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1. Introduction

First formulated by Truskinovsky [14] and Lowengrub and Truskinovsky [10], the ‘Navier-
Stokes-Allen-Cahn’ equations1 and the ‘Navier-Stokes-Cahn-Hilliard’ equations describe di-
phasic fluid flow. They combine the conservation laws for mass, momentum, and energy with
a balance law for the phases which governs the concentration of one (or the other) phase as
an order parameter. By contrast, the ‘Navier-Stokes-Korteweg’ theory for the dynamics of a
one-phase capillary fluid that Dunn and Serrin [3] gave following Korteweg [9] and Slemrod
[12] uses only the three said conservation laws and has the mass density itself as its order
parameter.2

In [6], the authors considered the derivation of the NSAC, the NSCH, and the NSK
equations, and showed that in the case that the two phases are incompressible with different
specific volumes, both NSAC and NSCH reduce to versions of NSK. However, as we realized
only after that article was published, our assumptions in [6] tacitly correspond to neglecting
the so-called microforces [8]. While the argumentation in [6] seems mathematically consis-
tent, the microforces are a physical reality, and the purpose of the present note is to show
that the reduction of NSAC and NSCH to NSK still holds when one does take them into
account.

Also in NSAC and NSCH, the microforces do what Dunn and Serrin named interstitial
work. In Section 2 we study the role that this particular effect plays in the entropy production
along particle paths. Section 3 serves to prove the reduction property of NSAC and NSCH
with interstitial work. Section 4 discusses the objectivity of the three models briefly. In the
sequel, we use notation from [6] and the results of Section 1 of that paper without defining
/ stating them again.

Since the publication of [6] we also noticed that already Korteweg himself realized his
tensor should be useful in connection with incompressible phases — the modern NSAC and
NSCH equations would be the “autres d’une complication plus grande encore”3 Korteweg
envisaged as generalizations of what is nowadays called ‘dynamic Korteweg theory’.

1Cf. also the interesting paper by Blesgen [2].
2We will henceforth abbreviate Navier-Stokes-Allen-Cahn, Navier-Stokes-Cahn-Hilliard, and Navier-

Stokes-Korteweg as NSAC,NSCH, and NSK.
3Cf. p. 12 of [9] and footnote 2 on p. 514 of [13].
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2. Interstitial work and entropy production

2.1. The Navier-Stokes-Korteweg system

In this subsection we briefly recall entropy production in the Navier-Stokes-Korteweg
system. This system, now exactly in its form derived by Dunn and Serrin in [3], reads

∂tρ+∇·(ρu) = 0,

∂t(ρu) +∇·(ρu⊗ u− T̄) = 0,

∂tĒ +∇·((ĒI− T̄)u+w̄)−∇·(β∇θ) = 0,

(2.1)

with

Ē ≡ ρ(Ē +
1

2
|u|2) and T̄ ≡ −pI + K + S.

The fluid is specified by its Helmholtz energy

F̄ (ρ, θ,∇ρ) = ˇ̄F (ρ, θ, |∇ρ|2/2), (2.2)

from which its internal energy Ē derives via the Legendre transform

Ē(ρ, s,∇ρ) ≡ F̄ (ρ, θ,∇ρ) + θs,

with temperature θ and specific entropy s = −∂θF as dual variables. The Korteweg tensor
and the interstitial work flux are

K =

[
ρ∇·

(
∂∇ρ(ρF̄ )

)
I−∇ρ⊗ ∂∇ρ(ρF̄ )

]
, w̄ = κρ(∇·u)∇ρ. (2.3)

with κ given by
ρ∂∇ρF̄ = κ∇ρ. (2.4)

Viscous stress

S = 2η(Du)s0 + ζ∇·u I, (Du)s0 ≡ 1

2
(Du+ (Du)>)− 1

3
∇·uI

and heat flux, −β∇θ, are quantified by means of the coefficients η, ζ, β of shear viscosity,
bulk viscosity, and heat conductivity. The reasoning in [3]4 yields the entropy balance

∂t(ρs) +∇·(ρsu) = ∇·Σ + σ (2.5)

with

Σ ≡ β

θ
∇θ (2.6)

and

σ ≡ 1

θ

(
2η(Du)s0 : (Du)s0 + ζ(∇·u)2

)
+
β

θ2
|∇θ|2. (2.7)

