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1. Introduction

Two of the most fundamental algebraic structures are the discretely ordered ring of integers Z
and the ordered field of real numbers R. While questions from, for instance, Elementary Number

Theory are set within Z, a wide range of mathematics – from Real Algebraic Geometry to Real

Analysis – is conducted over R. In this lecture, we study the interplay of Z and R from both a

logical and an algebraic perspective.

The logical – or, more precisely, model theoretical – perspective leads to the study of suitable

axiom systems formulated in first-order logic. Since this type of logic is not powerful enough to

express features like the Completeness Axiom or the Archimedean Property, the axiom systems

we work with lead to a wide range of algebraic structures to examine. The underlying language is

given by Lor = {+,−, ·, 0, 1, <} (the language of ordered rings). All logical statements over this

language are only allowed to use standard logical symbols like ∧ and ¬ as well as arithmetical

expressions only using the operations specified in Lor. Both Z and R are naturally equipped

with binary operations +, −, ·, constants 0 and 1 as well as a strict total ordering <. Thus,

Lor is a suitable language to formulate axiom systems describing Z and R. When we aim to

find such axiom systems, we try to translate the most fundamental properties into sentences

formulated in the language Lor:

� For the ordered field of real numbers (R,+,−, ·, 0, 1, <), the corresponding axiom system

describes R as an ordered field with the property that any positive number has a square

root and any polynomial of odd degree has a zero. For instance, the sentence

∀x x+ 0 = x

asserts that 0 is the additive (right-)neutral element of R, and the sentence

∀x (0 < x→ ∃y x = y · y)

guarantees the existence of square roots of any non-negative element. An algebraic struc-

ture satisfying all the axioms described above is called a real closed field. The axiom

system for real closed fields has the powerful property that any sentence in the language

Lor can either be proved or disproved from the axioms.

� Describing the discretely ordered ring (Z,+,−, ·, 0, 1, <) axiomatically is more problem-

atic. Certainly the property that Z is an ordered ring with 1 as least positive element is

fundamental in the description of Z. However, this property alone does not suffice to prove

many results from Elementary Number Theory. A key feature of Z is that statements true

for all non-negative integers can be proved by induction. The axiom system describing

Z as an ordered ring with 1 as least positive element and allowing induction is called

Peano Arithmetic. While Peano Arithmetic is powerful enough to prove most results
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1. Introduction

from Elementary Number Theory we know, there are sentences the are true for Z but not

deducible from Peano Arithmetic. Unlike for R, there is no possible way to effectively and

fully describe Z by axioms in the language Lor!

The algebraic perspective of this lecture deals with the study of ordered rings and fields

satisfying the axiom systems described above. Among all real closed fields, we are mainly

interested in those without the Archimedean Property. These non-archimedean fields admit

infinitely large and thus also infinitesimally small elements – which will lead to methods from

Valuation Theory to keep control over these infinite and infinitesimal sizes. Starting with such

a real closed field (K,+,−, ·, 0, 1, <), we may consider any subring of Z ⊆ K with 1 as least

positive element. We call Z an integer part of K if it has the follwoing property:

For any a ∈ K there exists b ∈ Z such that b ≤ a < b+ 1.

In other words, Z is an integer part of K if any element a ∈ K can be “rounded down” to a

unique element bac = b ∈ Z. Naturally, this property describes the order-theoretic interplay

between Z and R (or any ordered subfield of R like Q): for any real number r there is a unique

integer directly below r.

The main aim of this lecture is to prove two of the main results in the study of integer parts

of real closed fields:

1. The Mourgues–Ressayre Theorem (cf. [8]): Any real closed field admits an integer part.

2. Shepherdson’s Theorem (cf. [9]): An ordered ring (Z,+,−, ·, 0, 1, <) is an integer part of

a real closed field if and only if it is a model of open induction.

At first glance, the Mourgues–Ressayre Theorem may seem unsurprising or even not difficult

to prove. However, it turns out that most discretely ordered subrings of ordered fields are not

an integer part thereof: in the non-archimedean case the “rounding down” property is difficult

to achieve and requires some care in the choice of the desired subring. In fact, there are even

ordered fields (that are not real closed) which do not admit any integer part at all. Proving the

existence of an integer part for an arbitrary real closed field will require technical methods set

in fields of generalised power series.

Shepherdson’s Theorem is rather set in the model theoretic part of this lecture. Open induc-

tion is an axiom system similar to Peano Arithmetic except that induction is only allowed for

logical formulas without quantifiers (i.e. without the use of ∀ and ∃). (It is therefore a fragment

of Peano arithmetic.) Within open induction, many number theoretic results like the irration-

ality of
√

2 cannot be proven, and there is even a model of open induction in which the set of

prime numbers has an upper bound.

Overall, the main theme of this lecture is the interplay between model theory and algebra

with particular focus on discretely ordered rings and real closed fields. This interplay is also

reflected in the different sections, each of which deals with a specific topic from real algebra or

model theory.
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General Notations

� We denote by N = {1, 2, . . .} the set of natural numbers without 0 and by ω = {0, 1, . . .}
the set of natural numbers with 0. (The reason for notation of the latter will become

apparent once ordinal numbers have been introduced.)
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2. Model Theory

In this section, we follow the overall structure of [4], but also notations and terminology from

[7] are used.

2.1. Structures

See [4, Section 1] for further details.

2.1.1. L-structures

Definition 2.1.1. A language L is specified by:

(i) a family of function symbols (fi)i∈I ,

(ii) a family of relation symbols (Rj)j∈J ,

(iii) a family of constant symbols (ck)k∈K ,

(iv) for each function and relation symbol, an arity n ∈ N.

The arity specifies the number of arguments that a function or a relation symbol allows. For

instance, the function symbol − can be 1-ary (unary, e.g. in the expression −x) or 2-ary (binary,

e.g. in the expression x− y).

Notation 2.1.2. For finite languages, i.e. languages that only consist of finitely many function,

relation and constant symbols, one usually simply lists the symbols (in some conventional order).

For instance, the most important language in this lecture is the language of ordered rings

Lor = {+,−, ·, 0, 1, <}. Here, +, − and · are binary function symbols, 0 and 1 are constant

symbols and < is a binary relation symbol.

Definition 2.1.3. Let L be a language. An L-structureM consists of a set M 6= ∅ called the

domain of M together with an interpretation for each symbol from L:

(i) for each function symbol f in L of arity n, a function fM : Mn →M ;

(ii) for each relation symbol R in L of arity n, an n-ary relation RM on M ;

(iii) for each constant symbol c in L, an element cM ∈M .

Example 2.1.4. Both

Zor = (Z,+Zor ,−Zor , ·Zor , 0Zor , 1Zor , <Zor)

5



2. Model Theory

and

Ror = (R,+Ror ,−Ror , ·Ror , 0Ror , 1Ror , <Ror)

are Lor-structures with the usual interpretations. For instance, +Zor : Z2 → Z describes the

standard addition on Z and <Ror is the standard strict linear order relation “less than” on R.

Notation 2.1.5. (i) In most cases, the symbols of the language even coincide with standard

notations for operations, relations and constants in the given structure. In this case (and

also if the interpretations are clear from the context), we omit the superscripts. For

instance, we only write

Zor = (Z,+,−, ·, 0, 1, <)

and

Ror = (R,+,−, ·, 0, 1, <).

(ii) If Lx is some langauge andM is some domain over which we have some natural or previously

defined interpretation of all symbols in Lx, then Mx denotes the corresponding Lx-structure

with domain M . For instance, we write Qor for the Lor-structure

Qor = (Q,+,−, ·, 0, 1, <)

with the standard interpretations of all symbols.

(iii) In some cases, we even omit the subscript completely and still mean the corresponding

structure. For instance, when we talk about the Lor-structure Z, we actually mean Zor. It

should be clear from the context what structure we actually mean.

Definition 2.1.6. Apart from Lor, the following languages are often used for the study of

algebraic structures. (Same symbols have the same arity!)

(i) the language of linear orderings L< = {<};

(ii) the language of additive monoids Ladmon = {+, 0} and the language of (multiplic-

ative) monoids Lmon = {·, 1};

(iii) the language of (additive) groups Lg = Ladmon ∪ {−} and the language of multi-

plicative groups Lmgp = Lmon∪{(·)−1}, where (·)−1 is a unary function symbol (applied

as a superscript);

(iv) the language of semirings Lsemr = Ladmon ∪ Lmon and the language of rings Lr =

Lsemr ∪ {−};

(v) the language of ordered groups Log = Lg ∪ L< and the language of ordered expo-

nential fields Lexp = Lor ∪ {exp}, where exp is a unary function symbol.

Exercise 2.1.7. Consider the set B = {0, 1}.

(i) For each language L in Definition 2.1.6, how many different interpretations on B are there

to obtain an L-structure with domain B?

6



2.1. Structures

(ii) Find all L<-structures with domain B that are strict linear orderings.

(iii) Find all Lsemr-structures with domain B that are semirings.

(iv) Find all Lr-structures with domain B that are fields.

(v) Is there an Lor-structure with domain B that is an ordered field?

Definition 2.1.8. Let L and L+ be languages such that L ⊆ L+. Moreover, let M+ be

an L+-structure with domain M and let M be the L-structure with domain M and whose

interpretations of the symbols in L coincide with those of M+. Then we say that L+ is an

expansion of L and L is a reduct of L+, and likewise that M+ is an L+-expansion of M
and M is an L-reduct of M+.

Example 2.1.9. Consider ωadmon = (ω,+, 0) and ωsemr = (ω,+, ·, 0, 1). Then ωsemr is an

Lsemr-expansion of ωadmon and ωadmon is an Ladmon-reduct of ωsemr.

2.1.2. Embeddings and Automorphisms

Definition 2.1.10. Let L be a language, let M and N be two L-structures.

(i) A map ϕ : M → N is called an L-homomorphism if the following are satisfied:

(1) for any n-ary function symbol f of L and any a1, . . . , an ∈M , we have

ϕ(fM(a1, . . . , an)) = fN (ϕ(a1), . . . , ϕ(an));

(2) for any n-ary function symbol R of L and any a1, . . . , an ∈M ,

RM(a1, . . . , an) if and only if RN (ϕ(a1), . . . , ϕ(an)) holds;

(3) for any constant symbol c of L, we have

ϕ(cM) = cN .

We write ϕ : M→N to express that ϕ is an L-homomorphism from M to N .

(ii) Let ι : M→N be injective. Then ι is called an L-embedding. We also write ι : M ↪→ N
expressing that ι is an L-embedding of M into N .

(iii) Let ψ : M→N be bijective. Then it is called an L-isomorphism and we write ψ : M
∼=→

N or simply ψ : M∼= N . An L-isomorphism fromM toM is called an L-automorphism.

Notation 2.1.11. (i) If we writeM∼= N , then we mean that there exists an L-isomorphism

from M to N and we say that M and N are isomorphic.

(ii) For the tuple a = (a1, . . . , an) we also write ϕ(a) rather than (ϕ(a1), . . . , ϕ(an)).

Exercise 2.1.12. Consider the Lr-structureM = (M,+M,−M, ·M, 0M, 1M) defined as follows:

7



2. Model Theory

� M :=

{(
a −b
b a

) ∣∣∣∣∣ a, b ∈ R

}
⊆ R2×2.

� +M, −M and ·M are standard addition, subtraction and multiplication of matrices.

� 0M :=

(
0 0

0 0

)
and 1M :=

(
1 0

0 1

)
.

Show that M ∼= Cr by finding a suitable Lr-isomorphism, and deduce that M is a field. Can

M be expanded to an Lor-structure that is a linearly ordered field?

Exercise 2.1.13. Let L be a language, letM and N be L-structures and let ϕ : M → N . Show

that the notion of L-homomorphism coincides with the standard definitions of homomorphisms

of algebraic structures for groups, rings and fields. More precisely, show the following:

(i) Let L = Lmon and let M and N be multiplicative groups. Show that ϕ is an Lmon-

homomorphisms if and only if it is a homomorphism of groups.

(ii) Let L = Lsemr and let M and N be commutative rings with identity. Show that ϕ is an

Lsemr-homomorphisms if and only if it is a homomorphism of rings.

(iii) Let L = Lr and let M and N be fields. Show that ϕ is an Lr-homomorphisms if and only

if it is a homomorphism of fields.

Definition 2.1.14. Let L be a language, letM and N be two L-structures. If M ⊆ N and the

identity map idM is an L-embedding of M into N , then we write M ⊆ N and say that M is

an L-substructure of N and that N is an L-extension of M.

