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Abstract

An approximation of the Wick-Itô integral with respect to a frac-
tional Brownian motion by Wick-Riemann sums is provided. A
Stratonovich type integral with respect to a fractional Brownian mo-
tion is defined as a limit of Riemann sums with suitable intermediate
point. A change of variable formula for the Stratonovich type inte-
gral is proven for arbitrary Hurst parameter 0 < H < 1. Finally, this
result is applied to construct an arbitrage in a fractional analogue of
the Black-Scholes market and the class of Stratonovich self-financing
portfolios.

Keywords: approximation by (Wick-)Riemann sums, arbitrage, change
of variable formula, fractional Brownian motion, stochastic integration
(of Itô and Stratonovich type)

1 Introduction

Several definitions of integrals with respect to a fractional Brownian mo-
tion can be found in the literature. They can be basically divided into to
groups. The first one is of Wick-Itô-Skorohod type. It can be defined as
divergence operator (Skorohod integral) in a Malliavin calculus setting (see
Decreusefond and Üstünel, 1998; Alòs and Nualart, 2000; Alòs et al., 2001b)
and as a Hida distribution valued Pettis integral using Wick products in a
white noise setting (Hu and Øksendal, 2000; Elliott and van der Hoek, 2001;
Bender, 2002a). An S-transform based definition of this integral without
the complicated constructions of the white noise analysis can be found in
Bender (2002b). There are several reasons to call this kind of integral of
Itô type: (i) It reduces to the Itô integral in the Brownian motion case for
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adapted integrands, (ii) it has zero expectation, (iii) the Itô rule for this
integral has an additional term involving the second derivative.

Taking the fractional Itô isometry (Elliott and van der Hoek, 2001) into
account this integral can also be defined as an (L2)-limit of Wick-Riemann
sums for appropriate integrands. This approach was originally proposed
in Duncan et al. (2000). However, the isometry involves fractional inte-
gral, resp. differential, operators and Malliavin derivatives. Hence, dense-
ness results seem hard to prove. In this paper we suggest a completely
different way to obtain convergence results. Instead of (L2)-convergence
we consider the weaker convergence of the S-transform of Wick-Riemann
sums. Note this is also a first step to prove (L2)-convergence, since con-
vergence of the S-transforms and convergence of the (L2)-norms imply
strong (L2)-convergence (see Bender, 2002b, theorem 2.5). It truns out
that for (L2)-valued Riemann integrable integrands the convergence of the
S-transform of Wick-Riemann sums is nothing but the convergence of (real-
valued) Riemann-Stieltjes sums (lemma 3.2).

A second contribution of this paper regards the Stratonovich type inte-
gral with respect to a fractional Brownian motion. A new definition of this
type of integral as limit of pathwise product based Riemann sums with an
appropriate intermediate point is given. A feature of this definition is that
a wide class of functionals of a fractional Brownian motion is Stratonovich
integrable for all Hurst parameter 0 < H < 1 contrary to most definitions
in the literature (see remark 4.1). Moreover, theorem 4.3 seems to be the
first change of variable formula for a fractional Stratonovich integral that
holds for H < 1/4. That this formula coincides with the change of vari-
able formula of classical analysis, is a motivation for the name fractional
Stratonovich integral.

Finally, the change of variable formula is applied to prove the existence
of an arbitrage in an H-fractional Black-Scholes market and the class of
Stratonovich self-financing portfolios with arbitrary 0 < H < 1.

The organization of the paper is as follows: In Section 2 a construction
of a fractional Brownian motion is recalled. The S-transform and the Wick
product are introduced and some Wick products are calculated for later use.
The approximation result for the fractional Wick-Itô integral is proven in
section 3. Section 4 is devoted to the Stratonovich type, while section 5
contains some applications to finance.

2 Preliminaries

2.1 Construction of the Fractional Brownian Motion

Definition 2.1. A continuous stochastic process (BH
t )t∈R is called a (two

sided) fractional Brownian motion with Hurst parameter H, if the family
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(BH
t )t∈R is centered Gaussian with

E[BH
t BH

s ] =
1
2
(|t|2H + |s|2H − |t − s|2H

)
; t, s ∈ R. (1)

In the case H = 1/2, B1/2 is said to be a two sided Brownian motion.

