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Abstract

Integration with respect to a fractional Brownian motion with
Hurst parameter 1/2 < H < 1 is related to the inner product:

(f, g)H = H(2H − 1)
∫

R

∫

R
f(s)g(t)|t− s|2H−2dsdt.

In this paper we provide an example, which shows that multiplication
with an indicator function can increase the corresponding norm. We
discuss the significance of this result for the quasi-conditional expec-
tation and the fractional Clark-Ocone derivative introduced in Hu and
Øksendal (2000). Finally, we prove a new version of the fractional
Clark-Ocone formula.

Keywords: counterexamples; fractional Brownian motion; fractional
chaos expansion; fractional Clark-Ocone formula; quasi-conditional ex-
pectation

1 Introduction

In the Brownian motion case the Clark-Ocone formula identifies the inte-
grand in the integral representation of a square integrable FT -measurable
random variable F :

F = E[F ] +
∫ T

0
YtdBt
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as Yt = E[DtF |Ft]. Here Dt is the Malliavin derivative of F at time t. For
sufficiently regular random variables this result was first proven by Clark
(1970). Recently, it was generalized in a white noise setting by Aase et al.
(2000) using generalizations of the Malliavin derivative and the conditional
expectation. Fractional analogues of the results in Aase et al. (2000) have
been proposed in Hu and Øksendal (2000) and Elliott and van der Hoek
(2001), where the stochastic integral with respect to the fractional Brown-
ian motion is understood in the Wick-Itô sense. These results rely on the
notion of quasi-conditional expectation, which is defined in terms of multi-
ple fractional Wiener integrals. However, as we shall prove, even if a square
integrable random variable F has an expansion in terms of multiple frac-
tional Wiener integrals, its quasi-conditional expectation need not exist as
a square integrable random variable (theorem 5.2). This is a consequence
of the fact that multiplication with an indicator function does not decrease
the norm

|f |H = H(2H − 1)
∫

R

∫

R
f(s)f(t)|t− s|2H−2dsdt,

(lemma 4.3). Note this norm replaces the L2(R)-norm in the integration
theory with respect to a fractional Brownian motion with Hurst parameter,
1/2 < H < 1, and thus plays a crucial role in the fractional chaos expansion
and the operators defined in terms of this expansion. Another consequence
of this lemma is that the fractional Clark-Ocone derivative does not exist
on a set of positive Lebesgue measure as square integrable random variable
even for very regular fractional Malliavin differentiable random variables,
(theorem 6.2). This shows that the strong version of the fractional Clark-
Ocone formula first proposed in Hu and Øksendal (2000) does not hold.
(Indeed, parts of the proof are based on the incorrect assumption, that
multiplication with an indicator function decreases the | · |H -norm.) Having
observed these problems, we finally prove a new version of the fractional
Clark-Ocone formula for Hurst parameter 1/2 < H < 1 and an appropriate
class of random variables.

The paper is organized as follows: In section 2 we recall some results
from the Brownian motion case. A basic approach to the fractional Wick-
Itô integral is presented in section 3, while a class of deterministic integrands
is discussed in section 4. Lemma 4.3, proving that the | · |H -norm can be in-
creased by multiplication with an indicator function, is the basic counterex-
ample of this paper. In section 5 we prove a fractional chaos expansion for
an appropriate class of random variables and discuss the quasi-conditional
expectation operator. Finally, section 6 is devoted to the fractional Clark-
Ocone theorem. A new version of this theorem for an appropriate class of
random variables is presented. A counterexample shows that opportunities
for generalizations of this theorem are quite restricted.
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2 The Brownian Motion Case

In this section we recall some facts regarding the Wiener chaos expansion
and sketch a proof of the Clark-Ocone theorem with respect to a Brownian
motion. Let (Ω,F , P ) be a probability space, that carries two independent
Brownian motions B

(1)
t and B

(2)
t , 0 ≤ t < ∞. Then the process

Bt := B
1/2
t :=

{
B

(1)
t , if t ≥ 0

B
(2)
−t , if t < 0

is a two-sided Brownian motion, i.e. a continuous process such that (Bt)t∈R
is a centered Gaussian family with covariance

E[BtBs] =
1
2

(|t|+ |s| − |t− s|) ; t, s ∈ R. (1)