Remark 2.1.15. Let L be a language, let M and N be L-structures and let ι : M ↪→ N . Then

ι(M) naturally becomes a domain for an L-substructure M′ of N , where the interpretation

of each relation and function symbol in M′ is given by the restriction of the corresponding

interpretation in N to ι(M). For instance, if f is a unary function symbol of L, then fM
′

:=

fN |ι(M).

Example 2.1.16. Obvious chains of substructures are

Nmon ⊆ ωmon ⊆ Zmon ⊆ Qmon ⊆ Rmon ⊆ Cmon,

ωsemr ⊆ Zsemr ⊆ Qsemr ⊆ Rsemr ⊆ Csemr,

Zr ⊆ Qr ⊆ Rr ⊆ Cr,

and

Zor ⊆ Qor ⊆ Ror.

2.2. Terms and Formulas

See [4, Sections 2 & 3] for further details.
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2.2. Terms and Formulas

2.2.1. Recursive Construction of Terms

In this and later sections, we will use recursive definitions for a set of objects. When we say

that such a set is defined recursively by a given number of steps, then we mean that any object

within that set needs to be produced by these steps by a finite number of iterations.

Definition 2.2.1. Let L be a language. The set of L-terms is defined recursively as follows:

(i) Each variable is a term.

(ii) Every constant symbol of L is a term.

(iii) If f is a function symbol of L of arity n and t1, . . . , tn are L-terms, then f(t1, . . . , tn) is an

L-term.

An L-term is called closed if it contains no variables.

Example 2.2.2. (i) Typical variables are x, y, z, x0, x1, . . ., but theoretically all single letters

or even sequences of arbitrary symbols may be allowed as variables.

(ii) The expression ·(exp(+(0, 1)), x) is an Lexp-term that is not closed (as it contains the

variable x). In order to verify this, one has to recursively build this term: The variable x

and the constant symbols 0 and 1 of Lexp are terms by steps (i) and (ii) (of Definition 2.2.1).

Since + is a binary function symbol, also +(0, 1) is an Lexp-term by step (iii). Now exp is

a unary function symbol, whence exp(+(0, 1)) is an Lexp-term. Finally, both Lexp-terms

exp(+(0, 1)) and x can be used as the arguments of the binary function symbol · to obtain

the desired Lexp-term.

Remark 2.2.3. The Lexp-term ·(exp(+(0, 1)), x) would usually be written as exp(0 + 1) · x. The

former is called a prefix notation, the latter is an infix notation. See Section A.1 for this

and further abbreviations to ease our notation.

Notation 2.2.4. Let L be a language and let t be an L-term. We also write t(x1, . . . , xn) (for

some n ∈ N) instead of t to express that the set of variables appearing in t is contained in

{x1, . . . , xn}.

Definition 2.2.5. Let L be a language, let M be an L-structure and let t = t(x1, . . . , xn) be

an L-term. The interpretation tM : Mn →M of t is defined recursively as follows:

(i) If t is a constant symbol c of L, then tM : M →M,a 7→ cM.

(ii) If t is xi for some i ∈ {1, . . . , n}, then tM : Mn →M, (x1, . . . , xn) 7→ xi.

(iii) If t is f(t1, . . . , tm) for some L-terms t1, . . . , tm and an m-ary function symbol f of L, then

tM : Mn →M, (x1, . . . , xn) 7→ fM
(
tM1 (x1, . . . , xn), . . . , tMm (x1, . . . , xn)

)
Remark 2.2.6. (i) If t is a closed L-term, then tM is often also interpreted as the unique

element a ∈ M in the image of tM. For instance, the closed Lsemr-term 0 + 1 can be

interpreted in Z as the constant 1 rather than the constant function a 7→ 1.

9



2. Model Theory

(ii) Note that in Definition 2.2.5, the domain of the function tM is not well-defined: If the

tuple (x1, . . . , xn) contains at least one variable that does not appear in t, then the domain

of tM could also be chosen as Mn−1. For instance, the Lr-term t given by x+ y gives rise

to both the function tR : R2 → R, (a, b) 7→ a + b (in case that we regard t as t(x, y)) and

the function tR : R3 → R, (a, b, c) 7→ a + b (in case we regard t as t(x, y, z)). The domain

of an interpretation of an L-term should always be clear from the context.

Exercise 2.2.7. Find three different Lr-terms t with tZ : Z→ Z, n 7→ 2n.

Proposition 2.2.8. Let L be a language, let M and N be L-structures and let ι : M ↪→ N .

Moreover, let t(x) be an L-term with x = (x1, . . . , xn) and let a ∈M .1 Then

ι(tM(a)) = tN (ι(a)).

Proof. We proceed by induction on the recursive construction of terms.

(i) If t is a constant symbol c of L, then

ι(tM(a)) = ι(cM) = cN = tN (ι(a)).

(ii) If t is xi for some i ∈ {1, . . . , n}, then

ι(tM(a)) = ι(ai) = tN (ι(a1), . . . , ι(an)) = tN (ι(a)).

(iii) If t is f(t1, . . . , tm) for some m-ary function f of L and some L-terms t1, . . . , tm for which

the conclusion already holds, then

ι(tM(a)) = ι
(
fM(tM1 (a), . . . , tMm (a))

)
= fN

(
ι
(
tM1 (a)

)
, . . . , ι

(
tMm (a)

))
= fN

(
tN1 (ι(a)), . . . , tNm(ι(a))

)
= tN (ι(a)).

2.2.2. Recursive Construction of Formulas

Definition 2.2.9. Let L be a language. The set of L-formulas is defined recursively as follows:

(i) Let R be an n-ary relation symbol of L and let t1, . . . , tn+1 be L-terms. Then both t1 = tn+1

and R(t1, . . . , tn) are L-formulas.

(ii) If ϕ and ψ are L-formulas, then also ¬ϕ and (ϕ ∧ ψ) are L-formulas.

(iii) If ϕ is an L-formula and x is a variable, then ∃x ϕ is an L-formula.

An L-formula is atomic if it is produced by only applying step (i). If ϕ and ψ are L-formulas,

then ψ is called a subformula of ϕ if the sequence of symbols of ψ appears as consecutive

sequence of symbols within ϕ.

1Here, we would usually have to write a = (a1, . . . , an) ∈Mn. However, this shorthand notation is unambiguous:

the actual length of a follows from the context, and the standard convention is that the i-th entry of the tuple

a is denoted by ai.
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2.2. Terms and Formulas

Notation 2.2.10. Let L be a language.

(i) We usually omit the outermost brackets of an L-formula. Hence, we write 1 = 0 ∧ 1 = 1

rather than (1 = 0 ∧ 1 = 1) (in the language Lsemr).

(ii) For a binary relation symbol R, we also use the infix notation without brackets. For

instance, we write y < 1 + x rather than < (y, 1 + x) in the language Lor. Moreover, if t

and s are L-terms, then we write s Rt for t R s and s 6R t for ¬ s R t. Hence, 1 + x > y

stands for y < 1+x and y 6< 1+x is short for ¬ y < 1+x. In this regard, also = is treated

as a binary relation symbol.

(iii) Let ϕ and ψ be L-formulas and let x be a variable. Then we write ϕ ∨ ψ for ¬(¬ϕ ∧ ¬ψ)

(De Morgan’s Law), we write ϕ→ ψ for ¬ϕ ∨ ψ, we write ϕ↔ ψ for (ϕ→ ψ) ∧ (ψ → ϕ)

and we write ∀x ϕ for ¬∃x ¬ϕ.

(iv) The logical connectors ∨ and ∧ are associative. Hence, we omit superfluous brackets. For

instance, ϕ1 ∧ ϕ2 ∧ ϕ3 stand for (ϕ1 ∧ ϕ2) ∧ ϕ3. We also use
∧

and
∨

to denote finite

conjunctions and finite disjunctions, e.g.

n∧
i=1

ϕi expresses ϕ1 ∧ . . . ∧ ϕn.

(v) For an L-formula ϕ and variables x1, . . . , xn we also write

∃x1, . . . , xn ϕ

for

∃x1 . . . ∃xn ϕ.

A similar shorthand notation is used for ∀ instead of ∃.

Exercise 2.2.11. Let L be a language and let ϕ be an L-formula. Show that ϕ is atomic if and

only if the only subformula of ϕ is ϕ itself.

2.2.3. Variables and Interpretations

Definition 2.2.12. Let L be a language, let ϕ be an L-formula and let x be a variable. The

subformula immediately following an instance of ∃x is called the scope of that particular quan-

tifier ∃.2 An instance of x in ϕ is bounded if it occurs within the the scope of some quantifier

∃, which is said to bind that instance of x. Any instance of x that is not bounded is called free.

All variables that have free instances in ϕ are called the free variables of ϕ.

We may always assume that a given variable does not have both free and bounded instances.

For example, the Lor-formula

∃x(x < 0 ∨ y = 1) ∨ x > 0

can be replaced by

∃x(x < 0 ∨ y = 1) ∨ z > 0.

2We use a similar terminology if an instance of a variable lies within the scope of a universal quantifier ∀.
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2. Model Theory

Notation 2.2.13. Let L be a language and let ϕ be an L-formula. We also write ϕ(x1, . . . , xn)

(for some n ∈ N) instead of ϕ to express that the set of free variables of ϕ is contained in

{x1, . . . , xn}.

Definition 2.2.14. Let L be a language and let ϕ be an L-formula. Then ϕ is called an

L-sentence if it has no free variables.

Exercise 2.2.15. List all atomic Ladmon-sentences.

Exercise 2.2.16. Let L be a language and let ϕ(x1, . . . , xn) be an L-formula. Show that

∃x1, . . . , xn ϕ(x1, . . . , xn)

is an L-sentence.

Definition 2.2.17. Let L be a language, let ϕ(x1, . . . , xn) be an L-formula, let M be an L-

structure and let a ∈M . We define the notion M |= ϕ(a) by recursion on L-formulas:

(i) If ϕ is of the form t = s for some L-terms t and s, then

M |= ϕ(a) if tM(a) = sM(a).

(ii) If ϕ is of the form R(t1, . . . , tm) for some m-ary relation symbol R and L-terms t1, . . . , tm,

then

M |= ϕ(a) if RM(tM1 (a), . . . , tMm (a)) holds.

(iii) If ϕ is of the form ¬ψ for some L-formula ψ, then

M |= ϕ(a) if M 6|= ψ(a),

i.e. it is not the case that M |= ψ(a).

(iv) If ϕ is of the form ψ ∧ θ for some L-formulas ψ and θ, then

M |= ϕ(a) if M |= ψ(a) and M |= θ(a).

(v) If ϕ is of the form ∃v ψ(x, v) for some L-formula ψ and some variable v, then

M |= ϕ(a) if M |= ψ(a, b)

for some b ∈M .

We say that M models or satisfies3 ϕ(a) or that ϕ(a) is true in M.

In the special case of formulas without free variables, i.e. sentences, we do not have to specify

an element a ∈M to insert into the formula.

3A more “colloquial” expression is “M believes in ϕ(a)”.
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2.2. Terms and Formulas

Definition 2.2.18. Let L be a language and let M be an L-structure. We say that M is a

model of a sentence ϕ if M |= ϕ. If Σ is a set of L-sentences, then we say that M is a model

of Σ if M |= ϕ for any ϕ ∈ Σ, and we write M |= Σ.

Model Theory is the study of the interplay between sets of sentences and corresponding models.

Thus, it builds a bridge between logical formulas and algebraic structures in which these are

satisfied.

Exercise 2.2.19. Show that Z< |= ∀x∃y, z (y < x ∧ x < z). This sentence says that the linear

ordering on Z has no endpoints.

Lemma 2.2.20. Let L be a language, let M and N be L-structures and let ι : M ↪→ N . Then

for any atomic L-formula ϕ(x) and any a ∈M we have

M |= ϕ(a) if and only if N |= ϕ(ι(a)).

Proof. Let R be an m-ary relation symbol of L (or the binary relation symbol =) and let

t1, . . . , tm be L-terms such that ϕ(x) is given by R(t1(x), . . . , tm(x)). By Proposition 2.2.8, we

have

ι
(
tM1 (a), . . . , tMm (a)

)
=
(
tN1 (ι(a)), . . . , tNm(ι(a))

)
.

By definition of an L-embedding, we obtain

M |= R(t1(a), . . . , tm(a)) if and only if N |= R(t1(ι(a)), . . . , tm(ι(a))),

as required.

