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Abstract

We present a modified finite element method that is able to approximate interface problems
with high accuracy. We consider interface problems, where the solution is continuous, its
derivatives however may be discontinuous across interface curves within the domain. The
proposed discretization is based on a local modification of the finite element basis functions
using a fixed quadrilateral mesh. Instead of moving mesh nodes, we resolve the interface locally
by an adapted parametric approach. All modifications are applied locally and in an implicit
fashion. The scheme is easy to implement and is well suited for time-dependent moving interface
problems.

We show optimal order of convergence for elliptic problems and further, we give a bound
on the condition number of the system matrix. Both estimates do not depend on the interface
location relative to the mesh.

1 Introduction

We propose an accurate, robust and easy to implement finite element method for interface prob-
lems, where the solution is continuous on a domain Ω⊂R2, but its derivative may have a jump
in normal direction over an interior interface Γ := ∂ Ω1 ∩ ∂ Ω2 between two subdomains Ω1 ⊂Ω
and Ω2 ⊂ Ω. Applications for such interface problems are multiphase flows or fluid-structure
interactions. Both examples have in common, that the interface between the two phases is moving
and may be difficult to capture due to small scale features. Here, we consider the simple Laplace
equation

−∇ · (ci∇u) = f on Ωi , i = 1,2, [u] = 0, [c∂n u] = 0 on Γ, (1)

where ci > 0 are diffusion parameters. By

[u](x) := lim
s↓0

u(x + s n)− lim
s↑0

u(x + s n), x ∈ Γ,

we denote the jump of u at the interface Γ. The variational formulation of this interface problem
is given by

u ∈H 1
0 (Ω) : a(u,φ) :=

2
∑

i=1

(ci∇u,∇φ) = ( f ,φ) ∀φ ∈H 1
0 (Ω),
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Figure 1. L2- and H 1-error for a standard finite element simulation for a diffusion problem with a
discontinuity in the diffusion coefficient. Configuration of the test-problem in the right sketch.
Details on this problem are given in Section 5.

and existence of solutions can be shown by standard arguments. We assume, that the partitioning
of Ω into Ω1 and Ω2 is non-overlapping Ω1 ∩Ω2 = ; and that both subdomains Ωi (i = 1,2) have a
boundary with sufficient regularity such that for smooth right hand sides it holds for the solution
of (1), that

u ∈H 1
0 (Ω)∩H r+1(Ω1 ∪Ω2),

for a given r ∈N, see Babuška [2].
Interface problems are elaborately discussed in literature. If the interface Γ cannot be resolved by
the mesh, the overall error for a standard finite element ansatz will be bounded by

‖∇(u − uh )‖Ω = O (h
1/2),

independent of the polynomial degree r of the finite element space, see the early work of Babuška [2]

or MacKinnon and Carey [16]. In Figure 1, we show the H 1 and L2 errors for a simple interface
problem with curved interface that is not resolved by the finite element mesh. Both linear and
quadratic finite elements only give O (h1/2) accuracy in the H 1-seminorm and O (h) in the L2-norm.
This is due to the limited regularity of the solution across the interface.
It has been shown, that for interface problems with jumping coefficients causing weak discon-
tinuities, optimal convergence can be recovered by a harmonic averaging of the diffusion con-
stants [19,20]. Such an averaging procedure has been applied to multiphase flows, it is however not
suitable for problems, where two entirely different types of differential equations are coupled on
the interface, as it is the case for fluid-structure interactions.
Given a fitted finite element configuration, the optimal order of convergence is guaranteed [2,5,10,13,21].
If the interface is moving, curved or has small scale features, the repeated generation of fitted
finite element meshes can exceed the feasible effort. Further developments are based on local
modifications of the finite element mesh, that only alter mesh elements close to the interface [8,23].
By combining local mesh modifications close to the interface with an isoparametric approximation
of curved interfaces, higher order approximation could be shown [12].
An alternative approach is based on unfitted finite elements, where the mesh is fixed and does not
resolve the interface. Here, proper accuracy is gained by local modifications or enrichment of
the finite element basis. Prominent examples for these methods are the extended finite element
method (XFEM) [17], the generalized finite element method [3] or the unfitted Nitsche method
by Hansbo and Hansbo [14,15], that casts the XFEM method into a new light. These enrichment
methods are well analyzed and show the correct order of convergence. One drawback of these
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Figure 2. Left: triangulation Ωh of a domain Ω, that split into Ω1 and Ω2 with interface Γ.
The elements in Ωh are arranged in a patched way. Patch P is cut by Γ at xP

1 and xP
2 . Right:

subdivision of reference patches P̂1, P̂2, P̂3, P̂4 (top left to bottom right) into four quadrilaterals or
eight triangles.

methods is a complicated structure that requires local modifications in the finite element spaces
leading to variations in the connectivity of the system matrix and number of unknowns.
Here, we propose a finite element technique for interface problems that fits both into the context
of fitted methods and modified finite element schemes. Our technique is equivalent to a fitted
approach based on a mixed triangular-quadrilateral mesh. However, instead of resolving the
interface by a motion or addition of mesh nodes, we locally adapt finite element basis functions in
an implicit parametric way, such that weak discontinuities at the interface can be captured. This
scheme requires neither an enrichment of the basis nor a modification of the mesh. The number of
unknowns and also the connectivity pattern of the system matrix will not depend on the location
of the interface.
The organization of this article is as follows: in Section 2 we describe the iso-parametric finite
element approach used to resolve the interfaces and we give an optimal order a priori error analysis
for the modified finite element method. In Section 3, we show, that the modified finite element
method can be constructed such that the condition number of the system matrix is still bounded
by O (h−2) and does not depend on the interface location. Section 4 gives some note on an efficient
implementation of the required modifications in finite element codes. Finally, in Section 5 we
show numerical results that demonstrate the accuracy and robustness of our proposed method.
We conclude in Section 6.