Iterated Itô integrals of order n ≥ 1 can now be defined for fn ∈ L2(Rn) by:

In(fn) := n!
∫ ∞

0

∫ tn

0
· · ·

∫ t2

0
fn(t1, . . . , tn)dB

(1)
t1
· · · dB

(1)
tn−1

dB
(1)
tn

− n!
∫ ∞

0

∫ tn

0
· · ·

∫ t2

0
fn(−t1, . . . ,−tn)dB

(2)
t1
· · · dB

(2)
tn−1

dB
(2)
tn (2)

By convention we define the space L2(R0) to be the space R of real num-
bers and I0 to be the identity mapping. Another common name for these
integrals is multiple Wiener integrals of order n. Note also, that we assume
all function spaces to be real.

Applying the Itô isometry we see that In(fn) ∈ L2(Ω,F , P ). Let now
G be the σ-field generated by

{
I1(f), f ∈ L2(R)

}
and denote (L2) :=

L2(Ω,G, P ). Then the following well known theorem is valid:

Theorem 2.1 (Wiener Chaos Decomposition). (i) For every F ∈ (L2)
there is a sequence (fn)n∈N0 such that fn ∈ L2(Rn) and

F =
∞∑

n=0

In(fn) (convergence in (L2)). (3)

(ii) Under the additional assumption that all fn are symmetric, the expan-
sion (3) is unique. It is called the chaos decomposition of F .
(iii) The (L2)-norm of F is given in terms of its chaos decomposition by:

E[F 2] =
∞∑

n=0

n!
∫

Rn

f2
n(s)ds. (4)
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Let Ft := σ(B(1)
s ; 0 ≤ s ≤ t). Taking (2) into account we see, that

E[In(fn)|FT ] = n!
∫ T

0

∫ tn

0
· · ·

∫ t2

0
fn(t1, . . . , tn)dBt1 · · · dBtn−1dBtn (5)

Assume now, that F is FT -measurable and its chaos decomposition is given
by (3). In view of (5)

F =
∞∑

n=0

n!
∫ T

0

∫ tn

0
· · ·

∫ t2

0
fn(t1, . . . , tn)dBt1 · · · dBtn−1dBtn . (6)

Now

∇tF :=
∞∑

n=1

n!
∫ t

0
· · ·

∫ t2

0
fn(t1, . . . , t)dBt1 · · · dBtn−1 ∈ L2([0, T ], (L2)), (7)

which can be checked by proving that the sequence of the partial sums is
Cauchy in L2([0, T ], (L2)) making use of theorem 2.1, (iii). We can then
interchange the last integral in (6) with the sum, using the Itô isometry,
and obtain (noting E[F ] = f0):

F = E[F ] +
∫ T

0
∇tFdBt. (8)

Formula (8) is called the Clark-Ocone formula. We refer to ∇tF as
the generalized Clark-Ocone derivative of F . If F is sufficiently regular,
∇tF = E[DtF |Ft], where Dt denotes the Malliavin derivative at time t,
see Nualart (1995) and the references therein. In general one can extend
both the conditional expectation operator and the Malliavin derivative to a
stochastic distribution space G∗. Using these extended operators the iden-
tity ∇tF = E[DtF |Ft] also holds for almost all t in (L2), see Aase et al.
(2000).

In the rest of this paper we shall discuss whether a similar formula holds
for Wick-Itô integrals with respect to a fractional Brownian motion BH ,
1/2 < H < 1. In different settings such results have been stated in Hu
and Øksendal (2000) and Elliott and van der Hoek (2001). The results are
based on the so called quasi-conditional expectation operator. However, as
we shall show, the quasi-conditional expectation of an (L2)-random variable
need not exist in (L2). We are going to discuss the significance of this result
for a fractional analogue of the Clark-Ocone formula and prove a new version
of this formula. We first recall a basic approach to the fractional Wick-Itô
integral.

