U ′
∣∣∣∣ = O(ε).

In combination with the bound |U ′(t)| ≤ cε, we obtain

|U ′′(t)| =
∣∣∣∣dt ∫ 1

0

εR
(
U(t), vU(t)(s)

)
ds

∣∣∣∣ ≤ Cε2.
A similar argument yields for the third derivative

|U ′′′(t)| =
∣∣∣∣d2
t

∫ 1

0

εR
(
U(t), vU(t)(s)

)
ds

∣∣∣∣ =

∣∣∣∣∫ 1

0

d2
t εR

(
U(t), vU(t)(s)

)
ds

∣∣∣∣ ≤ Cε3,
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where we have used that

d2
t vU(t) =

dvU(t)

dU
U ′′ +

d2vU(t)

dU2
U ′2 = O(ε2),

given that λ(U) is twice differentiable in U .

Lemma 17 (local approximation error of the effective equation). Let U ∈ C3(I)
be the solution to (24)–(25), UK;k ∈ RN+1 the approximation given by Algorithm 11.
For Tn = O(ε−1), the error En := U(Tn)− Un;k is bounded by

|En| ≤ C
(
ε2K2 + k2 + tolP

)
with a constant C > 0 that does not depend on ε, K, k, and tolP .

Proof. Combination of Taylor expansions around Tn and Tn−1 of the continuous
solution U gives

U(Tn+1) = U(Tn) +
3K

2

∫ 1

0

εR
(
U(Tn), vU(Tn)(s)

)
ds

− K

2

∫ 1

0

εR
(
U(Tn−1), vU(Tn−1)(s)

)
ds+O(K3) max

ξ∈(Tn−1,Tn+1)
|U ′′′(ξ)|,

where ξ ∈ [Tn−1, Tn]. In combination with (43), we obtain the error representation

En+1 = En +
3K

2

∫ 1

0

ε
(
R
(
U(Tn), vU(Tn)(s)

)
−R

(
Un, vUn;k(s)

))
ds

− K

2

∫ 1

0

ε
(
R
(
U(Tn−1), vU(Tn−1)(s)

)
−R

(
Un−1, vUn−1,k(s)

))
ds

+O(K3) max
ξ∈(Tn−1,Tn+1)

|U ′′′(ξ)|.

With the Lipschitz continuity of R(·), Assumption 3, we estimate∫ 1

0

∣∣∣R(U(Tn), vU(Tn)(s)
)
−R

(
Un, vUn;k(s)

)∣∣∣ds
≤ C

(∫ 1

0

∣∣vU(Tn)(s)− vUn;k(s)
∣∣ds+

∣∣U(Tn)− Un
∣∣) .

For the first part, we use the estimate (27) of Lemma 8 and Assumption 14:∫ 1

0

∣∣vU(Tn)(s)− vUn;k(s)
∣∣ds ≤ ∫ 1

0

∣∣vU(Tn) − vUn

∣∣ds+

∫ 1

0

∣∣vUn
− vUn;k

∣∣ds
≤ CL8bCA14

(
|U(Tn)− Un|+ k2‖vUn‖C3([0,1]) + tolP

)
.

In combination with Lemma 16 this yields

|En+1| ≤ |En|+ CεK
(
|En|+ |En−1|+ k2 + tolP + ε2K2

)
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with C = C(CL8b, CA14, C16). Summing over n = 1, . . . , N − 1 and using E0 = 0, we
obtain

|EN | ≤ |E1|+ CεTN
(
k2 + tolP + ε2K2

)
+ C

N−1∑
n=1

εK|En|.

The term |E1| depends on the forward Euler method, which is used to compute UK,1:

|E1| ≤ CK2|U ′′|∞ ≤ Cε2K2,

where we have used Lemma 16 and |E0| = 0. Finally, a discrete Gronwall inequality
yields

|EN | ≤ CεTN
(
k2 + ε2K2 + tolP

)
exp

(
εTN

)
.

The postulated result follows for TN = O(ε−1).

Finally, we can estimate the error between the multiscale algorithm and the so-
lution u(t) to the original coupled problem.

Theorem 18 (a priori estimate for the multiscale algorithm). Let I = [0, T ]
with T = O(ε−1) and let u ∈ C(I) and UK be the solutions to the original problem (1)
and the discrete effective equations (43), respectively. It holds

|u(Tn)− Un| = C
(
k2 + ε2K2 + tolP + ε

)
,

where C > 0 does not depend on ε,K, k, and tolP .

Proof. We introduce ±U(Tn) and estimate

|u(Tn)− Un| ≤ |u(Tn)− U(Tn)|+ |U(Tn)− Un|.

The two terms on the right-hand side are estimated with Lemmas 10 and 17.

4.3. Approximation of the periodic flow problem. The temporal multi-
scale schemes are based on periodic solutions vUn

(s) for s ∈ [0, 1], where the variable
Un = U(tn) is fixed such that no feedback between fluid problem and reaction equation
takes place within this short interval. A numerical difficulty lies in the determination
of the correct initial value vUn,0 that yields periodicity vUn

(0) = vUn
(1). Let us

consider again the full Navier–Stokes problem

(49) ∇ · vUn
= 0, ρ(∂tvUn

+ (vUn
· ∇)vUn

)− divσ(vUn
, pUn

) = f ,

vUn
(1) = vUn

(0) in Ω(Un).

We assume that such a periodic solution of the Navier–Stokes equations exists. Some
results are given by Kyed and Galdi [18, 19, 32] that require, however, severe restric-
tions on the problem data. Depending on the transient dynamics, the decay of the
nonstationary solution to this periodic solution can be very slow. It depends basi-
cally on exp(−νλ0), where ν is the viscosity and λ0 > 0 the smallest eigenvalue of the
Stokes operator, which depends on the inverse of the domain size. Several acceleration
techniques that are based on shooting methods [21, 53], Newton schemes [46, 30], or
gradient-based optimization techniques [23, 43] have been proposed to quickly iden-
tify the initial value vUn,0. We apply a simple acceleration scheme that is based on
decomposing the periodic solution into its average and the fluctuations; see [42]. Here,
we shortly recapitulate the algorithm that has been introduced in [42].
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Algorithm 19 (averaging scheme for the identification of periodic solutions).

Given the initial value v
(1)
Un,0

, usually v
(1)
Un,0

:= vUn−1,0 and let tolP > 0 be a given
tolerance. Iterate for l = 1, 2, . . . .

1. Solve one cycle of (49) for (v
(l)
Un
, p

(l)
Un

) with the initial v
(l)
Un

(0) = v
(l)
Un,0

.
2. Compute the error in periodicity

err
(l)
P := ‖v(l)

Un
(1)− v

(l)
Un

(0)‖.

3. Stop, if err
(l)
P < tolP .

4. Compute the velocity average over the cycle

v̄
(l)
Un

:=

∫ 1

0

v
(l)
Un

(s) ds.

5. Compute the stationary update problem for (w̄
(l)
Un
, q̄

(l)
Un

):

(50) ∇ · w̄(l)
Un

= 0, ρ
(
(v̄

(l)
Un
· ∇)w̄

(l)
Un

+ (w̄
(l)
Un
· ∇)v̄

(l)
Un

)
− divσ(w̄

(l)
Un
, q̄

(l)
Un

)

= v
(l)
Un

(1)− v
(l)
Un

(0).

6. Update the initial

v
(l+1)
Un,0

:= v
(l)
Un

(1) + w̄
(l)
Un

and go to step 1.

The basic idea of introducing the averaged update problem (50) in step 5 of
the algorithm is to quickly predict the correct average of the periodic solution. The
computational effort for each iteration lies mostly in step 1, where one complete non-
stationary cycle of the periodic problem over the period [0, 1] is computed. Given the
step size k this means solving k−1 time steps of the discrete Navier–Stokes problem.
In addition, step 5 calls for the solution of one additional stationary problem.

Using this scheme we are able to reduce the periodicity error to tolP < 10−4 in
less than 5 cycles of the algorithm. In the context of the usual HMM approaches this
would correspond to choosing the relaxation time as η = 5 s in terms of computational
effort, i.e., 5 times the period length; see [1].

5. Numerical examples. We consider the full problem described in the in-
troduction, namely, the incompressible Navier–Stokes equations coupled to a scalar
ODE model. In order to transfer the proofs from the simplified setting to this more
relevant case, several open questions regarding the existence and regularity theory
of the Navier–Stokes equations in the periodic setting would have to be addressed.
The numerical results presented in this section will, however, reveal convergence rates
and error constants that are in full agreement with the theoretical findings for the
simplified model problem.

5.1. Configuration of the plaque formation problem. A sketch of the
plaque growth problem is given in Figure 1; the governing equations have been out-
lined in the introduction, section 1. On the fast scale we consider a Navier–Stokes flow
in a channel whose width depends on the slowly evolving variable u(t). The variable
domain describing the channel is given by

Ω(u) =
{

(x, y) ∈ R2 : −5 cm < x < 10 cm, |y| < (1.5− uγ(x)) cm
}
,

γ(x) = exp
(
−x2

)
.

(51)
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Instead of a complex growth model for the plaque formation as introduced in [50] we
use this explicit dependence of the domain on the scalar u(t). The periodic Navier–
Stokes problem is driven by a time periodic Dirichlet condition on the inflow boundary
Γin:

(52) vin(y, t) = 25 sin(πt)2

(
1− y2

1.52

)
cm/s on Γin × [0, T ].

On the outflow boundary Γout we specify the do-nothing outflow condition

(53) ρν∂~nv − p~n = 0

that includes a pressure normalizing condition
∫

Γout
p ds = 0; see [27]. Kinematic

viscosity and density resemble blood and the parameters in the reaction term (2)
are tuned to obtain a realistic behavior concerning the different temporal scales of
atherosclerotic plaque growth:

(54) ρ = 1 g/cm3, ν = 0.04 cm2 · s−1, σ0 = 30.

The constant σ0 is such that the concentration u reaches the value 1 at approximately
T = O(ε−1).

We exploit the symmetry of the problem and compute on the upper half of the
domain only. On the symmetry boundary at y = 0 we prescribe the condition

v · ~n = 0, σ(v, p)~n · ~τ = 0.

Problem (1) can be formulated on a reference domain Ω := Ω(0) by means of an
arbitrary Lagrangian Eulerian approach (see [13] or [41, Chapter 5]), using the map

(55) T : Ω(0)→ Ω(u), T (u(t);x, y) =

(
x

1.5−u(t)γ(x)
1.5 y

)
, γ(x) = exp(−x2),

with derivative and determinant given by

(56) F := ∇̂T =

(
1 0

−uγ
′(x)

1.5 y 1.5−uγ(x)
1.5

)
, J := det(F) =

1.5− uγ(x)

1.5
.

The Navier–Stokes equations mapped to the reference domain take the form

(57)

div
(
JF−1v

)
= 0,

ρJ
(
∂tv + (F−1(v − ∂tT ) · ∇)v

)
− div

(
JF−T σ̂(v, p)F−1

)
= 0 in Ω,

v(0) = v0, σ̂(v, p) := −pI + ρfνf∇vF−1.

Formulations (57) and (1) are equivalent as long as J > 0, which we can guarantee if
we limit the maximum deformation by umax := 1. The resulting Reynolds number

Re =
v̄L

ν

with the channel diameter L = 3 cm, the kinematic viscosity ν = 0.04 cm2 · s−1, and
the flow rate v̄ = (3 − 2U)−1cm · s−1 in the remaining gap of width 3 − 2U(t) is in
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the range of 0 and about 3 750 as long as U ≤ umax = 1. Such high values are only
reached at peak inflow; compare (52).

The correct model and a full comprehension of shear effects on plaque formation
and growth are still under active discussion. It is, however, understood that regions
of (relatively) low shear stress that exhibit an oscillatory character are more prone to
plaque growth [47, 12]. The reaction term (2) mimics this behavior. Its dependence
on the flow problem by means of the wall shear stress is nonlinear and cannot be
considered by a simple averaging as done in [49, 50, 51].

5.2. Significance of the model problem and application to the plaque
formation model. The analysis of the temporal multiscale scheme was based on
Assumptions 3, 5, 7, and and 14. Further, we have used the linearity of the model
problem and the availability of analytical solutions to the ODEs appearing in the
model problem. Here, we will shortly motivate the relevance of the simplified model
problem and discuss the application of the multiscale scheme to the full plaque for-
mation model.

If we linearize the Navier–Stokes equations (57) by omitting the convective terms
((v − ∂tT ) · ∇)v, we obtain the Stokes equations on Ω(u). These have a system of
L2-orthonormal eigenfunctions with eigenvalues 0 < λ0(u) ≤ λ1(u) ≤ · · · . As long as
the domain does not deteriorate, i.e., for 0 ≤ u ≤ umax it holds that λ0(u) ≥ λ0 > 0.
Due to the regularity of the reference map (55), the mapping of the equations to
the reference domain is also differentiable. Its derivative (23) is bounded as long as
contact with the boundary walls is prevented, i.e., as long as u ≤ umax is bound away
from 1.5; compare (51) and (55) (Assumption 7). By diagonalization of the Stokes
problem with respect to the system of eigenfunctions we reduce the problem to a
system of ODEs of type (3b). Lemma 8 can be applied to each component of the
diagonalized system. However, since the eigenvalues of the Stokes operator are not
bounded, a formal extension to the full Stokes problem requires further steps.

The essential assumptions for the application of the multiscale method is the
boundedness and the Lipschitz continuity of the reaction term R(·, ·) with respect
to slow and fast variables (Assumption 3) as well as the existence of time-periodic
solutions to the isolated fast-scale problem (Assumption 5). Given a fixed value of
u, the fast-scale problem (13) is given by the Navier–Stokes equations on the domain
Ω(u). The unique existence of periodic solutions to the Navier–Stokes equations is
only guaranteed for small problem data; see [18, 19, 32]. These results will most likely
not apply to the higher Reynolds number regime of typical blood flow configurations,
such that Assumption 5 cannot be verified in our setting. However, given a periodic
solution, since f = 0, the Dirichlet data vin are smooth and since the domain allows
for a piecewise C∞ parametrization with a finite number of convex corners, we expect
the regularity

(58) sup
(
‖v(t)‖H2(Ω) + ‖p(t)‖H1(Ω)

)
≤ C58;

see [25]. Under this assumption we can show Lipschitz continuity and boundedness
of the reaction term.

Lemma 20 (Lipschitz continuity). Let u ∈ C(I) with 0 ≤ u(t) ≤ umax. Assume
that for fixed u, the time-periodic Navier–Stokes problem allows for a unique solution
vu satisfying (58) with C58 = C(umax). Then, the reaction term (2) is bounded,

(59) |R(u,vu)| ≤ 1,
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and Lipschitz continuous with respect to both arguments,

|R(u,v)−R(η,v)| ≤ |u− η| ∀u, η ∈ [0, umax] ∀v ∈ H2(Ω),(60a)

|R(u,v)−R(u,u)| ≤ L|u− v| ∀v,u ∈ H2(Ω) ∀u ∈ [0, umax],(60b)

with a constant L > 0.

Proof. Given (58), the wall shear stress is well defined:

(61) |σWSS(v)| ≤ 2ρνσ−1
0 ctr‖v‖H2(Ω),

where ctr is the constant of the trace inequality ‖∇v‖Γ ≤ ctr‖v‖H2(Ω). Then (59)
directly follows by the construction of R(·, ·); see (2). Further, it holds that∣∣R(u,v)−R(η,v)

∣∣ =
(
1 + |σWSS(v)|2

)−1(
1 + u

)−1(
1 + η

)−1|u− η|,

which shows (60a). Likewise

∣∣R(u,v)−R(u,u)
∣∣

=
(
1 + u

)−1

∣∣σWSS(v) + σWSS(u)
∣∣(

1 + |σWSS(v)|2
)(

1 + |σWSS(u)|2
) ∣∣σWSS(v)− σWSS(u)

∣∣.
Since the wall shear stress is a linear functional σWSS(v) + σWSS(u) = σWSS(v + u)
and due to the relation 2σWSS(v) ≤ 1 + σWSS(v)2, we estimate∣∣R(u,v)−R(u,u)

∣∣ ≤ ‖v − u‖H2(Ω);

see (61).

Finally, the validity of Assumption 14 has been discussed in Remark 15.

5.3. Discretization. We briefly sketch the discretization in space and time. All
numerical experiments have been realized in the software library Gascoigne 3D [5].
We use uniform time steps k and K on both scales and the time-stepping schemes
presented in (43)–(45).