Proposition 2.2.21. Let L be a language, let M and N be L-structures and let ψ : M ∼= N .

Then for any L-formula ϕ(x) and any a ∈M we have

M |= ϕ(a) if and only if N |= ϕ(ψ(a)).

Proof. We proceed by structural induction on formulas. The statement was proved for atomic

L-formulas in Lemma 2.2.20. Let θ and ρ be L-formulas for which the statement already holds.

First suppose that ϕ is of the form ¬θ. Then

M |= ϕ(a)⇔M 6|= θ(a)

⇔ N 6|= θ(ψ(a))

⇔ N |= ϕ(ψ(a)).

The case that ϕ is of the form θ ∧ ρ can be proved in a similar manner.

Now suppose that ϕ is given by ∃v θ(x, v). Then

M |= ϕ(a)⇔M |= θ(a, c) for some c ∈M
⇔ N |= θ(ψ(a), ψ(c)) for some c ∈M.

Now if N |= θ(ψ(a), ψ(c)) for some c ∈ M , then N |= ∃v θ(ψ(a), v). Conversely, if N |=
∃v θ(ψ(a), v), then N |= θ(ψ(a), d) for some d ∈ M . Setting c = ψ−1(d) yields the required

conclusion.
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2. Model Theory

2.3. Definable Sets

See [4, Section 4] for further details.

2.3.1. Definability

Definition 2.3.1. Let L be a language and let M be an L-structure. Moreover, let n ∈ N and

let A ⊆M . A set B ⊆Mn is called A-L-definable (or L-definable with parameters from

A or A-definable in M) if there exists an L-formula ϕ(x, y) and a tuple a ∈ A such that

B = ϕ(a,M) := {b ∈Mn | M |= ϕ(a, b)}.

In this case, we say that ϕ(a, x) defines B. If there exists A ⊆ M such that B ⊆ Mn is A-L-

definable, then we simply say that B is L-definable (with parameters). In the case that we can

choose A = ∅, we also say that B is L-definable without parameters or parameter-free

L-definable.

Definition 2.3.2. Let L be a language, let M be an L-structure and let m,n ∈ N. A function

f : C → D with C ⊆ Mn and D ⊆ Mm is called A-L-definable if C, D and its graph

{(c, f(c)) | c ∈ Mn} ⊆ Mn+m are A-L-definable. Similarly, an n-ary relation R on M is called

A-L-definable if its graph {c ∈Mn | R(c) holds} is A-L-definable.

Example 2.3.3. (i) The interval (−1, 1) is ∅-Lor-definable in Ror by the formula4

−1 < x < 1.

The same Lor-formula defines the set {0} in Zor.

(ii) The function log : (0,∞)→ R is definable in Rexp. Indeed, both (0,∞) and R are definable

in Rexp. Now log is defined by the Lexp-formula ϕ(x, y) given by

(0 < x ∧ exp(y) = x).

One of the central tasks of Model Theory is to characterise all definable sets (and thus also

functions and relations) in a given structure. It is often said that a structure is ‘tame’ if one has

some control over the definable sets in it. For instance, one of these tame structures is Ror, in

which all Lor-definable subsets of R are simply finite unions of points and open intervals. This

will be a central theorem in a later part of this lecture.

Exercise 2.3.4. Let ϕ(x, y) be the Lsemr-formula x ·x = y+y and let ψ(y) be the Lsemr-formula

∃x x ·x = y+y. Determine the sets that are defined by ϕ(x, a) and by ψ(y) in the Lor-structure

M for the following cases:

(i) M = R and a ∈ R.

(ii) M = Q and a ∈ Q.

4See Section A.1 for the abbreviations we use here.
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2.3. Definable Sets

(iii) M = Z and a ∈ ω.

(iv) M = ω and a ∈ N.

In some cases, you need to make a case distinction depending on a.

Exercise 2.3.5. Let L be a language, letM be an L-structure, let m,n ∈ N and let f : C → D

with C ⊆ Mn and D ⊆ Mm. Suppose that for some a ∈ M , the L-formula ϕ(a, x) defines

the graph of f . Find an L-formula (with parameters) that defines C and an L-formula (with

parameters) that defines D.

Exercise 2.3.6. Let L be a language, let M be an L-structure, let m,n, k ∈ N, let f : C → D

and g : D → E with C ⊆ Mn, D ⊆ Mm and E ⊆ Mk. Suppose that f and g are L-definable.

Show that g ◦ f is L-definable.

The following lemma shows that there is a connection between logical connectives and set

theoretic operations of definable sets.

Lemma 2.3.7. Let L be a language, let M be an L-structure, let n ∈ N and let S, T ⊆ Mn be

L-definable. Then also S∩T , S∪T and Mn \T are L-definable. Moreover, the projection (onto

the first n− 1 coordinates)

π′n−1(S) := {b ∈Mn−1 | (b, c) ∈ S for some c ∈M}

is L-definable.

Proof. Let ϕ and ψ be L-formulas and let a ∈ M such that ϕ(M, a) = S and ψ(M, a) = T .

Then it is easy to verify that

� S ∩ T is defined by ϕ(x, a) ∧ ψ(x, a);

� S ∪ T is defined by ϕ(x, a) ∨ ψ(x, a);

� Mn \ T is defined by ¬ψ(x, a);

� π′n−1(S) is defined by ∃xn ϕ(x, a).

Remark 2.3.8. There is a version of Lemma 2.3.7 for parameter-free definability as well. In fact,

in many definability results, a careful handling of the use of parameters leads to sharper results.

To ease the notation, it is, however, sometimes useful to use more parameters than one actually

needs. We have done so in the proof of Lemma 2.3.7, where we assumed in the first step that

the same parameter tuples are used for the definitions of both sets.

2.3.2. Preservation under Automorphisms

As mentioned before, a prominent question of Model Theory is whether a given set is definable

in a given structure. The following result gives a necessary condition for a set to be definable

without parameters. This result is often used to show that a given set is not ∅-L-definable (read:

“zero-L-definable”).
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2. Model Theory

Proposition 2.3.9. Let L be a language, let M be an L-structure and let n ∈ N. Then any

∅-L-definable set A ⊆Mn is preserved under automorphisms, i.e. for any ψ : M∼=M, we have

ψ(A) = A, where ψ(A) = {ψ(a) | a ∈ A}.

Proof. We only prove this for the case n = 1, as the proof for larger n works similarly. Let ϕ(x)

be an L-formula defining A. Then for any a ∈ M we have a ∈ A if and only if M |= ϕ(a).

By Proposition 2.2.21, the latter holds if and only if M |= ϕ(ψ(a)). Now M |= ϕ(ψ(a)) if and

only if ψ(a) ∈ A. In conclusion, we have shown that for any a ∈ M we have a ∈ A if and only

if ψ(a) ∈ A. This also implies that for any a ∈ M we have a ∈ A if and only if ψ−1(a) ∈ A.

Hence, we obtain ψ(A) ⊆ A and ψ−1(A) ⊆ A, as required.

Example 2.3.10. The strict order relation < is not ∅-Lg-definable in R: Let

ψ : R→ R, x 7→ −x.

It is easy to verify that ψ is an Lg-automorphism on R. Now 0 < 1 but ψ(0) 6< ψ(1). Hence,

the graph of < is not preserved under ψ and thus by Proposition 2.3.9 not ∅-Lg-definable.

Proposition 2.3.9 says that if a set is definable, then it is preserved under all automorphisms.

The following exercise shows that the converse is not true.

Exercise 2.3.11. (i) Let ψ : Ror
∼= Ror. Show that ψ = idR.

(ii) Show that there are only countably many distinct ∅-Lor-definable subsets of R.

(iii) Deduce that there is a subset A ⊆ R that is not ∅-Lor-definable but still preserved by all

Lor-automorphisms on R.

2.4. Substructures and Quantifiers

See [4, Section 5] for further details.

2.4.1. Existential and Universal Formulas

Notation 2.4.1. Let L be a language, let M be an L-structure and let n ∈ N.

(i) If R is a binary relation symbol in L, t is an L-term and ϕ is an L-formula, then

∀(x R t) ϕ

stands for

∀x (x R t→ ϕ)

and

∃(x R t) ϕ

stands for

∃x (x R t ∧ ϕ).

Likewise we can deal with abbreviations for binary relations such as 6R. For instance, the

Lor-formula ∀(x > 0) x > 1 stands for ∀x (x > 0→ x > 1) and ∃(x 6= 1) x · x = 1 is short

for ∃x (x 6= 1 ∧ x · x = 1).
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2.4. Substructures and Quantifiers

(ii) If B ⊆Mn is L-definable and ϕ(a, x) defines B, then the string

x ∈ B

is short for

ϕ(a, x)

(within M). For instance, the real interval (−π, π) is defined by −π < x < π within Ror.

The abbreviation Ror |= 0 ∈ (−π, π) is short for Ror |= −π < 0 < π, and the abbreviation

Ror 6|= ∀(x ∈ (−π, π)) x < 3 stands for Ror 6|= ∀x (−π < x < π → x < 3).

Quantifiers generally increase the semantic complexity of formulas. In this regard, those

formulas that do not contain any quantifiers stand out.

Definition 2.4.2. Let L be a language. A quantifier-free L-formula is an L-formula whose

string of symbols does not contain a quantifier ∃ (or ∀).

Remark 2.4.3. For each formula it is possible to find a logically equivalent formula in prenex

normal form. This formula ϕ in prenex normal form begins with a finite number of quantifiers

∃x and ∀y (for distinct variables) at the beginning of ϕ and end with a quantifier-free formula

ψ. More precisely, ϕ can be chosen as

Q1x1 . . . Qnxn ψ

for Q1, . . . , Qn ∈ {∃,∀}. It is easy to prove the claim above by structural induction, and in a

basic course on Mathematical Logic one would, indeed, do so. We simply refer to the prenex

normal form whenever convenient.

Among the formulas in prenex normal form, two particular classes stand out: those classes

that only contain formulas using only one of the two possible quantifiers. This is made precise

in the following.

Definition 2.4.4. Let L be a language. We define recursively the notion of existential and of

universal L-formulas:

(i) Every quantifier-free L-formula is both existential and universal.

(ii) Let x be a variable. If ϕ is an existential formula, then ∃x ϕ is also an existential formula.

Likewise, if ϕ is a universal formula, then ∀x ϕ is also a universal formula.

Example 2.4.5. Consider the L<-sentence

∃x (∀y x < y → ∃z x < z).

This sentence is not yet in prenex normal form. First, we reformulate the sentence by using

logical equivalences (or rather “unwrapping abbreviations”):

∃x (∃y x 6< y ∨ ∃z x < z).

Now existential quantifiers over disjunctions can be moved to the front as long as no formerly

free variables would become bounded:

∃x∃y∃z (x 6< y ∨ x < z).

We have thus transformed the initial L<-sentence into an existential L<-sentences in prenex

normal form.
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2. Model Theory

2.4.2. Preservation Laws

We now come to one of the main tools that will be used in one direction of the proof of Shep-

herdson’s Theorem: preservation laws of existential and universal formulas. The proof of these

laws will be done by structural induction. We thus start with the base case.

Lemma 2.4.6. Let L be a language and let M,N be L-structures with M⊆ N . Then for any

quantifier-free L-formula ϕ(x) and for any a ∈M we have

M |= ϕ(a) if and only if N |= ϕ(a).

Proof. In detail, one could argue by structural induction using the recursive definition of quantifier-

free L-formulas. Since this is left as an exercise, we simply refer to Lemma 2.2.20 for the base

case.

Proposition 2.4.7. Let L be a language and let M,N be L-structures with M⊆ N . Then for

any existential L-formula ϕ(x) and for any a ∈M,

M |= ϕ(a) implies N |= ϕ(a).

Proof. We proceed by structural induction, the base case of which is covered in Lemma 2.4.6.

Now let ψ(x, y) be an existential formula for which the conclusion already holds. Now let a ∈M
such that M |= ∃y ϕ(a, y). Then for some c ∈M we have

M |= ϕ(a, c).

The inductive hypothesis implies

N |= ϕ(a, c),

whence N |= ∃y ϕ(a, y), as required.

Proposition 2.4.8. Let L be a language and let M,N be L-structures with M⊆ N . Then for

any universal L-formula ϕ(x) and for any a ∈M,

N |= ϕ(a) implies M |= ϕ(a).

Proof. We simply have to prove the contrapositive of the conclusion in Proposition 2.4.7. Noting

that the negation of an existential formula is a universal formula (and vice versa), this follows

immediately. (The details are left as an exercise.)