3 The Fractional Itô Integral

First, recall, that a (two sided) fractional Brownian motion is defined as
follows:
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Definition 3.1. A continuous stochastic process (BH
t )t∈R is called a (two

sided) fractional Brownian motion with Hurst parameter H, 0 < H <1, if
the family of random variables (BH

t )t∈R is centered Gaussian with

E[BH
t BH

s ] =
1
2

(|t|2H + |s|2H − |t− s|2H
)
; t, s ∈ R. (9)

In this paper we consider fractional Brownian motions with Hurst pa-
rameter 1/2 < H < 1. Starting with a two sided Brownian motion they can
be constructed with the help of fractional integral operators in the following
way:

For a, b ∈ R let the indicator function be given by:

1(a, b)(t) =





1, if a ≤ t < b
−1, if b ≤ t < a
0, otherwise.

(10)

Furthermore let

KH := Γ(H + 1/2)
(∫ ∞

0

(
(1 + s)H−1/2 − sH−1/2

)
ds +

1
2H

)−1/2

,

and define the operator

MH
± f := KHI

H−1/2
± f, (11)

where Iα±, 0 < α < 1, is the fractional integral of Weyl’s type defined by

(Iα
−f)(x) :=

1
Γ(α)

∫ ∞

x
f(t)(t− x)α−1dt,

(Iα
+f)(x) :=

1
Γ(α)

∫ x

−∞
f(t)(x− t)α−1dt,

if the integrals exist for almost all x ∈ R.
In view of the Mandelbrot and Van Ness (1968) representation it is

straightforward, that a continuous version of the Wiener integral

I1

(
MH
− 1(0, t)

)
,

as defined in (2), is a fractional Brownian motion with Hurst parameter
1/2 < H < 1. This fractional Brownian motion is denoted by BH .

Integration with respect to BH can be defined in terms of the S-
transform:

Definition 3.2. For F ∈ (L2) the S-transform is defined by

SF (η) := E
[
F · : eI1(η) :

]
; η ∈ S(R). (12)

Here the Wick exponential of I1(η) is given by : eI1(η) : = eI1(η)− 1
2

R
R η(t)2dt

and S(R) denotes the Schwartz space of smooth, rapidly decreasing func-
tions.
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As the S-transform is injective, i.e. SF (η) = SG(η) for all η ∈ S(R)
implies F = G, (see e.g. Bender, 2002b, theorem 2.4), the following is well
defined:

Definition 3.3. Let X : M → (L2) (M ⊂ R a Borel set). Then X is
said to have a fractional Itô integral, if S(Xt)(η)(MH

+ η)(t) ∈ L1(M) for any
η ∈ S(R) and there is a Φ ∈ (L2) such that for all η ∈ S(R)

SΦ(η) =
∫

M
S(Xt)(η)(MH

+ η)(t)dt.

In that case Φ is denoted by
∫
M XtdBH

t and is called a fractional Itô integral.

It is shown in Bender (2002b), that (MH
+ η)(t) = d

dtS(BH
t )(η). Hence,

∫

R
1(0, T )(t)dBH

t = BH
T (13)

In the same paper it is shown, that an analogous definition in the Brow-
nian motion case extends the Skorohod integral and hence the Itô integral,
which is the motivation for the above definition. Moreover, the definition is
essentially equivalent to the Malliavin calculus definition of a fractional Itô
integral given in Decreusefond and Üstünel (1998) and Alòs et al. (2001),
and to the white noise definitions in Hu and Øksendal (2000), Elliott and
van der Hoek (2001) and Bender (2002a). More details of the relationship
between the different definitions can be found in Bender (2002b).

4 The Space |L2
H |

In the case of a fractional Brownian motion the appropriate space of de-
terministic integrands is L2(R). However, no appropriate function space of
deterministic integrands is known when H > 1/2. Let us first explain what
we mean with an appropriate linear space XH of deterministic integrands.
It should satisfy the following conditions:
(D1) XH is a linear function space endowed with an inner product (·, ·)XH

.
(D2) The linear span of the indicator functions of the form (10) is dense in
XH .
(D3) All functions f ∈ XH are fractionally Itô integrable in the sense of
definition 3.3, (with M = R), and the fractional Itô integral is an isometry
from XH into (L2).
(D4) XH is complete.

Conditions (D1)–(D4) mean that the fractional Itô integral is an isomet-
ric isomorphism from XH into the (L2)-closure of span{BH

t ; t ∈ R}, such
that (13) holds.