For spatial discretization we triangulate the reference domain Ω̂ into open quad-
rilaterals, allowing for local refinement based on hanging nodes; see [40] for details
on the realization in the software Gascoigne 3D. Equal-order biquadratic finite ele-
ments are used for velocity and pressure degrees of freedom. Pressure stabilization is
accomplished with the local projection stabilization scheme [4]. Stabilization of the
convective terms is not required due to the moderate Reynolds numbers.

Direct simulation. The PDE/ODE system is a multiscale coupled problem. We
will compare the presented multiscale scheme with a direct forward simulation. As we
do not expect any stiffness-related problems in the ODE we decouple the PDE/ODE
system by an implicit/explicit approach where, as in the multiscale approach, the
discretization of the Navier–Stokes equation (57) is based on the second-order Crank–
Nicolson scheme and the discretization of the ODE on the second-order explicit
Adams–Bashforth formula resulting in a multiscale method that splits naturally into
one explicit ODE step and an implicit Navier–Stokes step.
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Fig. 3. Left: Evolution of the concentration variable U(t) as function over time (forward
simulation with k = 0.05 s). In the small subplot we show both U(t) and the resolved variable u(t).
The maximum deviation is bound by max |u(t)−U(t)| ≤ 3 ·106. Right: Relative error in U(t) under
refinement of the time step k (compared to extrapolated values).

5.4. Numerical analysis of the plaque formation problem.

5.4.1. Configuration with resolvable time scales. In a first test we take the
value ε = 5 · 10−5 in (54). By this choice, the concentration u reaches approximately
1 after about 50 000 s ≈ 1 day such that we can still resolve the coupled problem in
all temporal scales (although the direct simulation still takes a substantial effort).
To keep the computational effort within bounds we use a rather coarse spatial dis-
cretization with 320 elements, resulting in 4 131 unknowns of a biquadratic equal-order
discretization for velocities and pressure.

In Figure 3 (left) we give an overview of the temporal evolution of the concen-
tration variable uk(t) using a full resolution of the fast scale. The simulations break
down at T ≈ 55 000 s due to the deterioration of the ALE map and the high Reynolds
number. For the small interval [10 000 s, 10 002 s] we show a close-up view of the re-

solved solution uk(t) and the averaged value
∫ t+1

t
uk(s) ds. The deviation is bound by

3·10−6 = O (ε), in agreement with Lemma 10. We determine reference values uref (Tn)
by extrapolating numerical results for k = 0.05 s, k = 0.025 s, and k = 0.0125 s. The
relative errors |uk(tn)− uref (tn)|/|uref (tn)| (based on these extrapolated errors) are
given in Figure 3 (right). The convergence rate in terms of k is approximately qua-
dratic. Further, there is no significant accumulation of simulation errors over time.

By the evolution of the concentration u over time, the computational domain
undergoes substantial deformations with a strong narrowing of the flow domain. In
Figure 4 we show snapshots of the solution at different time steps, t ≈ 6 250 s, 13 500 s,
18 750 s, . . . , 50 000 s. The narrowing of the gap causes an acceleration of the fluid
resulting in a higher Reynolds number flow with a substantial variation in the feedback
functional R(u,v) which depends on the wall shear stress.

Multiscale approach. Next, in Figure 5 we show the results obtained with the
multiscale method for this relaxed problem with ε = 5 · 10−5. The tolerance for
approximating the periodic flow problems is set to

‖vU (1)− vU (0)‖2L2(Ω) + ‖pU (1)− pU (0)‖2L2(Ω) < tol2P := 10−8.

For each of the three short time step sizes k = 0.05 s, k = 0.025 s and k = 0.0125 s
we use long time step sizes ranging from K = 6 400 s to K = 400 s. In the left plot
we compare the solutions for different values of the long time step size K. In this
(nonlogarithmic) plot we see convergence of the results to the corresponding resolved
simulation with the same short step size k = 0.025 s. The lower plot shows the
corresponding results for a variation of the small step size k, while the long-scale
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Fig. 4. Velocity magnitude at times t = n · 6 250 s for n = 1, 2, . . . , 8 on domains with different
growth. As the inflow profile is periodic, the narrowing of the domain causes a significant change
of the flow pattern.
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Fig. 5. Convergence of the temporal multiscale method for the relaxed problem ε = 5 · 10−5.
Left: Effect of the long time step K using the small time step k = 0.025 s. Right: Effect of the short
time step k using the long time step size K = 400 s. For comparison we plot the error of the fully
resolved simulation using these time step sizes.

step size is fixed to K = 400 s. For comparison we show the results obtained with
the resolved simulation for these small step sizes. Again we see convergence of the
multiscale scheme towards the resolved scheme.

The effect of the small step size k is dominant. This is highlighted by a closer
analysis of the convergence at time t = 51 200 s, the results being shown in Table 1. We
indicate the concentration U(t) and the errors for the different multiscale approaches
as well as for the resolved forward simulation. We fit all these values to the postulated
relation

(62) U(k,K) = U + Ckk
qk + CKK

qK

to get a better understanding of the convergence rates. We estimate all parameters
u,Ck, CK , qk, qK (obtained with gnuplot fit [48]) and find

U(k,K) = U − 1.12 · k1.85 − 6.61 · 10−10 ·K1.80;

see also Table 1. Convergence is close to the expected second order, both in k and K.
The most striking result is the good estimation of the error constant that shows the
proper scaling in ε2. This result is in good correspondence with the error estimate
derived in Theorem 18 where the constant in front of the K2-term depends on ε2.
Balanced discretization errors are given for ε2K2 ≈ k2, i.e., for K ≈ ε−1k.
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Table 1
Convergence of the multiscale method at time T = 51 200 s. We show the values of UK and

the error (w.r.t. the extrapolation in k → 0 and K → 0). We compare the results of the multiscale
method with the fully resolved forward computation. Finally, we fit the numerical results to the
expected convergence behavior.

UK Error (w.r.t. extrapolation)
k 0.05 s 0.025 s 0.0125 s 0.05 s 0.025 s 0.0125 s

K = 6 400 s 0.8089225 0.8118418 0.8126760 1.11 · 10−2 7.55 · 10−3 6.53 · 10−3

K = 3 200 s 0.8122441 0.8153539 0.8162696 7.05 · 10−3 3.25 · 10−3 2.13 · 10−3

K = 1 600 s 0.8132730 0.8164325 0.8173319 5.80 · 10−3 1.93 · 10−3 8.35 · 10−4

K = 800 s 0.8135139 0.8166886 0.8175426 5.50 · 10−3 1.62 · 10−3 5.77 · 10−4

K = 400 s 0.8135782 0.8167926 0.8176490 5.42 · 10−3 1.49 · 10−3 4.47 · 10−4

Resolved 0.8135999 0.8168226 0.8176928 5.42 · 10−3 1.46 · 10−3 3.93 · 10−4

Fit to U(k,K) = U + Ckk
qk + CKK

qK , U = 0.818006± 10−3%,

Ck = −1.12± 17%, Ck = −6.61 · 10−10 ± 34%, qk = 1.85± 3.39%, qK = 1.80± 2.14%.

Based on the time step relation we can compute the possible speedup of the
multiscale approach which we measure in the overall number of Navier–Stokes time
steps to be performed. The forward algorithm requires Efwd = T

k solution steps,
while the multiscale approach has an effort of Ems = T/K · nperiod1/k = Tnperiod/kK
steps, where nperiod is the number of cycles that are necessary to compute a periodic
solution. Given K ≈ ε−1k we approximate Ems ≈ εTnperiod/k2, and the speedup is
estimated by

Efwd
Ems

=
k

εnperiod
.

In our numerical example we identify nperiod ≤ 5 and with ε = 5 · 10−5 we expect
a speedup of 4 000k. In Figure 6 we plot the error over the required number of
Navier–Stokes time steps. By circles we indicate the multiscale results with a balanced
error contribution, which we define as the state where the error of the multiscale
approach is within 10% of the error of a fully resolved simulation for the same k.
We observe speedups of 1:250 for k = 0.05 s, 1:180 for k = 0.025 s, and 1:90 for
k = 0.0125 s, slightly better values than the predicted ones based on 4 000k. The
overall computational time for the forward simulation with k = 0.0125 s was about
13 days, while the multiscale simulation with k = 0.0125 s and K = 800 s, giving a
comparable accuracy, was about 45 min.

5.4.2. Configuration with realistic time scales. Finally, we consider the
coupled problem with the time scale parameter ε = 10−6, which is close to the tem-
poral dynamics of atherosclerotic plaque growth and 50 times smaller than in the first
example. Here, a resolved forward simulation is not feasible. The concentration u(t)
will reach a value of approximately 0.8 at T ≈ 2.5 · 106 s ≈ 30 days.

Assuming the validity of estimate (62) and in addition that CK ≈ ε2 we expect
balanced error contributions for K ≈ ε−1k = 106k. The character of the short-scale
problem does not depend on ε. Hence we consider again the step sizes k = 0.05 s,
k = 0.025 s, and k = 0.0125 s. The large time step, however, can be significantly
increased. We present results for T ≈ 21 days in Table 2. For this second example, we
vary also the mesh size h to discuss the impact of all relevant discretization parameters.
While a smaller value of ε makes the time scale challenge more severe, the multiscale
approach will profit, as the potential speedup will benefit from the relation K ≈ ε−1k.
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k = 0.05s

Navier-Stokes steps

K = 400s

K = 6400s

1× 106100000100001000
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Fig. 6. Computational effort (measured in Navier–Stokes time steps) for the multiscale ap-
proach (lines) and the resolved forward simulation (points). We use three small time steps k from
0.05 s down to 0.0125 s and vary the long time step K from 6 400 s to 400 s. Circles indicate multi-
scale solutions of a quality comparable to the resolved forward simulation (at most 10% additional
error). The computational time for one Navier–Stokes step is about 0.2 s (Core i7-7700, 3.60 GHz,
1370 spatial unknowns, biquadratic finite elements).

Table 2
Convergence of the multiscale approach for ε = 10−6. On three mesh levels we indicate the

errors in the concentration U(T ) at T = 1 843 200 s ≈ 21 days. In each block, the errors are given
w.r.t. the extrapolation k,K → 0. In the last line we indicate the (dominating) spatial error for
each block.

h = 0.16 cm h = 0.08 cm h = 0.04 cm
k = 0.05 s k = 0.025 s k = 0.0125 s k = 0.05 s k = 0.025 s k = 0.0125 s k = 0.05 s k = 0.025 s k = 0.0125 s

K = 204 800 s 4.45 · 10−3 2.46 · 10−3 2.20 · 10−3 4.06 · 10−3 2.42 · 10−3 2.04 · 10−3 4.06 · 10−3 2.42 · 10−3 2.04 · 10−3

K = 10 2400 s 2.86 · 10−3 8.94 · 10−4 6.17 · 10−4 2.75 · 10−3 1.06 · 10−3 6.28 · 10−4 2.75 · 10−3 1.06 · 10−3 6.28 · 10−4

K = 51 200 s 2.43 · 10−3 4.76 · 10−4 1.96 · 10−4 2.39 · 10−3 7.04 · 10−4 2.58 · 10−4 2.39 · 10−3 7.04 · 10−4 2.58 · 10−4

Extrapolated (k,K → 0) |U(T )− Uh(T )| ≈ 4.55 · 10−2 |U(T )− Uh(T )| ≈ 8.61 · 10−3 |U(T )− Uh(T )| ≈ 1.63 · 10−3

Combining all 27 computations based on three values for h, k, and K we find the
relation

U(h, k,K) ≈ 0.59076 + 7.6h2.4 − 1.7k2.2 − 0.04ε2K1.9,

which shows approximately second-order convergence in both time step sizes and the
mesh size and also the proper scaling of the constants in the O(k2) and O(K2) terms.
Spatial and temporal errors show a different sign which is also seen in Figure 7, where
we plot the errors for all computations. In the right sketch of this figure we compare
the computational times of the multiscale approach with a hypothetical resolved sim-
ulation. Here, the errors are predicted by extrapolation. The computational times are
based on the number of Navier–Stokes steps, namely, k−1T and the average compu-
tational time for each Navier–Stokes step, which is 0.135 s on the h = 0.16 cm mesh,
0.62 s for h = 0.08 cm, and 2.3 s for h = 0.04 cm. The results are very similar to those
shown in Figure 6 for the first example. The best multiscale results are close to the
hypothetical resolved results. Here, however, the savings are substantially larger with
10 minutes versus 2 months (factor 1:8 000) for h = 0.16 cm, 1 hour versus nearly 2
years for h = 0.08 cm (factor 1:12 000), and 15 hours versus more than 10 years for
h = 0.04 cm (factor 1:6 000).

Finally, we also evaluate the effect of the parameter tolP used to control the
periodicity of the Navier–Stokes solution; compare Theorem 18. In Table 3 we show
the errors at T = 1 843 200 s ≈ 1 month for computations based on K = 25 600 s ≈ 7 h,
k = 0.0125 s, and h = 0.08 cm. The effect of tolP is very small.
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Fig. 7. Left: Error of the multiscale method under refinement in h, k, and K versus the
extrapolated reference value. Right: Comparison of the computational times of the multiscale method
with the corresponding results for a resolved forward simulation. These results are based on an
extrapolation of the error and a prediction of the computational times by multiplying the number of
required time steps with the average computing times for each step.

Table 3
Impact of the periodicity parameter tolP on the error in concentration U in T = 1 843 200 s.

Computed w.r.t. tolP = 10−8. The discretization is chosen as h = 0.08 cm, k = 0.0125 s, and
K = 25 600 s.

tolP 10−1 10−2 10−3 10−4∣∣Uh,k,K(T )|tolP
− Uh,k,K(T )|

tolP =10−8

∣∣ 1.99 · 10−5 4.88 · 10−7 3.19 · 10−7 1.22 · 10−7

6. Conclusion. We have presented a framework for the simulation of tempo-
ral multiscale problems, where we are interested in the evolution of a slow variable
which depends on an oscillating fast variable. The numerical schemes are designed for
models that are given by PDEs. The most important assumption is a local (in time)
proximity of the fast-scale variable to the solution of a periodic problem. An effective
scheme for the slow variable is derived by replacing the fast variable with the peri-
odic solution which can be computed locally, as no initial values must be transferred.
The only overhead of the multiscale scheme comes from the identification of initial
values required for approximating the periodic problems. Nevertheless, we gain huge
speedups compared to a simulation with resolved time scales. The efficiency of the
multiscale approach increases when the time scale separation gets larger.

The resulting scheme depends on several numerical parameters, small and large
time steps k and K, and the spatial mesh size h. It remains a topic for a future
work to design an automatic and adaptive algorithm to control all these parameters
in order to balance all contributing error terms.
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Towards parallel time-stepping for the numerical simulation
of atherosclerotic plaque growth

Stefan Frei*, Alexander Heinlein†

Abstract

The numerical simulation of atherosclerotic plaque growth is computationally prohibitive, since it in-
volves a complex cardiovascular fluid-structure interaction (FSI) problem with a characteristic time scale
of milliseconds to seconds, as well as a plaque growth process governed by reaction-diffusion equations,
which takes place over several months. In this work we combine a temporal homogenization approach,
which separates the problem in computationally expensive FSI problems on a micro scale and a reaction-
diffusion problem on the macro scale, with parallel time-stepping algorithms. It has been found in the
literature that parallel time-stepping algorithms do not perform well when applied directly to the FSI prob-
lem. To circumvent this problem, a parareal algorithm is applied on the macro-scale reaction-diffusion
problem instead of the micro-scale FSI problem. We investigate modifications in the coarse propagator of
the parareal algorithm, in order to further reduce the number of costly micro problems to be solved. The
approaches are tested in detailed numerical investigations based on serial simulations.

1 Introduction
Cardiovascular diseases are by far the most common cause of death in industrialized nations today. One of
the most common cardiovascular diseases is the growth of plaque (atherogenesis) in coronary arteries or the
pathological accumulation of plaque (atherosclerosis), which can result in heart attacks or strokes that are
often fatal. Since the formation of plaque ranges over a long period of time, from months to several years,
early diagnosis and treatment to prevent plaque growth can have a good chance of success.