4which can technically be expressed as a simple computation very similar to one in Sec. 2.3 of [6]
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2.2. The Navier-Stokes-phase-field models

Before specializing to Navier-Stokes-Allen-Cahn and Navier-Stokes-Cahn-Hilliard, we
show some properties which both systems share. We start from their common form

∂tρ+∇·(ρu) = 0,

∂t(ρu) +∇·(ρu⊗ u−T) = 0,

∂tE +∇·((EI−T)u+w)−∇·(β∇θ) = 0,

∂t(ρχ) +∇·(ρχu)− ρj = 0

(2.8)

in which

E ≡ ρ(E +
1

2
|u|2), T ≡ −pI + C + S, w

are the total energy, the total Cauchy stress, and the interstitial work flux. We specify the
fluid by its Gibbs energy G, i.e., the internal energy is

E(τ, s, χ,∇χ) ≡ G(p, θ, χ,∇χ)− pτ + θS,

with temperature θ and specific entropy s = −∂θG as well as pressure p and specific volume
τ = 1/ρ = ∂pG as pairs of conjugate variables, and the Ericksen tensor is

C = −ρ∇χ⊗ ∂G

∂∇χ
.

We will also use the generalized chemical potential

µ ≡ ∂χG−
1

ρ
∇·

(
ρ∂∇χG

)
,

Lemma 2.1. For solutions to (2.8), the entropy production along particle paths satisfies

ρθṡ = S : Du+∇·(β∇θ)−∇·w − ρ(G∇χ · ∇j +Gχj). (2.9)

Proof. This is shown in exactly the same way as equation (2.7) in [6].

Lemma 2.2. With
w = −ρj∂∇χG, (2.10)

equation (2.9) reads
ρθṡ = S : Du+∇·(β∇θ)− ρjµ. (2.11)

Proof. One computes

−∇·w − ρ(G∇χ · ∇j +Gχj) = j(−ρGχ +∇·(ρG∇χ)).

The next result distinguishes between NSAC and NSCH.
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Lemma 2.3. Assume (2.10).
(i) With

j = jAC = −µ
ε
, (2.12)

the entropy production on solutions of (2.8) is given by (2.5) with

Σ =
β

θ
∇θ (2.13)

and
σ =

1

θ
S : Du+

β

θ2
|∇θ|2 +

ε

θ
ρj2. (2.14)

(ii) With

j = jCH =
1

ρ
∇·J , J = γ∇

(
µ

θ

)
, (2.15)

the entropy production on solutions of (2.8) is given by (2.5) with

Σ =
β

θ
∇θ − γ µ

θ
∇
(
µ

θ

)
(2.16)

and

σ =
1

θ
S : Du+

β

θ2
|∇θ|2 + γ

∣∣∣∣∇(µθ
)∣∣∣∣2. (2.17)

Proof. Immediate.

Equations (2.8) with interstitial work flux w as in (2.10) and j = jAC , j = jCH as in
(2.12),(2.15) are the NSAC and NSCH equations proposed in [14, 10, 2].5 We view the
considerations of this subsection certainly not as a new derivation of NSAC and NSCH6,
but as perhaps elucidating the role that interstitial work plays in connection with the second
law of thermodynamics also in these two phase-field models.

3. Reduction to Korteweg models

Assume now that a fluid consists of two incompressible phases of different temperature-
independent specific volumes. I.e. (cf. [6]), its Gibbs energy has the form

G(p, θ, χ,∇χ) = T (χ)p+W (θ, χ,∇χ) with W (θ, χ,∇χ) = W̌ (θ, χ, |∇χ|2), (3.1)

where
T (χ) = χτ1 + (1− χ)τ2 (3.2)

with constants τ1, τ2 > 0 satisfying

τ∗ ≡ τ1 − τ2 6= 0. (3.3)
5Though not to every detail in the NSCH case, as Lowengrub and Truskinovsky seem to either use a

law from isothermal diffusion or leave constitutive laws in particular for the heat and diffusion fluxes widely
open; see equations (3.24b), (3.30) in [10]. The latter is very meaningful, cf. [11].