We recall a construction of a fractional Brownian motion starting from
a Brownian motion. So let (Ω,F , P ) be a probability space that carries a
two sided Brownian motion B.

For a, b ∈ R we define the indicator function:

1(a, b)(t) =




1, if a ≤ t < b
−1, if b ≤ t < a
0, otherwise.

(2)

Furthermore let

KH := Γ(H + 1/2)
(∫ ∞

0

(
(1 + s)H−1/2 − sH−1/2

)
ds +

1
2H

)−1/2

,

and define the operator

MH
± f :=




KHD
−(H−1/2)
± f, 0 < H < 1/2
f, H = 1/2

KHI
H−1/2
± f, 1/2 < H < 1.

(3)

Here Iα±, 0 < α < 1, is the fractional integral of Weyl’s type defined by

(Iα
−f)(x) :=

1
Γ(α)

∫ ∞

x
f(t)(t − x)α−1dt,

(Iα
+f)(x) :=

1
Γ(α)

∫ x

−∞
f(t)(x − t)α−1dt,

if the integrals exist for almost all x ∈ R. Dα±, 0 < α < 1, is the fractional
derivative of Marchaud’s type given by (ε > 0)(

Dα
±,εf

)
(x) :=

α

Γ(1 − α)

∫ ∞

ε

f(x) − f(x ∓ t)
t1+α

dt

and (
Dα

±f
)

:= lim
ε→0+

(
Dα

±,εf
)
,

if the limit exists in Lp(R) for some p > 1. The notation Dα±f ∈ Lp(R)
indicates convergence in the Lp(R)-norm.

With these definitions we have:

Theorem 2.2. For 0 < H < 1 let the operators MH± be defined by (3).
Then MH− 1(0, t) ∈ L2(R) and a fractional Brownian motion BH is given by
a continuous version of the Wiener integral

∫
R

(
MH− 1(0, t)

)
(s)dBs.

Proof. Using elementary integration one can easily show that the representa-
tion of BH is the well known Mandelbrot-Van Ness representation (Mandel-
brot and Van Ness, 1968). More details can be found in Bender (2002a).
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2.2 The S-Transform and the Wick Product

In this section we give a definition of the Wick product in terms of the
S-transform.

We first introduce some notations. I(f) denotes the Wiener integral∫
R

f(s)dBs for a function f ∈ L2(R). |f |0 is the usual L2-norm, the corre-
sponding inner product is denoted by (f, g)0. Note that we interpret the
functions in L2(R) and in S(R), the Schwartz space of smooth rapidly
decreasing functions, as real valued. G denotes the σ-field generated by
{I(f); f ∈ L2(R)} and we define (L2) := L2(Ω,G, P ). The (L2)-norm is
denoted by ‖Φ‖0.

We can now define the S-transform:

Definition 2.3. For Φ ∈ (L2) the S-transform is defined by

SΦ(η) := E
[
Φ· : eI(η) :

]
; η ∈ S(R). (4)

Here the Wick exponential of I(η) is given by : eI(η) : = eI(η)− 1
2
|η|20.

As the S-transform is injective, i.e. (SΦ)(η) = (SΨ)(η) for all η ∈ S(R)
implies Φ = Ψ (see e.g. Bender, 2002b, theorem 2.4), the following is well
defined:

Definition 2.4. Let Φ,Ψ ∈ (L2). Then the Wick product of Φ and Ψ is
the unique element Φ � Ψ ∈ (L2), if it exists, that satisfies S(Φ � Ψ)(η) =
(SΦ)(η)(SΨ)(η) for all η ∈ S(R).

We note, that in general the Wick product of two (L2)-random variables
need not exist in the sense of the above definition. However, the definition
can be generalized in the context of Hida distributions (generalized random
variables), see Kuo (1996). Then the Wick product of two (L2)-random vari-
ables always exists as Hida distribution. Throughout this paper we restrict
ourselves to random variables. As we want to approximate a Wick-Itô type
integral with respect to fractional Brownian motion by Wick-Riemann sums
we are interested in the existence of the Wick product: Y � (BH

b −BH
a ) with

Y ∈ (L2), a < b ∈ R. A sufficient criterion can be stated in terms of the
Malliavin derivative:

Recall for a smooth random variable of the form F (I(ξ1), . . . , I(ξn))
with ξi ∈ L2(R) and F ∈ C∞(Rn) with polynomial growth the Malli-
avin derivative with respect to the underlying Brownian motion is given
by (t ∈ M, M ⊂ R a Borel set):

DtF =
n∑

i=1

∂F

∂xi
(I(ξ1), . . . , I(ξn))ξi(t).