An important driving force for plaque growth is the wall shear stress distribution, which varies signifi-
cantly within each heartbeat, i.e., every second; see, for instance, [20,57] for a discussion on the dependence
of plaque growth on the wall shear stress. Using three-dimensional fluid-structure interaction (FSI) simu-
lations with realistic material models, the heartbeat scale has to be resolved by time steps in the order of
milliseconds. We refer to [5,6] for the first studies on using complex wall models that take into account the
effect of the reinforcing fibers within three-dimensional FSI simulations. For further references on FSI for
cardiovascular applications, see, e.g., [9,10,26,38,40]; for FSI simulations in the context of plaque growth,
see also [25, 28, 30, 46, 56, 60].

Hence, realistic numerical simulations of plaque growth over several months that resolve each individual
heartbeat would easily require O(109) sequential time steps. Consequently, even using today’s fastest
supercomputers, such a simulation is clearly infeasible.

Therefore, in [29] a temporal homogenization approach for separating the plaque growth time scale
(macro scale) in the order of days and the FSI time scale (micro scale) in the order of milliseconds has been
introduced. The approach is based on the assumption that the FSI is approximately periodic in time on the
micro scale, which makes it possible to upscale the fluid dynamics to the macro scale. Using this approach
it is possible to simulate only a moderate number of FSI time steps for each time step of the plaque growth
problem. This means that we have to simulate only a few heartbeats (seconds) of the full FSI problem
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instead of the whole 24 hours of each day; the total number of time steps is reduced by a factor of O(104).
Note that, completely neglecting the fine scale may introduce a significant error; see [28, 30]. See also the
recent PhD thesis of Florian Sonner for further details on temporal homogenization for plaque growth [55].

However, considering realistic three-dimensional simulations the number of time steps corresponding
to fine scale FSI problems remains still infeasibly high, even after temporal homogenization. In order to
further reduce the computational times, we introduce a new approach based on parallel time-stepping. We
focus on a classical parallel time-stepping method, the parareal algorithm, which has been introduced by
Lions et al. in [42]; for an overview over the vast literature on parallel-in-time integration methods, we refer
to the review papers [31, 45] and the references therein.

Due to a phase-shift in a coarse solution for hyperbolic partial differential equations (PDEs), such as
the structural problem in FSI, it is generally challenging to apply parallel time-stepping methods to FSI
problems; see, e.g., [43, 51]. Thus, instead of applying the parareal algorithm to the micro-scale FSI prob-
lem, we apply it to the homogenized plaque growth problem on the macro scale. Plaque growth is typically
modeled by a system of reaction-diffusion equations; see, e.g., [54, 59]. Instead of being hyperbolic, they
have a parabolic character and hence can be solved more efficiently by parallel time-stepping methods.

The focus of this paper is not the computation of accurate plaque-growth predictions in patient-specific
geometries. Instead, our objective is to introduce a numerical framework for making the simulation times
feasible and to investigate the methods numerically. Therefore, we make several simplifications: We focus
on two-dimensional FSI simulations on a simple geometry. Furthermore, we consider two simplified models
for the plaque growth, that is, the ordinary differential equation (ODE) model already considered in [28,29]
as well as a more complex partial differential equation (PDE) of reaction-diffusion type. We formulate
the parareal algorithm for the two-scale problem of plaque growth and also propose variants to increase
the efficiency of the coarse-scale propagators. Finally, we investigate the parallel time-stepping methods
numerically based on serial simulations. As, even in two dimensions, the micro-scale FSI problems are
generally much more expensive than the coarse plaque growth problem, we are able to give some good
estimates for the speedup that can be expected in fully parallel simulations.

The paper is structured as follows: In section 2, we introduce our fluid-structure interaction problem
as well as the two solid growth models considered for modeling the plaque growth: an ODE-based model
in section 2.2.1 and a reaction-diffusion equation-based model in section 2.2.2. Next, in section 3, we briefly
introduce the variational formulation of the FSI problem and then describe the temporal homogenization
approach including some first numerical results. In section 4, we recap the parareal algorithm and discuss
how we estimate the computational costs and the possible speed up in parallel simulations. We also discuss
numerical results for the parallel time-stepping approach using the simple ODE plaque growth model.
Furthermore, we introduce some ideas for reducing the costs of the coarse-scale propagators. In section 5,
we show results for the reaction-diffusion plaque growth model, including a theoretical discussion on the
computational costs of the algorithms. We conclude in section 6, where we also give a brief outlook on
topics for future work.

2 Model equations
We consider a time-dependent fluid-structure interaction system, where the fluid is modeled by the Navier–
Stokes equations and the solid by the Saint Venant–Kirchhoff model. In order to account for the solid
growth, we add a multiplicative growth term to the deformation gradient, which is motivated by typical
plaque growth models [30, 44, 54, 59].

2.1 Fluid-structure interaction
Consider a partition of an overall domain Ω(t) = F(t) ∪ Γ(t) ∪ S(t) into a fluid part F(t), an interface
Γ(t) and a solid part S(t). The blood flow and its interaction with the surrounding vessel wall is modelled
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by the following FSI system:

ρf (∂tvf + vf · ∇vf )− div σf = 0, div vf = 0 in F(t),

ρs∂tv̂s − div (F̂eΣ̂e) = 0, ∂tûs − v̂s = 0 in Ŝ,
σf~nf + σs~ns = 0, vf = vs on Γ(t).

(1)

Here, vf and v̂s denote the fluid and solid velocity, respectively, and ûs the solid displacement. Quantities
with a “hat” are defined in Lagrangian coordinates, while quantities without a “hat” are defined in the
current Eulerian coordinate framework. Two quantities f̂(x̂) and f(x) correspond to each other by a C1,1-
diffeomorphism ξ̂ : Ω̂ → Ω(t) and the relation f̂ = f ◦ ξ̂. Later, we will also need the solid deformation
gradient F̂s = I + ∇̂ûs, which is the derivative of ξ̂ in the solid part. The constants ρf and ρs are the
densities of blood and vessel wall, and ~nf and ~ns are outward pointing normal vectors of the fluid and solid
domain, respectively.

By σf and σs we denote the Cauchy stress tensors of fluid and solid. Using the well-known Piola
transformation between the Eulerian and the Lagrangian coordinate systems, we can relate σs and the
second Piola–Kirchhoff stress Σ̂e as follows:

σs(x) = σ̂s(x̂) = Ĵ−1
e F̂eΣ̂e(x̂)F̂Te ,

where F̂e is the elastic part of the deformation gradient F̂s, For modeling the material behavior of the vessel
wall, different approaches have been proposed and investigated in literature; see, e.g., [5,7,8,13,37] for more
sophisticated material models, for instance, incorporating an anisotropic behavior due to the reinforcing
fibers. For the sake of simplicity, we use in this work the relatively simple Saint Venant-Kirchhoff model
with the Lamé material parameters µs and λs

Σ̂e = 2µsÊe + λs tr(Êe)I, Êe :=
1

2
(F̂Te F̂e − I). (2)

The Saint Venant-Kirchhoff model is based on Hooke’s linear material law in a large strain formulation,
resulting in a weakly nonlinear material model.

The blood flow is modeled as an incompressible Newtonian fluid, such that the Cauchy stresses are
given by

σf = ρfνf (∇vf +∇vTf )− pfI, (3)

where νf is the kinematic viscosity of blood. A sketch of the computational domain is given in fig. 1. We
split the outer boundary of Ω into a solid part Γs with homogeneous Dirichlet conditions, a fluid part Γin

f

with an inflow Dirichlet condition and an outflow part Γout
f , where a do-nothing condition is imposed.

The boundary data is given by

vf = vin on Γin
f , ρfνf (~nf · ∇)vf − pf~nf = 0 on Γout

f , ûs = 0 on Γ̂s, (4)

where vin is the inflow velocity on Γin
f .

2.2 Modelling of solid growth
Developing a realistic model of plaque growth at the vessel wall is a complex task that involves the inter-
action of many different molecules and species, see for example [54]. Furthermore, the plaque growth will
also strongly depend on the geometry and material model of the arterial wall. In this contribution, our focus
does not lie on a realistic modeling of plaque growth, and thus, our model is greatly simplified. However,
the two models considered here are chosen to behave similarly (from a numerical viewpoint) to more so-
phisticated models. We consider a simple ODE-based model in section 2.2.1 and a more complex but still
relatively simple PDE model of reaction-diffusion type in section 2.2.2. Both models focus on the influence
of the concentration of foam cells cs on the growth. Numerical results can be found in sections 3.2, 4.1.4
and 4.2 as well as in section 5, respectively.
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Figure 1: Sketch of the computational domain centered at the origin (0, 0); F and S are the fluid and
solid parts, respectively, and the solid lines correspond to the fluid-solid interface Γ. The plaque growth is
initiated at (0,±1).

2.2.1 A simple ODE model for solid growth

In the first model, which is taken from [28,30], the evolution of the foam cell concentration cs depends only
on its current value but not on its spatial distribution. Hence, it can be described by a simple ODE. The rate
of formation of these cells depends on the distribution of the wall shear stress σWS

f at the vessel wall. As a
result, we obtain the following simplified ODE model:

∂tcs = γ(σWS
f , cs) := α

(
1 + cs

)−1


1 +

∥∥∥σWS
f

∥∥∥
2

L2(Γ)

σ2
0




−1

,

σWS
f := ρν

(
Id − ~nf~nTf

)
(∇v +∇vT )~nf .

(5)

The reference wall shear stress σ0 and the scale separation parameter α are parameters of the growth model.
For cardiovascular plaque growth, we have typically α = O(10−7) s−1; see also [29].

We model the solid growth by a multiplicative splitting of the deformation gradient F̂s into an elastic
part F̂e and a growth function F̂g

F̂s = F̂eF̂g ⇔ F̂e = F̂sF̂
−1
g = [I + ∇̂ûs]F̂

−1
g ; (6)

cf. [30, 50, 59]. In the ODE model, we use the following growth function depending on cs

ĝ(x̂, ŷ, t) = 1 + cs exp
(
−x̂2

)
(2− |ŷ|), F̂g(x̂, ŷ, t) := ĝ(x̂, ŷ, t) I. (7)

This means that the shape and position of the plaque growth is prescribed, but the growth rate depends on
the variable cs. As the simulation domain is centered around the origin, see fig. 1, growth is concentrated
at (0,±1), in the center of the domain. It follows that

F̂g = ĝI ⇒ F̂e := ĝ−1F̂s, (8)

and the elastic Green–Lagrange strain is given by

Êe =
1

2
(F̂

T

e F̂ e − I) =
1

2
(ĝ−2F̂

T

s F̂ s − I) (9)

resulting in the Piola–Kirchhoff stresses

F̂eΣ̂e = 2µsF̂ eÊe + λs tr(Êe)F̂ e = 2µsĝ
−1F̂ sÊe + λsĝ

−1 tr(Êe)F̂ s. (10)
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2.2.2 A PDE reaction-diffusion model

Secondly, we consider a slightly more complex growth model, where the concentration of foam cells ĉs =
ĉs(x̂, t) (x̂ ∈ Ŝ) is now governed by a PDE model, namely a non-stationary reaction-diffusion equation

∂tĉs −Ds∆̂ĉs +Rsĉs(1− ĉs) = 0 on Ŝ, Ds∂̂nĉs = γ(σWS
f ) = αδ(x)


1 +

∥∥∥σWS
f

∥∥∥
2

σ2
0




−1

on Γ̂,

ĉs = 0 on Γ̂s, ĉs(·, 0) = 0 on Ŝ,
(11)

where δ(x) = min {0, (x− 1)(x+ 1)}2 and ‖·‖ is the Euclidean norm. Note that the norm ‖σWS
f ‖| on the

right-hand side of eq. (11) is a function in space and time, whereas the right-hand side of eq. (5), including
‖σWS

f ‖L2(Γ), depends only on time and is a constant in space. Furthermore, we have σ0 and α as in the
ODE model eq. (6), as well as positive diffusion and reaction coefficients Ds and Rs, respectively. The
underlying idea is that the vessel wall is initially damaged in the central part of the interface around x̂1 = 0
and monocytes can penetrate into Ŝ in the part of the interface corresponding to x̂1 ∈ (−1, 1), where δ is
actually positive.

Moreover, in contrast to the first numerical example, we do not prescribe the shape of the plaque growth
by a growth function ĝ. Instead, the growth part Fg depends on the spatial distribution of the foam cell
concentration via the relation

ĝ(x̂, t) = 1 + ĉs(x̂, t), F̂g(x̂, t) := ĝ(x̂, t) I. (12)

The Green Lagrange strain Êe and the Piola–Kirchhoff stresses Σ̂e are then defined as above in eqs. (9)
and (10), with ĝ given in eq. (12).

Note that, solving the PDE model has higher computational cost compared to the ODE model described
in section 2.2.1. On the other hand, a sophisticated reaction-diffusion problem may yield more realistic
results for the plaque growth. Nonetheless, such a model remains significantly cheaper compared to a fully
coupled FSI problem; this discrepancy will only increase when moving to three-dimensional simulations
with complex material models for the arterial wall. This observation is essential for the efficiency of our
parallel time-stepping approach, as we will discuss in more detail in the following sections.

3 Numerical framework
In this work, we use an Arbitrary Lagrangian Eulerian (ALE) approach to solve the FSI problem in eq. (1).
The ALE approach is the standard approach for FSI with small to moderate structural deformations; see,
e.g., [10, 16, 18, 21, 26, 48, 58]. This assumption holds generally true for the simulation of plaque growth,
unless the interest is to simulate a complete closure of the artery. To simulate a full closure, a Fully Eulerian
formalism [22,27,47] has been used in [27,30]; see also [2,14,15] for further works on FSI-contact problems
in a Fully Eulerian or Lagrange-Eulerian formalism.

Given a suitable ALE map ξ̂f = x̂+ ûf , its gradient F̂f = I + ∇̂ûf and determinant Ĵf = det F̂f , the
ALE formulation of the FSI problem is given by:

Variational formulation 1 (Non-stationary FSI problem). Find velocity v̂ ∈ vin + V , deformation û ∈ W
and pressure p̂f ∈ Lf , such that

(
ρf Ĵf ∂̂tv̂f , φ̂

)
F̂ +

(
ρf Ĵf ∇̂v̂f F̂

−1
f (v̂f − ∂tûf ), φ̂

)
F̂ +

(
ρ̂0
s∂̂tûs, φ̂

)
Ŝ

+
(
Ĵf σ̂f F̂

−T
f , ∇̂φ̂

)
F̂ −

(
Ĵfνf F̂

−1
f ∇̂v̂f F̂

−1
f n̂f , φ̂

)
Γ̂out +

(
F̂e(ĝ)Σ̂e(ĝ), φ̂

)
Ŝ = 0 ∀φ̂ ∈ V,

(
d̂iv(Ĵf F̂

−1
f v̂f ), ξ̂f

)
F̂ = 0 ∀ξ̂f ∈ Lf ,

(
dtûs − v̂s, ψ̂s)Ŝ = 0 ∀ψ̂s ∈ Ls,
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where σ̂f := ρfνf (∇̂v̂f F̂
−1
f + F̂−Tf ∇v̂Tf )− p̂fI .

There are different ways to compute the ALE map depending on the displacement ûs of the structural
domain Ŝ . In our simulations, we extend ûs into the fluid domain using harmonic extensions (called ûf );
that is, we solve a Laplacian problem with right hand side zero and ûs as Dirichlet boundary data on the
fluid domain.

Note that Σ̂e and F̂e depend on ĝ (and hence on cs), as specified in eq. (10). The function spaces are
given by

V = [H1
0 (Ω̂; Γ̂in

f ∪ Γ̂s)]
d, W = [H1

0 (Ŝ; Γ̂s)]
d, Ls := L2(Ŝ), Lf = L2(F̂).

Furthermore, we assume that the solution v̂f has higher regularity, such that the trace of ∇̂v̂f is well-defined
on Γ̂out, as needed in Variational formulation 1.

3.1 Temporal two-scale approach
Even for the simplified two-dimensional configuration considered in this work, a resolution of the micro-
scale dynamics with a scale of milliseconds to seconds is unfeasible over the complete time interval of
interest [0, Tend], with Tend being several months up to a year. For instance, when considering a relatively
coarse micro-scale time step of δτ = 0.02s, the number of time steps required to simulate a time frame
of a whole year would be 365 · 86 400 · 1s

δτ ≈ 1.58 · 109, each step corresponding to the solution of a
mechano-chemical FSI problem.