An important category of existential and universal formulas are existential and universal

sentences. In these cases, one often says that some substructure ‘inherits’ something from some

superstructure. In Section 2.5, we will see axiom systems that contain many universal sentences,

which are thus inherited by substructures. We already give a small motivating exercise here.

Exercise 2.4.9. Let G be an Lg-structure that is an abelian group. Show that also any Lg-

substructure H ⊆ G is an abelian group. The property ‘abelian’ is thus inherited by H from

G.
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2.5. Theories and Axioms

2.5. Theories and Axioms

See [4, Section 6] for further details.

2.5.1. Theories

Gödel’s Completeness Theorem, which would usually be proved in a lecture on Mathematical

Logic, shows that any sentence that is true in any model of a certain set of axioms (i.e. sentences)

Σ can be logically derived from those axioms. In Model Theory, we stay on a semantic level,

that is, we always treat sentences in connection to suitable structures. However, due to the

Completeness Theorem, also on the semantic level we can define what it means that a sentence

follows from a set of axioms. This is made precise in the following.

Definition 2.5.1. Let L be a language and let Σ be a set of L-sentence. Moreover, let ϕ be an

L-sentence and let Θ be a set of L-sentences. Then we write

Σ |= ϕ

if for any M |= Σ we have M |= ϕ. Moreover, we write

Σ |= Θ

if Σ |= θ for any θ ∈ Θ.

The symbol |= is read as “entails” or “implies”. One often also writes ` instead of |= (the

former is a symbol for the syntactic meaning, the latter for the semantic) and reads Σ |= ϕ as

“ϕ is a logical consequence of Σ”.

Definition 2.5.2. Let L be a language and let Σ be a set of L-sentences. Then:

(i) The set {ϕ | ϕ is an L-sentence with Σ |= ϕ} is called the deductive closure of Σ.

(ii) Σ is called deductively closed if it is equal to its deductive closures.

(iii) Σ is called satisfiable if it has a model, i.e. there exists an L-structure M with M |= Σ.

(iv) Σ is an L-theory if it is satisfiable and deductively closed.5

(v) Σ is called complete if for any L-sentence ϕ we have Σ |= ϕ or Σ |= ¬ϕ.

(vi) For an L-structure M, we call Σ the (complete) L-theory of M if

Σ = Th(M) := {ϕ | ϕ is an L-sentence with M |= ϕ}.

Example 2.5.3. (i) Let L be a language. For any set of L-sentences Σ and any σ ∈ Σ, we

have Σ |= σ. Moreover, if Σ is satisfiable, then Σ 6|= ¬σ.

(ii) Let Σ be a set of Lmon-sentences that is only satisfied by Lmon-structures that are monoids

(see Definition E.1.1). Then Σ |= 1 · 1 = 1.

5Some authors call any satisfiable set of L-sentences a theory.
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2. Model Theory

(iii) We have ∃x exp(x) < 0 /∈ Th(Rexp) but exp(1 + 1) = exp(1) · exp(1) ∈ Th(Rexp).

Exercise 2.5.4. Let L be a language and let M be an L-structure. Verify that Th(M) is a

complete L-theory.

Over a theory, one sometimes talks about equivalence of formulas. In our context, equivalence

to quantifier-free formulas will be of upmost importance.

Definition 2.5.5. Let L be a language and let T be an L-theory.

(i) Let ϕ(x) and ψ(x) be L-formulas. We say that ϕ(x) and ψ(x) are equivalent over T if

T |= ∀x (ϕ(x)↔ ψ(x)).

(ii) We say that T admits quantifier elimination if any L-formula is equivalent over T to a

quantifier-free L-formula.

There are several criteria for theories to admit quantifier elimination (see [7, Section 3.1]),

which go beyond the scope of this lecture. Instead, we will present explicitly a quantifier elim-

ination algorithm for the theory Th(Ror) in Chapter 4.

Exercise 2.5.6. Let ϕ(x, y) be a a quantifier-free Lor-formula and let b ∈ R. Show that ϕ(x, b)

defines a finite union of open intervals and singletons in Ror.

2.5.2. Elementary Equivalence

We have already established the equivalence relation ∼= between L-structures meaning that

two L-structures are L-isomorphic. This equivalence relation expresses that two structures are

algebraically identical. A weaker notion is elementary equivalence, which establishes the logical

equivalence between two structures.

Definition 2.5.7. Let L be a language and let M and N be L-structures. Then we say that

M and N are elementarily equivalent if Th(M) = Th(N ). In this case, we write

M≡ N or M ≡L N.

Example 2.5.8. We have R 6≡Lr Q. Indeed, ∃x x · x = 1 + 1 is an element of Th(Rr) but not

of Th(Qr).

Lemma 2.5.9. Let L be a language and let M and N be L-structures with M ∼= N . Then

M≡ N .

Proof. We only show Th(M) ⊆ Th(N ), as the other inclusion follows similary. Let ψ : M∼= N
and let ϕ ∈ Th(M). Then M |= ϕ, and by Proposition 2.2.21 we obtain N |= ϕ. Hence,

ϕ ∈ Th(N ), as required.

Lemma 2.5.9 raises the question whether there are structures that are elementarily equivalent

but not isomorphic. This turns out to be a rather difficult exercise at this point. Indeed,

for finite structures the two notions of equivalence always coincide (see below). However, for
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infinite structures the so-called Löwenheim–Skolem Theorems – which go beyond the scope of

this lecture – ensure arbitrarily large models of theories with infinite models. This shows, for

instance, that there is an uncountable model K of the theory Th(Qr) implying that K ≡ Qr but

K 6∼= Qr.

Exercise 2.5.10. Let L be a language and let M and N be L-structures such that M is finite

and M≡ N . Show that M∼= N .

2.5.3. Axiom Systems

In Model Theory, we often talk about the axioms for the theory of . . . , where . . . may be filled by

“linear orderings”, “rings”, “ordered fields” etc. Axioms are basic sentences from which other

statments about the particular algebraic structures can be deduced. We make this precise in

the following.

Definition 2.5.11. Let L be a language and let Σ be a set of L-sentences.

(i) Let C be a class of L-structures. We say that Σ axiomatises C if for any L-structure M
we have M∈ C if and only if M |= Σ. Any σ ∈ Σ may then be called an axiom6 for C.

(ii) Let T be an L-theory. We say that Σ axiomatises T if T is the deductive closure of Σ.

An element of Σ can then be called an axiom for T .

In the following, we present axiom systems for some important theories.

Definition 2.5.12. (i) The L<-theory Tlo of linear orders is axiomatised by the following

set of axioms:

∀x x 6< x,

∀x, y, z ((x < y ∧ y < z)→ x < z),

∀x, y (x < y ∨ x = y ∨ y < x).

(ii) The L<-theory Tdlo of dense linear orders without endpoints is axiomatised by the

extension of Tlo by the following axioms:

∀x, y (x < y → ∃z (x < z ∧ z < y)),

∀x∃y, z (y < x ∧ x < z).

(iii) The Lg-theory Tag of abelian groups is axiomatised by the following set of axioms:

∀x 0 + x = x,

∀x, y, z x+ (y + z) = (x+ y) + z,

∀x x− x = 0,

∀x, y x− y = x+ (0− y),

6Of course, we always assume Σ to be as small as possible, i.e. not to contain redundant axioms that can be derived

from the others. By this definition, we can say that two axiom systems, i.e. sets of sentences, are equivalent if

they axiomatise the same class of structures.
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2. Model Theory

∀x, y x+ y = y + x.

(iv) The Log-theory Toag of ordered abelian groups is axiomatised by the extension of

Tag ∪ Tlo by the following axiom:

∀x, y, z (x < y → x+ z < y + z).

(v) The Log-theory Tdoag of divisible ordered abelian groups is axiomatised by the exten-

sion of Toag by the following axioms:

∃x x 6= 0,

for any n ∈ N:

∀x∃y y + . . .+ y︸ ︷︷ ︸
n times

= x.

(vi) The Lr-theory Tcr of commutative rings with identity is axiomaties by the extension

of Tag by the following axioms:

∀x 1 · x = x,

∀x, y, z x · (y · z) = (x · y) · z,

∀x, y x · y = y · x,

∀x, y, z x · (y + z) = (x · y) + (x · z).

(vii) The Lor-theory Tor of ordered rings is axiomatised by the extension of Toag ∪ Tcr by the

following axioms:

0 < 1,

∀x, y, z ((x < y ∧ 0 < z)→ x · z < y · z).

(viii) The Lor-theory Tof of ordered fields is axiomatised by the extension of Tor by the following

axiom:

∀(x 6= 0) ∃y x · y = 1.

(ix) The Lor-theory Trcf of real closed fields is axiomatised by the extension of Tof by the

following axioms:

∀(x > 0) ∃y y2 = x,

∀y0, . . . , y2n+1

(
y2n+1 6= 0→ ∃x y0 + y1x+ . . .+ y2n+1x

2n+1 = 0
)
, for each n ∈ N.

(x) The Lexp-theory Trcef of real closed exponential fields is axiomatised by the extension

of Trcf by the following axioms:

exp(0) = 1,

∀x∀y (exp(x+ y) = exp(x) exp(y)),

∀(y > 0) ∃x exp(x) = y,

∀x∀y (x < y → exp(x) < exp(y)).

In the following chapter, we study the theory of Peano Arithmetic in further detail.
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3. Models of Arithmetic

In this chapter, we only present the basics of models of Peano Arithmetic as well as models of

Open Induction. Further details can be found in [3].

3.1. Peano Arithmetic

3.1.1. Axiomatisation

Peano Arithmetic was invented in an attempt to axiomatise the semiring of natural numbers, i.e.

to describe its defining properties. There is also a version of Peano Arithmetic for the integers,

which will be explained in Chapter 5. Here, we concentrate on Peano Arithmetic inspired by

the properties of (ω,+, ·, 0, 1, <).

Definition 3.1.1. The language of Peano Arithmetic LPA is given by LPA := Lsemr∪L< =

{+, ·, 0, 1, <}. The LPA-theory PA of Peano Arithmetic is axiomatised by the following axiom

system:

(i) the theory of linear orders Tlo,

(ii) ∀x 0 ≤ x,

(iii) 0 < 1 ∧ ∀(x > 0) 1 ≤ x,

(iv) ∀x 0 + x = x,

(v) ∀x, y, z x+ (y + z) = (x+ y) + z,

(vi) ∀x, y x+ y = y + x,

(vii) ∀x, y, z (x < y → x+ z < y + z),

(viii) ∀x, y (x < y → ∃z x+ z = y),

(ix) ∀x 1 · x = x,

(x) ∀x, y, z x · (y · z) = (x · y) · z,

(xi) ∀x, y x · y = y · x,

(xii) ∀x, y, z x · (y + z) = (x · y) + (x · z),

(xiii) ∀x, y, z ((x < y ∧ 0 < z)→ x · z < y · z),
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3. Models of Arithmetic

(xiv) the induction scheme: for any LPA-formula ϕ(x, y),

∀y ((ϕ(0, y) ∧ ∀n (ϕ(n, y)→ ϕ(n+ 1, y)))→ ∀n ϕ(n, y)).

The LPA-theory axiomatised by (i) to (xiii) is also denoted by PA−.

The LPA-theory PA− axiomatises the class of discretely ordered semirings with 1 as least

positive element. There are various theories between PA− and PA that are usually axiomatised

by induction schemes restricted to particular formulas. Such a “fragment” of Peano Arithmetic,

called IOpenPA (or Open Induction), is treated in Section 3.2.

Lemma 3.1.2. Let M |= PA− and let a, b ∈M with a ≤ b ≤ a+ 1. Then b = a or b = a+ 1.

Proof. Assume, for a contradiction, that a < b < a+ 1. Let k, ` ∈M with

a+ k = b and b+ ` = a+ 1.

Note that k, ` 6= 0, whence k, ` ≥ 1. Hence,

a+ 1 = b+ ` = a+ k + ` ≥ a+ k + 1 ≥ a+ 1 + 1 > a+ 1,

a contradiction.

3.1.2. Standard and Non-Standard Parts

The standard model for PA is ωPA = (ω,+, ·, 0, 1, <). Surprisingly, it is difficult if not even

impossible to construct explicit “non-standard” models of Peano Arithmetic (due to Tennen-

baum’s Theorem). Non-standard models of Peano Arithmetic contain infinitely large elements,

which will be of interest in connection to non-archimedean fields in later parts of this lecture.

For now, we make the notions of standard and non-standard parts and models precise.