2 Interface finite elements

Let Ωh be a form and shape-regular triangulation of the domain Ω⊂R2 into open quadrangles.
The mesh Ωh does not necessarily resolve the partitioning Ω=Ω1 ∪Γ∪Ω2 and the interface Γ can
cut the elements K ∈Ωh . We further assume, that the mesh Ωh has a patch-hierarchy in such a way,
that each four adjacent quads arise from uniform refinement of one common father-element, see
Figure 2. Such a mesh-hierarchy is naturally given for finite element methods based on adaptive
mesh refinement and also commonly used for error estimation methods [7] or projection based
stabilization schemes [6]. The interface Γmay cut the patches in the following way:

1. Each (open) patch P ∈ Ωh is either not cut P ∩Γ = ; or cut in exactly two points on its
boundary: P ∩Γ 6= ; and ∂ P ∩Γ= {xP

1 , xP
2 }.
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Figure 3. Different types of cut patches. The subdivision can be anisotropic with r, s ∈ (0,1)
arbitrary.

2. If a patch is cut, the two cut-points xP
1 and xP

2 may not be inner points of the same edge.

In principle, these assumptions only rule out two possibilities: a patch may not be cut multiple
times and the interface may not enter and leave the patch at the same edge. Both situations can be
avoided by refinement of the underlying mesh. If the interface is matched by an edge, the patch is
not considered cut.

2.1 Modification of the finite element space

We define the finite element trial space Vh ⊂H 1
0 (Ω) as iso-parametric space on the triangulation

Ωh :

Vh =
n

φ ∈C (Ω), φ ◦T −1
P

�

�

�

P
∈ Q̂ for all patches P ∈Ωh

o

,

where TP ∈ [Q̂]2 is the mapping between the reference patch P̂ = (0,1)2 and every patch P ∈Ωh
such that

TP (x̂i ) = xP
i , i = 1, . . . , 9,

for the nine nodes xP
1 , . . . , xP

9 in every patch, see Figure 2 (left). The reference space Q̂ is a piecewise
polynomial space of degree 1, that will depend on whether a patch P is cut by the interface or not.
For patches P ∈Ωh not cut by the interface, we choose the standard space of piecewise bilinear
functions:

Q̂ =
�

φ ∈C (P ), φ
�

�

�

Ki

∈ span{1, x, y, xy}, K1, . . . ,K4 ∈ P
�

.

If a patch P ∈Ωh is cut by the interface, we divide the reference patch into eight triangles T1, . . . ,T8
and define

Q̂mod =
�

φ ∈C (P ), φ
�

�

�

Ti

∈ span{1, x, y}, T1, . . . ,T8 ∈ P
�

.

Depending on the position of the interface Γ in the patch P , three different reference configurations
are considered, see the right sketch in Figure 2.

It is important to note, that the functions in Q̂ and Q̂mod are all piecewise linear on the edges ∂ P ,
such that mixing different element types does not affect the continuity of the global finite element
space. We denote by {φ̂1, . . . , φ̂9} the standard Lagrange basis of Q̂ or Q̂mod with φ̂i (x j ) = δi j .
The transformation TP is given by

TP (x) =
9
∑

i=1

xP
i φ̂i (x).

Next, we present the subdivision of interface patches P into eight triangles each. We distinguish
four different types of interface cuts, see Figure 3:
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Configuration A The patch is cut at the interior of two opposite edges.

Configuration B The patch is cut at the interior of two adjacent edges.

Configuration C The patch is cut at the interior of one edge and in one node.

Configuration D The patch is cut in two opposite nodes.

Configurations A and B are based on the reference patches P̂2 and P̂3, configurations C and D use
the reference patch P̂4, see Figure 2. By ei ∈R2, i = 1,2,3,4 we denote the vertices on the edges,
by xm ∈R2 the midpoint of the patch. The parameters r, s ∈ (0,1) describe the relative position
of the intersection points with the interface on the outer edges.
If an edge is intersected by the interface we move the corresponding point ei on this edge to the
point of intersection. The position of the midpoint xm depends on the specific configuration. For
configuration A, B and D, we choose xm as the intersection of the line connecting e2 and e4 with
the line connecting e1 and e3. In configuration C, we use the intersection of the line connecting e2
and e4 with the line connecting x1 and e3.

Remark 2.1. The finite element space Vh could be defined equivalently as a mixed linear-bilinear
finite element space based on a mixed triangular-quadrilateral mesh. In our practical implementation,
however, we use the patch grid Ωh consisting of quadrilaterals only. The local degrees of freedom are
incorporated implicitly by means of the local transformation TP . Details on the implementation will
be given in Section 4.

As the cut of the elements can be arbitrary with r, s → 0 or r, s → 1, the triangle’s aspect ratio can
be very large, considering h→ 0 it is not necessarily bounded. We can however guarantee, that the
maximum angles in all triangles will be well bounded away from 180◦:

Lemma 2.2 (Maximum angle condition). All interior angles of the triangles shown in Figure 3 are
bounded by 144◦ independent of r, s ∈ (0,1).

Proof. All interior angles can be estimated by basic geometric analysis depending on the parameters
r, s ∈ (0,1). We will show that in each triangle there is at least one angle larger than 36◦. Hence,
every angle will be bounded by 144◦. This is in particular true for all triangles that are right angled.
Configuration A and B: We number the eight triangles of a patch by T1...T8 (cf. Figure 3). The two
outer triangles T4 and T8 are right angled, such that α ≤ 90◦ for all interior angles in T4 and T8.
Furthermore, in configuration A the angles of T1 at point e4 and T5 at point e2 are right angled.
For the angles in T2 at e1 and in T6 at e3 it holds

cos(αA) =±
(e3− e1) · (x2− x1)

|e3− e1| |x2− x1|
=±

r − s
Æ

1+(r − s)2
∈
�

−
1
p

2
,

1
p

2

�

,

such that αA ∈ (45◦, 135◦). In configuration B these four angles are given by

cos(αB ) =±
(e3− e1) · (x2− x1)

|e3− e1| |x2− x1|
=±

1/2− r
Æ

1+(1/2− r )2
∈
�

−
1
p

5
,

1
p

5

�

,

which means αB ∈ (70◦, 110◦). Finally for configuration A and B it holds for the interior angles of
T3 and T7 at xm :

cos(α) =±
(e3− e1) · (e2− e4)

|e3− e1| |e2− e4|
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Considering configuration A, it holds

cos(αA) =±
r − s

Æ

1+(r − s)2
∈
�

−
1
p

2
,

1
p

2

�

⇒ αA ∈ (45◦, 135◦).