This dilemma is frequently solved by considering a heuristic averaging: as the micro-scale is much
smaller than the macro scale one considers a stationary limit of the FSI and solves for the stationary FSI
problem on the macro scale (e.g., δt ≈ 1 day); see, e.g., [17, 30, 59]. The wall-shear stress σWS

f of
the solution of this stationary FSI problem is then used to advance the foam cell concentration in eq. (5)
or eq. (11).

Variational formulation 2 (Stationary FSI problem). Find velocity v̄ ∈ vin + V , deformation ū ∈ W and
pressure p̄f ∈ Lf , such that

(
ρf Ĵf ∇̂v̄f F̄

−1
f v̄f , φ̂

)
F̂ +

(
J̄f σ̄f F̄

−T
f , ∇̂φ̂

)
F̂

−
(
Ĵfνf F̂

−1
f ∇̂v̂f F̂

−1
f n̂f , φ̂

)
Γ̂out +

(
F̄e(ĝ)Σ̄e(ĝ), φ̂

)
Ŝ = 0 ∀φ̂ ∈ W,

(
d̂iv(J̄f F̄

−1
f v̄f ), ξ̂f

)
F̂ = 0 ∀ξ̂f ∈ Lf

The foam cell concentration is then advanced by the ODE in eq. (5) resp. the PDE in eq. (11), with σWS
f

replaced by σWS
f . It has, however, been shown that γ(σWS

f ) is not necessarily a good approximation of
γ(σWS

f ), which depends on the pulsating blood flow; see the numerical results in [28, 30] and the analysis
in [29].

A more accurate two-scale approach has been presented by Frei and Richter in [29]. The numerical
approach can be cast in the framework of the Heterogeneous Multiscale Method (HMM); see, e.g., [1, 23,
24]. In [29], a periodic-in-time micro-scale problem is solved in each time step of the macro scale, for
instance each day. The growth function γ(σWS

f ) is then averaged by integrating over one period of the
heart beat, its average will be denoted by γ(σWS

f ). This averaged growth function is applied to advance
the foam cell concentration by eq. (5) or eq. (11), respectively. A schematic illustration of the two-scale
algorithm is given in fig. 2.

To be precise, we divide the macro-scale time interval [0, Tend] into Nf time steps of size δt

0 = t0 < t1 < ... < tNf
= Tend, Nf =

Tend

δt
. (13)

As cs varies significantly on the macro scale only, using cs(tm) as a fixed value for the growth variable on
the micro scale results in a sufficiently good approximation in the time interval [tm, tm+1]. Then, one cycle
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t0 t2 t4
. . . ti

cs

short-scale sol.

two-scale sol.

ti ti+1 ti+2

cs,i

cs,i+1

cs,i+2 ∂tcs = γ(σWS
f )

∂tcs ≈ γ(σWS
f )

τ0 τNs
. . .

γ(σWS
f )

γ(σWS
f )

γ(σWS
f )

Figure 2: Schematic representation of the two-scale algorithm as described in section 3.1 and summarized
in algorithm 1: instead of solving the FSI problem and updating the foam cell concentration cs on the micro
time scale (δτ , black), we compute an averaged growth function γ(σWS

f ) over a few periods (heartbeats)
of the micro-scale problem (right); this average is used to update cs on the macro scale (δt, green in the left
part).

of the pulsating blood flow problem (around 1s) is to be resolved on the micro scale δτ

0 = τ0 < τ1 < .... < τNs = 1s, Ns =
1s

δτ
. (14)

It has been shown in [29] (for a simplified flow configuration) that this approach leads to a model error
O(ε) compared to a full resolution of the micro scale, where ε = 1s

Tend
denotes the ratio between macro-

and micro time scale and is in the range of O(10−7) for a typical cardiovascular plaque growth problem.
The relations in eqs. (13) and (14) imply δτ = εδt. In the model problems formulated above, the scale
separation is induced by the parameter α = O(ε).

A difficulty lies in solving the periodic micro-scale problem. If accurate initial conditions w0 :=
(v0,u0) are available on the micro-scale, a periodic solution can be computed using a time-stepping proce-
dure for one cycle. If the initial conditions are known approximately, convergence to the periodic solution
may still be obtained after simulating a few cycles of the micro-scale problem due to the dissipation of the
flow problem; see [28, 29]. Numerically, it can be checked after each cycle if the solution is sufficiently
close to a periodic state. In this work, we apply a stopping criterion based on the computed averaged growth
value:

|γ(σWS,r
f )− γ(σWS,r−1

f )| < εp,

where r = 1, 2, ... denotes the iteration index with respect to the number of cycles of the micro-scale
problem. The algorithm is summarized as algorithm 1, where we use the abbreviation wr,s := (vr,s,ur,s).

As starting values wr,0 = (vr,0,ur,0) in step 1. of the algorithm, we use the variables wr−1,Ns =
(vr−1,Ns ,ur−1,Ns) from the quasi-periodic state of the previous macro step. It has been observed in [28]
that these are usually closer to the starting values of the periodic state than the solution of an averaged
stationary problem on the macro scale.

3.2 Numerical example
Before we present the different approaches for parallel time-stepping, let us illustrate the two-scale ap-
proach by a first numerical example. Therefore, we use the simple ODE growth model introduced in sec-
tion 2.2.1, eq. (5). The test configuration introduced here will be used in section 4 as well.
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Algorithm 1: Two-Scale Algorithm

Set suitable starting values w0,0 = (v0,0,u0,0) and time-step sizes δt, δT .
for n = 1, 2, . . . , Nf do

1.) Micro problem: Set r ← 0
while |γ(σWS,r

f )− γ(σWS,r−1
f )| > εp do

1.a) Solve micro-scale problem in eq. (1) in In = (tn, tn + 1s)

{wr,0, cn−1
s } 7→ {wr,m}Ns

m=1

1.b) Compute the averaged growth function

γ(σWS,r+1
f ) =

1

Ns

Ns∑

m=1

γ(σWS,m
f (vr+1,m), cn−1

s )

and set wr+1,0 = wr,Ns , r ← r + 1.

2.) Macro problem: Update the foam cell concentration cns by eq. (5) or eq. (11).

Concerning the geometry we use a two-dimensional channel of length 10 cm and an initially constant
width ω(0) of 2 cm as illustrated in fig. 1. The solid parts on the top and bottom corresponding to the
arterial wall have an initial thickness of 1 cm each. Fluid density and viscosity are given by ρf = 1 g/cm3

and νf = 0.04 cm2/s, respectively. The growth parameters are set to σ0 = 30 g cm
s2 and α = 5·10−7 1

s , which
yields a realistic time-scale for the arterial plaque growth, see [29]. The solid parameters are ρs = 1 g/cm3,
µs = 104 dyne/cm2, and λs = 4·104 dyne/cm2. As an inflow boundary condition, we prescribe a pulsating
velocity inflow profile on Γin

f given by

vin
f (t, x) = 30

(
sin(π t

P )2(1− x2
2)

0

)
cm/s. (15)

Here, P = 1 s is the period of a single heartbeat. The symmetry of the configuration can be exploited
in order to reduce computational cost by simulating only on the lower half of the computational domain
and imposing the symmetry condition vf · ~n = 0, τTσf~n = 0 on the symmetry boundary Γsym, where τ
denotes a tangential vector.

We discretize the FSI problem (variational formulation 1) in time using the backward Euler method.
For discretizing the ODE growth model, we use the forward Euler method, which results in

cns = cn−1
s + δt γ(σWS

f , cn−1
s ), n = 1, ..., Nf . (16)

For spatial discretization, we use biquadratic (Q2) equal-order finite elements for all variables and
LPS stabilization [11] for the fluid problem. Our mesh, containing both fluid and solid, consists of 160
rectangular grid cells; this corresponds to a total of 3 157 degrees of freedom. The time-step sizes are chosen
as δτ = 0.02 s and δt = 0.3 days; the tolerance for periodicity of the micro-scale problem as εp = 10−3.
All the computational results have been obtained with the finite element library Gascoigne3d [12]. We use
a fully monolithic approach for the FSI problem following Frei, Richter & Wick [30, 48].

In fig. 3, we compare results obtained with the two-scale approach for different macro time-step sizes
δt with the heuristic averaging approach outlined above; see variational formulation 2. We see that the pure
averaging approach underestimates the growth significantly. Even a very coarse discretization of the macro-
scale time interval δt = 15 days in the two-scale approach gives a much better approximation. We note,
however, that too coarse time steps might introduce different issues, as the starting values v0,0 and u0,0

might not be good approximations for the periodic state on the micro scale anymore. In combination with
a significant mesh deformation for t ≈ 300 days, this led to divergence of algorithm 1 for an even coarser
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Figure 3: Top: Comparison of a pure averaging approach with the two-scale approaches with different
macro-scale time steps δT . Top left: Concentration cs over time. Top right: Channel width over time.
Bottom: Wall shear stress σWS

f over two periods of the micro scale at t = 297 days for δt = 9 days. The
initial values are taken from the previous micro problem at t = 288 days.

macro time-step size δt = 30 days. For δt ≤ 15 days, a near-periodic state was reached in 2-3 iterations in
each macro-step. A detailed convergence study for a very similar problem has been given in [28].

At the bottom of fig. 3, we show the L2(Γ)-norm of the wall shear stress over two periods, i.e., 2
seconds, of the micro problem for δt = 0.02s and δT = 9 days. The initial values are taken from the
periodic state of the micro problem at the previous macro time-step, i.e., 9 days before. We see that the wall
shear stresses converge very quickly to the periodic state. An initial deviation of 6.28 g cm

s2 to the periodic
reference solution at time τ = 0.02 is reduced to 6 · 10−4 g cm

s2 at time τ = 1 within only one period.

4 Parallel time-stepping
The main cost in algorithm 1 lies in the solution of the non-stationary micro problem in step 1.a, which
needs to be solved in each time step of the macro problem. Considering a relatively coarse micro-scale
discretization of δt = 0.02 s, as used in the previous section, 50 time steps are necessary to compute a
single period of the heart beat. The simulation of two or more cycles might be necessary to obtain a near-
periodic state in step 1.a of algorithm 1; cf. the discussions in [28, 29]. In a realistic scenario, each time
step of the micro problem corresponds to the solution of a complex three-dimensional FSI problem, which
makes already the solution of one micro problem very costly.

For this reason, parallelization needs to be exploited in different ways: First, one can make use of spatial
parallelization using a scalable solver, for instance, based on domain decomposition or multigrid methods;
see, e.g., [9,19,33,35,36,39,58]. Since the focus of this contribution is on parallelization in time, we will not
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discuss this aspect here. In particular, we expect that even when the speedup due to spatial parallelization
saturates, the computing times for the whole plaque growth simulations will remain unfeasible. Therefore,
we have to make use of an additional level of parallelization, that is, temporal parallelization of the macro-
scale problem. In particular, we will use the parareal algorithm, which we will recap in the next subsection.

In order to motivate the algorithmical developments in this section, we will already present some first
numerical results for the ODE growth model in eq. (5) within the section.

4.1 The parareal algorithm
First, the time interval of interest [0, Tend] on the macro scale is divided into P sub-intervals Ip = [Tp−1, Tp]
of equal size, where

0 = T0 < T1 < ... < TP = Tend. (17)

In order to define the parareal algorithm, suitable fine and coarse problems need to be introduced.
Note again that we will apply the parareal algorithm only on the macro scale as introduced in section 3.1;
hence, both the fine and the coarse scale of parareal correspond to the macro scale of the homogenization
approach. The fine problem advances the growth variable cs from time Tp to Tp+1 by solving algorithm 1
with a smaller time-step size δt (e.g., 0.3 days) on the corresponding fine time discretization of [Tp, Tp+1]:

Tp = tp,0 < tp,1 < ... < tp,np
= Tp+1, np =

Tp+1 − Tp
δt

, tp,q := tp·np+q = tp,q−1 + δt.

The fine propagator on a process p consists of a time-stepping procedure to advance cs(Tp) to cs(Tp+1)
with the fine time step δt. We write

cfine
s (Tp+1) = F(cfine

s (Tp)).

The efficiency of the parareal algorithm depends strongly on the computational cost of the coarse prop-
agator. In particular, it needs to be much cheaper than the fine problems since it is defined globally on
[0, Tend] and, hence, introduces synchronization. Thus, we use a large time-step δT and

Tp = T̄p,0 < ... < T̄p,Np
= Tp+1, Np =

Tp+1 − Tp
δT

, T̄p,q := T̄p·Np+q = T̄p,q−1 + δT.

For simplicity, we assume that both time-step sizes δt and δT are uniform throughout [0, Tend]. In order to
keep the cost of the coarse propagator as low as possible, we will mainly focus on the case that the coarse
time steps coincide with the P sub-intervals Ip in the numerical results, i.e., Np = 1, such that the total
number of coarse time steps

Nc := P ·Np

is equal to P . We denote the coarse propagation from Tp to Tp+1 by

ccoarse
s (Tp+1) = C(ccoarse

s (Tp)).

We use capital letters Tp to denote the coarse discretization of [0, Tend] into P parts and for the time-
steps Tp,q on the coarse level. By small letters tp,q we denote the finer discretization on each sub-interval;
the two discretizations yield the first level (fine problem) and second level (coarse problem) of the parareal
algorithm. Of course, it is also possible to employ coarse time steps which differ from the sub-intervals on
the fine level, but for the sake of simplicity, we will not discuss this case in this work. In the example given
above with Tend = 300 days, δT would be 30 days for P = Nc = 10, while δt is 0.3 days. On the micro
scale, the times τi and time-step size δτ are defined locally in [ti, ti + 1s]; in the example above, we had
δτ = 0.02s. Note that the micro scale influences the parareal algorithm only indirectly due to the temporal
homogenization approach.
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Figure 4: Schematic representation of the parareal algorithm applied to the homogenized (two-scale) prob-
lem as shown in fig. 2: micro-scale solution (black), two-scale solution (green), parareal iterates in iteration
k (light grey) and k + 1 (dark grey), fine scale solution (red), and coarse scale solution (blue).

Then, given an iterate c(k)
s for some k ≤ 0, the parareal algorithm computes ck+1

s by setting

c(k+1)
s (Tp+1) = C(c(k+1)

s (Tp)) + F(c(k)
s (Tp))− C(c(k)

s (Tp)) for p = 0, ..., P − 1. (18)

This can be seen as a predictor-corrector scheme, where the coarse predictor C(c(k+1)
s (Tp)) is corrected

by fine-scale contributions that depend only on the previous iterate c(k)
s ; thus, the fine problems can be

computed fully in parallel. A schematic illustration of the parareal algorithm is given in fig. 4.
Let us analyze the application of eq. (18) to the two-scale problem (algorithm 1) in more detail. The first

term in eq. (18) requires the solution of one micro problem and an update of the foam cell concentration
(by eq. (5) or eq. (11)) in each coarse time step Tp → Tp+1. Within the fine-scale propagator (second term
in eq. (18)) np = dNf/P e time-steps need to be computed per process, where dge denotes the next-biggest
natural number to g (=̂ ceil(g)) and Nf is the number of macro time steps; see eq. (13). Each time
step requires the solution of one micro problem and an update of the foam cell concentration. The last term
in eq. (18) has already been computed in the previous iteration (compare the first term on the right-hand side
of the same equation) and thus introduces no additional computational cost. The algorithm is summarized
in algorithm 2.

We use the FSI variables w(k)(Tp) from the previous parareal iteration as initial values in step (II.a)(i).
The initial values c(k)

s (Tp) in step (II.a)(i) are taken from step (II.b) of the coarse problem. Moreover,
to initialize the variables {c(0)

s (Tp),w
(0)
s (Tp)}Pp=1 before the first parareal iteration, we apply the coarse

propagator once with a large time-step size δT = (Tp − Tp−1)/Np.
For the ODE growth model, we use the value of cfine

s at the end time Tend

|c(k+1),fine
s (Tend)− c(k),fine

s (Tend)| ≤ εpar. (19)

as the stopping criterion for the parareal algorithm.