Lemma 3.1.3. Let M |= PA−. Then for any n ∈M , we have n · 0 = 0 · n = 0.

Proof. Since 0 is the least element of M , we have n · 0 ≥ 0. If n · 0 > 0, then

n · 0 = n · (0 + 0) = n · 0 + n · 0 > n · 0 + 0 = n · 0,

a contradiction.

Proposition 3.1.4. Let M |= PA− and let

ιM : ω →M

be given by ιM(0) = 0M and

ιM(n) = nM := 1M +M . . .+M 1M︸ ︷︷ ︸
n times

.

Then

ιM : ωPA ↪→M.
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3.1. Peano Arithmetic

Proof. By definition of ιM, we have ιM(0) = 0M and ιM(1) = 1M. In order to ease the notation,

we omit all further superscript “M”.

Let m ∈ ω. Then

ιM(m+ 0) = ιM(m) = ιM(m) + 0 = ιM(m) + ιM(0).

Likewise, ιM(0 +m) = ιM(0) + ιM(m). Now let n,m ∈ N. Then by associativity we have

ιM(m+ n) = mM + nM = ιM(m) + ιM(n).

We show by induction in ω that also · is preserved: Let m ∈ ω be fixed. Then

ιM(m · 0) = ιM(0) = 0 = mM · 0

by Lemma 3.1.3. Now let n ∈ ω with ιM(mn) = mM · nM. Then

ιM(m(n+ 1)) = ιM(mn+m) = (mn)M +mM = (mM · nM) +mM = mM · (nM + 1M).

We now show that < is preserved: Let n,m ∈ ω. Suppose that n < m and set k = m − n.

Then m = n+ k, whence

mM = nM + kM.

Since kM 6= 0 i.e. kM > 0, we obtain nM < mM. Now suppose that n 6< m. If m < n, then

mM < nM follows as above, and if n = m, then nM = mM. In either case, nM 6< mM.

Finally, we have to verify that ιM is injective. Let m,n ∈ ω with n 6= m. Without loss of

generality, we have n < m and thus nM < mM. This yields n 6= m, as required.

The map ιM now allows us to define standard and non-standard elements.

Definition 3.1.5. Let M |= PA−. Then any element in the standard part ιM(ω) of M is

called a standard element and any element in the non-standard part M \ ιM(ω) of M is

called a non-standard element. If ιM(ω) 6= M , thenM is called a non-standard model of

PA−.

Definition 3.1.6. Let (J,<) |= Tlo.

(i) For any a, b ∈ J , we denote by [a, b]J the interval {j ∈ J | a ≤ j ≤ b}. Likewise, we

use notions like (a, b)J , [a, b)J etc., as well as (−∞, b)J for {j ∈ J | j < b}, (a,∞)J for

{j ∈ J | a < j} etc.

(ii) Let (I,<) ⊆ (J,<). Then I is called an initial segment of J if for any i ∈ I, we have

(−∞, i]J ⊆ I.

(iii) LetM |= PA−. A non-empty subset I ⊆M is called a cut ofM if it is an initial segment

of M and it is closed under +1, i.e. for any i ∈ I also i + 1 ∈ I. If additionally I 6= M ,

then I is called a proper cut of M.

Remark 3.1.7. (i) The map ιM in is the only possible embedding of ωPA into M. Indeed,

since it needs to map 0 to 0M and 1 to 1M, it is uniquely determined.

(ii) Usually, we identify ιM(ω) with ω and thus consider ω as a subset of any domain of a model

of PA−. In particular, ω is a cut of any M |= PA− and a proper cut of any non-standard

M |= PA−. Moreover, ω is always the smallest cut.
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3. Models of Arithmetic

3.1.3. Definable Sets

Definable sets within models of PA are of particular interest. The two results in this section

show that definable sets always have minimum and never form a proper cut.

Definition 3.1.8. Let (I,<) |= Tlo.

(i) Let J ⊆ I and let c ∈ I. We write c > J to express that c > j for any j ∈ J . Similarly,

c < J expresses that c < j for any j ∈ J .

(ii) An element a ∈ I is called the least element of I if for any b ∈ I we have b ≥ a.

Proposition 3.1.9 (Least Number Principle). Let M |= PA and let A ⊆M be non-empty and

LPA-definable in M. Then A contains a least element.

Proof. Let ϕ(x, y) be an LPA-formula and let b ∈ M such that A = ϕ(M, b). Moreover, let

C ⊇ A be the upward closure of A, i.e.

C = {c ∈M | n ≤ c for some n ∈ A}.

Note that C is defined by ψ(x, b):

∃(n ∈ A) n ≤ x.

If 0 ∈ C, then it must already be the least element of C. Hence, 0 ≥ n for some n ∈ A

implying that 0 = n ∈ A is the least element of A.

Now suppose that 0 ∈ C := M \ C. Note that C is defined by ¬ψ(x, b). Assume, for a

contradiction, that for any c ∈ C also c+ 1 ∈ C. Then

M |= ¬ψ(0, b) ∧ ∀n (¬ψ(n, b)→ ¬ψ(n+ 1, b)).

By induction, we obtain

M |= ∀n ¬ψ(n, b),

i.e. C = M . This shows that C = ∅ and thus A = ∅, a contradiction.

Hence, let c0 ∈ C such that c0 + 1 /∈ C. Then c0 + 1 ∈ C but c0 /∈ C. In particular, c0 < A.

Since c0 +1 ≥ n0 for some n0 ∈ A, we obtain c0 < n0 ≤ c0 +1. Lemma 3.1.2 implies n0 = c0 +1.

Now for any ` ∈ A with ` < n0, we have again by Lemma 3.1.2 that ` ≤ c0, contradicting

c0 < A. Hence, n0 is the least element of A.

Proposition 3.1.10 (Overspill). LetM |= PA and let I ⊆M be a proper cut ofM. Let A ⊆M
be LPA-definable in M with I ⊆ A. Then there exists c ∈M such that I ( [0, c]M ⊆ A.

Proof. Let C ⊆M be the set defined by:7

∀(n ≤ x) n ∈ A.

Then for any x ∈ C, we have [0, x]M ⊆ A and thus C ⊆ A. Moreover, for any i ∈ I, we have

[0, i]M ⊆ I ⊆ A and thus I ⊆ C.

7The set C is the first connected component of A.
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3.1. Peano Arithmetic

Assume, for a contradiction, that I = C. Since then I = M \ I ⊆ M is LPA-definable in M,

Proposition 3.1.9 shows that it contains a least element i0. Since 0, 1 ∈ I, we obtain i0 > 1. Let

k ∈ M with 1 + k = i0. Then k /∈ I, as k < i0. Hence k ∈ I but k + 1 = i0 /∈ I, contradicting

the choice of I as a cut.

Hence, I ( C ⊆ A. Now let c ∈ C \ I. Then since I is an initial segment of M , it is also an

initial segment of [0, c]M . Hence,

I ( [0, c]M ⊆ A,

as required.

Exercise 3.1.11. Let M |= PA be non-standard. Show that neither the standard part nor the

non-standard part of M are LPA-definable in M.

3.1.4. Number Theory

In this section, we present several results from Elementary Number Theory for any model of

PA, thus verifying that those statements can be deduced from the axioms of Peano Arithmetic.

Some of these results are of particular interest, as they will not hold in all models of Open

Induction. This will show that their proof indeed needs the full induction scheme.

Proposition 3.1.12 (Euclidean Division). Let M |= PA and let a, b ∈ M with a 6= 0. Then

there exist unique r, s ∈M with

b = as+ r and r < a.

Proof. We first prove by induction on n that

M |= ∀n∃r, s (n = as+ r ∧ r < a).

For n = 0, simply set r = s = 0. Then n = as+ r and r < a, as a > 0.

Now let n, r, s ∈ M with n = as + r and r < a. If r + 1 < a, then n + 1 = as + (r + 1) and

we are done. Otherwise, r + 1 = a. Hence, n+ 1 = as+ a = a(s+ 1) + 0 and we are also done,

as 0 < a. This completes the induction.

In order to prove uniqueness, let r, r′, s, s′ ∈ M with b = as + r = as′ + r′ with r, r′ < a. If

s < s′, then

b = as+ r < as+ a = a(s+ 1) ≤ as′ ≤ as′ + r′ = b,

a contradiction. Thus, s′ ≥ s. Likewise s′ ≤ s, establishing s = s′. Now if r′ < r, then

b = as+ r = as′ + r′ = as+ r′ < as+ r,

also a contradiction. This shows r′ ≥ r, and also r′ ≤ r can be verified this way.

Notation 3.1.13. Within LPA, we use the following abbreviations, where s, t and u are LPA-

terms:

(i) The integer part of s divided by t ⌊s
t

⌋
stands for z with zt ≤ s < (z + 1)t if t 6= 0 and 0 if t = 0.
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3. Models of Arithmetic

(ii) The remainder on dividing s by t (s
t

)
stands for z with ∃(w ≤ s) (tw + z = s ∧ z < t) if t 6= 0 and 0 if t = 0.

(iii) The binary relation “s divides t”

s | t

stands for ∃(z ≤ t) (sz = t ∧ s 6= 0).

(iv) The 3-ary relation “s is congruent to t modulo u”

s ≡ t mod u

stands for u 6= 0 ∧
(
s
u

)
=
(
t
u

)
.

(v) The unary relation “s is prime”

pr(s)

stands for s ≥ 2 ∧ ∀x, y (s | xy → (s | x ∨ s | y)).

(vi) The unary relation “s is irreducible”

irr(s)

stands for s ≥ 2 ∧ ∀(x | s) (x = 1 ∨ x = s).

(vii) The binary relation “s and t are coprime”

(s, t) = 1

stands for s ≥ 1 ∧ t ≥ 1 ∧ ∀x ((x | s ∧ x | t)→ x = 1).

(viii) The expression s− t stands for z with z + t = s if t ≤ s and 0 if s < t.

We also use the notations above outside LPA-formulas (but within models of PA) with the same

meaning.

Proposition 3.1.14 (Bézout’s Lemma). LetM |= PA. Then for any n,m ∈M with (n,m) = 1,

there exists a ∈M with a < m and an ≡ 1 mod m.

Proof. If n = 1 or m = 1, then the conclusion is easy to verify. Otherwise, w =
(
n
m

)
, we have

M |= w ≥ 1 ∧ ∃(a < m) an ≡ w mod m

(setting a = 1). Hence, the subset of M defined by

w ≥ 1 ∧ ∃(a < m) an ≡ w mod m

(where w is the free variable in this formula) has a least element w0 ∈M by Proposition 3.1.9.

Note that w0 ≤
(
n
m

)
≤ min(n,m). We show that w0 = 1, proving the desired conclusion. In

order to do so, we verify that w0 | n and w0 | m. This suffices, as (n,m) = 1.
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Let a ∈M with a < m0 and an ≡ w0 mod m. Set

t =
⌊an
m

⌋
and note that an = tm+ w0, as w0 < m. Moreover, set

s =

⌊
n

w0

⌋
and r =

(
n

w0

)
.

Then n = sw0 + r and r < w0. This implies

r = n− sw0 = n− s(an− tm) = n+ stm− san,

and thus

r ≡ (1 + um− sa)n mod m,

where

u =

⌊
sa+m− 2

m

⌋
and 1 + um − sa ≤ m − 1 < m. But r < w0, and by choice of w0 we obtain r = 0. Hence,

n = sw0 implying w0 | n.

Now set

c =

⌊
m

w0

⌋
and d =

(
m

w0

)
.

Then m = cw0 + d with d < w0 and

d = m− cw0 = m− c(an− tm) = (1 + ct)m− can.

Setting

b =

⌊
ca+m− 1

m

⌋
,

we have bm− ca ≤ m− 1 < m and

d ≡ (bm− ca)n mod m.

Hence, d = 0 and w0 | m, as required.

Corollary 3.1.15. The formulas pr(x) and irr(x) are equivalent over PA.

Proof. Let M |= PA and let n ∈ M with n ≥ 2. First suppose that n is not irreducible. Then

let x ∈M with x | n but neither x = 1 nor x = n. Let a ∈M with n = ax and note that a 6= 1

and a 6= n. Moreover, a, x < n. Hence, n | ax but neither n | a nor n | x, showing that n is not

prime.

Now suppose that n is irreducible. Let x, y,m ∈M \ {0} with n | xy and nm = xy. Assume,

for a contradiction, that n - x and n - y. Then (n, x) = 1: Indeed, let ` ∈ M with ` | n and

` | x. By irreducibility of n, we have ` = 1 or ` = n. But if ` = n, then n | x, contradicting our

assumption. Likewise, (n, y) = 1.