For configuration B, we get

cos(αB ) =±
s − r

Ç

1+
�

s − 1
2

�2
Ç

1+
�

r − 1
2

�2
∈
�

−
4

5
,
4

5

�

⇒ αB ∈ (36◦, 144◦).

Configuration C: Here, the four triangle touching nodes e2 and e4 all have one right angle. It
remains to estimate the interior angles at nodes e1 and e3. For these angles, it holds:

cos(αC ) =±

�

1
0

�

·
�

s
1

�

�

�

�

�

�

s
1

��

�

�

�

=±
s

p

1+ s2
∈
�

−
1
p

2
,

1
p

2

�

⇒ αC ∈ (45◦, 135◦).

Configuration D: Obviously, all triangles are right angled.

2.2 A priori error analysis

We use the usual Lebesgue spaces Lp (Ω) and Sobolev spaces H k (Ω) and their corresponding norms.
For the L2(Ω) norm, we will use the notation ‖ · ‖Ω and sometimes skip the domain index if the
context is clear.
The maximum angle conditions of Lemma 2.2 allows us to define robust Lagrangian interpolation
operators Lh : H 2(T )∩C (T )→Vh with accurate error estimates

‖∇k (v − Lh v)‖T ≤ c h2−k
T ,max‖∇

2v‖T , k = 0,1, (2)

with constants c > 0 and hT ,max is the maximum diameter of a triangle T ∈ P (see e.g. [1]). The
interpolation error estimates are robust with respect to the maximum diameter hT ,max ≈ hP that
is of the same order as the diameter of the patches P . We do not get (and will not depend on)
an optimal interpolation result with respect to the anisotropic triangles in terms of short edges
hT ,min� hT ,max.

Theorem 2.3 (A priori estimate). Let Ω⊂R2 be a domain with convex polygonal boundary, split
into Ω = Ω1 ∪Γ∪Ω2, where Γ is a smooth interface with C 2-parametrization. We assume that Γ
divides Ω in such a way that the solution u ∈H 1

0 (Ω) satisfies the stability estimate

u ∈H 1
0 (Ω)∩H 2(Ω1 ∪Ω2), ‖u‖H 2(Ω1∪Ω2)

≤ cs‖ f ‖.

For the corresponding modified finite element solution uh ∈Vh it holds

‖∇(u − uh )‖Ω ≤C h‖ f ‖, ‖u − uh‖Ω ≤C h2‖ f ‖

Proof. (i) As Vh ⊂H 1
0 (Ω), the usual best-approximation property holds for Ih v ∈Vh :

‖∇(u − uh )‖ ≤C‖∇(u − Ih u)‖.

Further, for the solution z ∈H 1
0 (Ω)∩H 2(Ω1 ∪Ω2) of the adjoint problem

z ∈H 1
0 (Ω) : a(φ, z) = (eh ,φ)‖eh‖

−1 ∀φ ∈H 1
0 (Ω),
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Figure 4. Two different patches and two triangles, that are affected by the interface-intersection.
The modified finite element mesh does not resolve the interface.

it holds z ∈ H 1
0 (Ω) ∩H 2(Ω1 ∪Ω2) with ‖z‖H 2(Ω1∪Ω2)

≤ cs . Using Galerkin orthogonality, the
L2-error can be estimated in the standard fashion

‖u − uh‖ ≤C‖∇(u − uh )‖‖∇(z − Ih z)‖ ≤C‖∇(u − Ih u)‖‖∇(z − Ih z)‖.

If the interface Γ can be resolved by the modified finite element scheme, the result follows using
the interpolation estimates (2).
(ii) Next, we consider a general C 2-parameterized interface not matched by the triangulation. A
similar argumentation can be found in [5]. By Γh , we denote the discrete approximation of the
interface given by mesh lines and by Ω1

h
and Ω2

h
the subdomains separated by Γh . Further, let

Si ⊂Ωh (i = 1,2) be the set of elements T belonging to Ωi
h

that are affected by the interface

Si =
¦

T ∈Ωi
h

�

�T ∩Γ 6= ;
©

and Sh = S1 ∪ S2 their union.
In Figure 4 we show two possible configurations for patches, that are cut by the interface. We will
analyze the situation shown in the right sketch, the left one can be treated in the same way by
combining the two triangles to one and replacing Ih u in xm by the mean value of the two adjacent
vertices. This simplifies the analysis at the cost of a slightly less sharp estimate.
It holds with (2)

‖∇(u − Ih u)‖2
Ω = ‖∇(u − Ih u)‖2

Ω\Sh
+ ‖∇(u − Ih u)‖2

Sh
(3)

≤C h2‖∇2u‖2
Ω1∪Ω2

+ ‖∇(u − Ih u)‖2
Sh

, (4)

where we used the standard interpolation estimate on Ω \ Sh and afterwards extended the domain
to the complete domain Ω.
(iii) It remains to estimate the second term in (4). Let ũi ∈H 2(Ω) (i=1,2) a continuous extension
of u ∈H 2(Ωi ) to the complete domain Ω. Such an extension exists, as the boundary Γ is smooth,
see e.g. Wloka [22], and it holds:

‖ũi − u‖H 2(Ωi )
= 0, ‖ũi‖H 2(Ω) ≤C‖u‖H 2(Ωi )

, i = 1,2. (5)

We will derive an estimate for ‖∇(u − Ih u)‖2
S1

. The corresponding estimate on S2 follows analo-
gously. It holds by adding and subtracting ũ1