4.1.1 Parallelization approaches

As mentioned earlier, in this work, we focus on studying the effectivity and efficiency of our approach by
investigating the convergence of the parareal algorithm based on a serial implementation. Since the com-
putational cost of the micro FSI problems is very high, we expect the communication cost to be negligible;
cf. section 4.1.2 as well as sections 5.2 and 5.3 for a more detailed discussion of the computational cost for
the ODE and the PDE growth model, respectively. Even though our implementation used in the numerical
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Algorithm 2: Parareal algorithm

(I) Initialization: Compute
{

(c
(0)
s (Tp),w

(0)(Tp)
}P
p=1

by means of algorithm 1 with a coarse macro
time-step size δT := (Tp − Tp−1)/Np. Set k ← 0

(II) while |c(k+1),fine
s (Tend)− c(k),fine

s (Tend)| > εpar do

(II.a) Fine problem:
for p = 1, ..., P do

(i) Initialize c(k+1),fine
s (Tp) = c

(k)
s (Tp), w(k+1)(Tp) = w(k)(Tp)

(ii) Compute
{

(c
(k+1),fine
s (tp,q),w

(k+1)(tp,q)
}np

q=1
by algorithm 1 with fine time-step size

δt and set F(c
(k)
s (Tp)) = c

(k+1),fine
s (tp,np

)

(II.b) Coarse problem
for p = 1, ..., P do

(i) Compute C(c(k+1)
s (Tp)) by solving one time step of algorithm 1 with time-step

size δT = (Tp − Tp−1)/Np

(ii) Parareal update

c(k+1)
s (Tp+1) = C(c(k+1)

s (Tp)) + F(c(k)
s (Tp))− C(c(k)

s (Tp)).

k ← k + 1

examples below is only serial, we want to briefly discuss two potential parallelization approaches for a par-
allel implementation of algorithm 2: master-slave parallelization and distributed parallelization; cf. fig. 5
for a sketch of both approaches for our parareal algorithm. Note that, as also indicated by fig. 5, we always
assume a one-to-one correspondence of fine problems and processes in this paper.

In the master-slave parallelization approach, the coarse problem is assigned to a single process and the
local problems on the fine level are distributed among the remaining processes. Each slave process p has to
communicate F(c

(k)
s (Tp)) to the master after computation of the fine problem for the parareal update (step

II.a in algorithm 2), and the master process has to communicate c(k+1)
s (Tp) back after the parareal update

(step II.b in algorithm 2); this corresponds to all-to-one and one-to-all communication patterns.
In the distributed parallelization approach, the parallelization of the coarse problem is different. In

particular, time intervals are assigned to the different processes, and each process computes both the fine
problem and the part of the coarse problem on those time intervals; for simplicity, we do not discuss the
case that the partition of the coarse problem onto the processes is different from the local (fine) problems,
which would also be possible. As can be seen in fig. 5, a major benefit of this approach is the different
communication pattern: instead of all-to-one and one-to-all communication, each process sends the parareal
update c(k+1)

s (Tp) to the next process in line. Note that, in terms of the coarse problem, the processes can
only perform their computations in serial, whereas the local problems can, again, be computed concurrently.

In some implementations of two-level methods, the coarse problem is assigned to one of the processes
dealing with the local problems instead of an additional process; if the memory and computational cost of
the coarse problem is negligible, this can be beneficial since all available processes can be employed for the
local problems. It can be seen as a mixture of the master-slave and distributed parallelization approaches.
In our case, this might not be feasible since the coarse problem is defined on the same spatial mesh as the
local problems, leading to significant memory cost. Furthermore, more sophisticated approaches such as
task-based scheduling [4] can be employed for the parallelization.

An investigation of the differences in performance of the different approaches can only be performed
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Figure 5: Master-slave and distributed parallelization schemes for the parareal approach. In the master-slave
case, the coarse propagation is performed on a separate process (blue) and information is communicated be-
tween master and slave. In the distributed case, the coarse propagation and the fine propagation is performed
on the same processes. Communication is indicated by an arrow in color of the sender.

using an actual parallel implementation. This is out of the scope of this paper, and therefore, we will leave
it to future work.

4.1.2 Computational costs

Even in the simplified two-dimensional configuration considered in this work, it suffices to count the number
of micro problems to be solved to estimate the computational cost of corresponding parallel computations
and to compare different algorithms. Remember that, in each micro problem, rp · 1

δt FSI systems need to be
solved, where rp is the number of cycles required to reach a near-periodic state. In the example considered
above, these were at least 2· 1

0.02 = 100 costly FSI problems. Hence, our discussion in the following sections
will be based on the assumption that the computational cost for all other steps of the parareal algorithm as
well as the communication between the processes can be neglected. This is particularly obvious for the
ODE growth model in eq. (5). For the PDE growth model in eq. (11), we will discuss the computational
and communication cost in more detail in sections 5.2 and 5.3.

To analyze the computational cost of algorithm 2 under this assumption, let us denote the total number
of iterations of the parareal algorithm by kpar. As discussed in sections 4.1 and 4.1.1, we assume that
the number of coarse time steps is the same as the number of fine problems and processes, respectively.
Therefore, we need to solve Nc micro problems in step I, kpar · dNf/P e micro problems on each of the P
processes in step II.a (ii), and kpar · Nc micro problems within the coarse propagation in step II.b (i). This
corresponds to the solution of

kpar · dNf/P e︸ ︷︷ ︸
fine level (P parallel processes)

+ (kpar + 1) ·Nc︸ ︷︷ ︸
coarse level (1 serial process)

(20)

serial micro problems; this is the case for both parallelization approaches discussed in section 4.1.1. If the
coarse time step δT is chosen independently of T , Nc is fixed and the computational cost tends to saturate
for large P (at least if we assume that the number of required parareal iterations kpar is independent of
P ). The cheapest possible coarse propagator, on the other hand, is to use one coarse time step per coarse
propagation, i.e., Np = 1 and Nc = P . In this case the computational time increases for large P , if we
assume that the number of parareal iterations kpar is independent of P . The minimum computational time
is attained for P ≈

√
Nf .
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As a serial implementation requires the solution of Nf micro problems, the speed-up of the proposed
parareal algorithm is given by

speedup(P ) =
Nf

kpar · dNf/P e+ (kpar + 1) ·Nc
≈ 1

kpar

P + (kpar + 1)Nc

Nf

, (21)

if we assume a perfect load balancing on the fine processes. This is a special case of the standard analysis
for the speed-up of the parareal algorithm; see, e.g., [52].

The aim of this work is to show potential for the parareal algorithm as a parallel time-stepping method
for plaque growth simulations. A final assessment of the parallelization capabilities can, of course, only be
made based on computing times of an actual parallel implementation. We will leave this to future work.

4.1.3 Convergence theory

Let us briefly recap the standard convergence theory for the parareal algorithm; see, e.g., [32]. For this
purpose, let us consider the simpler ODE model

∂tcs = γ(cs), cs(0) = 0. (22)

and its discretization by the explicit Euler method

cns = cn−1
s + δT γ(cn−1

s ), c0s = 0. (23)

We assume that the function γ and its derivative are Lipschitz continuous in cs, i.e., we assume

|γ(c1s)− γ(c2s)| ≤ L|c1s − c2s|,
∣∣ d
dt
γ(c1s)−

d

dt
γ(c2s)

∣∣ ≤ L|c1s − c2s| for all c1s, c
2
s ∈ R (24)

for some L > 0. As in [32], we also assume for simplicity that the fine-scale propagator advances the ODE
exactly, i.e.,

cs(Tn) = F(cs(Tn−1)) = cs(Tn−1) +

∫ Tn

Tn−1

γ(cs(s)) ds. (25)

This is motivated by the fact that the time discretization error in the fine propagator is typically small
compared to the coarse propagator. The following convergence result is shown by Gander & Hairer in [32]:

Lemma 1. Let c∗s ∈ C1(0, Tend) be the exact solution of eq. (22), and let {c(k)
s (Tn)}Pn=1 be the k-th iterate

of the parareal algorithm in eq. (18) using the forward Euler method in eq. (23) as the time discretization.
Under the assumptions made above, it holds for the error e(k)

n = |c(k)
s (Tn) − c∗s(Tn)| and k ∈ N0, n ∈

{1, . . . , P} that

e(k)
n ≤ (cTn)

k+1
βn−k−1δT k+1 max

t∈[0,Tend]
|∂tc∗s(t)|. (26)

with a constant c > 0 and β = 1 + LδT .

Remark 1. The assumptions in eq. (24) cannot be easily verified for the ODE model in eq. (5), as the fluid
forces and γ̄(σWS

f ) depend in a highly nonlinear way on cs. In the numerical examples given below, we
will, however, observe that the convergence behavior is similar to the one shown in lemma 1.

4.1.4 Numerical results

We use, again, the simple example described in section 3.2 with the ODE growth model in eq. (5) and set
εpar = 10−3. Results for P = Nc = 10 and δt = 0.3 days are shown in fig. 6, where the first 3 iterates are
compared against a reference solution (c∗s,u

∗
s,v
∗
f ), which was computed by a standard serial time-stepping
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Figure 6: Behavior of the first three iterates of the parareal algorithm in the first numerical example (ODE
growth) for P = 10. A description of the problem is given in section 4.1.4, numerical values in table 1.
The iterates converge very quickly towards the reference solution. Top: Growth function and error w.r.t
the reference solution σWS

f (v∗f ) over time t. Center: c(k),fine
s and error w.r.t the reference solution c∗s over

time. Bottom: Channel width over time and error |us,y(x̂) − u∗s,y(x̂)| w.r.t. the vertical component of the
reference solution u∗s at the narrowest point x̂ over time .

scheme, as in section 3.2. We observe fast convergence towards the reference curve in all three quantities
of interest. The stopping criterion in eq. (19) was satisfied after 4 iterations of the parareal algorithm.

In table 1, we show the deviations in the foam cell concentration |c(k),fine
s (Tend) − c∗s(Tend)| at final

time Tend after each iteration of the parareal algorithm for P = Nc = 10, 20, 30, 40 and 50 processes. We
observe that the number of iterations kpar decreases from four to three for P ≥ 20. This is due to the fact
that the coarse problem is solved with the smaller time-step size δT = dTend

P e, which makes the coarse
problem more expensive but also more accurate. In particular, we obtain a better approximation for the
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k P = 10 P = 20 P = 30 P = 40 P = 50 ref. (serial)
1 2.21 · 10−2 1.19 · 10−2 8.12 · 10−3 5.83 · 10−3 5.46 · 10−3 0
2 2.24 · 10−3 5.63 · 10−4 2.62 · 10−4 1.37 · 10−4 8.61 · 10−5 -
3 1.42 · 10−4 2.02 · 10−5 6.53 · 10−6 2.32 · 10−6 8.30 · 10−7 -
4 5.76 · 10−6 - - - - -
# mp 450 230 222 235 260 1 000
speedup 2.2 4.3 4.5 4.3 3.8 1.0
efficiency 22 % 22 % 15 % 11 % 8 % 100 %

Table 1: Errors |c(k),fine
s (Tend) − c∗s(Tend)| for P = 10, . . . , 50 for the parareal algorithm (algorithm 2) in

the first numerical example (ODE growth). For comparison, the reference value c∗s(Tend) = 0.63831273...
resulting from a serial time-stepping with the same fine-scale time-step size δt is taken. The time measure
in terms of the number of serial micro problems (# mp) as well as speedup and efficiency compared to the
reference computation (right column) are shown; the stopping criterion |c(k+1),fine

s (Tend)− c(k),fine
s (Tend)| <

εpar = 10−3 is used; best numbers marked in bold face.

k P = 10 P = 20 P = 30 P = 40 P = 50 ref. (serial)
1 2.59 · 10−3 5.97 · 10−4 3.29 · 10−4 1.42 · 10−4 8.95 · 10−5 0
2 2.81 · 10−3 2.04 · 10−5 6.59 · 10−6 2.36 · 10−6 8.43 · 10−7 -
3 6.37 · 10−6 - - - - -
4 1.73 · 10−7 - - - - -
# mp 450 160 158 170 190 1 000
speedup 2.2 6.25 6.3 5.9 5.3 1.0
efficiency 22 % 31 % 21 % 15 % 11 % 100 %

Table 2: Errors |c(k)
s (Tend) − c∗s(Tend)| for P = 10, . . . , 50 for the parareal algorithm (algorithm 2) in the

first numerical example (ODE growth). The time measure in terms of the number of serial micro problems
(# mp) as well as speedup and efficiency compared to the reference computation (right column) are shown;
the stopping criterion |c(k+1)

s (Tend)− c(k)
s (Tend)| < εpar = 10−3 is used; best numbers marked in bold face.

coarse values c(k)
s (Tp) that are used as initial values in the fine problems in the next iterate. We can also

observe that, for fixed P , the error decreases at least by a factor 1
P in each parareal iteration. This is in

agreement with lemma 1, which predicts (for a simpler model problem) a reduction factor c ·δT = c · dTend
P e

for some constant c > 0, compared to the previous iterate.
Since the number of parareal iterations kpar is constant for all cases with P ≥ 20, we get the lowest

computational cost for P = 30, which is close to
√
Nf ≈ 31.6; cf. the discussion in section 4.1.2. For

P = 30, 3 · 34 = 102 micro problems need to solved on each process (step II.a) and 4 · 30 = 120 micro
problems within the coarse propagators (steps I and II.b), i.e., 222 micro problems in total. Compared
to a serial time-stepping scheme with the same fine-scale time-step size, which requires the solution of
Nf = 1 000 serial micro problems, this corresponds to a speed-up of 1 000

222 ≈ 4.5; see also eq. (21). As
is usual for two-level methods, for larger numbers of processes (P ), the cost of the coarse problems gets
dominant. For P = 40, we solve, for example, 3 · 25 = 75 micro problems in the fine propagator compared
to 4 · 40 = 160 micro problems for the coarse propagator; this results in a total of 235 micro problems and
a speedup of 4.3.

In order to relate the speed-up to the computational resources used, we define the computational effi-

ciency by the ratio
speedup
P

as a second measure to quantify the results. By definition, the serial compu-
tation always has the best efficiency, as it converges within one sweep through all time steps. Even if the
parareal algorithm would also converge within one iteration, the parallel computations come with additional
costs since they require the solution of the coarse problem.

In fact, using the serial computation as a reference in the comparison in table 1, the efficiency is best
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(22 %) for P = 10 or P = 20; it deteriorates for larger numbers of processes due to the increasing cost of
the coarse problems. The low efficiency is a typical observation for parallel time integration methods, such
as the parareal method and can be explained as follows: For P = 10, for instance, 4 parareal iterations are
required and each iteration requires the solution of all 1 000 micro problems on the fine scale on the full
time interval [0, Tend]. Hence, a total of 4 000 micro problems has to be solved. Assuming that the time to
solve a micro problem is approximately constant, we can not expect efficiencies above 25%. Due to the
additional cost of the coarse propagator, the efficiency is reduced to 22%. However, since we can always
compute 10 micro problems on the fine scale at the same time, we can still obtain a speedup of 2.2.

To increase the efficiency, we could take the value c(k)
s (Tend) computed in eq. (18) instead of c(k),fine

s (Tend)
in the stopping criterion

|c(k+1)
s (Tend)− c(k)

s (Tend)| < εpar. (27)

In particular, at the end time Tend we expect that this has a higher accuracy compared to the fine-scale
variable c(k),fine

s (Tend). However, the values c(k+1)
s (ti) are only available at the coarse grid points ti ∈

{Tp}Pp=1. If one is interested in foam cell concentrations at intermediate time steps, a stopping criterion

based on c(k),fine
s (ti) needs to be used, as in eq. (19).

The errors concerning c(k)
s (T ) and the number of micro problems to be solved using the stopping crite-

rion eq. (27) are given in table 2. We observe that for P ≥ 20 this stopping criterion was satisfied already
after kpar = 2 iterations. For P = 30 we get again the lowest computational cost with a speed-up of around
6.33 compared to a serial computation. Furthermore, the best efficiency is obtained here with P = 20,
which is due to the lower iteration count compared to the case P = 10.

4.2 Variants with cheaper coarse-scale computations
In the parareal algorithm introduced above, a further improvement of the computational cost is not possible
for P &

√
Nf processes in the case P = Nc due to the (increasing) cost of the coarse-scale propagators.

In fact, these get dominant compared to the fine-scale contributions for P &
√
Nf . In this section, we

will discuss approximate coarse-scale propagators, where no additional computations of micro problems
are needed; hence, they are computationally cheaper.