DF is a closable operator from (L2) to L2(Ω, L2(M)). The domain of D is
denoted by D

1,2(M). For more information concerning the Malliavin calcu-
lus we refer to Nualart (1995).
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Theorem 2.5. Let a < b ∈ R and Y ∈ D
1,2((−∞, b]). Then:

(i) Y � (BH
b − BH

a ) exists in the sense of definition 2.4.
(ii) If additionally, Y (BH

b − BH
a ) ∈ (L2), then

Y � (BH
b − BH

a ) = Y (BH
b − BH

a ) −
∫ b

−∞
DsY (MH

− 1(a, b))(s)ds (5)

Proof. (i) Corollary 3.8 in Bender (2002b) applied to Xt = Y 1(a, b)(t) yields
the existence of an element Φ ∈ (L2) such that:

SΦ(η) =
∫ b

a
SY (η)(MH

+ η)(s)ds = SY (η)S
(
BH

b − BH
a

)
(η)

where the second identity follows from Bender (2002b, p.12).
(ii) follows from proposition 3.13 and (12) in Bender (2002b).

Basic Malliavin calculus yields the following corollary:

Corollary 2.6. Let T ∈ R and F ∈ C1(R) such that

max
{|F (x)|, |F ′(x)|} ≤ Ceλx2

for constants C ≥ 0 and λ < (2TH)−2. Then for all 0 ≤ a ≤ t ≤ b ≤ T :

F (BH
t ) � (BH

b − BH
a )

= F (BH
t )(BH

b − BH
a ) − 1

2
F ′(BH

t )
(
b2H − a2H − (b − t)2H + (t − a)2H

)
Proof. The growth condition ensures that F (BH

t )(BH
b − BH

a ) ∈ (L2),
F (BH

t ) ∈ D
1,2(R) and that

DsF (BH
t ) = F ′(BH

t )MH
− 1(0, t)(s).

The result now follows from the above theorem taking the isometry of the
Wiener integral and the covariance structure of the fractional Brownian
motion into account.

3 Approximation of the Wick-Itô Type Integral

An Itô type integral with respect to a fractional Brownian motion can be
defined in terms of the S-transform:

Definition 3.1. Let X : M → (L2) (M ⊂ R a Borel set). Then X is said to
be fractional Itô integrable, if S(Xt)(η)(MH

+ η)(t) ∈ L1(M) for any η ∈ S(R)
and there is a Φ ∈ (L2) such that for all η ∈ S(R)

SΦ(η) =
∫

M
S(Xt)(η)(MH

+ η)(t)dt.

In that case Φ is uniquely determined by the injectivity of the S-transform
and we denote it by

∫
M XtdBH

t .
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A motivation of this definition (as an analogue of the Itô integral in
the Brownian motion case) and the relationship to the Malliavin calculus
and white noise calculus definitions can be found in Bender (2002b). The
fractional Itô isometry (first proven in Elliott and van der Hoek (2001))
suggests that for good processes the fractional Itô integral is an (L2)-limit
of Wick-Riemann sums. However, what exactly good means in this context
seems not to be clear. Even in the case of deterministic integrands the
denseness arguments turn out to be complicated, see Pipiras and Taqqu
(2000). In this section we confine ourselves with a weaker convergence than
(L2)-convergence. We shall state sufficient conditions for the convergence
of the S-transforms of Wick-Riemann sums to the fractional Itô integral.
Note the convergence of the S-transforms is in some sense half of the (L2)-
convergence, see Bender (2002b, theorem 2.5).

Let a compact interval [a, b] be given. We call Π = (πk, tk; 0 ≤ k ≤ N)
a tagged partition of the interval [a, b], if π0 = a, πN = b, πk < πk+1 and
πk−1 ≤ tk ≤ πk for 1 ≤ k ≤ N .. The mesh of Π is |Π| := max1≤k≤N (πk −
πk−1).