‖∇(u − Ih u)‖S1
≤ ‖∇(u − ũ1)‖S1

+ ‖∇(ũ1− Ih u)‖S1
(6)

= ‖∇(u − ũ1)‖S1
+ ‖∇(ũ1− Ih ũ1)‖S1

, (7)
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since Ih u = Ih ũ1 on S1 for the nodal interpolant. The interpolation error can be estimated by (2),
followed by a very rough enlargement from S1 toΩ and by using the continuity of the extension (5):

‖∇(ũ1− Ih ũ1)‖S1
≤C h‖∇2 ũ1‖S1

≤C h‖∇2 ũ1‖Ω ≤C h‖∇2u‖Ω1
. (8)

To treat the first term in (6), we will need some additional notation. Let T ∈ S1 be a triangle cut
by the interface. By ΓT = Γ∩T we denote the curved interface and by Γh,T the corresponding
edge in the triangle (see Figure 4). Further, we split T into T1 =Ω1 ∩T and T2 =Ω2 ∩T . As ΓT
has a C 2-parametrization, it holds for the distance δ between Γh,T and Γh

δ = O (h2), |T |= O (h2), |T1|= O (h
2), |T2|= O (h

3).

A transformation argument in combination with a Poincaré like estimate on the reference element
yield

‖v‖2
T2
≤C

�

h2‖v‖2
ΓT
+ h4‖∇v‖2

T2

�

for v ∈H 1(T2) (see e.g. [9,11]). We apply this inequality to v =∇(u − ũ1) and get

‖∇(u − ũ1)‖
2
T2
≤C

�

h2‖∇(u − ũ1)‖
2
ΓT
+ h4‖u − ũ1‖

2
H 2(T2)

�

, (9)

where the trace of (the discontinuous function)∇u on ΓT is the trace as seen from T2. As u = ũ1
on T1, we can replace the domain T2 by T on both sides of (9). Summation over T ∈ S1 yields

‖∇(u − ũ1)‖
2
S1
≤C

�

h2‖∇(u − ũ1)‖
2
Γ+ h4‖u − ũ1‖

2
H 2(S1)

�

. (10)

For the boundary term on the right-hand side, we apply the (global) trace inequality and use the
continuity of the extension (5)

‖∇(u − ũ1)‖
2
Γ ≤ ‖∇u‖2

Γ+ ‖∇ũ1‖
2
Γ ≤C‖u‖2

H 2(Ω1∪Ω2)
. (11)

Finally, by combining (6) to (11) and using the analogous estimate on S2 it follows, that

‖∇(u − Ih u)‖Sh
≤C h‖u‖H 2(Ω1∪Ω2)

.

3 Condition number analysis

The modified finite element ansatz described above has one serious drawback. For certain
anisotropies (e.g. s , r → 0) the condition number of the stiffness matrix is not bounded. To
illustrate this, we consider an interface problem where Ω1 is a circle inside the unit square Ω (see
Figure 5 right sketch). To study the sensitivity with respect to anisotropies, we move the circle
in vertical direction by ε. We will give further details on this example in Section 5. In Figure 5
left sketch, we show how the condition number changes for different ε. For ε→ 0, the condition
number increases with order O (1/ε).
In this section, we will present a scaled hierarchical finite element basis for the space Vh , that will
yield system matrices Ah that satisfy the usual bound cond2(Ah ) = O (h−2) with a constant that
does not depend on the position of the interface Γ relative to the mesh elements.
We split the finite element space Vh in a hierarchical manner

Vh =V2h +Vb , N := dim(Vh ) = dim(V2h )+ dim(Vb ) =: N2h +Nb .
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Figure 5. Condition number of the system matrix cond2(Ah ) depending on the displacement of
the circle Ω1.

vb ∈Vbv2h ∈V2hvh ∈Vh

Figure 6. Example for a hierarchical splitting of a function vh ∈Vh into coarse mesh part v2h ∈V2h
and fine mesh fluctuation vb ∈Vb .

The space V2h is the standard space of piecewise bilinear or linear functions on the patches P ∈Ωh

equipped with the usual nodal Lagrange basis V2h = span{φ1
2h

, . . . ,φN2h

2h
}. Therefore, patches cut

by the interface are split into two triangles.
The space Vb =Vh \V2h collects all functions, that enrich V2h to Vh . These functions are defined
piecewise on T1, . . . ,T8 in the remaining 5 degrees of freedom, see Figure 6 for an example. The
basis is denoted by Vb = span{φ1

b
, . . . ,φNb

b
}. The finite element space V2h is fully isotropic and

standard analysis holds. Functions in V2h do not resolve the interface, while the basis functions
φi

b
∈Vb will depend on the interface location if Γ⊂ supp φi

b
.

For a function vh ∈Vh we use the (unique) splitting

vh =
∑

i

vi
hφ

i
h =

N2h
∑

i=1

vi
2hφ

i
2h +

Nb
∑

i=1

vi
bφ

i
b = v2h + vb ∈V2h +Vb .

We use the notation vi
h
,vi

2h
and vi

b
to indicate the degrees of freedom in the spaces Vh ,V2h and Vb

and introduce the vectors vh ,v2h and vb defined by these components. For this splitting it holds:

Lemma 3.1 (Hierarchical finite element spaces). For every vh = v2h + vb ∈Vh it holds

(i) ‖∇vh‖
2 ≤ 2‖∇v2h‖

2+ 2‖∇vb‖
2,

and further
(i i) ‖∇v2h‖

2+ ‖∇vb‖
2 ≤C‖∇vh‖

2,

with a constant C > 0.
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Proof. The first inequality follows by vh = v2h + vb . For deriving the second inequality, we need
to exploit the hierarchical setup of the finite element spaces. First, by i2h : Vh →V2h we denote
the nodal Lagrange interpolant into the coarse finite element space. Stability of this (discrete)
interpolation gives the first half of the result

‖∇v2h‖= ‖∇i2h vh‖ ≤C‖∇vh‖.