4.2.1 Heuristic averaging of the FSI problems

As a first variant, we use the heuristic averaging approach mentioned in the beginning of section 3.1 for
the coarse-scale propagation in steps (I) and (II.b)(i) of algorithm 2. The solution of the stationary FSI
problem in variational formulation 2 is much cheaper compared to≥ 100 time steps of a non-stationary FSI
problem (approx. by a factor 100), and thus, its computational cost is neglected in the following discussion.
Hence, the computational cost is reduced from kpar · dNf/P e + (kpar + 1) · P to kpar · dNf/P e micro
problems. In fig. 7, we illustrate the error in the foam cell concentration for P = 50 (left), and give
the error |c(k),fine

s (Tend) − c∗s(Tend)| in each iteration k for P = 30 and P = 50 (right). We observe a
much slower convergence compared to the standard parareal algorithm used above. This could already be
expected from the results in fig. 3, where we saw that the heuristic averaging is not a good approximation.
Using the stationary problem for the coarse propagator, 8 parareal iterations are necessary until the stopping
criterion is satisfied for P = 30 and P = 50 compared to 3 iterations in the standard parareal algorithm.

In terms of the computating time, 8 · 34 = 272 and 8 · 20 = 160 micro problems are necessary for the
cases P = 30 and P = 50, respectively. While for P = 30 this is worse compared to the standard parareal
algorithm, this is an improvement of 67% for P = 50; cf. table 1. As for the standard parareal algorithm,
convergence is obtained faster if we consider the stopping criterion in eq. (27) based on the parareal iterates
c
(k)
s (Tend); however, 7 iterations are still needed. The resulting computational cost is 7 · 34 = 238 micro

problems for P = 30 and 7 · 20 = 140 micro problems for P = 50. Compared to 158 micro problems for
P = 30 and 190 micro problems for P = 50 in the standard parareal algorithm (cf. table 2), we see only a
small but no significant improvement. We will thus consider another, more promising approach to compute
the required growth values γ(σWS

f ) for the coarse propagator in the following subsection.
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k P = 30 P = 50 ref. (serial)
1 1.66 · 10−1 1.42 · 10−1 0
2 9.34 · 10−2 9.34 · 10−2 -
3 4.86 · 10−2 4.06 · 10−2 -
4 1.84 · 10−2 1.76 · 10−2 -
5 5.41 · 10−3 5.71 · 10−3 -
6 1.28 · 10−3 1.47 · 10−3 -
7 2.47 · 10−4 3.14 · 10−4 -
8 4.79 · 10−5 6.48 · 10−5 -
# mp 272 160 1 000
speedup 3.7 6.3 1.0
eff. 12 % 13 % 100 %

Figure 7: Behavior of the iterates of the parareal algorithm, when the stationary FSI problem (varia-
tional formulation 2) is used in Step (I) and (II.b)(i) of algorithm 2. A description of the computation is
given in section 4.2. Convergence to the reference solution is much slower compared to standard parareal
(see fig. 6). Top: Evolution of c(k),fine

s (t) and error |c(k),fine
s (t)− c∗s(t)| of the foam cell concentration over

time t for P = 50 and k = 1, 2, 3, 4. Right: Errors |c(k),fine
s (Tend)−c∗s(Tend)| after each iteration for P = 30

and P = 50; total number of micro problems (# mp) solved in parallel as well as speedup and efficiency
compared to the reference computation (right column); best numbers marked in bold face.

Remark 2. As mentioned before, parallelization in space is generally more efficient than parallelization
in time. Hence, complex three-dimensional FSI simulations already have a significant potential for paral-
lelization. Additionally using temporal parallelization with large values of P , such as P > 50, may only be
reasonable on very large supercomputers.

4.2.2 Re-usage of computed growth values

As a second approach we will consider the re-use of growth values γ(σWS
f (tp,i)) computed in the fine-scale

propagator on the coarse scale. Therefore, we store all values γp·np+i := γ(σWS
f (tp,i)) computed on the

fine scale on all processes p = 1, ..., P for all time-steps i = 1, ..., np; see step 1.b of algorithm 1. These
can be used in the coarse propagator (step II.b) in the same parareal iteration instead of computing new
growth values there.

We introduce the following notations for the coarse resp. fine propagators that start from cs,n−1 using
certain growth values γ(Tn−1) (that might now differ from γ(σWS

f (cs,n−1))):

ccoarse
s,n = C(In, cs,n−1, γ(Tn−1)), cfine

s,n = F(In, cs,n−1, γ(Tn−1)),

where In = [tn−1, tn]. After an initialization step, the modified parareal iteration is defined by the following
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Algorithm 3: Parallel Time-Stepping with Re-Usage of Growth Values

(I) Initialization: Compute
{

(c
(0)
s (Tp),w

(0)(Tp)
}P
p=1

by means of algorithm 1 with a coarse macro
time-step size δT = Tp+1 − Tp on the master process. Set k ← 0

(II) while |c(k+1),fine
s (Tend)− c(k),fine

s (Tend)| > εpar do

(II.a) Fine problem:
for p = 1, ..., P do

(i) Initialize c(k+1),fine
s (Tp) = c

(k)
s (Tp), w(k+1)(Tp) = w(k)(tp−1,Np

))

(ii) Compute
{

(c
(k+1),fine
s (tp,q),w

(k+1)(tp,q)
}np

q=1
by algorithm 1 with fine time step δt

(iii) Store the resulting growth functions γp·np+q := γ(σWS
f )(tp,q) at all fine points

tp,q, q = 1, ..., np as well as w(tp,np) at the last time-step.

(II.b) Coarse problem:

(i) for j = 1, ..., Nf do
Compute c(k+1)

s (tj) by advancing the ODE eq. (5) resp. solving the PDE
in eq. (11) using the growth values γj computed in (II.a).

formula for n = 1, ..., P and k ≥ 1:

c(k)
s,n = C(In, c(k)

s,n−1, γ̄(c
(k),fine
s,n−1 )) + F(In, c

(k−1)
s,n−1, γ̄(c

(k−1)
s,n−1))− C(In, c(k−1)

s,n−1, γ̄(c
(k−1),fine
s,n−1 )), (28)

where

c
(k),fine
s,n−1 := F(In−1, c

(k−1)
s,n−2, γ̄(c

(k−1)
s,n−2)), (29)

and c(0),fine
s,n = c

(0)
s,n. Moreover, we set c(k),fine

s,0 = c
(k)
s,0 = 0 for all k.

As no new micro problems need to be solved and approximations of the growth values γj are available
for all fine time steps j = 1, ..., Nf , the coarse propagator can now even use the fine-scale time-step δt. The
only additional cost is to advance the foam cell concentration by eq. (5) resp. eq. (18) on the coarse level.
This cost is clearly negligible for the ODE growth model in eq. (5). The additional cost in case of the PDE
model eq. (18) will be discussed in section 5. The resulting algorithm is given as algorithm 3.

The growth values employed for the re-usage are available for all fine-scale time steps, and hence, we are
able to perform the coarse propagation efficiently on the fine scale; cf. the discussion on the computational
cost later in this section as well as for the PDE growth model in section 5.3. Nonetheless, the expected
accuracy of the re-usage approach is still lower compared to the standard parareal algorithm. This is because
the growth values on the fine scale have been computed using c(k),fine

s,n−1 , which depends on the previous iterate

c
(k−1)
s,n−2 (see eq. (29)), whereas the coarse propagator in the standard parareal algorithm already uses the more

accurate c(k)
s,n−1 from the current iteration.

Computational costs Only the coarse step in the initialization (I) has to be carried out without re-usage
and comes with a computational cost of Nc micro problems. On the other hand, step (II.b) does not require
the solution of any micro problems. In terms of micro problems to be solved, the computational cost of
step (II.a) is the same as in the standard parareal algorithm (algorithm 2). Altogether, the number of micro
problems to be solved in kpar iterations of algorithm 3 is

kpar · dNf/P e+Nc.
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Again, we obtain a saturation of the cost for large P , but the cost for large P is by a factor kpar smaller.
Moreover, for Nc = P , the choice P ≈

√
kparNf would be optimal if the number of iterations kpar was

independent of the number of processes P .
The speed-up compared to a serial computation is given by

speedup(P ) =
Nf

kpar · dNf/P e+Nc
≈ 1

kpar

P + Nc

Nf

, (30)

assuming, again, a perfect load balancing of the micro problems.
The communication cost of the approach strongly depends on the employed parallelization scheme;

cf. section 4.1.1. In the distributed parallelization approach, the growth values γ(σWS
f (tp,i)), which are

needed in the coarse propagator, do not have to be communicated. This is because the same intervals in fine
and coarse problems are computed on the processes. In the master-slave approach, however, the values have
to be communicated from each slave process to the master. Using the ODE growth model, these are Nf
scalar values in total (in our example Nf = 1 000). Even for the master-slave communication scheme, it is
thus reasonable to assume that the computational cost of communication is still negligible compared to the
solutions of the micro problems. In the case of a PDE growth model, the additional cost for communication
will be discussed in section 5.

Theoretical convergence analysis We extend the convergence results discussed in section 4.1.3 for the
model problem in eq. (22) for the re-usage algorithm in eq. (28) under the assumptions made in section 4.1.3.

The following result is a direct consequence of lemma 3, which is shown in the appendix.

Theorem 1. Let c∗s ∈ C1(0, Tend) be the exact solution of eq. (22) and let {c(k)
s (Tn)}Pn=1 be the k-th iterate

of the re-usage algorithm in eq. (28) using the forward Euler method in eq. (23). Under the assumptions
made in section 4.1.3, it holds for the error e(k)

n = |c(k)
s (Tn)− c∗s(Tn)| and k ∈ N0, n ∈ {1, . . . , P} that

e(k)
n ≤ LδT max

{
1, Tn− k

2

}k ckβn−k
dk/2e! max

t∈[0,Tend]
|∂tc∗s(t)|. (31)

with a constant c > 0 (see lemma 3) and β = 1 + LδT . This implies e(k)
n → 0 for k →∞.

The convergence e(k)
n → 0 for k →∞ follows due to the faculty dk/2e! in the denominator. Compared

to lemma 1, the estimated convergence in k is much slower. However, we will observe in the numerical
examples below that a good accuracy might still be reached within few iterations.

Numerical results In fig. 8, the evolution of the error in the concentration variable c(k)
s is plotted over

time for P = Nc = 10 and P = Nc = 60. We observe convergence to the reference values c∗s in both
cases. Compared to the results in fig. 6 for the classical parareal algorithm (algorithm 2), the convergence is
significantly slower. Nevertheless, the stopping criterion is already fulfilled after 4-5 iterations (see table 3),
which is only 1-2 iterations more than in the standard parareal algorithm (see table 1).

While we had observed reduction factors in the order of δT = dTend
P e between two consecutive parareal

iterations for the standard parareal algorithm in table 1, the reduction factors are slightly worse in table 3.
They are, however, in all cases (besides the last value for P = 20) bounded above by 1

k , where k is
the parareal iterate. This indicates a convergence of order O( 1

k! ), which is related to the factor O( 1
d k2 e!

)

in eq. (31) in theorem 1. Moreover, the absolute values of the error in each parareal iteration are sig-
nificantly smaller for P = 60 compared to the case of P = 10 (Note the different scaling in the vertical
axis).

In table 3, we compare the number of micro problems needed for P = Nc = 10 to 70. The optimal
number of processes is P =

√
kparNf ≈ 63.25, which is twice as many processes compared to the parareal

algorithm in the previous section. The minimal cost in table 3 is 128 micro problems for P = 60, compared
to 222 for standard parareal. Compared to a serial time-stepping scheme, we obtain a maximum estimated
speed-up of 7.8. Moreover, the efficiency is also significantly improved for larger numbers of processes
compared to the standard approach; cf. tables 1 and 3.
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Figure 8: Error in the concentration |c(k),fine
s (t) − c∗s(t)| over time t in the first 3 iterates of the parareal

algorithm with re-usage of growth values (algorithm 3) for P = 10 (left) and P = 60 (right) and the first
numerical example (ODE growth model).

k P = 10 P = 20 P = 30 P = 40 P = 50 P = 60 P = 70 ref.
1 2.56 · 10−2 1.10 · 10−2 7.48 · 10−3 5.46 · 10−3 4.23 · 10−3 3.63 · 10−3 3.12 · 10−3 0
2 7.78 · 10−3 4.48 · 10−3 3.16 · 10−3 2.36 · 10−3 1.99 · 10−3 1.61 · 10−3 1.41 · 10−3 -
3 1.73 · 10−3 1.20 · 10−3 9.02 · 10−4 6.92 · 10−4 6.34 · 10−4 5.14 · 10−4 4.32 · 10−4 -
4 2.32 · 10−4 2.28 · 10−4 1.87 · 10−4 1.31 · 10−4 1.26 · 10−4 1.10 · 10−4 9.98 · 10−5 -
5 2.19 · 10−5 4.71 · 10−5 3.05 · 10−5 - - - - -

# mp 510 270 200 140 130 128 130 1 000
speedup 2.0 3.7 5.0 7.1 7.7 7.8 7.7 1.0
eff. 20 % 19 % 17 % 18 % 15 % 13 % 11 % 100 %

Table 3: Errors |c(k),fine
s (Tend) − c∗s(Tend)| for P = 10, . . . , 70 for the parareal algorithm 3 (re-use of

growth values) and the first numerical example (ODE growth model). Value c∗s(Tend) of a serial reference
computation for comparison. The time measure in terms of the number of micro problems (# mp) as well
as speedup and efficiency compared to the reference computation (right column) are shown; the stopping
criterion |c(k+1),fine

s (Tend)− c(k),fine
s (Tend)| < εpar = 10−3 is used; best numbers marked in bold face.

5 Plaque growth problem with a distributed foam cell concentration
We consider the PDE growth model introduced in section 2.2.2, where the concentration of foam cells
ĉs = ĉs(x̂, t) is now governed by the non-stationary reaction-diffusion problem in eq. (11). For time
discretization, we use a linearized variant of the backward Euler scheme. Starting from cs,0 = 0, the
standard backward Euler scheme writes for l = 1, ..., Nf :
Find cs,l+1 ∈ C := H1

0 (Ŝ, Γ̂s) such that

1

δt
(ĉs,l+1 − ĉs,l, ϕ̂)Ŝ −

(
Ds∇̂ĉs,l+1, ∇̂ϕ

)
Ŝ

+Rs (ĉs,l+1(1− ĉs,l+1), ϕ̂)Ŝ

+
(
γ(σWS

f ), ϕ̂
)

Γ̂
= 0 ∀ϕ̂ ∈ C.

(32)

Since eq. (32) is a nonlinear system of equations, several iterations of a nonlinear solver (e.g., Newton’s
method) would be necessary to solve it. Thus, we consider the following linearized variant, which can be

21



k P = 10 P = 20 P = 30 P = 40 P = 50 ref. (serial)
1 2.80 · 10−3 1.42 · 10−3 7.49 · 10−4 6.53 · 10−4 5.04 · 10−4 0
2 8.73 · 10−5 9.46 · 10−5 1.27 · 10−4 6.22 · 10−5 4.78 · 10−5

3 3.45 · 10−5 2.90 · 10−5 2.97 · 10−5 1.36 · 10−5 9.19 · 10−6

4 - 1.93 · 10−6 4.45 · 10−6 - -
Est. par. 11 347 s 9 661 s 8 692 s 6 914 s 7 491 s 26 840 s
speedup 2.4 2.8 3.1 3.9 3.6 1.0
efficiency 24 % 14 % 10 % 10 % 7 % 100 %

Table 4: Errors |ĉ(k),fine
s (Tend) − ĉ∗s(Tend)| at the midpoint x̂m of Γ̂ for P = 10 to 50 for the parareal

algorithm (algorithm 2) and a serial reference computation applied to the second numerical example (PDE
growth model, ĉ∗s(Tend) = 0.5186632). Estimated parallel runtimes are shown, as well as speedup and
efficiency compared to the reference computation (right column). Details on the estimation of the runtimes
are given in section 5.3. Best numbers are marked in bold face.

seen as an implicit-explicit (IMEX) scheme (see, e.g., [3])

1

δt
(ĉs,l+1 − ĉs,l, ϕ̂)Ŝ +

(
Ds∇̂ĉs,l+1, ∇̂ϕ

)
Ŝ

+Rsθ (ĉs,l+1(1− ĉs,l), ϕ̂)Ŝ

+Rs(1− θ) (ĉs,l(1− ĉs,l+1), ϕ̂)Ŝ +
(
γ(σWS

f ), ϕ̂
)

Γ̂
= 0,

(33)

where θ ∈ [0, 1] is a weighting parameter. In our numerical experiments, we choose θ = 0.7. For spatial
discretization, we use again Q2 finite elements on the mesh described in section 3.2. If we assume that
evolution of the wall shear stress σWS

f was given exactly, the following bound could be shown for the
discretization error

‖ĉs(Tend)− ĉNf
s ‖Ŝ +



Nf∑

l=1

δT‖∇̂(ĉs(Tl)− ĉs,l)‖2Ŝ




1/2

≤ c1h
2 + c2δT. (34)

Due to the nonlinear interaction between FSI and reaction-diffusion equation, an analysis of the discretiza-
tion error of the coupled problem is more involved and not within the scope of this paper. The chosen
time-step δT is 1

1000 times the macro time interval length Tend, while the horizontal cell size h is a fac-
tor 1

20 of the length of the channel in horizontal direction. Thus, the errors in eq. (34) should be roughly
equilibrated.