Noting that
(
1
n

)
= 1, we obtain by Proposition 3.1.14 that there exist r, s, u, v ∈M with

rx = un+ 1 and sy = vn+ 1.
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Hence,

rsnm = rsxy = uvn2 + (u+ v)n+ 1,

implying that

0 =
(rsnm

n

)
=
(rsxy

n

)
= 1,

a contradiction.

The following exercise shows that the square root of 2 is irrational in any model of Peano

Arithmetic.8

Exercise 3.1.16 (Irrationality of
√

2). Show that PA |= ¬∃m∃(n 6= 0) m2 = 2n2.

Exercise 3.1.17 (Prime Divisors). Show that PA |= ∀(x > 1)∃p (pr(p) ∧ p | x).

The final result of this section shows that in any model of Peano Arithmetic, the set of prime

numbers is unbounded (and thus, in particular, infinite).

Proposition 3.1.18 (Euclid’s Theorem). PA |= ∀n∃(m > n) pr(m).

Proof. Let M |= PA. We first show by induction on n that

M |= ∀n∃(` 6= 0) (∀(p ≤ n) (pr(p)→ p | `)). (3.1.1)

For n ∈ {0, 1, 2} set ` = 2: For n ∈ {0, 1}, it is vacuously true that ∀(p ≤ n) (pr(p) → p | 2) is

vacuously true. For n = 2, the statement holds as 2 is the only prime in {0, 1, 2} and 2 | 2.

Let n, ` ∈ M with n ≥ 2 and ` 6= 0 such that ∀(p ≤ n) (pr(p) → p | `) holds. If n + 1 is not

prime, then

{p ∈M | M |= p ≤ n ∧ pr(p)} = {p ∈M | M |= p ≤ n+ 1 ∧ pr(p)},

and we are done. Otherwise, set `′ = `(n + 1). Then certainly n + 1 | `′. Moreover, for any

prime p ∈ M with p ≤ n, there exists k ∈ M with k ≤ ` and pk = `. Hence, pk(n + 1) = `′.

Since k(n+ 1) ≤ `(n+ 1) = `′, we obtain p | `′, as required. This completes the induction.

Now assume, for a contradiction, that there exists n ∈M with

M |= ∀(m > n) ¬pr(m). (3.1.2)

Since the set {n ∈M | M |= ∀(m > n) ¬pr(m)} 6= ∅ is LPA-definable inM, by Proposition 3.1.9

we may take n ∈M as the least element with property (3.1.2). In particular, n must be prime,

as otherwise we can find a smaller n satisfying (3.1.2). By Proposition 3.1.9 and (3.1.1), we can

let ` ∈ M be least such that ` 6= 0 and for any prime p ∈ M with p ≤ n we have p | `. In

particular, n | `, whence n ≤ `.
We now show that `+ 1 > n is prime, contradicting our assumption. If `+ 1 were not prime,

then by Exercise 3.1.17 we can let q ∈ M be prime with q | ` + 1. By our assumption, q ≤ n

and thus q | `. Now let r, s ∈ M with qr = ` and qs = ` + 1. Then r < s and for t ∈ M \ {0}
with r + t = s we obtain

`+ 1 = q(r + t) = qr + qt = `+ qt > `+ 1,

as q ≥ 2 and t ≥ 1, a contradiction.

8Here, we use standard abbreviations such as n2 for n · n and 2 for 1 + 1.
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3.2. Open Induction

We now consider the fragment of PA where the induction scheme only holds for quantifier-free

formulas. This is only a very brief introduction and further properties are presented once they

are needed in Chapter 5.

3.2.1. Axiomatisation

Definition 3.2.1. The LPA-theory IOpen of Open Induction is axiomatised by the extension

of PA− by the induction scheme restricted to quantifier-free LPA-formulas:

for any quantifier-free LPA-formula ϕ(x, y),

∀y ((ϕ(0, y) ∧ ∀n (ϕ(n, y)→ ϕ(n+ 1, y)))→ ∀n ϕ(n, y)).

The theory IOpen is of particular interest, as restricting the induction scheme to LPA-formulas

of particularly simple form, i.e. to those using no quantifiers at all, is a natural reduction of the

full induction scheme in PA. While we lose properties like the Least Number Principle and

Overspill for all LPA-definable sets, there are also versions of the results from Subsection 3.1.3

for sets defined within models of IOpen by quantifier-free LPA-formulas. We will, however, not

state these results explicitly.

While we lose the strength of full induction, we gain a better understanding of models of this

particular kind of arithmetic. More precisely, the two main theorems of this lecture will give us

a way to explicitly construct non-standard models of IOpen, which is not possible in the case of

PA.

3.2.2. Number Theory

While we will show that neither the irrationality of 2 nor Euclid’s Theorem can be proved within

IOpen, we can still obtain some basic arithmetical results from Number Theory. As an example,

we present Euclidean Division. Some results directly following from Euclidean Division could

then also be deduced within IOpen.

Proposition 3.2.2 (Euclidean Division in IOpen). Let M |= IOpen and let a, b ∈ M with

a 6= 0. Then there exist unique r, s ∈M with

b = as+ r and r < a.

Proof. Once we have established the existence of r and s, their uniqueness can be derived like

in the proof of Proposition 3.1.12, as this only requires properties of PA−.

Assume, for a contradiction, that there are a, b ∈M with a 6= 0 not satisfying the conclusion.

Then b ≥ a, as otherwise we could set s = 0 and r = b. Consider the quantifier-free LPA-formula

(with parameters) ϕ(n, a, b) given by

b > n · a.

Since b ≥ a > 0, we have M |= ϕ(0, a, b).
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Now let n ∈ M with b > na and let r ∈ M with na + r = b. Assume that b ≤ (n + 1)a.

Then b = na+ r ≤ na+ a, whence r ≤ a. By assumption on a and b, we obtain r = a and thus

b = na+a = (n+ 1)a+ 0, also contradicting the choice of a and b. We thus obtain b > (n+ 1)a.

In conclusion,

M |= ∀n (ϕ(n, a, b)→ ϕ(n+ 1, a, b)).

By induction, we obtain that for all n ∈M we have b > na. However, since a 6= 0,

b > ba ≥ b,

a contradiction.
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4. Real Algebra and Real Closed Fields

4.1. Real Algebra

This section follows [7, Appendix B]. We always abbreviate the Lr-structure of a field (K,+,−, ·,
0, 1) by K. An Lor-expansion of K is then denoted by (K,<).

4.1.1. Real Fields

Notation 4.1.1. Let K be a field. Then∑
K2 := {a21 + . . .+ a2n | n ∈ N, a1, . . . , an ∈ K}

denotes the set of sums of squares from K.

Definition 4.1.2. Let K be a field. Then K is called (formally) real if −1 /∈
∑
K2.

Exercise 4.1.3. Let (K,<) be an ordered field, i.e. (K,<) |= Tof . Show that K is real.

Certainly, R is real and C is not real. In the following, we show that a field is real if and only

if it can be expanded to an ordered field.

Lemma 4.1.4. Let K be a real field and let a ∈ K×. Then {a,−a} 6⊆
∑
K2.

Proof. We prove the contrapositive. Suppose that {a,−a} ⊆
∑
K2. Let n ∈ N and c1, . . . , cn,

d1, . . . , dn ∈ K such that

a = c21 + . . .+ c2n and − a = d21 + . . .+ d2n.

Then

−1 =
a

−a
=

a

a2
(−a) =

c21 + . . .+ c2n
a2

(d21 + . . .+ d2n) =

n∑
i=1

n∑
j=1

(
cidj
a

)2

∈
∑

K2.

Hence, K is not real.

Recall that for any field K and any a ∈ K, we denote by
√
a a zero of the polynomial X2− a

in some algebraic closure of K.

Lemma 4.1.5. Let K be a real field and let a ∈ K. Then either K(
√
a) or K(

√
−a) is real.

Proof. By Lemma 4.1.4, not both a and −a can be a sum of squares. Suppose that −a ∈
K \

∑
K2. We show that K(

√
a) is real. (In the case a ∈ K \

∑
K2, one can similarly prove

that K(
√
−a) is real.)
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If
√
a ∈ K, then K(

√
a) = K and we are done. Otherwise, assume, for a contradiction, that

K(
√
a) is not real. Then there are bi, ci ∈ K with i ∈ {1, . . . , n} for some n ∈ N such that

−1 =

n∑
i=1

(bi + ci
√
a)2 =

n∑
i=1

(b2i + c2i a) +
√
a

n∑
i=1

2cibi.

Since {1,
√
a} is a basis of K(

√
a) over K, we obtain

−1 =

n∑
i=1

(b2i + c2i a).

Hence,

−a =
1 +

∑n
i=1 b

2
i∑n

i=1 c
2
i

=

(∑n
i=1 b

2
i

)(∑n
i=1 c

2
i

)(∑n
i=1 c

2
i

)2 ∈
∑

K2,

a contradiction.

Lemma 4.1.6. Let K be a real field and let f ∈ K[X] be of odd degree n and irreducible. Then

for any α in the algebraic closure of K with f(α) = 0, the field K(α) is real.

Proof. We proceed by induction on n, where the case n = 1 is clear. Let n ∈ N be odd such

that the statement holds for any odd k up to n− 2. Assume, for a contradiction, that K(α) is

not real. Since

K(α) = {g(α) | g ∈ K[X], deg(g) ≤ n− 1},

for some m ∈ N, there are g1, . . . , gm ∈ K[X] of degree at most n− 1 such that

−1 =

m∑
i=1

g2i (α).

As K is real, some gi is non-constant. Recall that

ϕ : K[X]/〈f〉
∼=→ K(α), h(X) + 〈f〉 7→ h(α).

Hence,

−1 + 〈f〉 = ϕ−1

(
m∑
i=1

g2i (α)

)
=

m∑
i=1

g2i (X) + 〈f〉.

Thus, there is some q ∈ K[X] with

−1 =

m∑
i=1

g2i (X) + q(X)f(X).

Now deg
(∑m

i=1 g
2
i (X)

)
is even with

2 ≤ deg

(
m∑
i=1

g2i (X)

)
≤ 2n− 2,
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4.1. Real Algebra

and deg(qf) = deg(q) + n. Hence, deg(q) is odd and at most n − 2. Let p ∈ K[X] be an

irreducible factor of q of odd degree k ≤ n− 2 and let r ∈ K[X] with pr = q. Then for any zero

β of p, we have

−1 =
m∑
i=1

g2i (β) + p(β)r(β)f(β) =
m∑
i=1

g2i (β) ∈ K(β).

Thus, K(β) is not real, contradicting the inductive hypothesis.

Definition 4.1.7. Let K be a real field. Then we say that K is real closed if no proper

algebraic field extension of K is real, i.e. for any algebraic field extension F/K with K ( F the

field F is not real.

Example 4.1.8. (i) Since C is the algebraic closure of R and [C : R] = 2, it is also the only

proper algebraic extension of R. As C is not real, R is a real closed field.

(ii) The field Q is real, as −1 /∈
∑

Q2. However, also the algebraic extension Q(
√

2) of Q is

real (see Lemma 4.1.5), whence Q is not real closed.

The following exercise justifies why in Definition 4.1.7 only algebraic field extensions are

considered.

Exercise 4.1.9. Find a proper field extension of R that is real.

Definition 4.1.10. Let K be a real closed field. We define the binary relation < on K by

letting

a < b :⇔ K |= ∃(c 6= 0) a+ c2 = b.

Exercise 4.1.11. Let K be a real closed field.

(i) Show that (K,<) |= Tof , i.e. (K,<) is an ordered field.

(ii) Let ≺ be a binary relation on K that does not coincide with <. Show that (K,≺) 6|= Tof .

(Hence, < is the unique binary relation on K making (K,<) an ordered field.)

Remark 4.1.12. In Definition 2.5.12 (ix), we introduced the Lor-theory Trcf of real closed fields.

By Definition 4.1.7, real closed fields are Lr-structures. However, by Definition 4.1.10, any Lr-
structure of a real closed field can be expanded naturally to an Lor-structure. It therefore always

depends on the context whether a real closed field is considered as an Lr- or an Lor-structure.

In the following subsection, we will also justify this ambiguity by verifying that the described

Lor-expansion of a real closed field becomes a model of Trcf .

4.1.2. Real Closed Fields

Definition 4.1.13. Let K be a real field and let R/K be algebraic such that R is real closed.