By using the reverse triangle inequality, we get (i i)

‖∇vb‖ ≤ ‖∇(vb + v2h )‖+ ‖∇v2h‖ ≤ (1+C )‖∇vh‖

The following analysis, will be based on two essential assumptions for the test-functions of the
spaces V2h and Vb :

Assumption 3.2 (Finite Element Basis). There exists a constant C > 0 independent of h and the
interface location, such that it holds for every basis function

C−1 ≤ ‖∇φi
h‖ ≤C , i = 1, . . . ,Nb . (12)

Further, there exists a constant C > 0 independent of h and the interface location, such that for all
vb ∈Vb it holds

|vi
b | ≤C‖∇vb‖Ni

, i = 1, . . . ,Nb , (13)

where byNi = {K ∈Ωh , xi ∈K} we denote the neighborhood of all elements involving the Lagrange
point xi .

Both assumption hold true for standard finite element spaces on shape- and form-regular finite
element meshes and can be shown by using inverse estimates. Assumption (12) is fulfilled after an
appropiate scaling of the basis functions. Details as well as the very technical proof of (13) for the
modified hierarchical finite element spaces will be given in the Appendix.
Next, we show two estimates for the large and small eigenvalues. These two results will be
combined in Theorem 3.5 to show a bound for the condition number of the system matrix. The
proofs follow the ideas of Bank and Scott [4].

Lemma 3.3 (Large eigenvalues). There exists a constant C > 0 independent of the interface location,
such that it holds:

vT
h Ahvh = a(vh , vh )≤C vT

h vh ∀vh ∈Vh .

Proof. It holds

a(vh , vh )≤C‖∇vh‖
2 =C

∑

P∈Ωh

‖∇vh‖
2
P =C

∑

P∈Ωh



















∑

xi∈P

vi
h∇φ

i
h



















2

As only a finite number of basis functions have their support in P it holds

a(vh , vh )≤C
∑

P∈Ωh

∑

xi∈P

|vi
h |

2‖∇φi
h‖

2
P

Using Assumption (12), it follows, that

a(vh , vh )≤C
N
∑

i=1

|vi
h |

2 =C vT
h vh .

where again we used, that every node xi is part of only a limited number of patches.
Next, we show an estimate for the small eigenvalues
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Lemma 3.4 (Small eigenvalues). There exists a function C > 0 independent on the interface location,
such that it holds

vT
h Ahvh = a(vh , vh )≥C h2vT

h vh ∀vh ∈Vh .

Proof. Let vh = v2h + vb . First, we will show the result separately for v2h ∈V2h and vb ∈Vb .

(i) We start with functions v2h ∈V2h . Let v2h =
∑N2h

i=1 vi
2h
φi

2h
∈V2h :

vT
2hv2h =

N2h
∑

i=1

(vi
2h )

2 ≤
∑

P∈Ω2h

∑

xi∈P

(vi
2h )

2.

On a patch P ∈Ω2h it follows for v2h ∈V2h by using an inverse estimate for the standard nodal
Lagrange basis

∑

xi∈P

(vi
2h )

2 ≤C‖v2h‖
2
L∞(P ) ≤C h−2‖v2h‖

2
L2(P )

Then by Poincaré’s inequality on Ω, it finally holds

vT
2hv2h ≤C h−2

∑

P∈Ωh

‖v2h‖
2
L2(P )
≤C h−2‖v2h‖

2 ≤C h−2‖∇v2h‖
2. (14)

(ii) Next, we treat the case vb ∈Vb . By using Assumption (13) we immediately get

vT
b vb =

Nb
∑

i=1

(vi
b )

2 ≤C
Nb
∑

i=1

‖∇vb‖
2
Ni
≤C‖∇vb‖

2, (15)

where the constant C depends on the overlap of elements in the neighborhoodsNi . The result
follows, as h−2 ≥ 1 for h < 1.
(iii) We combine these two results. By Lemma 3.1 it holds

vT
h Ahvh = a(vh , vh )≥C‖∇vh‖

2 ≥C‖∇v2h‖
2+C‖∇vb‖

2

≥C
�

a(v2h , v2h )+ a(vb , vb )
�

Hence, using (14) and (15)

vT
h Ahvh ≥C h2

�

vT
2hv2h + vT

b vb

�

=C h2vT
h vh .

Combining Lemma 3.3 and 3.4, we get an estimate for the condition number:

Theorem 3.5 (Condition number). Under Assumption 3.2 it holds for the condition number

cond2(A)≤C h−2,

with a constant C > 0 not depending on the interface location.

4 Implementation

The modified finite element basis is implemented in a patchwise parametric approach. Instead of
moving or changing the mesh, capturing the interface is realized by a special parametrization of
the finite element basis.
For this, the triangulation Ωh consists of quadrilaterals, that we denote as patches P ∈Ωh . Each
patch P has nine degrees of freedom with coordinates xi for i = 1, . . . , 9. If the patch is not cut by
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P̂ = (0,1)2 2
3 4

1

1

1 1

3

4

2
ψ< 0

ψ> 0
x

y

s

ψ(x + s(y − x))
ψ= 0

−

+

−

−

= 0

Figure 7. Implementation of the parametric patch-based approach. Top row: four different patch
types. Lower left: sample mesh with all four variants. Lower right: identification of the cut-points.

the interface, we imagine a partitioning into four quadrilaterals K1, . . . ,K4 ⊂ P and define the space
of piecewise bilinear functions. If however the patch is cut, we instead imagine a partitioning into
eight triangles T1, . . . ,T8 ⊂ P and define the space of piecewise linear functions. Whatever splitting
of the patch is applied, we still have nine degrees of freedom connected to the same coordinates.
See Figure 7 for a small mesh, where all different patches are present.