The material parameters in the fluid and solid problems are chosen as in the first example. The param-
eters of the PDE growth model are set to Ds = 1.2 · 10−7 cm2

s , Rs = 5 · 10−7 1
s , α = 5 · 10−8 cm

s , and
σ0 = 30 g

cm s2 . The inflow profile of velocity is chosen as

vin
f (t, x) = 30

(
(1 + sin(π t

P )2)(1− x2
2)

0

)
cm/s,

where P = 1s. The end time is Tend = 200 days, and for the fine time steps, we use δt = 0.2 days, such that
again Nf = 1 000. In fig. 9, we visualize the results for horizontal velocity vx and vertical displacement uy
in the deformed fluid and solid domains in three different time instants, respectively. In fig. 10 the foam cell
concentration cs on the FSI interface is shown for different times t. First, we observe a dominant growth
in the center of the domain due to the penetration of monocytes and the reaction term in eq. (11). After
t > 100 the diffusion gets more significant, such that foam cells are distributed over the whole interface.

In the following section 5.1 we investigate numerically the convergence behavior of the standard parareal
algorithm (algorithm 2) and the re-usage variant (algorithm 3). Then, we discuss the computational costs
of the algorithms applied to the PDE growth model in section 5.2. Finally, we compare the algorithms
in section 5.3 based on estimated runtimes of a parallel implementation.
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t = 50 days

t = 100 days

t = 200 days

Figure 9: Visualization of the plaque growth at times t = 50 days, t = 100 days and t = 200 days
for the second numerical example (PDE growth model). The horizontal velocity (in cm/s) and the vertical
displacement (in cm) are shown on the deformed domain at micro time τ = 0.5 s, i.e., the time of maximum
inflow velocity. As the plaque growth evolves, significantly higher velocities arise in the central part.

Figure 10: Foam cell concentration ĉs at the FSI interface Γ̂ at different times t in the second numerical
example (PDE growth model). In contrast to the ODE model, the concentration is not symmetric around
the center anymore for larger times t; this is due to the reaction-diffusion equation.

23



Iter 3
Iter 2
Iter 1
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Figure 11: Errors for the second numerical example (PDE growth model) in different iterations of the
parareal algorithm for P = 10; the setting is described in section 5. Left: Error in the concentration
|ĉ(k),fine
s (x̂m, t)− ĉ∗s(x̂m, t)| at the midpoint of Γ̂ over time; see also fig. 10 for the temporal evolution of ĉs

at the interface. Right: Error in the mean value
∣∣ ∫

Γ̂
ĉ
(k),fine
s (x̂, t)− ĉ∗s(x̂, t) dx̂

∣∣ over time.

5.1 Convergence behavior of the parallel time-stepping algorithms
We consider again the standard parareal algorithm (algorithm 2) and the modification with re-usage of
growth values (algorithm 3). As stopping criterion, we now choose

|ĉ(k+1),fine
s (x̂m, Tend)− ĉ(k),fine

s (x̂m, Tend)| < εpar = 10−4,

where x̂m = (0,−1) is the center of the FSI interface Γ̂, that is, a slightly more strict tolerance compared
to the ODE model.

Standard parareal In fig. 11, we show the evolution of the error in the first three iterates of the parareal al-
gorithm over time forP = Nc = 10. More precisely, we plot the error in the point functional ĉ(k),fine

s (x̂m, t),
that is, the foam cell concentration at the center of the FSI interface, and the average

∫
Γ̂
ĉ
(k),fine
s (x̂, t) dx of

the foam cell concentration over time. As in the first numerical example, we observe fast convergence
towards the reference values. Again, the foam cell concentrations ĉs(x̂m) are significantly overestimated
in the initialization step, due to the large time-step δT in step (I). These are the starting values for the fine
problems in the first parareal iteration.

In table 4, we compare the convergence of the function values of ĉ(k),fine
s (x̂m, Tend) depending on the

number of processes P . The findings are similar to the first numerical example (table 1). Again, depending
on P , three to four parareal iterations were sufficient to reach the stopping criterion, with a slightly faster
convergence behavior for larger P .

In table 5, we show numerical results for a fixed coarse time step δT = Tend
40 , i.e., Nc = 40 and varying

P ∈ {10, 20, 40}. This means that the cost of the coarse propagator (in terms of the number of micro
problems to be solved) is equal in all three cases. While the convergence behavior is slightly faster for
smaller P , the stopping criterion was satisfied after 3 parareal iterations in all cases. As the fine propagator
is cheaper for larger P , the fastest computation is P = Nc = 40, with a speed-up of 4.3 in terms of the
number of micro problems to be solved.

Parareal with re-usage of growth values In table 6, we show the results for the parareal algorithm with
re-usage of growth values; cf. section 4.2.2. For all tested P , we need kpar = 5 iterations to satisfy the
stopping criterion. Similar to the first numerical example, these are 1-2 additional iterations compared to
the standard parareal algorithm.
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k P = 10 P = 20 P = 40 ref. (serial)
1 8.51 · 10−4 7.60 · 10−4 6.53 · 10−4 0
2 7.64 · 10−6 2.25 · 10−5 6.22 · 10−5 -
3 4.36 · 10−7 3.66 · 10−6 1.36 · 10−5 -

# mp 460 310 235 1 000
speedup 2.2 3.2 4.3 1.0
efficiency 22 % 16 % 11 % 100 %

Table 5: Errors |ĉ(k),fine
s (Tend)− ĉ∗s(Tend)| at the midpoint x̂m of Γ̂ for a fixed coarse time step (Nc = 40),

P ∈ {10, 20, 40} and the parareal algorithm (algorithm 2) applied to the second numerical example (PDE
growth model). Estimated parallel runtimes are shown, as well as speedup and efficiency compared to the
reference computation (right column). Best numbers are marked in bold face.

5.2 Theoretical discussion of the computational cost
While using the ODE growth model, it was obvious that the solution of the growth model and the communi-
cation could be neglected, this requires some discussion for the PDE growth model, as the reaction-diffusion
equation eq. (33) needs to be solved to advance the foam cell concentration ĉs.

Standard parareal In the standard parareal algorithm (algorithm 2), a time step of the PDE growth model
always follows the solution of a micro problem, where the growth values γ(σWS

f ) are computed. Thus, the
numbers of time steps of the PDE growth model and micro problems to be solved coincide. Considering
that the latter consists of≥ 100 time steps, each involving the solution of a nonlinear, coupled FSI problem,
while the growth model only requires the solution of a single scalar PDE of reaction-diffusion type, it is
clear that the computational cost of the growth model is negligible.

Concerning communication, each process p = 1, ..., P needs to communicate its final foam cell concen-
tration F(c

(k)
s (Tp)) = ĉ

(k),fine
s (tp,np

), which is a scalar-valued finite element function defined in the solid
domain Ŝ, to the master process if the master-slave approach is used. No communication of F(cks(Tp))
is required in a distributed approach; cf. section 4.1.1. Then, after the coarse propagator, the variables
c
(k+1)
s (tp·np

) have to be communicated: in the master-slave approach, the data is transferred back to the
slaves, and in the distributed case, it is communicated to the next process in line. Using the discretization
outlined above, this corresponds to 369 degrees of freedom that need to be communicated each time.

As already discussed in section 4.1.1, in the master-slave case, this communication step is unfavorable
because it involves all-to-one and one-to-all communication, whereas the communication pattern for the
distributed parallelization only involves neighbor communication, which is more beneficial. However, in
both cases, the two communication steps are only performed once during each parareal iteration. In order
to investigate if the communication cost is still negligible for the PDE growth model, parallel numerical ex-
periments based on an actual parallel implementation are needed, especially for realistic three-dimensional
problems; see also the discussion in [34]. Due to the large computational cost of the micro problems in
realistic three-dimensional problems, the communication cost might still be comparably small, which moti-
vates the focus on the number of micro problems to be solved in our discussion; recall that, in our case, the
micro problems consist of ≥ 100 time steps of a fully coupled FSI problem. Obviously, this argumentation
needs to be confirmed based on an actual parallel implementation; we will investigate this further in our
future work.

Parareal with re-usage of growth values The objective of the re-usage algorithm is to reduce the number
of micro problems to be solved in the coarse-scale propagator. As this allows for a smaller time-step size δt
in the coarse problem, the number of reaction-diffusion equations to be solved, might increase significantly.
Instead of Nc of such equations in step (II.b)(i) of algorithm 2, algorithm 3 requires Nf reaction-diffusion
steps in step (II.b)(ii), where Nf = 1 000 in the example used in this section. Thus, in kpar iterations of the
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k P = 10 P = 20 P = 30 P = 40 P = 50 P = 60 P = 70 ref.
1 2.80 · 10−3 1.42 · 10−3 7.49 · 10−4 6.53 · 10−4 5.04 · 10−4 4.00 · 10−4 3.32 · 10−4 0
2 6.37 · 10−4 6.96 · 10−4 5.62 · 10−4 4.08 · 10−4 3.45 · 10−4 3.09 · 10−4 2.82 · 10−4

3 1.33 · 10−4 1.87 · 10−4 2.06 · 10−4 1.56 · 10−4 1.39 · 10−4 1.30 · 10−4 1.25 · 10−4

4 2.87 · 10−5 5.31 · 10−5 6.14 · 10−5 5.08 · 10−5 4.61 · 10−5 4.29 · 10−5 4.02 · 10−5

5 5.05 · 10−6 1.47 · 10−5 1.67 · 10−5 1.45 · 10−5 1.20 · 10−5 1.07 · 10−5 1.05 · 10−5

Est. par. 17 733 s 9 685 s 7 105 s 5 902 s 5 277 s 4 925 s 4 804 s 26 840 s
speedup 1.5 2.8 3.8 4.5 5.1 5.4 5.6 1.0
efficiency 15 % 14 % 13 % 11 % 10 % 9 % 8 % 100 %

Table 6: Errors |c(k),fine
s (x̂m, Tend)− ĉ∗s(x̂m, Tend)| at the midpoint x̂m of Γ̂ for P = 10 to 70 for algorithm 3

(Re-usage of growth values) applied to the second numerical example (PDE growth model). We show
estimated parallel runtimes, as well as speedup and efficiency compared to the reference computation (right
column). Details on the estimation of runtimes are given in section 5.3. Best numbers are marked in bold
face.

parareal algorithm, the number of such equations to be solved is kpar ·Nf in step (II.b)(ii) plusNc equations
in step (I) and kpar · dNf

P e in step (II.a)(ii) of algorithm 3. In total, algorithm 3 requires the solution of

kpar · (Nf + dNf/P e) +Nc

reaction-diffusion equations. For a comparison, we note that the number of micro problems to be solved
for P processes was (kpar + 1)Nc + kpar · dNf/P e (see section 4.1.2). This means that the number of
reaction-diffusion equations to be solved is by a factor

kpar · (Nf + dNf/P e) +Nc
(kpar + 1)Nc + kpar · dNf/P e

larger compared to the number of micro-problems. A simple calculation yields that

kpar · (Nf + dNf/P e) +Nc
(kpar + 1)Nc + kpar · dNf/P e

≤ kpar (Nf + dNf/P e+Nc)

kpar (Nc + dNf/P e)
=

Nf
Nc + dNf/P e

+ 1 ≤
√
Nf

2
+ 1.

In the last inequality, we have used that Nc ≥ P . For Nf = 1 000, the bound on the right-hand side is
approximately 16.8.

Of course, another option would be to use coarser time steps for the coarse propagator. However, noting
again that a micro problem consists of ≥ 100 FSI steps, the computational cost for ≤ 16.8 scalar reaction-
diffusion equations is still much cheaper. This will be confirmed in the following section, where we show
estimated runtimes of a parallel implementation and the respective contributions from the micro problems
and the solves of reaction-diffusion equations.

For the re-usage of growth values and the distributed parallelization scheme, the communication cost
does not change compared to the standard parareal algorithm. This is because the growth values to be re-
used are already available on the process; this follows directly from the discussion in section 4.2.2. In the
case, of master-slave communication, the communication cost is increased. In particular, Nf growth func-
tions γi, i = 1, ..., Nf need to be transferred from the processes p = 1, ..., P to the master process. Each γi
is a spatially discretized function which is defined on the FSI interface Γ̂. In the example considered here,
it is non-zero only in the area x̂1 ∈ [−1, 1] which corresponds to 7 degrees of freedom in our discretization;
again, for a realistic three-dimensional problem, the number of degrees of freedom will increase drastically
but will still remain small compared to the full problem size. As mentioned before, we assume that the
communication cost is negligible compared to the solution of the micro problems in our discussion. Again,
this assumption has to be tested in the future based on parallel results.
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Figure 12: Illustration of the computational times spent within the coarse- (in serial) and fine-scale (in
parallel) problems in algorithm 2 and algorithm 3 for the second numerical example (PDE growth problem)

Standard parareal (algorithm 2)

P coarse fine: max. (aver.) est. par.
10 1 096 s 10 251 s (8 009 s) 11 347 s
20 2 691 s 6 968 s (5 318 s) 9 661 s
30 3 943 s 4 749 s (3 581 s) 8 692 s
40 4 273 s 2 641 s (1 988 s) 6 914 s
50 5 361 s 2 130 s (1 601 s) 7 491 s
60 6 197 s 1 796 s (1 331 s) 7 993 s

Parareal with re-usage of growth values (algorithm 3)

P coarse fine: max. (aver.) est. par.
10 658 s 17 075 s (13 342 s) 17 733 s
20 930 s 8 755 s (6 669 s) 9 685 s
30 1 171 s 5 934 s (4 455 s) 7 105 s
40 1 448 s 4 454 s (3 339 s) 5 902 s
50 1 722 s 3 555 s (2 670 s) 5 277 s
60 1 933 s 2 992 s (2 219 s) 4 925 s

Table 7: Estimated parallel runtimes (in s) of the parareal algorithm and the variant "Re-usage of growth
values" for P = 10, ..., 60 and a PDE growth model. We show the time in seconds spent on the master
process and the maximum and average time spent on the slave processes. The estimated parallel runtime is
the sum of the time spent in serial (master) and the maximum time needed among the slaves; best numbers
marked in bold face. A visualization of the runtimes is given in fig. 13.

5.3 Comparison of runtimes
The computational results given in this paper serve as a proof of concept to test the presented algorithms.
From the discussion in the previous subsection, we assume that the only relevant computational cost comes
from the solution of the micro problems. As mentioned before in our current implementation, we do not
solve the fine-scale problems in parallel on different processes. Instead, they are solved sequentially one
after the other on a single process. Since the cost for the micro problems dominates the computation times
for any serial or parallel simulation of the plaque growth, we can still discuss the parallelization potential
of the methods. The parallel implementation of the algorithms itself is subject to future work.

In this section, we will give an estimate of the runtimes that would be required in a parallel implemen-
tation. For this purpose, we list the serial part and parallel contributions of the computing times in table 7.
The serial part corresponds to the coarse propagation, which is performed on a single master process (steps
(I) and (II.b) in algorithm 2 or algorithm 3). The parallel part corresponds to the solution of the micro prob-
lems (step (II.a)). It can be performed concurrently on all processes p = 1, ..., P . The computing times vary
slightly across the processes. It increases for larger processes p, as more Newton iterations are required for
the FSI problem, when the channel is already significantly narrowed due to the advancing plaque growth.
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Figure 13: Illustration of the computational times spent within micro-scale problems and PDE growth
problems on the coarse (in serial) and fine scale (in parallel) in algorithm 2 and algorithm 3 for the second
numerical example (PDE growth problem). Note that the time needed for the PDE growth model within
the fine-scale problems is so small that it is not visible in both plots. The corresponding times can be found
in table 7.