Then R is called a real closure of K.

Exercise 4.1.14. (i) Use Zorn’s Lemma to show that any real field has a real closure.

(ii) Let K be a real field and let a ∈ K with −a /∈
∑
K2. Show that there is a binary relation

< on K such that (K,<) |= Tof and a > 0.
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4. Real Algebra and Real Closed Fields

Proposition 4.1.15. Let K be a real field with the following properties:

(i) For any a ∈ K, either
√
a ∈ K or

√
−a ∈ K.

(ii) Any polynomial f ∈ K[X] of odd degree has a zero in K.

Further, let i =
√
−1. Then C = K(i) is algebraically closed.

Proof. Let < be a linear ordering on K such that (K,<) is an ordered field. First note that for

any x ∈ K with x > 0, we have
√
x ∈ K: If not, then

√
−x ∈ K for some positive x ∈ K. Then

−x ∈
∑
K2, whence −x ≥ 0, a contradiction.

We now show that any element of C has a square root in C. To this end, let a, b ∈ K with

(a, b) 6= (0, 0). Since a2 + b2 > 0, we can let s ∈ K with s > 0 such that s2 = a2 + b2. Consider

r =
a+ s

2
∈ K.

If s < −a, then a2 + b2 < a2, a contradiction. Thus, s ≥ −a and r ≥ 0. Hence,
√
r ∈ K. Setting

c =
√
r and d = b

2c ,

we obtain

(c+ di)2 = c2 − d2 + 2cdi

= r − b2

4r + bi

=
(2r + b)(2r − b)

4r
+ bi

=
(s+ a+ b)(s+ a− b)

4r
+ bi

=
s2 + 2as+ a2 − b2

4r
+ bi

=
2a2 + 2as

2(a+ s)
+ bi

= a+ bi,

as required.

To prove that C is algebraically closed, it suffices to verify that it has no proper finite field

extension. Let L/C be a finite field extension. We may assume that the extension L/K is a

Galois extension, as otherwise we can replace L by its normal hull. Let G = Gal(L/K) be the

Galois group of L over K. Since

|G| = [L : K] = [L : C][C : K] = 2[L : C],

there are k,m ∈ N such that m is odd and |G| = 2km.

Let H be a 2-Sylow subgroup of G. Then |H| = 2k. Let F be the fixed field of H, i.e.

F = Inv(H). Then

[L : F ] = |H| = 2k and [F : K] = [G : H] = m.

36



4.1. Real Algebra

Now for any α ∈ F , the degree of the minimal polynomial mα,K ∈ K[X] of α over K divides

m and must therefore be odd. By property (ii), we obtain that mα,K has a zero in K. Hence,

deg(mα,K) = 1 and α ∈ K. This shows that F = K and m = 1. We thus obtain

[L : C] =
[L : K]

[C : K]
=

2k

2
= 2k−1.

We show that k = 1, establishing our desired conclusion L = C.

Let G′ = Gal(L/C). Assume, for a contradiction, that k ≥ 2. Then |G′| = [L : C] = 2k−1 ≥ 2.

By the Sylow Theorems, G′ has a subgroup H ′ of order |H ′| = 2k−2. Then

[Inv(H ′) : C] = [G′ : H ′] = 2.

This shows that the fixed field Inv(H ′) of H ′ is a degree 2 extension of C. This contradicts the

fact that any element of C has a square root in C.

Corollary 4.1.16. Let K be a real field and let i =
√
−1. Then C = K(i) is algebraically closed

if and only if K is real closed.

Proof. First suppose that K is real closed. Then K is a real field satisfying the properties of

Proposition 4.1.15: Lemma 4.1.5 shows that for any a ∈ K, either K(
√
a) or K(

√
−a) is real

and thus equal to K, establishing property (i). Now let f ∈ K[X] be of odd degree. Then f

must have an irreducibel factor g of odd degree. Lemma 4.1.6 implies that for any zero α of g,

also K(α) is real and thus equal to K, establishing property (ii). Proposition 4.1.15 now yields

that C is algebraically closed.

Conversely, suppose that C is algebraically closed. Note that C is the only algebraic extension

of K (up to Lr-isomorphism), as [C : K] = 2. Since C is not real (−1 = i2 ∈
∑
C2), we obtain

that K is real closed.

We now turn to ordered fields.

Remark 4.1.17. Let (K,<) |= Tof . Then (K,<) is called a real closed field if (K,<) |= Trcf .

Note that if (K,<) is real closed, then K is real closed. Indeed, by Corollary 4.1.16 it suffices

to show that K(i) is algebraically closed. In order to do so, simply note that the conditions of

Proposition 4.1.15 are directly implied by the axioms of Trcf .

Definition 4.1.18. An ordered field (K,<) has the intermediate value property if for any

p ∈ K[X] and any a, b ∈ K with a < b and p(a) < 0 < p(b) there is some c ∈ (a, b)K such that

p(c) = 0.

Note that the intermediate value property can be expressed by an Lor-axiom scheme.

Notation 4.1.19. Let (R,<) |= Tor. For any a ∈ R, we denote by |a| the element a if a ≥ 0

and the element −a if a < 0. A similar abbreviation is used within Lor-formulas.

Exercise 4.1.20. Let (K,<) be an ordered field and for some n ∈ N and let

p(X) =
n∑
i=0

aiX
i ∈ K[X]
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4. Real Algebra and Real Closed Fields

with an 6= 0. Show that for

B(p) :=

n∑
i=0

∣∣∣∣ aian
∣∣∣∣+ 1

no zero of p in K lies outside the interval (−B(p), B(p))K .

Proposition 4.1.21. Let (K,<) be an ordered field. Then (K,<) is real closed if and only if it

has the intermediate value property.

Proof. First suppose that (K,<) has the intermediate value property. Let a ∈ (0,∞)K and

consider the polynomial s(X) = X2 − a. Then

s(0) = 0− a < 0 < 1 + a+ a2 = s(a+ 1).

Hence, there exists some c ∈ (0, a+ 1)K with c2 = a, establishing the first required axiom. Now

let p ∈ K[X] be of odd degree and set

p(X) =

n∑
i=0

aiX
i

with an 6= 0. Replacing p by −p if necessary, we may assume that an > 0. Let B = B(p) be as

in Exercise 4.1.20. Proceeding as in the proof of Exercise 4.1.20, we obtain p(−B) < 0 < p(B).

Hence, p has a zero in (−B,B)K by the intermediate value property, establishing the second

required axiom scheme.

Now suppose that (K,<) is real closed. Let p ∈ K[X] and let a, b ∈ K with a < b and

p(a) < 0 < p(b). We may assume that p has leading coefficient 1 and is irreducible, as at least

one factor of p must change sign within [a, b]K . By Remark 4.1.17, also K is real closed, whence

K(i) is algebraically closed by Corollary 4.1.16. As [K(i) : K] = 2, the degree of p is either 1 or

2. If deg(p) = 1, then it is linear and thus has a zero in K. Otherwise,

p(X) = X2 + cX + d

for some c, d ∈ K with c2 − 4d < 0. But then

p(x) =
(
x+

c

2

)2
+

(√
d− c2

4

)2

> 0

for any x ∈ K, a contradiction.

4.1.3. Sturm Sequences and Uniqueness of Real Closure

In this section, we show that the real closure of an ordered field is unique (up to Lor-isomorphism).

We do so by using Sturm’s Algorithm. Besides [7, Appendix B], we also follow [1, Section 2.2.2].

Exercise 4.1.22. Let (K,<) be an ordered field. Show that there exists a real closure R of K

such that (K,<) ⊆ (R,<). The ordered field (R,<) is then called a real closure of (K,<).
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4.1. Real Algebra

Notation 4.1.23. Let f be a polynomial expression in the variable X, i.e.

f =

n∑
i=0

aiX
i

for some n ∈ ω and coefficients ai.

(i) The formal derivative f ′ of f is given by

f ′ =
n∑
i=1

iaiX
i−1.

(ii) The leading monomial lm(f) is given by

lm(f) = anX
n

if an 6= 0.

In Notation 4.1.23, we do not specify the polynomial ring over which f is defined. The

reason for this is that we will also use the introduced notations within Lor-formulas, where the

coefficients are given by Lor-terms. It should always be clear from the context how the notions

are interpreted.

Definition 4.1.24. Let (K,<) be an ordered field. Then for any a ∈ K, we define the sign of

a to be

sign(a) =


1 if a > 0,

−1 if a < 0,

0 if a = 0.

Due to the intermediate value property, we can define what it means that a polynomial (or,

more generally, a rational function) changes its sign at a root.

Definition 4.1.25. Let (R,<) be a real closed field, let f, g ∈ R[X] with f, g 6= 0 and let c ∈ R
be a root of f .

(i) We say that the sign of f
g at the right of c is positive (respectively negative) if there

exists ε ∈ (0,∞)R such that f
g is positive (respectively negative) on the interval (c, c+ε)R.

The same notions are defined at the left of c, where the interval (c, c + ε)R is replaced

by (c− ε, c)R.

(ii) We say that f
g changes its sign at c from negative to positive if the sign of f

g at

the left of c is negative and at the right of c is positive. Likewise, f
g changes its sign at

c from positive to negative if the sign of f
g at the left of c and at the right of c are

different.

Naturally, Definition 4.1.25 also applies to polynomials by setting g = 1.
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4. Real Algebra and Real Closed Fields

Remark 4.1.26. Let (R,<) be a real closed field, let f, g ∈ R[X] with f, g 6= 0 and let c ∈ R
be a root of f . Then the sign of f

g at the right of c is either positive or negative. Indeed, if

for a given δ ∈ (0,∞)R the sign of f
g on (c, c + δ)R can be both positive and negative, then

by the intermediate value property f
g must have a zero in this interval. However, f

g only has

finitely many zeros, whence for some sufficiently small ε ∈ (0,∞)R, there is no sign change of f
g

in (c, c+ ε)R.

The same argument applies to the sign at the left of c. We denote by ε(f/g, c) ∈ (0,∞)K an

element such that the only sign change of fg in the interval(c− ε(f/g, c), c+ ε(f/g, c))R happens

at c

As a preparation for quantifier elimination in the next section, we now establish a result of

counting those roots of one polynomial for which the other one is positive. A special case of this

result will give us a way of counting the number of roots of a polynomial within a given interval.

Definition 4.1.27. Let (R,<) be a real closed field and let p, q ∈ R[X] with p 6= 0.

(i) Let x ∈ R be a root of p. We say that q
p jumps at x if the following hold:

� The multiplicity µ of x in p is bigger than the multiplicity ν of x in q.9

� The difference µ− ν is odd.

Moreover, it jumps from −∞ to ∞ if additionally the sign of q
p at the right of x is

positive, and it jumps from ∞ to −∞ if the sign of q
p at the right of x is negative.

(ii) Let a, b ∈ R ∪ {−∞,∞}. Then the Cauchy index

CInd( qp ; a, b)

of q
p on (a, b)R is the number of jumps of q

p in (a, b)R from −∞ to ∞ minus the number of

jumps of q
p in (a, b)R from ∞ to −∞. We denote CInd( qp ;−∞,∞) simply by CInd( qp).

Definition 4.1.28. Let (R,<) be a real closed field, let p, q ∈ R[X] with p 6= 0 and let

a, b ∈ R ∪ {−∞,∞} with a < b. Then the Tarski query of q for p in (a, b)R is given by

TaQ(q, p; a, b) =
∑

x∈p−1(0)∩(a,b)R

sign(q(x)).

We denote TaQ(q, p;−∞,∞) simply by TaQ(q, p).

Note that TaQ(q, p; a, b) counts the number of roots of p in the interval (a, b)R for which q is

positive minus those for which q is negative. We now establish a connection between the Cauchy

index and the Tarski query.

Lemma 4.1.29. Let (R,<) be a real closed field and let p ∈ R[X] with p 6= 0. Then p′

p jumps

from −∞ to ∞ at any root c ∈ R of p.

9We set ν = 0 if x is not a root of q.
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Proof. Let µ ∈ N be the multiplicity of c in p. Then there is q ∈ R[X] with

p(X) = q(X)(X − c)µ and p′(X) = µq(X)(X − c)µ−1 + q′(X)(X − c)µ.

Set

s(X) = q(X)(X − c) and r(X) = µq(X) + q′(X)(X − c)

and note that r(c) = µq(c) 6= 0. Then p′

p = r
s .