Next, let P̂ = (0,1)2 be a reference domain and Q̂(P̂ ) = span{φ̂1, . . . , φ̂9} the space of either
piecewise bilinear functions or piecewise linear functions on the corresponding subdivision of the
reference patch, see Figure 7. Then the actual basis functions on P ∈Ωh are defined in a parametric
sense

Q(P ) := span{φ1, . . . ,φ9}, φi := φ̂i ◦ T̂ −1
P ,

where the reference patch map T̂P is defined in the usual iso-parametric way

T̂P (x̂) :=
9
∑

j=1

x j φ̂ j (x̂). (16)

Note that the position of the interface enters the equations only via the coefficients x j of the
transformations!
Next, we describe how we assign an element type to a patch. Let us assume, that the interface is
represented by an implicit function, e.g. as zero-contour of a Level-Set function ψ(x).
We first notice that a patch is affected by the interface if ψ shows different signs in two of the outer
mesh nodes. In the same way, we identify the edges cut by the interface. Let x and y be the two
outer nodes of an edge with ψ(x)> 0>ψ(y), see Figure 7. In order to find the exact coordinate
where the interface line crosses an edge, we use a simple Newton scheme to find the zero of

ψ
�

x + s(y − x)
�

= 0.

The new coordinate xm := x + s(y − x) replaces the coordinate of the edge midpoint in (16).
In order to incorporate the hierarchical basis of the finite element space defined in Section 3, we
replace the basis functions corresponding to the outer mesh nodes by their hierarchical coun-
terparts. The proper scaling of all test-functions in order to fulfill (12) is simply achieved by a
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O(h2)

O(h)
‖∇(u− uh)‖

‖u− uh‖

modified finite elements

mesh size h

10.10.010.001

1

0.1

0.01

0.001

0.0001

1e-05

Figure 8. Example 1: H 1- and L2-Error under mesh refinement. Right: sketch of the solution.

preconditioning of the linear system with the diagonal of the system matrix from left and right

Ax= b ⇔ D−
1
2 AD−

1
2
ex=D−

1
2 b , ex=D

1
2 x,

where D= diag(ai i ).
The main advantage of the presented scheme is that the number of unknowns within each patch
is fixed independent of the location of the interface. Further, structure and connectivity of the
system matrix stay identical and are known a priori even if the position of the interface varies.
In contrast to e.g. the extended finite element method (XFEM), we do not need any blending
elements as all basis functions are piecewise linear on edges.

5 Numerical examples

In this section, we design three different test-cases to validate the modified finite element technique
introduced in Section 2. We will include all different types of interface cuts (configurations A to
D) with arbitrary anisotropies including r, s → 0 or 1.

5.1 Example 1: circular interface

This first example has already been considered to discuss the interface approximation in Section 2
and the dependency of the condition number on the interface in Section 3, see Figure 1 for a sketch
of the configuration. The unit square Ω= (−1,1)2 is split into a ball Ω1 = BR(xm), where R= 0.5
and xm = (0,εh) for an ε ∈ [0,1] and Ω1 = Ω \Ω2. As diffusion parameters we choose c1 = 0.1
and c2 = 1 within the inner ball. We choose the analytical solution

u(x) =

(

−2c2‖x − xm‖4, x ∈Ω2,
−c1‖x − xm‖2+ 1

4c1−
1
8c2 x ∈Ω1,

to define right hand side fi :=−ci∆u and Dirichlet boundary data. After some steps of global
refinement this simple example includes configurations A to C. In Figure 8, we plot the the H 1- and
L2-norm errors obtained on several levels of global mesh refinement. According to Theorem 2.3
of Section 2.2, we observe linear convergence in the H 1-norm and quadratic convergence in the
L2-norm. For comparison, Figure 1 shows the corresponding results using the standard non-fitting
basis functions. A sketch of the solution is given in the right side of Figure 8.
Next, in Figure 9, we show a study of the condition number’s dependency on the parameter
ε ∈ [0,1] used to shift the midpoint of the circle xm = (0,εh). The scaled hierarchical ansatz space
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Lagrange basis

scaled hierarchical basis

10.80.60.40.20

1e+07

1e+06

100000

10000

1000

Lagrange basis

scaled hierarchical basis

10.80.60.40.20

1e+07

1e+06

100000

10000

1000

Figure 9. Example 1: condition number of the system matrix depending on the displacement
of the circle Ω1 by εh for ε ∈ [0,1]. Standard Lagrange basis versus the scaled hierarchical basis
introduced in Section 3. Left h = 1/16, right h = 1/32.

shows optimal behavior O (h−2) with regard to mesh size h and no dependency on the shift ε,
while the standard approach shows very large conditions numbers with cond2(Ah )→∞ for ε→ 0
and ε→ 1.

5.2 Example 2: horizontal cuts

To study the different cuts of interface patches in more detail, let us next consider that Ω= (−1,1)2

is cut horizontally into

Ω1(ε) =
�

x ∈Ω
�

� x2 < εh
	

, Ω2(ε) =
�

x ∈Ω
�

� x2 > εh
	

.

By varying ε ∈ [0,1] the interface patches of a Cartesian mesh will be split into rectangulars with
vertical edge lengths εh and (1− ε)h, 0 < ε < 1. We choose right hand side f = −ci∆u and
Dirichlet data according to the solution

u(x) =

( c2
c1
(x2− εh)− (x2− εh)2 x ∈Ω1

(x2− εh)+ (x2− εh)2 x ∈Ω2.
(17)

In Figure 10, we plot L2-norm and H 1-norm error for 0 ≤ ε ≤ 1 on meshes with patch size
h = 1/16 and h = 1/32. Both errors clearly depend on the position ε of the cut. As one would
expect, we get the smallest errors for ε= 0, ε= 1

2 and ε= 1, where the mesh is perfectly uniform
and resolves the cut. The largest error given for ε→ 0 and ε→ 1, where the anisotropy of the
interface patches is maximal. Nevertheless, we see that the error remains bounded for all ε ∈ [0,1].
The variations get smaller on the finer mesh.
To explain these error variations we briefly analyze the interpolation error. The mesh consists of
h−2 patches. Only h−1 patches are affected by the interface. These are cut into 2h−1 quads of size
h/2× εh and 2h−1 quads of size h/2× (1− ε)h. The remaining 4h−2− 4h−1 quads all have the
size h/2× h/2. As the interface is a horizontal line, the modified mesh is still Cartesian and due to
superconvergence effects the errors we observe are essentially the interpolation errors ‖u − Ih u‖.
The solution u only depends on x2, see (17). For the L2-norm, it holds on an element K of size
h1× h2:

‖u − Ih u‖2
K ≤ c h4

2‖∂22u‖2
K ≈ c h1h5

2 .

summed over all elements K ∈Ωh , we get the interpolation bound

‖u − Lh u‖2
Ω ≈

�

4h−2− 4h−1
� h6

64
+ 2h−1ε5 h6

2
+ 2h−1(1− ε)5

h6

2
.
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h = 1
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h = 1
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‖u− uh‖

offset x2 = ǫh
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0.0015

0.001
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0
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‖∇(u− uh)‖
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0.08

0.07

0.06

0.05

0.04

0.03

Figure 10. Example 2: L2- and H 1-norm error depending on a vertical offset x2 = εh of the
interface.

Table 1. Example 2: maximum and minimum error under vertical displacement εh of the interface
line. Comparison of errors with the predicted error variation.

H 1-error L2-error
h = 1/16 h = 1/32 h = 1/16 h = 1/32

Worst case (ε= 10−6 h) 7.864 · 10−2 3.774 · 10−2 1.904 · 10−3 4.077 · 10−4

Best case (ε= h) 7.217 · 10−2 3.608 · 10−2 1.302 · 10−3 3.255 · 10−4

Prediction 1.090 1.046 1.392 1.212
Variation 1.090 1.046 1.462 1.252

In the best case, for ε= 1
2 , it holds

‖u − Ih u‖2
Ω ≈

h4

16
,

while in the worst case for ε→ 0 or ε→ 1 we get

‖u − Ih u‖2
Ω ≈

h4

16
(1+ 15h)

Hence, the L2-norm error varies by a factor of
p

1+ 15h which relates to approximately
p

2≈ 1.4
for h = 1/16 and

p

3/2≈ 1.2 for h = 1/32. For the H 1-norm a similar analysis leads to a variation
factor of

p
1+ 3h. In Table ??, we gather variation factors between maximum and minimum L2-

and H 1-norm on both meshes and find very good agreement to the prediction.

5.3 Example 3: tilted interface line

Next, we consider two subdomains that are separated by a straight interface line through the origin,
which might be horizontal (α= 0), vertical (α=π/2) or inclined (0<α <π/2 or π/2<α <π).
The interface Γi is defined by the relation cos(α)x2 = sin(α)x1 given the partitioning:

Ωα1 =
�

x ∈Ω
�

� cos(α)x2 < sin(α)x1
	

,

Ωα2 =
�

x ∈Ω
�

� cos(α)x2 > sin(α)x1
	

.

We choose right hand side f =−ci∆u and Dirichlet data according to the given exact solution:

u(x) =







sin
�

c2
c1
(cos(α)x2− sin(α)x1)

�

, x ∈Ω1

sin (cos(α)x2− sin(α)x1) x ∈Ω2.
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Figure 11. Example 3: L2- and H 1-norm error for a line cutting at different angles α ∈ [0,π].

In Figure 11 we plot the L2- and H 1-norm error for angles α= 0...π and two different refinement
levels (h = 1/16 and h = 1/32). In the case α=π/2 all the interface patches are of type D, while in
the other cases types A to C appear with all kinds of anisotropies inside. Again, we observe linear
convergence for the H 1-norm error and quadratic convergence in the L2-norm. The error varies
up to a factor of approximately

p
2 in the case of the H 1-norm and about 1.05 in the L2-norm

which can be explained similarly to the case of horizontal cuts. We emphasize that these variations
are again bounded for all α ∈ [0,π].

6 Conclusion

We have presented a new modified finite element method for interface problems. Discontinuities
in the normal derivative of the solution are captured by a parametric finite element approach, that
is based on a patchwise subdivision of the finite element mesh into triangles. Instead of moving
mesh nodes, the interface capturing is realized by using a parametric finite element setup on a fixed
quadrilateral mesh. This approach can be directly applied to triangular meshes by considering
every triangle as a patch of four sub-triangles.
Further, we have shown optimal approximation order, that does not depend on the interface
location within the finite element mesh. And finally, by constructing the finite element spaces in a
hierarchical way, the resulting system matrices have a condition number that satisfies the usual
bound O (h−2) independent of the interface location.
In upcoming research, this modified finite element method will be applied to problems with moving
interfaces, as they appear in fixed-mesh formulations of fluid-structure interaction problems, see
e.g. [18] .

A Setup of the Finite Element Basis

In this appendix, we give details on Assumption 3.2, required for proving the boundedness of the
condition number. In this assumption, we call for two conditions on the basis functions. First,
every basis function φi ∈Vh should be bounded by

C−1 ≤ ‖∇φi
h‖

2 ≤C , (18)

with a constant C > 0 (independent of h and the interface location). Second, there should exist a
constant C > 0, such that for each degree of freedom i ∈ [1,Nb ] of the “add-on” space Vb it holds:

(vi
b )

2 ≤C‖∇vb‖
2
Ni
∀vb ∈Vb ,



S.Frei, T.Richter: Locally modified finite elements for interface problems 17

s

rr

s

r

s

T1
T2

T3

T4

x1

x2

x3

A

B

1 2 3

s s

r

r

1 2x2

y1
y0

Figure 12. Configuration of the hierarchical basis functions Vb for the different patch-types. In
each sketch, we consider the case r → 0 or s → 0 or both.