Let us roughly explain, why we cannot expect to find an appropriate
space XH in the case H > 1/2: Note, that the operator MH− is basically
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an integral operator. Hence, its inverse operator, if it exists, should be
sort of a differential operator. The image of L2(R) under this differential
operator should be a good space of integrands. However, by applying a
differential operator to an L2(R)-function, we should expect to obtain a
tempered distribution in general and not a function. We mention, that in a
suitable sense the inverse operator of MH− is, up to a constant, a fractional
derivative of Marchaud’s type, (see Samko et al., 1993, for details).

Thus, we cannot expect the following space to be complete:

|L2
H(R)| :=

{
f : R→ R;

∫ ∞

x
|f(t)|(t− x)H−3/2dt ∈ L2(R)

}
(14)

when equipped with the inner product

(f, g)H :=
∫

R
(MH

− f)(s)(MH
− g)(s)ds. (15)

Denote the corresponding norm by | · |H .
From the results in Pipiras and Taqqu (2000) the following theorem is

easy to derive:

Theorem 4.1. The space |L2
H(R)| satisfies (D1)–(D3), but not (D4).

Proof. By Pipiras and Taqqu (2000, section 4), L2
H(R) satisfies (D1), (D2)

and not (D4). To prove (D3) let us show that for f ∈ |L2
H(R)|

∫

R
f(t)dBH

t = I1(MH
− f). (16)

Then it follows form theorem 2.1, (iii), that the fractional Itô integral is an
isometry from |L2

H(R)| in (L2). By Bender (2002b, theorem 3.1)

S(I1(MH
− f))(η) =

∫

R
(MH

− f)(t)η(t)dt.

Hence, (16) follows from definition 3.3 and the fractional integration by parts
rule below, (proposition 4.2, (i)).

The following properties of the space |L2
H(R)| are useful:

Proposition 4.2. (i) Fractional integration by parts. Let f ∈ |L2
H(R)| and

g ∈ L2(R). Then:
∫

R
(MH

− f)(s)g(s)ds =
∫

R
f(s)(MH

+ g)(s)ds

(ii) Let f, g ∈ |L2
H(R)|. Then:

(f, g)H = H(2H − 1)
∫

R

∫

R
f(s)g(t)|t− s|2H−2dsdt

(iii) L1/H(R) ⊂ |L2
H(R)| (in the sense of a continuous embedding).
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Proof. (i) By assumption MH− (|f |) ∈ L2(R). Hence,

KH

∫

R

∫

R
1{t>s}|g(s)||f(t)||t− s|H−3/2dtds =

∫

R
MH
− (|f |)(s)|g(s)|ds < ∞

Consequently, we can interchange the order of integration by Fubini’s theo-
rem to obtain the assertion.
(ii) See Pipiras and Taqqu (2000, section 4).
(iii) is a reformulation of the Hardy-Littlewood theorem, (Samko et al., 1993,
theorem 5.3).

From the definition it is obvious that the space |L2
H(R)| is invariant under

multiplication with an indicator function. However, it is not true in general
that multiplication with an indicator function decreases the |L2

H(R)|-norm:

Lemma 4.3. Let 1/2 < H < 1 and c := 21/(2H−1) · (21/(2H−1)− 1)−1. Then
there is a real number a > 1 (depending on H) such that the function

f = 1(0, a)− 1(a, ca)

satisfies
|f |H < 1 < tH = |1(0, t)f |H

for all t ∈ (1, a).

Proof. Using either (9), (13) and (D3) or proposition 4.2, (ii) one can cal-
culate:

|f |2H = |1(0, a)|2H + |1(a, ca)|2H − 2 (1(0, a),1(a, ca))H

= a2H + (ca− a)2H − a2H − (ca)2H + (ca− a)2H + 2a2H

= a2H
[
2 + 2(c− 1)2H − c2H

]
. (17)

Substituting the definition of c into (17) we obtain, after some elementary
manipulations:

|f |2H = 2a2H

[
1−

(
21/(2H−1) − 1

)−2H+1
]

.

As −2H + 1 < 0 we see that
(
21/(2H−1) − 1

)−2H+1
> 1/2. Hence, we can

find a real number a > 1 such that

|f |2H < 1.