We begin with the following lemma:

Lemma 3.2. Let [a, b] be a compact interval, X : [a, b] → (L2) be Riemann
integrable and Πn = (πn

k , tnk) be a sequence of tagged partitions of [a, b] with
|Πn| → 0. Then for all η ∈ S(R):

lim
n→∞

N(n)∑
k=1

S(Xtnk
)(η)S

(
BH

πn
k
− BH

πn
k−1

)
(η) =

∫ b

a
S(Xt)(η)(MH

+ η)(t)dt.

Proof. Fix η ∈ S(R) and define f(t) := S(Xt)(η). As X is (L2)-valued
Riemann integrable, f : [a, b] → R Riemann integrable. Further let

A(t) :=
∫ t

a
(MH

+ η)(s)ds.

As MH
+ η is continuous (in fact C∞(R)), A is continuously differentiable and

thus of bounded variation. By a well known result in real analysis f is
Riemann-Stieltjes integrable with respect to A and

∫ b

a
f(t)dA(t) =

∫ b

a
f(t)(MH

+ η)(t)dt (6)

Substituting the definition of f the right hand side of (6) is the right hand
side of the assertion. On the other hand by the definition of the Riemann-
Stieltjes integral and the identity A(t) = S(BH

t )(η)−S(BH
a )(η) (see Bender,

2002b, p.12), the left hand side of (6) coincides with the left hand side of
the assertion.
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Note the right hand side in the above lemma is the S-transform of the
fractional Itô integral

∫ b
a XtdBH

t , if it exists. The left hand side is the limit
of the S-transforms of

N(n)∑
k=1

Xtnk
�
(
BH

πn
k
− BH

πn
k−1

)

provided all Wick products exist in (L2). Thus, we obtain using theorem
2.5:

Theorem 3.3. Under the assumptions of lemma 3.2 additionally let X be
fractional Itô integrable over [a, b] and let Xt ∈ D

1,2((−∞, b]) for all t ∈ [a, b].
Then the S-transforms of the Wick-Riemann sums

N(n)∑
k=1

Xtnk
�
(
BH

πn
k
− BH

πn
k−1

)

converge to the S-transform of
∫ b
a XtdBH

t .

Remark 3.1. Conditions that ensure the existence of the fractional Itô inte-
gral of X over [a, b] can be found in Bender (2002b, theorem 3.7 and corollary
3.8)

Remark 3.2. Note that the convergence in the above theorem is independent
of the choice of the intermediate point.

In the Brownian motion case H = 1/2 the Itô integral for good and
adapted integrands is defined as a limit of pathwise product based sums

N(n)∑
k=1

Xπn
k−1

·
(
Bπn

k
− Bπn

k−1

)
.

Here the choice of the forward partition, i.e. tk = πk−1, is essential, since
the convergence is not independent of the choice of the intermediate point.
By theorem 2.5 the choice of the forward partition and the adaptedness
guarantees that

N(n)∑
k=1

Xπn
k−1

·
(
Bπn

k
− Bπn

k−1

)
=

N(n)∑
k=1

Xπn
k−1

�
(
Bπn

k
− Bπn

k−1

)
.

This is in view of theorem 3.3 another motivation to call the integral defined
in definition 3.1 an Itô type integral.
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4 The Stratonovich Type Integral

The Stratonovich integral is defined in the Brownian motion case by the
choice of special tagged partitions choosing tk = 1

2(πk−1+πk). The following
simple example shows that this choice of the intermediate point is the only
one that fits for all Hurst parameters 0 < H < 1:

Example 4.1. Let [a, b] = [0, 1] and Πn = (k/n, tk, 0 ≤ k ≤ n) with
tk = bk

n + (1−b)(k−1)
n for fixed 0 ≤ b ≤ 1. We consider the sums

n∑
k=1

BH
tk

·
(
BH

k/n − BH
(k−1)/n

)
.