The estimated parallel runtimes given in tables 4, 6 and 7 are the sum of the serial part, which corresponds
to the coarse propagator, and the maximum time needed by one of the processes p = 1, ..., P in the parallel
part.

In fig. 12, we illustrate the computational times needed to solve the fine problems (in parallel) and
coarse-scale propagators (in serial) for different processes and with algorithm 2 and algorithm 3. We see
that the total computational times decrease for increasing P until P = 40 for standard parareal and until
P = 60 for the re-usage variant. In the standard parareal algorithm (algorithm 2) the cost of the coarse
propagators becomes significant already from P = 20, while it is much smaller for the re-usage variant.
While for P = 10, algorithm 2 is still faster, this changes for P > 20.

The corresponding speed-ups and efficiencies compared to a serial time-stepping are given in the last
rows of tables 4 and 6 for standard parareal algorithm (algorithm 2) and the re-usage variant (algorithm 3),
respectively. The lowest computing time for standard parareal is 6 914 s for P = 40, which corresponds
to a speed-up of 3.9. For the re-usage variant, we obtain a maximum speed-up of 5.6 for P = 40, which
corresponds to an estimated parallel runtime of 4 804 s. The speed-ups are slightly lower than the speed-ups
in section 4 (cf. tables 1 and 3), that were computed based on the number of micro problems to be solved.
This is mostly due to the load imbalancing among the slave processes, as - depending on the state of the
plaque growth - some micro problems are more costly than others; for instance, due to a higher number of
Newton iterations. The differences can be inferred best by comparing the average and the maximum time
spent on the slave processes in table 7. The efficiencies decrease again monotonically for increasing P in
both tables 4 and 6. For the re-usage variant, the efficiencies are again much more stable, due to the reduced
cost of the coarse propagator.

Finally, we compare in fig. 13 the computing times needed for the solution of the FSI micro problems
and those needed for the reaction-diffusion equations, for both algorithms and P = 10, ..., 60. We observe
that the times needed for the latter are negligible in all cases, which confirms the discussion in section 5.2.
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6 Conclusion
We have derived a parareal algorithm for the time parallelization of the macro scale in a two-scale for-
mulation for the simulation of atherosclerotic plaque growth. To reduce the computational cost of the
coarse-scale propagators, we have introduced a variant which re-uses growth values that were computed
within the fine problems and avoids additional costly micro-scale computations in serial.

The approaches have been tested on two different numerical examples of increasing complexity: first,
by means of a simple ODE growth model, and secondly, by a PDE model of reaction-diffusion type. In
this proof-of-concept, we analyze the approaches based on results and timings of a serial implementation.
Since the number of communication steps is low compared to the computational work, we are still able to
provide meaningful results. In the first case, we obtain estimated speedups up to 6.3 (standard parareal)
respectively 7.8 (re-usage variant) in terms of the number of micro problems to be solved. In the PDE
model, the maximum estimated speedups, now based on estimated parallel runtimes, were 3.9 respectively
5.6. In future work, these results will have to confirmed using a parallel implementation. Therefore, we
have discussed theoretically two parallelization schemes, master-slave and distributed parallelization. The
discussion indicated that the distributed scheme might be beneficial, which also needs to be tested in future
work.

Additional research should also be invested into further improving the efficiency of the coarse prop-
agator. Therefore, the idea of algorithm 3 could be extended, for example, by storing and interpolating
the computed growth values, instead of simply re-using them. For the ODE case, such an interpolation
approach has already been applied in our proceedings paper [53] with promising results. The extension to
the PDE model is, however, not straight-forward, as an operatorM : cs → γ(σWS

f (cs)) between spatially
distributed functions needs to be approximated. Further future investigations include the application of
the algorithms in complex three-dimensional geometries, more complex plaque growth, and arterial wall
models. Finally, the approaches presented here can be combined with a spatial parallelization of the FSI
problems or with adaptive time-stepping on micro and macro scale, as presented by Richter & Lautsch [41].
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Appendix
In this section, we show convergence of the re-usage parareal algorithm, algorithm 3 resp. eq. (28), applied
to the ODE model in eq. (22) and its approximation by the explicit Euler method in eq. (23). First, we
obtain from eqs. (23) and (24) directly for c1s, c

2
s ∈ R

|C(In, c1s(Tn−1), γ)− C(In, c2s(Tn−1), γ)| = |c1s(Tn−1)− c2s(Tn−1)|, (35)

|C(In, cs, γ(c1s))− C(In, cs, γ(c2s))| = δT |γ(c1s)− γ(c2s)| ≤ LδT |c1s − c2s|. (36)

By cs,n−1(T ) we denote in the following the function that solves the (continuous) ODE eq. (22) with initial
value cs,n−1(Tn−1) = cs,n−1. We have using eqs. (23) to (25)

∣∣∣ (F(In, cs(Tn−1), γ(cs(Tn−1)))− C(In, cs(Tn−1), γ(cs(Tn−1))))

− (F(In, cs,n−1, γ(cs,n−1))− C(In, cs,n−1, γ(cs,n−1)))
∣∣∣

=
∣∣∣
∫ Tn

Tn−1

γ(cs(T )))− γ(cs,n−1(T )) dT − δT (γ(cs(Tn−1))− γ(cs,n−1))
∣∣∣

≤ cδT 2

∣∣∣∣
d

dt
γ(cs(Tn−1)− d

dt
γ(cs,n−1)

∣∣∣∣ ≤ α0δT
2 |cs(Tn−1)− cs,n−1|

(37)

for some constant α0 = cL > 0; see also [32].
The following recursion builds the basis for the error estimate:

Lemma 2. Let c∗s ∈ C1(0, Tend) be the exact solution of eq. (22). {c(k)
s (Tn)}Pn=1 be the k-th iterate of the

re-usage algorithm in eq. (28) using the forward Euler method in eq. (23) and let e(k)
n = |c∗s(Tn)− c(k)

s,n| be
the error in the k-the iteration of the re-usage algorithm. Under the assumptions made in section 4.1.3, it
holds for k = 1 that

e(1)
n ≤ α0δT

2e
(0)
n−1 + α1δTe

(0)
n−2 + e

(1)
n−1, (38)

and for k ≥ 2,

e(k)
n ≤ α1δT

(
e

(k−1)
n−1 + e

(k−1)
n−2 + e

(k−2)
n−2

)
+ e

(k)
n−1, (39)

with a constant α1 ≥ max{L+ α0δT, L(1 + LδT )}.
Proof. Consider first the case k ≥ 2. Using eqs. (25) and (28), we have

e(k)
n =

∣∣F(In, c
∗
s(Tn−1), γ(c∗s(Tn−1))− C(In, c(k)

s,n−1, γ(c
(k),fine
s,n−1 ))

−F(In, c
(k−1)
s,n−1, γ(c

(k−1)
s,n−1)) + C(In, c(k−1)

s,n−1, γ(c
(k−1),fine
s,n−1 ))

∣∣
≤
∣∣F(In, c

∗
s(Tn−1), γ(c∗s(Tn−1)))− C(In, c∗s(Tn−1), γ(c∗s(Tn−1)))

−F(In, c
(k−1)
s,n−1, γ(c

(k−1)
s,n−1)) + C(In, c(k−1)

s,n−1, γ(c
(k−1)
s,n−1))

∣∣

+
∣∣C(In, c(k−1)

s,n−1, γ(c
(k−1)
s,n−1))− C(In, c(k−1)

s,n−1, γ(c
(k−1),fine
s,n−1 ))

∣∣

+
∣∣C(In, c(k)

s,n−1, γ(c
(k),fine
s,n−1 ))− C(In, c(k)

s,n−1, γ(c∗s(Tn−1)))
∣∣

+
∣∣C(In, c(k)

s,n−1, γ(c∗s(Tn−1)))− C(In, c∗s(Tn−1), γ(c∗s(Tn−1)))
∣∣

From eqs. (35) to (37), we have

e(k)
n ≤ α0δT

2
∣∣∣c∗s(Tn−1)− c(k−1)

s,n−1

∣∣∣+ LδT
∣∣c(k−1)
s,n−1 − c

(k−1),fine
s,n−1

∣∣

+ LδT
∣∣c(k),fine
s,n−1 − c∗s(Tn−1)

∣∣+
∣∣c(k)
s,n−1 − c∗s(Tn−1)

∣∣

= α0δT
2e

(k−1)
n−1 + LδT (e

(k−1),fine
n−1 + e

(k−1)
n−1 ) + LδTe

(k),fine
n−1 + e

(k)
n−1,

(40)
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where e(k),fine
n−1 := |c(k),fine

s,n−1 − c∗s(Tn)|. This error contribution is estimated further by using eqs. (25), (29)
and (35)

e
(k),fine
n−1 := |c(k),fine

s,n−1 − c∗s(Tn)| = |F(In−1, c
(k−1)
s,n−2, γ(c

(k−1)
s,n−2))−F(In−1, c

∗
s(Tn−2), γ(c∗s(Tn−2))|

=
∣∣c(k−1)
s,n−2 − c∗s(Tn−2) +

∫ Tn−1

Tn−2

γ(c
(k−1)
s,n−2(t)))− γ(c∗s(t)) dt

∣∣

≤ (1 + LδT )e
(k−1)
n−2 .

(41)

Inserting this into eq. (40) yields eq. (39). For k = 1, we have c(0),fine
s,n−1 = c

(0)
s,n−1. An analogous argumenta-

tion yields

e(1)
n =

∣∣F(In, c
∗
s(Tn−1), γ(c∗s(Tn−1)))− C(In, c(1)

s,n−1, γ(c
(1),fine
s,n−1 ))

−F(In, c
(0)
s,n−1, γ(c

(0)
s,n−1)) + C(In, c(0)

s,n−1, γ(c
(0)
s,n−1))

∣∣
≤
∣∣F(In, c

∗
s(Tn−1), γ(c∗s(Tn−1)))− C(In, c∗s(Tn−1), γ(c∗s(Tn−1)))

−F(In, c
(0)
s,n−1, γ(c

(0)
s,n−1)) + C(In, c(0)

s,n−1, γ(c
(0)
s,n−1))

∣∣

+
∣∣C(In, c(1)

s,n−1, γ(c
(1),fine
s,n−1 ))− C(In, c(1)

s,n−1, γ(c∗s(Tn−1)))
∣∣

+
∣∣C(In, c(1)

s,n−1, γ(c∗s(Tn−1)))− C(In, c∗s(Tn−1), γ(c∗s(Tn−1)))
∣∣

≤ α0δT
2e

(0)
n−1 + LδTe

(1),fine
n−1 + e

(1)
n−1.

Then, eq. (38) follows by using eq. (41).

Lemma 3. Let e(k)
n = |c(k)

s (Tn) − c∗s(Tn)| be the error in the k-the iteration of the re-usage algorithm.
Under the assumptions made above, it holds for k ∈ N0 and n ∈ N that

e(k)
n ≤ Lα̃kβn−k ·




k+1∑

l=d k2 +1e

3l−1

l!
δT l+1

(
n− k

2

)l

 max
t∈[0,Tend]

|∂tc∗s(t)| (42)

≤ Lα̃kβn−kδT max
{

1, Tn− k
2

}k 3d
k
2 e

dk/2e! max
t∈[0,Tend]

|∂tc∗s(t)|, (43)

where α̃ = max{α0δT, α1, 1} and β = 1 + LδT .

Proof. We prove the lemma by induction over k ∈ N. For k = 0, a standard estimate of the forward Euler
methods gives, using eq. (24),

e(0)
n := |c0s,n − c∗s(Tn)| ≤ |c0s,n−1 − c∗s(Tn−1)|+

∫ Tn

Tn−1

|γ(c0s,n−1)− γ(c∗s(t))| dt

≤ e(0)
n−1 + L

∫ Tn

Tn−1

|c0s,n−1 − c∗s(t)︸︷︷︸
=c∗s(Tn−1)+δT∂tc∗s(ξ)|

| dt

≤ (1 + LδT︸ ︷︷ ︸
=β

)e
(0)
n−1 + LδT 2 max

t∈[0,Tend]
|∂tc∗s(t)|.

(44)

To abbreviate the notation, we set c0 := maxt∈[0,Tend] |∂tc∗s(t)|. We apply eq. (44) recursively

e(0)
n ≤ βe(0)

n−1 + c0LδT
2 ≤ c0LδT 2

n−1∑

l=0

βl = c0LδT
2 β

n − 1

β − 1︸ ︷︷ ︸
=LδT

= c0δT (βn − 1) ≤ c0LnδT 2βn. (45)
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In the last inequality, we have used that βn − 1 ≤ nLδTβn, which can be shown by induction over n. The
estimate in eq. (45) is exactly eq. (42) for k = 0.

For k = 1, we have using eqs. (38) and (45), the fact that e(k)
k = 0, and by the definition of the parareal

algorithm

e(1)
n ≤ α0δT

2e
(0)
n−1 + α1δTe

(0)
n−2 + e

(1)
n−1

≤ α0c0LδT
4(n− 1)βn−1 + α1c0LδT

3(n− 2)βn−2 + e
(1)
n−1

≤ 2α̃c0LδT
3(n− 1)βn−1 + e

(1)
n−1

≤ 2α̃c0Lβ
n−1δT 3

n−1∑

l=1

l + e
(1)
1︸︷︷︸
=0

= 2α̃c0Lβ
n−1δT 3n(n− 1)

2
≤ α̃c0Lβn−1δT 3 (n− 1/2)

2
.

This is by a factor 3
2 smaller compared to eq. (42).

Now, let k ≥ 2. We assume that the estimate in eq. (42) is true for k− 1 and k− 2. By eq. (39) and the
assumption of the induction, we have

e(k)
n ≤ α1δT

(
e

(k−1)
n−1 + e

(k−1)
n−2 + e

(k−2)
n−2

)
+ e

(k)
n−1

≤ α1δT

(
c0Lα̃

k−1βn−k ·




k∑

l=d k+1
2 e

3l−1

l!
δT l+1

(
n− k + 1

2

)l



+ c0Lα̃
k−1βn−k−1 ·




k∑

l=d k+1
2 e

3l−1

l!
δT l+1

(
n− 1− k + 1

2

)l



+ c0Lα̃
k−2βn−k ·




k−1∑

l=d k2 e

3l−1

l!
δT l+1

(
n− 1− k

2

)l


)

+ e
(k)
n−1

≤ 3c0Lα̃
kβn−k ·




k∑

l=d k2 e

3l−1

l!
δT l+2

(
n− k + 1

2

)l

+ e

(k)
n−1.

(46)

We apply this estimate recursively for the last term e
(k)
n−1 in eq. (46) to get

e(k)
n ≤ c0Lα̃kβn−k ·

n∑

m=k+1




k∑

l=d k2 e

3l

l!
δT l+2

(
m− k + 1

2

)l

+ e

(k)
k︸︷︷︸
=0

= c0Lα̃
kβn−k ·
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l=d k2 e

3l
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δT l+2 ·



n− k+1

2∑

m= k+1
2

ml




︸ ︷︷ ︸
=:s



.

In the case that k+1
2 and n − k+1

2 are no natural number, the sum s is to be understood in such a way that
the index m advances iteratively by 1 until reaching the upper limit.

The sum s is an approximation of the integral
∫ n−k/2

k/2

xl dx ≤ 1

l + 1

(
n− k

2

)l+1
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with the midpoint rule. As f(x) = xl is a convex function (f ′′(x) > 0) for a positive x, the integral is an
upper bound for s; see the error representation of the midpoint rule, e.g., in Theorem 8.41 in [49].

We have thus shown that

e(k)
n ≤ c0Lα̃kβn−k ·




k∑

l=d k2 e

3l

(l + 1)!
δT l+2

(
n− k

2

)l+1

 .

Shifting the index l by 1 gives eq. (42). The estimate in eq. (43) follows from eq. (42) by noting that

(n− k

2
)δT = Tn− k

2
≤ max

{
1, Tn− k

2

}

and the fact that the term 3l−1

l! is decreasing for l ≥ 2:

e(k)
n ≤ c0Lα̃kβn−k ·




k+1∑

l=d k2 +1e

3l−1

l!
δT l+1

(
n− k

2

)l



≤ c0Lα̃kβn−kδT
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max{1, Tn− k
2
}
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·
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(
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{
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2
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bk
2

+ 1c 3d
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2 e

dk2 + 1e!
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.
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