However, as 1 < t < a we have:

|1(0, t)f |2H = |1(0, t)|2H = t2H > 1

and the proof is complete.
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Remark 4.1. Note, that this lemma does not explicitly make use of the
operator IH− . Indeed, the same result is true for every linear space XH with
inner product (·, ·)XH

, such that XH contains all indicator functions of the
form (10), and the inner product extends the isometry

(1(0, t),1(0, s))XH
= E[BH

t BH
s ] =

1
2

(|t|2H + |s|2H − |t− s|2H
)
.

In our subsequent analysis of fractional Brownian motions with Hurst
parameter 1/2 < H < 1 the spaces |L2

H(R)| will play the role of the space
L2(R) in the classical Brownian motion case. Although these spaces inherit
some nice properties, we have already exhibited two bad properties. These
spaces are not complete and multiplication with an indicator function does
not in general decrease the norm. We should mention that an inner product
space larger than |L2

H(R)| has been suggested in several papers, e.g. Pipiras
and Taqqu (2000). It consists of functions such that MH− f ∈ L2(R) endowed
with the inner product (15). It is proven in Pipiras and Taqqu (2000)
that this space is strictly larger than |L2

H(R)|, but it also is not complete.
Obviously, lemma 4.3 applies for this space, too. So we would have the
same bad properties in this larger space. Moreover, it is not clear whether
proposition 4.2 holds for this larger space in general.

5 Fractional Chaos Decomposition and Quasi-
Conditional Expectation

We have already seen in the proof of theorem 4.1, that for f ∈ |L2
H(R)|

∫

R
f(t)dBH

t = I1(MH
− f).

Motivated by this identity we shall now define multiple fractional Wiener
integrals (see also Duncan et al., 2000; Hu and Øksendal, 2000; Elliott and
van der Hoek, 2001). We first need to fix some notation: For a symmetric
function fn : Rn → R we define the operator MH,n

− fn by iterated application
of the operator MH− to the n variables of f , provided these iterated Lebesgue

integrals exist for almost all (t1, · · · , tn) ∈ Rn. Then the space |L̂2
H(Rn)|

is defined to consist of all symmetric functions fn : Rn → R such that
MH,n
− (|fn|) ∈ L2(Rn). Indeed, MH,n maps |L̂2

H(Rn)| in a subspace of the

symmetric functions in L2(Rn). For fn ∈ |L̂2
H(Rn)| the multiple fractional

Wiener integral of order n is then defined by:

IH
n (fn) := In(MH,n

− fn). (18)

We now prove that the multiple fractional Wiener integral is, indeed, an
iterated fractional Itô integral :
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Theorem 5.1. Let fn ∈ |L̂2
H(Rn)|. Then the iterated fractional Itô integral

n!
∫

R

∫ tn

−∞
· · ·

∫ t2

−∞
fn(t1, . . . , tn)dBH

t1 · · · dBH
tn−1

dBH
tn

exists and equals IH
n (f).

Proof. For 1 ≤ k ≤ n− 1 let

fk(t1, . . . , tn) := 1(−∞, tk+1)⊗k(t1, . . . , tk)fn(t1, . . . , tn)

By the assumption we see that for all 1 ≤ k ≤ n the func-
tion fk(·, tk+1, . . . , tn) is in the domain of the operator MH,k

− and
(MH,k

− fk(·, tk+1, . . . , tn)) ∈ L2(Rk) for almost all (tk+1, . . . , tn). Moreover,
MH,k
− fk is symmetric in the first k variables, since fk is. Applying a slight

generalization of theorem 3.1 in Bender (2002b) k-times, we obtain for
1 ≤ k ≤ n and almost all (tk+1, . . . , tn):

S
(
Ik((M

H,k
− fk)(·, tk+1, . . . , tn))

)
(η)

= k!
∫ ∞

0
· · ·

∫ t2

0
MH,k
− fk(t1, . . . , tn)η(t1) · · · η(tk)dt1 · · · dtk

+k!
∫ ∞

0
· · ·

∫ t2

0
MH,k
− fk(−t1, . . . ,−tn)η(−t1) · · · η(−tk)dt1 · · · dtk

=
∫

R
· · ·

∫

R
MH,k
− fk(t1, . . . , tn)η(t1) · · · η(tk)dt1 · · · dtk.