By corollary 2.6

n∑
k=1

BH
tk

·
(
BH

k/n − BH
(k−1)/n

)
=

n∑
k=1

BH
tk

�
(
BH

k/n − BH
(k−1)/n

)

+
1
2

n∑
k=1

((
k

n

)2H

−
(

k − 1
n

)2H

−
(

k

n
− tk

)2H

+
(

tk − k

n

)2H
)

.(7)

The first sum on the right hand side S-transform converges to∫ 1

0
BH

t dBH
t =

1
2
(BH

1 )2 − 1
2

by theorem 3.3 above and example 3.6 in Bender (2002b). We split the
second sum in (7) into two parts:

n∑
k=1

((
k

n

)2H

−
(

k − 1
n

)2H
)

= 1,

as the sum telescopes. Substituting the definition of tk we obtain after
elementary manipulations:

n∑
k=1

(
−
(

k

n
− tk

)2H

+
(

tk − k

n

)2H
)

= n1−2H
(
b2H − (1 − b)2H

)

→




±∞, 0 < H < 1/2, b 
= 1/2
0, 0 < H < 1/2, b = 1/2

2b − 1, H = 1/2
0, 1/2 < H < 1

(n → ∞).

To summarize the left hand side of (7) S-transform converges in the case
H < 1/2 for b = 1/2 only. In the case H > 1/2 the S-transform convergence
is independent of the choice of b. In both cases the limit is given by 1

2(BH
1 )2
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which is according to the change of variable rule of classical analysis. Both
cases significantly differ from the Brownian motion case in the way that the
Wick product based integral cannot be replicated by a sophisticated choice
of the intermediate point.

The example motivates the following definition:

Definition 4.2. Let a compact interval [a, b] be given and X : [a, b] → (L2).
Then X is said to have an H-fractional Stratonovich integral, if there is a
Φ ∈ (L2) such that for all sequences of tagged partitions Πn = (πk, tk) with
tk = 1

2(πk−1 + πk) and limn→∞ |Πn| = 0 the S-transform of

N(n)∑
k=1

Xtnk

(
BH

πn
k
− BH

πn
k−1

)

converges to SΦ as n → ∞. In this case we denote Φ as
∫ b
a Xt ◦ dBH

t .

Remark 4.1. There are different definitions of Stratonovich type integrals in
the literature:
(i) Based on the path properties of the fractional Brownian motion integrals
can be defined pathwise as Stieltjes integral, if the integrand is pathwise suf-
ficiently Hölder continuous (Zähle, 1998) or of suitable p-variation (Dudley
and Norvaǐsa, 1999). The drawback of both definitions is, that the inte-
gral

∫ 1
0 BH

t ◦ dBH
t is not defined for H < 1/2 using these path regularity

approaches. However, if H > 1/2 the usual change of variable formula for
functionals of the fractional Brownian motion holds trivially, since the inte-
gral is defined pathwise.
(ii) Based on forward partitions and the pathwise product related
Stratonovich type integrals are defined in Lin (1995); Dai and Heyde (1996);
Dasgupta and Kallianpur (2000) for H > 1/2. Again,

∫ 1
0 BH

t ◦ dBH
t cannot

be defined for H < 1/2 following this approach (see example 4.1).
(iii) Following the ideas of the symmetric integral in Russo and Vallois (1993)
a Stratonovich type integral is defined in Alòs and Nualart (2000) and Alòs
et al. (2001a) for H > 1/2, resp. H < 1/2. Change of variable formulas are
derived in these papers, if H > 1/4.

The main result of this section is the following change of variable formula
for the fractional Stratonovich integral that holds for arbitrary 0 < H < 1:

Theorem 4.3. Let 0 ≤ a < b and 0 < H < 1. Furthermore assume that
F ∈ C1,2([a, b]× R) and there a constants C ≥ 0 and λ < (2bH)−2 such that
for all (t, x) ∈ [a, b] × R

max
{
|F (t, x)|,

∣∣∣∣ ∂

∂t
F (t, x)

∣∣∣∣ ,
∣∣∣∣ ∂

∂x
F (t, x)

∣∣∣∣ ,
∣∣∣∣ ∂2

∂x2
F (t, x)

∣∣∣∣
}

≤ Ceλx2
.
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Then ∂
∂xF (t, BH

t ) is fractional Stratonovich integrable over [a, b] and in (L2):

∫ b

a

∂

∂x
F (t, BH

t ) ◦ dBH
t = F (b,BH

b ) − F (a,BH
a ) −

∫ b

a

∂

∂t
F (t, BH

t )dt (8)

Proof. Let a sequence of tagged partitions Πn = (πk, tk) with tk = 1
2(πk−1 +

πk) and limn→∞ |Πn| = 0 be given. By corollary 2.6

n∑
k=1

∂

∂x
F (tk, BH

tk
) · (BH

πk
− BH

πk−1
) =

n∑
k=1

∂

∂x
F (tk, BH

tk
) � (BH

πk
− BH

πk−1
)

+
1
2

n∑
k=1

∂2

∂x2
F (tk, BH

tk
)
(
π2H

k − π2H
k−1 − (πk − tk)2H + (tk − πk−1)2H

)
= (I)n + (II)n

Substituting the definition of tk we see:

πk − tk =
1
2
(πk − πk−1) = tk − πk−1.