6Rather must we point out that Remarks 2.1, 2.2, 2.3 in [6] are no longer in order as soon as one does
take the microforces into account.
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3.1. Reduction of the Navier-Stokes-Allen-Cahn system

Theorem 3.1. In the case of two molecularly immiscible incompressible phases of different,
temperature-independent specific volumes, (3.1), (3.2), (3.3), the Navier-Stokes-Allen-Cahn
equations (2.8) with j = jAC from (2.12) and w from (2.10) can be written as the Navier-
Stokes-Korteweg system

∂tρ+∇·(ρu) = 0,

∂t(ρu) +∇·(ρu⊗ u)−∇·(−p̄I + K + Sε) = 0,

∂tĒ +∇·(Ēu− (−p̄I + K + Sε)u+w̄)−∇·(β∇θ) = 0,

(3.4)

with Ē , p̄,K, w̄ derived as in 2.3 from the Helmholtz energy

F̄ (θ, ρ,∇ρ) = W (θ, χ̄(ρ), [χ̄′(ρ)]2|∇ρ|2) with χ̄(ρ) :=
1/ρ− τ2

τ∗

and with the modified viscous stress

Sε = 2η(Du)s0 + (ζ + ζε)∇·u I where ζε ≡ ε

ρτ2∗
. (3.5)

Proof. In this situation, the concentration χ and the total density ρ are linked through

χ = χ̄(ρ), (3.6)

and the behaviour of the concentration is described by

ρj = ∂t(ρχ) +∇·(ρχu) = ρχ̇ = ρχ̄′(ρ)ρ̇ =
1

τ∗
∇·u. (3.7)

Very similarly to [6], we have

∂∇χG = ∂∇χW =
1

χ̄′(ρ)
∂∇ρF̄ , ∇χ = χ̄′(ρ)∇ρ. (3.8)

Using (2.10) and (3.7), this implies

w = −ρχ̇ ∂∇χG = ρ2(∇·u) χ̄′(ρ) ∂∇χG = ρ2(∇·u) ∂∇ρF̄ = κρ(∇·u)∇ρ = w̄. (3.9)

Furthermore,

∂χG = τ∗p+ ∂χW (3.10)

and
1

τ∗
∂χW = −ρ2∂ρF̄ + ρ2

χ̄′′(ρ)

χ̄′(ρ)
∇ρ · ∂∇ρF̄ , (3.11)

imply that

ρµ = −
(
∇·

(
ρ∂∇χG

)
− ρ∂χG

)
= −

(
∇·

(
[χ̄′(ρ)]−1∂∇ρ

(
ρF̄

))
− ρτ∗p− ρ∂χW

)
. (3.12)
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This allows to represent the pressure as

p =
µ

τ∗
∇·u− ρχ̄′(ρ)∇·

(
[χ̄′(ρ)]−1∂∇ρ(ρF̄ )

)
− 1

τ∗
∂χW. (3.13)

Combining (3.13) and (3.7) with the Allen-Cahn relation (2.12) gives

p = − ε

τ2∗ρ
∇·u− ρχ̄′(ρ)∇·

(
[χ̄′(ρ)]−1∂∇ρ(ρF̄ )

)
− 1

τ∗
∂χW. (3.14)

Using this, we get

−pI + C + S = −p I−∇χ⊗ ∂∇χ(ρW ) + S

=
1

τ∗
∂χW I + ρχ̄′(ρ)∇·

(
[χ̄′(ρ)]−1∂∇ρ(ρF̄ )

)
I−∇ρ⊗ ∂∇ρ(ρF̄ ) + Sε

=
1

τ∗
∂χW I + ρ∇·

(
∂∇ρ(ρF̄ )

)
I− ρ2 χ̄

′′(ρ)

χ̄′(ρ)
∇ρ · ∂∇ρF̄ I−∇ρ⊗ ∂∇ρ(ρF̄ ) + Sε,

where we have used (3.6) and (3.5). Replacing now the term ∂χW according to the identity
(3.11), we indeed find

−pI + C + S = −p̄I +

[
ρ∇·

(
∂∇ρ

(
ρF̄

))
I−∇ρ⊗ ∂∇ρ

(
ρF̄

)]
+ Sε

= −p̄I + K + Sε
(3.15)

with the Korteweg tensor K as defined in (2.3).