Fractional integration by parts yields, (letting, by convention, tn+1 = ∞):

S
(
Ik((M

H,k
− fk)(·, tk+1, . . . , tn)

)
(η)

=
∫

R
· · ·

∫

R
fk(t1, . . . , tn)MH

+ η(t1) · · ·MH
+ η(tk)dt1 · · · dtk

= k!
∫ tk+1

−∞
· · ·

∫ t2

−∞
fn(t1, . . . , tn)MH

+ η(t1) · · ·MH
+ η(tk)dt1 · · · dtk.

Hence proceeding iteratively, we see by definition 3.3, that for all 0 ≤ k ≤ n
the iterated fractional Itô integral

k!
∫ tk+1

−∞
· · ·

∫ t2

−∞
fn(t1, . . . , tn)dBH

t1 · · · dBH
tk

exists for almost all (tk+1, . . . , tn) and equals Ik((M
H,k
− fk)(·, tk+1, . . . , tn)).

The particular case k = n yields the assertion.
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We can now define the space (L2
H) to be the subspace of (L2) random

variables F such that the chaos decomposition is of the form:

F =
∞∑

n=0

In(MH,n
− fn) (19)

with fn ∈ |L̂2
H(Rn)|. As the space |L2(R)| is not complete (L2

H) is a strict
subspace of (L2). Note that, by the previous theorem, F ∈ (L2

H) allows an
expansion in terms of iterated fractional Itô integrals:

F =
∞∑

n=0

n!
∫

R

∫ tn

−∞
· · ·

∫ t2

−∞
fn(t1, . . . , tn)dBH

t1 · · · dBH
tn−1

dBH
tn . (20)

Motivated by (5), and following the ideas of Hu and Øksendal (2000), we
define the H-quasi-conditional expectation of a random variable F ∈ (L2

H)
with fractional chaos expansion (20) by:

Ẽ[F |FH
T ] :=

∞∑

n=0

n!
∫ T

0

∫ tn

0
· · ·

∫ t2

0
fn(t1, . . . , tn)dBH

t1 · · · dBH
tn−1

dBH
tn (21)

provided the series converges in (L2). By theorem 5.1 this definition is
equivalent to the (L2)-convergence of

Ẽ[F |FH
T ] =

∞∑

n=0

In(MH,n
− (1(0, T )⊗nfn)). (22)

We now prove that the quasi-conditional expectation of an (L2
H) random

variable need not exist as an element of (L2):

Theorem 5.2. Fix 1/2 < H < 1 and let fn = (n!)−1/2f⊗n, where f is the
function of lemma 4.3. Then:
(i) F :=

∑∞
n=0 IH

n (fn) ∈ (L2
H).

(ii) For all T ∈ (1, a) Ẽ[F |FH
T ] does not exist in (L2).

Proof. (i) We have to show that:
∞∑

n=0

n!
∫

Rn

|(MH,n
− fn)(s)|2ds < ∞.

However,

n!
∫

Rn

|(MH,n
− fn)(s)|2ds =

[∫

R
|(MH

− f)(t)|2dt

]n

= |f |2n
H .

By lemma 4.3 |f |2H < 1, and thus the series converges.
(ii) We have for 1 < T < a:

n!
∫

Rn

|MH,n
− (1(0, T )⊗nfn)(s)|2ds =

[∫

R
|MH

− (1(0, T )f)(t)|2dt

]n

= T 2Hn

11



by lemma 4.3. Thus,

∞∑

n=0

n!
∫

Rn

|MH,n
− (1(0, T )⊗nfn)(s)|2ds = ∞

implying that the series

∞∑

n=0

In(MH,n
− (1(0, T )⊗nfn))

does not converge in (L2). Hence, the assertion follows from (22).

6 On the Fractional Clark-Ocone Theorem

Recall, that in the Brownian motion case the Malliavin derivative of an (L2)
random variable F is defined in terms of its chaos expansion (3) by

DtF =
∞∑

n=1

nIn−1(fn(·, t))

provided the series converges in (L2) for almost all t ∈ R. F ∈ (L2)
is said to belong to the space D1,2, if it is Malliavin differentiable and
DtF ∈ L2(R, (L2)). In the case of a D1,2-random variable F the Clark-
Ocone derivative (7) is given by:

∇tF = E[DtF |Ft],

and the property ∇tF = E[DtF |Ft] ∈ L2(R, (L2)) follows directly from
Jensen’s inequality for the conditional expectation. It is obvious from the-
orem 5.2 that Jensen’s inequality does not hold for the quasi-conditional
expectation. This leads to problems in the analogous constructions with re-
spect to a fractional Brownian motion with Hurst parameter 1/2 < H < 1:

Definition 6.1. A random variable F ∈ (L2
H) with fractional chaos expan-

sion (20) is called fractional Malliavin differentiable, if

DH
t F =

∞∑

n=1

nIH
n−1(fn(·, t))

converges in (L2) for almost all t ∈ R.