Hence,

(II)n =
1
2

n∑
k=1

∂2

∂x2
F (tk, BH

tk
)
(
π2H

k − π2H
k−1

)

As the S-transform of ∂2

∂x2 F (t, BH
t ) is η-wise continuous in t ∈ [a, b], (see

the proof of theorem 5.3 in Bender (2002b) for the explicit form of the
S-transform), the S-transform of (II)n is a Riemann-Stieltjes sum and con-
verges to:

H

∫ b

a
S

(
∂2

∂x2
F (t, BH

t )
)

(η)t2H−1dt.

Thus, (II)n S-transform converges to H
∫ b
a

∂2

∂x2 F (t, BH
t )t2H−1dt (as Pettis

integral). By theorem 3.3 (I)n S-transform converges to
∫ b
a

∂
∂xF (t, BH

t )dBH
t .

The assertion now follows from the Itô formula for the fractional Itô integral
(Bender, 2002b, theorem 5.3).

Remark 4.2. (i) In the case a = 0 the differentiability of F in t-direction at
t = 0 can be skipped as long as the integral on the right hand side of (8)
exists as Pettis integral. In that case the growth condition for the derivative
in t-direction only needs to hold for all ε > 0 on [ε, b] with a constant
C = C(ε). This follows from the proof of theorem 5.3 in Bender (2002b).
(ii) Under the assumptions of theorem 4.3 the integral on the right hand
side of (8) can be interpreted either pathwise or as Pettis integral.

We also note the following result for the Stratonovich integrability of
random variables, which is a simple consequence of definition 4.2:
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Proposition 4.4. Let a < b ∈ R and Y ∈ (L2) such that Y (BH
b − BH

a ) ∈
(L2). Then Y is fractional Stratonovich integrable over [a, b] and∫ b

a
Y ◦ dBH

t = Y (BH
b − BH

a ).

This result is in contrast to the fractional Itô integral, where an addi-
tional Malliavin trace occurs even in the case of a Fa-measurable random
variable Y , if H 
= 1/2 (see theorem 2.5, (ii)).

5 On Arbitrage

The standard Black-Scholes model on the time interval [0, T ] is as follows:
The price of a bond A is given by

At = ert (9)

where the nonnegative constant r is the interest rate. The risky asset, called
stock, is modeled by

Pt = p0e
σBt+µt− 1

2
σ2t. (10)

µ and σ are the drift, resp. the volatility of the stock. Note P is the solution
of the SDE

dPt = µPtdt + σPtdBt

P0 = p0.

As the Itô integral is involved this equation can be interpreted as exponential
growth with a zero expectation random perturbation. As the fractional
Stratonovich integral has not zero expectation (see example 4.1) we have to
use the fractional Itô integral to obtain the analogous interpretation in the
fractional Brownian motion case. This yields (e.g Bender, 2002b, corollary
5.6) the dynamics of the stock price given by

Pt = p0e
σBH

t +µt− 1
2
σ2t2H

. (11)

In the case H > 1/2 this dynamics have been first considered in Hu and
Øksendal (2000).

A pair π = (u, v) of FH
t -adapted processes (the filtration generated by

BH) is called a portfolio. Here ut and vt are the number of bonds resp.
stocks hold by an investor at time t. The value of the portfolio is given by:

V π
t = utAt + vtPt (12)

Recall, a portfolio π is called an arbitrage, if the corresponding value satisfies:
(i) V π

0 ≤ 0 and (ii) there is a time 0 < t ≤ T such that V π
t ≥ 0 P -a.s. and

V π
t > 0 with positive probability.