Figure 13. Above: Two basis functions φ2h
i ∈V2h , below two basis functions φb

i ∈Vb

where byNi we denote all elements of Ωh that have xi as node.
These two assumptions hold true for standard finite elements on form- and shape-regular meshes
and can be easily derived using inverse estimates. For the modified finite element ansatz defined in
Section 2 the proof of these assumptions is technical. In order to define a hierarchical ansatz space,
we have to modify some of the basic triangles. In Figure 12 we show the cases A and B, case C is
treated similarly. In contrast to Section 2, the midpoint is moved along one of the diagonal lines
only. Then, we define the space V2h as the space of piecewise linear functions on the two large
triangles. In order to guarantee a maximum angle condition in case A.1, we must also move the
outer node x2 belonging to the space Vb .
Each of the two large triangles forming the patch P is split into four subtriangles and the space V2h
is enriched to Vh by the Lagrangian basis with respect to the subtriangles on the remaining nodes.
In Figure 13, we illustrate two hierarchical basis functions from V2h and two basis functions from
Vb for an isotropic element.
Next, we give details for the derivation of Assumption 3.2 for some typical configurations.

A.1 Assumption 1 - scaling of the basis functions

We only have to consider the basis functions φi
b
∈Vb , as this assumption holds for the standard

space V2h . By φ̃i
b

we denote the standard nodal Lagrange functions satisfying φ̃i
b
(x j ) = δi j , where

xi is one of the Lagrange points shown in Figure 12. We will derive the proper scaling factor for
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configuration B.1 in Figure 12, where r, s are small and where r, s → 0 is possible. It holds for the
gradients of the three test-functions in the four different triangles:

‖∇φ̃1‖
2
T1
= O (1) ‖∇φ̃1‖

2
T2
= O (

p

r 2+ s2) ‖∇φ̃1‖
2
T3
= O (1)

‖∇φ̃2‖
2
T1
= O (1) ‖∇φ̃2‖

2
T2
= O

�

min
� 1

r
,
1

s

��

‖∇φ̃2‖
2
T4
= O

� s

r

�

‖∇φ̃3‖
2
T2
= O

�

min
� 1

r
,
1

s

��

‖∇φ̃3‖
2
T3
= O (1) ‖∇φ̃3‖

2
T4
= O

� r

s

�

.

Hereby, we can read out the proper scaling factor for every test-function. We define

τ1 = 1, τ2 =
r

min
§

max{r, s},
r

s

ª

, τ3 =
r

min
§

max{r, s},
s

r

ª

(19)

and set
φi := τi φ̃i , i = 1...3 (20)

such that ‖∇φi‖= O (1) for all r, s ∈ [0,1].

Remark A.1 (Estimation of the scaling factors). The scaling factors for the remaining cases can be
estimated in a similar way. However, in a practical implementation, one can use the hierarchical
Lagrangian basis φ̃i to assemble the system matrix Ãh and apply a simple row- and column-wise scaling
with the diagonal elements:

ãi j = (∇φ̃ j ,∇φ̃i ), ai j :=
ãi j

Æ

ãi i ã j j

,

which yields directly (cf. Section 4)

‖∇φi
h‖

2 = ai i =
ãi i

ãi i
= 1.

A.2 Assumption 2

Next, we must show the existence of a constant C > 0, such that for all i ∈ [1,Nb ] it holds

(vi
b )

2 ≤C‖∇vb‖
2
Ni
∀vb ∈Vb . (21)

It is sufficient to show, that for each Lagrange point xi , it holds

(vi
b )

2 ≤C‖∇vb‖
2
T ∀vb ∈Vb , (22)

for at least one triangle T ⊂Ni . Due to the form and shape-regularity of the patch mesh, it suffices
to show (22) on the corresponding triangle of the reference patch P̂ = (0,1)2. We begin with
configuration B.1 (cf. Figure 12) and choose the degree of freedom belonging to the node x1. We
will show (22) for the triangle T1. There are two degrees of freedom of Vb that contribute to
‖∇vb‖T1

. We need to show the existence of a constant C > 0 such that

(v1
b )

2 ≤C‖
2
∑

i=1

vi
b∇φ

i
b‖

2
T1
∀v1

b ,v2
b ∈R

2 ⇔ 1≤C‖∇φ1
b + v∇φ2

b‖
2
T1
∀v ∈R. (23)
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T1 consists of the nodes y0 = (0,0), x1 = (
1
2 , 1

2 ) and x2 = (1− r, 0) (cf. Figure 12). Using the scaling
factor τ2 defined in (19), it holds for r and s small:

∇φ1|T1
=
�

0
2

�

, ∇φ2|T1
≈ τ2

�

1
−1

�

, |T1| ≈
1

4

and

‖∇φ1‖
2
T1
≈ 1, ‖∇φ2‖

2
T1
≈

1

2
τ2

2 , (∇φ1,∇φ2)T1
≈−

1

2
τ2.

For all v ∈R it holds

c‖∇φ1+ v∇φ2‖
2
T1
= c
�

‖∇φ1‖
2
T1
+ 2v(∇φ1,∇φ2)T1

+ v2‖∇φ2‖
2
T1

�

≈ c
�

1−τ2v+
1

2
τ2

2v2
�

= c
�1

2
+

1

2
(1−τ2v)

2
�

.

The last term is larger than 1 for c > 2 which proves (23).
For the outer nodes (e.g. x2), we have one of the following two cases (compare (19)):

(i) τ2 =
Æ

r/s (ii) τ2 =
Æ

max{r, s}

In case (i) the contribution from T4 is dominant for ‖∇vb‖Ni
. We will show

(v2
b )

2 ≤C‖∇vb‖
2
T4

.

T4 consists of the nodes x2 = (1− r, 0), y1 = (1,0) and x3 = (1, s). We have

∇φ2|T4
= τ2

�

1/r
0

�

, ∇φ3|T4
= τ3

�

0
1/s

�

, |T4|=
1

2
r s

and thus

c‖∇φ2+ v∇φ3‖
2
T4
= c‖∇φ2‖

2
T4
+ v2‖∇φ3‖

2
T4
≥ c‖∇φ2‖

2
T4
= c

τ2
2

r 2
|T4|=

c

2
> 1

for c > 2. In case (ii) we can show

(v2
b )

2 ≤C‖∇vb‖
2
T1∪T2∪T3

using similar basic calculus. In all other cases A, B.2 and B.3, C and D, Assumption (13) can be
shown by similar geometric arguments.
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