In view of proposition 4.2, (ii), we define the space D1,2
H to be the space of

H-fractional Malliavin differentiable random variables F ∈ (L2
H) such that

∫

R

∫

R
E

[|DH
t F | · |DH

s F |] |t− s|2H−2dsdt < ∞ (23)

12



Moreover, the fractional Clark-Ocone derivative at time t of F ∈ (L2
H) is by

definition given by
∇H

t F := Ẽ[DH
t F |FH

t ]

provided F is fractional Malliavin differentiable and the quasi-conditional
expectation exists in (L2).

Contrary to the Brownian motion case we have:

Theorem 6.2. Fix 1/2 < H < 1 and let gn = (n · n!)−1/2f⊗n, where f is
the function of lemma 4.3. Then:
(i) G :=

∑∞
n=1 IH

n (gn) ∈ D1,2
H .

(ii) For all T ∈ (1, a) the fractional Clark-Ocone derivative ∇H
T G does not

exist.

Proof. (i) As in theorem 5.2 we have:

E[G2] =
∞∑

n=1

n−1|f |2n
H < ∞.

Consequently, G ∈ (L2
H). Moreover,

DH
t G =

∞∑

n=1

nIH
n−1(gn(·, t))

=
∞∑

n=1

nf(t)IH
n−1(n

−1(n− 1)!−1/2f⊗(n−1))

= f(t)
∞∑

n=1

(n− 1)!−1/2IH
n−1(f

⊗(n−1))

= f(t) · F (24)

where F is the random variable in theorem 5.2. Finally, by proposition 4.2,
∫

R

∫

R
E

[|DH
t G| · |DH

s G|] |t− s|2H−2dsdt = E[F 2] · |1(0, ca)|2H < ∞

proving that G ∈ D1,2
H .

(ii) By (24) and the definition of f we see, that DH
t G = F for 1 < T < a,

where F is the random variable in theorem 5.2. Hence, the assertion follows
from theorem 5.2, (ii).

The above theorem shows, that the strong version of the fractional Clark-
Ocone formula for (L2

H)-random variables first proposed in Hu and Øksendal
(2000), theorem 4.15 b), does not hold. We are going to prove a weaker
version now. To this end let us introduce the space |D1,2

H |: It consists of the

13



random variables F ∈ (L2
H) with fractional chaos decomposition (20) such

that: ∞∑

n=1

nn!
∫

Rn

(
MH,n(|fn|)(t)

)2
dt < ∞ (25)

Let us first prove the following proposition:

Proposition 6.3. |D1,2
H | ⊂ D1,2

H and the inclusion is strict.

Proof. Let F ∈ |D1,2
H | be given with fractional chaos decomposition (20). As

for almost all t ∈ R
∞∑

n=1

n2(n− 1)!
∫

Rn−1

(
(MH,n−1fn)(s1, . . . , sn−1, t)

)2
d(s1, . . . , sn−1)

≤
∞∑

n=1

nn!
∫

Rn−1

(
MH,n−1(|fn|)(s1, . . . , sn−1, t)

)2
d(s1, . . . , sn−1),

F is H-fractional Malliavin differentiable. Furthermore,
∫

R

∫

R
E

[|DH
t F | · |DH

s F |] |t− s|2H−2dsdt

≤
∫

R

∫

R
|t− s|2H−2

∞∑

n=1

nn!
∫

Rn−1

MH,n−1(|fn|)(s1, . . . , sn−1, t)

×MH,n−1(|fn|)(s1, . . . , sn−1, s)d(s1, . . . , sn−1)dsdt

=
∞∑

n=1

nn!
∫

R

∫

R
|t− s|2H−2

∫

Rn−1

MH,n−1(|fn|)(s1, . . . , sn−1, t)

×MH,n−1(|fn|)(s1, . . . , sn−1, s)d(s1, . . . , sn−1)dsdt

= [H(2H − 1)]−1
∞∑

n=1

nn!
∫

Rn

(
MH,n(|fn|)(t)

)2
dt. (26)

Hence, (23) holds, and the inclusion is proven. However, it is strict, since
the random variable G of theorem 6.2 is not an element of |D1,2

H |.
Remark 6.1. Again, this result is in contrast to the Brownian motion case,
where the space D1,2 can equivalently be defined by the property

∞∑

n=1

nn!
∫

Rn

|fn(t)|2dt < ∞.