11



Consider first a simple buy-and-hold strategy π = (1(t1,T ]F, 1(t1,T ]G) with
a stopping time 0 ≤ t1 ≤ T and FH

t1 -measurable random variables F and G.
Then the condition:

V π
t = V π

0 + F (At − At1∧t) + G(Pt − Pt1∧t) (13)

means that no input and/or withdrawal occurs. Thus a buy-and-hold strat-
egy satisfying (13) is called self-financing. An analogue of (13) for general
portfolio requires integrals. It is given by:

dV π
t = utdAt + vtδPt. (14)

The differential δPt can be interpreted in different ways:

Definition 5.1. (i) A portfolio is called Wick-Itô self-financing, if δPt is
interpreted as

δPt = dPt = σPtdBH
t + µPtdt.

(ii) A portfolio is called Stratonovich self-financing, if δPt is interpreted as

δPt = ◦dPt = σPt ◦ dBH
t + (µ − Hσ2t2H−1)Ptdt.

Both definitions are motivated by the fact that P is the solution of the
corresponding SDE in the respective calculus.

In the Brownian motion case H = 1/2 it is well known that (i) both
definitions of self-financing extend (13), (ii) there is no arbitrage in the
class of Wick-Itô self-financing portfolios satisfying a suitable integrability
condition, (iii) there is an arbitrage in the class of Stratonovich self-financing
portfolios.

That there is no arbitrage in the class of Wick-Itô self-financing portfolios
with a suitable integrability condition is true for all Hurst parameter 0 <
H < 1. This was first suggested by Hu and Øksendal (2000) and Elliott and
van der Hoek (2001) and rigorously proven in Bender (2002b). However,
this definition of self-financing does not extend (13), if H 
= 1/2, see Bender
(2002b). Thus there is no simple economic interpretation of this definition at
hand (see the discussion in Bender and Elliott, 2002; Sottinen and Valkeila,
2002).

In view of proposition 4.4 the definition of a Stratonovich self-financing
portfolios fits with (13). However, we shall see that this definition yields a
simple arbitrage for all 0 < H < 1. This is a consequence of the change of
variable formula for the fractional Stratonovich integral. Indeed, this result
is known in the case H > 1/2 (see Dasgupta and Kallianpur, 2000; Sottinen
and Valkeila, 2002). Using theorem 4.3 the argumentation can be extended
to the general case. For the reader’s convenience we include a proof. We
also mention a more complicated construction of an arbitrage in the general
case using almost simple predictable strategies can be found in Cheridito
(2001).
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Let π = (u, v) with

ut = 1 − exp
{−2rt + 2µt − σ2t2H + 2σBH

t

}
vt = 2p−1

0

(
exp

{
−rt + µt − 1

2
σ2t2H + σBH

t

}
− 1
)

.

Then the corresponding value is

V π
t = utAt + vtPt

= exp{rt} + exp
{−rt + 2µt − σ2t2H + 2σBH

t

}
−2 exp

{
µt − 1

2
σ2t2H + σBH

t

}
= ert(ePt−rt − 1)2

Thus, π is an arbitrage. Now by the change of variable formula (theorem
4.3):

V π
t = ert(eσBH

t +(µ−r)t− 1
2
σ2t2H − 1)2

=
∫ t

0
(µ − Hσ2s2H−1)[2e−rs+2σBH

s +2µs−σ2s2H − 2eσBH
s +µs−1/2·σ2s2H

]ds

+
∫ t

0
rers[1 − e−2rs+2σBH

s +2µs−σ2s2H
]ds

+
∫ t

0
σ[2e−rs+2σBH

s +2µs−σ2s2H − 2eσBH
s +µs−1/2·σ2s2H

] ◦ dBH
s

=
∫ t

0
vs(µ − Hσ2s2H−1)Psds +

∫ t

0
usdAs +

∫ t

0
σvsPs ◦ dBH

s .

This shows that π is Stratonovich self-financing.
In conclusion, the class of Stratonovich self-financing portfolios is not

appropriate for a pricing theory, since there is an arbitrage in this class.
On the other hand the arbitrage free class of Wick-Itô self-financing port-
folios seems hard to interpret for H 
= 1/2. Hence, the applicability of the
fractional Black-Scholes model seems quite restricted. More discussion of
the difference between the two notions of self-financing for H > 1/2 can be
found in the recent paper by Sottinen and Valkeila (2002).
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Alòs, E., Nualart, D. (2000) Stochastic integration with respect to the Frac-
tional Brownian Motion. Preprint.
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