As a consistency check, we note that in the situation of Theorem 3.1, the entropy pro-
duction rate (2.14) agrees with what (2.7) becomes upon replacing ζ with ζ + ζε:

ερ

θ
j2AC =

ε

ρθτ2∗
|∇·u|2 =

ζε

θ
|∇·u|2.

3.2. Reduction of the Navier-Stokes-Cahn-Hilliard system

Theorem 3.2. In the case of two molecularly immiscible incompressible phases of different,
temperature-independent specific volumes, (3.1), (3.2), (3.3), the Navier-Stokes-Allen-Cahn
equations (2.8) with j = jCH from (2.15) and w from (2.10) can be written as the Navier-
Stokes-Korteweg system

∂tρ+∇·(ρu) = 0,

∂t(ρu) +∇·(ρu⊗ u)−∇·(−p̄I + K + Sγ) = 0,

∂tĒ +∇·(Ēu− (−p̄I + K + Sγ)u+w)−∇·(β∇θ) = 0,

(3.16)

with Ē , p̄,K, w̄ derived as in 2.3 from the Helmholtz energy

F̄ (θ, ρ,∇ρ) = W (θ, χ̄(ρ), [χ̄′(ρ)]2|∇ρ|2) with χ̄(ρ) :=
1/ρ− τ2

τ∗

and with the modified viscous stress

Sγ = 2η(Du)s0 + ζ∇·u I +
θ

τ2∗
Λγ(∇·u)I, (3.17)
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where Λγ denotes the solution operator of the elliptic problem

−∇·(γ∇φ) = ∇·u on Ω.

Proof. The only difference from the proof of Theorem 3.1 lies in the form of the representa-
tion for the pressure p. We keep using identities (3.6) through (3.13). As the Cahn-Hilliard
relation (2.15) means that

µ = − θ

τ∗
Λγ(∇·u), (3.18)

identity (3.13) now yields

p = − θ

τ2∗
Λγ(∇·u)− ρχ̄′(ρ)∇·

(
[χ̄′(ρ)]−1∂∇ρ(ρF̄ )

)
− 1

τ∗
∂χW (3.19)

instead of (3.13). This leads to

−pI + C + S = −p̄I + K + Sγ (3.20)

instead of (3.15).

For a confirmation, set
φ = Λγ(∇·u),

note that for (3.16), the entropy balance (2.5) holds with

Σ ≡ β

θ
∇θ − γ

τ2∗
φ∇φ

and
σ ≡ 1

θ

(
η(Du)s0 : (Du)s0 + ζ(∇·u)2

)
+
β

θ2
|∇θ|2.+ γ

τ2∗
|∇φ|2

instead of (2.6) and (2.7), and observe that in the present situation (3.18) implies that

φ = −τ∗
µ

θ

in accordance with (2.16) and (2.17).

4. Spatiotemporal objectivity

In [6], arguing against the interstitial work that was so ingeniously discovered by Dunn
and Serrin in [3], we claimed that using the corresponding term in the energy equation “would
violate the fundamental requirement that the contributions of a stress tensorT to momentum
and energy balance are related as ∇·T and ∇· (Tu)” (p. 10). However, instead of being
fundamental, this ‘requirement’ is fundamentally wrong – in particular it is not dictated
by the principle of objectivity; see below. Regarding NSK, besides by the persuasiveness
of Dunn and Serrin’s argumentation based on the Clausius-Duhem inequality, we should
have felt alarmed by the fact that Benzoni-Gavage et al. in [1] had already identified a
Hamiltonian structure for the Euler-Korteweg equations which confirms Dunn and Serrin’s
formulation. Regarding NSAC and NSCH, the equally solid derivations by Truskinovsky,
Lowengrub and Truskinovsky, and Blesgen were other signs of warning.
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Still, we noticed the inappropriateness7 of the above ‘requirement’ only when we began8

to formulate relativistic versions of NSK, NSAC, and NSCH. Also 3-tensors that reflect
purely mechanical stresses must respect spatiotemporal objectivity. In particular, the Korte-
weg tensor occuring in NSK and the phase transition rate / interphase diffusion flux figuring
as j in NSAC and NSCH come from relativistically covariant tensorial quantities that de-
rive from energies which depend, objectively in the sense of Rational Mechanics, on the
spatiotemporal 4-gradient of density/concentration, and interstitial work is a natural impli-
cation of this property. Related details can be found in [4, 5].
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