Before we prove a fractional version of the Clark-Ocone theorem, let
us recall the notion of quasi-measurability introduced by Hu and Øksendal
(2000):

14



Definition 6.4. A random variable F ∈ (L2
H) is said to be quasi-FH

T -
measurable, if

Ẽ[F |FH
T ] = F.

Theorem 6.5. Let F ∈ |D1,2
H | be quasi-FH

T -measurable. Then the fractional
Clark-Ocone derivative of F exists at almost every time t ∈ [0, T ] and sat-
isfies: ∫ T

0

∫ T

0
E

[|∇H
t F | · |∇H

s F |] |t− s|2H−2dsdt < ∞.

Moreover, it is fractional Itô integrable and

F = E[F ] +
∫ T

0
∇H

t FdBH
t

Proof. Let F ∈ |D1,2
H | be given with fractional chaos decomposition (20).

Note first, that for t ∈ [0, T ] and n ≥ 1:
∫

Rn−1

(
MH,n−1(1(0, t)⊗(n−1)fn)(s1, . . . , sn−1, t)

)2
d(s1, . . . , sn−1)

≤
∫

Rn−1

(
MH,n−1(|fn|)(s1, . . . , sn−1, t)

)2
d(s1, . . . , sn−1). (27)

Hence by the definition of the space |D1,2|, the series

∇H
t F =

∞∑

n=1

nIH
n−1(1(0, t)⊗(n−1)fn(·, t))

converges in (L2) for almost all t ∈ [0, T ]. The integrability condition can
be checked in the same way as in (26), noting that by the assumed quasi-
measurability the support of fn is a subset of [0, T ]n.

From (21) and the definition of quasi-measurability we know, that

F = E[F ] +
∞∑

n=1

n!
∫ T

0

∫ tn

0
· · ·

∫ t2

0
fn(t1, . . . , tn)dBH

t1 · · · dBH
tn−1

dBH
tn .

Consequently,

(SF )(η) = E[F ] +
∞∑

n=1

n!
∫ T

0

∫ t

0
· · ·

∫ t2

0
fn(t1, . . . , tn−1, t)

×(MH
+ η)⊗n(t1, . . . , tn−1, t)dt1 · · · dtn−1dt. (28)

Using the symmetry of fn and applying fractional integration by parts and
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Young’s inequality we obtain:

∞∑

n=1

n!
∫ T

0

∫ t

0
· · ·

∫ t2

0
|fn(t1, . . . , tn−1, t)|

×|(MH
+ η)⊗n(t1, . . . , tn−1, t)|dt1 · · · dtn−1dt

≤
∞∑

n=1

∫

Rn

|1(0, T )⊗n(s)fn(s)| · (MH
+ |η|)⊗n(s)ds

=
∞∑

n=1

∫

Rn

MH,n
−

(|1(0, T )⊗nfn|
)
(s) · |η⊗n(s)|ds

≤ 1
2

∞∑

n=1

n!
∫

Rn

(
MH,n
− (|fn|)(s)

)2
ds +

1
2

∞∑

n=1

(n!)−1

∫

Rn

|η⊗n(s)|2ds

< ∞

by the definition of the space |D1,2
H (R)|. Hence, we can interchange the series

with the last integral in (28):

(SF )(η) = E[F ] +
∫ T

0

∞∑

n=1

n!
∫ t

0
· · ·

∫ t2

0
fn(t1, . . . , tn−1, t)

×(MH
+ η)⊗(n−1)(t1, . . . , tn−1)dt1 · · · dtn−1(MH

+ η)(t)dt

= E[F ] +
∫ T

0
S

(∇H
t F

)
(η)(MH

+ η)(t)dt.

In view of the definition of the fractional Itô integral the proof is finished.
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