We now verify that r
s jumps from −∞ to ∞ at c. First note that the multiplicity of c in r is

0 and the multiplicity of c in s is 1. We thus only have to show that the sign of r
s at the right

of c is positive. First let ε = ε(r/s, c) (see Remark 4.1.26). We have to find d ∈ (c, c+ ε)R such

that r(d)
s(d) > 0. It suffices to find such d with

|q′(d)(d− c)| ≤ 1

2
|µq(d)|, (4.1.1)

as then

sign

(
r(d)

s(d)

)
= sign

(
µq(d) + q′(d)(d− c)

q(d)(d− c)

)
= sign

(
µq(d)

q(d)

)
= 1.

First express q′ as

q′(X) =

m∑
i=0

aiX
i

and set

M =

m∑
i=0

|ai|
(
|c|i + |c+ ε|i

)
.

Then q′ is bounded from above by M on the interval (c, c+ε)R. Hence, (4.1.1) reduces to finding

d ∈ (c, c+ ε)R such that

d− c ≤ µ

2M
|q(d)|

Set δ = q(c) 6= 0. First suppose that δ > 0 and set t(X) = q(X)− δ
2 . Then t(c) > 0 and by the

intermediate value property, there must be some ρ ∈ (0, ε)R such that t is positive on (c, c+ρ)R.

Let d ∈ (c, c+ ρ)R with

d ≤ c+
µδ

4M
.

Then q(d) = t(d) + δ
2 >

δ
2 and

d− c ≤ µδ

4M
=

µ

2M
· δ

2
<

µ

2M
|q(d)|,

as required. For the case δ < 0, one can simply replace q by −q and argue similarly.

Proposition 4.1.30. Let (R,<) be a real closed field, let p, q ∈ R[X] with p 6= 0 and let

a, b ∈ R ∪ {−∞,∞} with a < b. Then

TaQ(q, p; a, b) = CInd(p
′q
p ; a, b).

In particular, the number of roots of p in (a, b)R is CInd(p
′

p ; a, b).
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Proof. Let V = p−1(0) ∩ (a, b)R and r = p′q
p . It suffices to establish the following:

{x ∈ V | q(x) = 0} = {x ∈ V | r has no jump at x},
{x ∈ V | q(x) > 0} = {x ∈ V | r jumps from −∞ to ∞ at x},
{x ∈ V | q(x) < 0} = {x ∈ V | r jumps from ∞ to −∞ at x}.

Let c ∈ V . First suppose that q(c) = 0. Let µ ∈ N be the multiplicity of c in p and let ν ∈ N be

the multiplicity of c in q. Then the multiplicity of c in p′q is given by ν + µ− 1 ≥ µ, whence r

has no jump at c.

For the remaining two cases, first recall that by Lemma 4.1.29, p
′

p jumps from −∞ to ∞ at c.

Hence, r also jumps from −∞ to∞ at c if q(c) > 0 and r jumps from∞ to −∞ at c if q(c) < 0.

This establishes all of the set equalities above.

We now establish a way to determine the Cauchy index by counting the number of sign changes

in a particular sequence of polynomials.

Definition 4.1.31. Let (K,<) be an ordered field and let n ∈ N.

(i) The number of sign variations Var(a) of the sequence a = (a0, . . . , an) ∈ K× is defined

iteratively for any p ∈ {1, . . . , n}:

Var(a0) := 0,

Var(a0, . . . , ap) :=

{
Var(a0, . . . , ap−1) if sign(ap−1) = sign(ap),

Var(a0, . . . , ap−1) + 1 if sign(ap−1) 6= sign(ap).

Moreover, we set Var(0, . . . , 0) = 0, and for a sequence a = (a0, . . . , an) ∈ K, not all ai
equal to 0, we let Var(a) be the number of sign variations of the sequence a after removing

all 0 entries.

(ii) Let f = (f0, . . . , fn) ∈ K[X] and let a ∈ K. The number of sign variations of f at a is

given by

Var(f ; a) := Var(f0(a), . . . , fn(a)).

Moreover, we set

Var(f ;−∞) := Var(lm(f0)(−1), . . . , lm(fn)(−1)) and

Var(f ;∞) := Var(lm(f0)(1), . . . , lm(fn)(1)).

For any a, b ∈ K ∪ {−∞,∞}, we set

Var(f ; a, b) := Var(f ; a)−Var(f ; b).

Moreover,

Var(f) := Var(f ;−∞,∞).

Example 4.1.32. Consider the ordered field (R, <).
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(i) We have

Var(1, 2,−3, 0, 2, 0, 3, 0, 0, 0,−4,−2, 1, 3, 0)

= Var(1, 2,−3, 2, 3,−4,−2, 1, 3) = 4.

(ii) Let f0(X) = X2 − 2, f1(X) = −X3 + 2X, f2(X) = 3X ∈ R[X]. Then

Var(f0, f1, f2; 0) = Var(−2, 0, 0) = 0,

Var(f0, f1, f2; 1) = Var(−1, 1, 3) = 1,

Var(f0, f1, f2; 0, 1) = 0− 1 = −1,

Var(f0, f1, f2;∞) = Var(1,−1, 3) = 2.

Definition 4.1.33. Let F be a field and let p, q ∈ F [X] with q 6= 0.

(i) The unique polynomial r ∈ F [X] with

p = aq + r and deg(r) < deg(q)

for some a ∈ F [X] is called the remainder (in the Euclidean division of p by q) and

denoted by rem(p, q).

(ii) We define the signed remainder sequence of p and q as the sequence of polynomials in

F [X] given by

SRS(p, q) = (SRS0(p, q), . . . ,SRSn(p, q))

for n ∈ N with the property10

SRS0(p, q) = p,

SRS1(p, q) = q,

SRS2(p, q) = − rem(SRS0(p, q),SRS1(p, q)),

...

SRSn(p, q) = − rem(SRSn−2(p, q), SRSn−1(p, q)) 6= 0,

SRSn+1(p, q) = − rem(SRSn−1(p, q), SRSn(p, q)) = 0.

Moreover, we set SRS(p, 0) = (p, 0).

Signed remainder sequences of the form SRS(p, p′) will be used to count the number of roots

of p inside a given open interval.

In the following statements and proofs, for given polynomials p and q with q 6= 0, we set

r = rem(p, q). Moreover, we denote by σ(x) the sign of pq at x. We use the convention that

sign((pq)(−∞)) = sign(lm(pq)(−1)) and sign((pq)(∞)) = sign(lm(pq)(1)).

10In other words, SRS(p, q) is the sequence of remainders in Euclidean division of p by q where in each step the

negative is taken.
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Lemma 4.1.34. Let (R,<) be a real closed field, let p, q ∈ R[X] with q 6= 0 and let a, b ∈
R ∪ {−∞,∞} such that a < b and a, b are not roots of any polynomial in SRS(p, q). Then the

following hold:

(i)

Var(SRS(p, q); a, b) =

{
Var(SRS(q,−r); a, b) + σ(b) if σ(a)σ(b) = −1,

Var(SRS(q,−r); a, b) if σ(a)σ(b) = 1.

(ii)

CInd( qp ; a, b) =

{
CInd(−rp ; a, b) + σ(b) if σ(a)σ(b) = −1,

CInd(−rp ; a, b) if σ(a)σ(b) = 1.

Proof. (i) Recall that

SRS0(p, q) = p,

SRS1(p, q) = q,

SRS2(p, q) = −r.

Suppose that σ(a)σ(b) = −1. Then p(a)q(a) and p(b)q(b) have opposite signs. If the sign

of p(a)q(a) is positive, then σ(b) = −1 and

Var(SRS(p, q); a)−Var(SRS(p, q); b) = Var(SRS(q,−r); a)− (Var(SRS(q,−r); b) + 1).

Otherwise, σ(b) = 1 and

Var(SRS(p, q); a)−Var(SRS(p, q); b) = (Var(SRS(q,−r); a) + 1)−Var(SRS(q,−r); b).

Now suppose that σ(a)σ(b) = 1. Then p(a)q(a) and p(b)q(b) have the same sign and either

Var(SRS(p, q); a)−Var(SRS(p, q); b) = (Var(SRS(q,−r); a) + 1)− (Var(SRS(q,−r); b) + 1)

or

Var(SRS(p, q); a)−Var(SRS(p, q); b) = Var(SRS(q,−r); a)− (Var(SRS(q,−r); b).

(ii) Without loss of generality, we may assume that p and q are coprime. Otherwise, we can

replace p by p
d and q by q

d , where d is the monic greatest common divisor of p and q.

Indeed, we have rem(pd ,
q
d) = r

d ,

CInd( qp ; a, b) = CInd( q/dp/d ; a, b),CInd(−rp ; a, b) = CInd(−r/dp/d ; a, b),

and the sign of pq
d2

concides with that of pq at any point that is not a root of pq.

We let n+ be the total number of sign changes from negative to positive of pq on (a, b)R.

Likewise, n− denotes the total number of sign changes from positive to negative of pq on

(a, b)R. Then

n+ − n− =

{
σ(b) if σ(a)σ(b) = −1,

0 if σ(a)σ(b) = 1.

44



4.1. Real Algebra

Let c ∈ (a, b)R be a root of p (and thus not a root of q by coprimality). Then pq changes

its sign from negative to positive at c if and only if q
p = pq

p2
jumps from −∞ to ∞ at c.

Since we obtain a similar correspondence for roots of q, we obtain

CInd( qp ; a, b) + CInd(pq ; a, b) = n+ + n−.

Now for g ∈ R[X] with p = gq + r, we obtain

CInd(−rq ; a, b) = −CInd( rq ; a, b) = −CInd(p−gqq ; a, b) = −CInd(pq ; a, b).

Hence,

CInd( qp ; a, b) = n+ + n− − CInd(pq ; a, b)

= CInd(−rq ; a, b) + n+ + n−

=

{
CInd(−rp ; a, b) + σ(b) if σ(a)σ(b) = −1,

CInd(−rp ; a, b) if σ(a)σ(b) = 1.

Proposition 4.1.35. Let (R,<) be a real closed field, let p, q ∈ R[X] with p 6= 0 and let

a, b ∈ R ∪ {−∞,∞} with a < b such that a, b are not roots of p. Then

Var(SRS(p, q); a, b) = CInd( qp ; a, b).

Proof. Let s = (s0, . . . , sn) = SRS(p, q) and let gj ∈ R[X] with

sj−1 = gjsj − sj+1

for any j ∈ {1, . . . , n}. We may assume that a and b are not roots of any polynomial in s: If

they are, we may replace them by a′, b′, respectively, with a < a′ < b′ < b such that (a, a′]R and

[b′, b)R contain no root of the polynomials in s. For these a′, b′ we have

CInd( qp ; a, b) = CInd( qp ; a′, b′).

We also show that

Var(s; a, b) = Var(s; a′, b′).

Assume, for a contradiction, that for some j ∈ {1, . . . , n} we have that a is a root of both sj
and sj+1. Then a is also be a root of sj−1. Taking j least with this property, we thus obtain

that a is a root of s0 = p, contradicting our assumption on p. Suppose that a is a root of sj for

some j ∈ {1, . . . , n}. Then it is not a root of sj−1 and not a root of sj+1. Since

sj−1(a) = gj(a)sj(a)− sj+1(a) = −sj+1(a),

we obtain sj−1(a)sj+1(a) < 0. Since

sign(sj−1(a)) = sign(sj−1(a
′)), sign(sj+1(a)) = sign(sj+1(a

′)) and sj(a
′) 6= 0,
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we obtain

1 = Var(sj−1, sj , sj+1; a) = Var(sj−1, sj , sj+1; a
′).

Hence, switching from a to a′ does not change the number of sign variations of s, i.e.

Var(s; a) = Var(s; a′).

A similar argument shows that Var(s; b) = Var(s; b′), establishing our claim.

The proof of Var(s; a, b) = CInd( qp ; a, b) follows by induction on n. First suppose that n = 1.

Then r = rem(p, q) = 0 and we obtain

Var(SRS(q,−r); a, b) = Var(q, 0; a, b) = 0 and CInd(−rq ; a, b) = CInd(0; a, b) = 0.

Now Lemma 4.1.34 implies Var(p, q; a, b) = CInd( qp ; a, b).

Now suppose that for some n ∈ N with n ≥ 2, the conclusion holds for all signed remainder

sequences with exactly n elements. Note that

SRS(q,−r) = (s1, . . . , sn).

Hence,

Var(SRS(q,−r); a, b) = CInd(−rq ; a, b).

The conclusion now follows immediately from Lemma 4.1.34.

We are now ready to prove the main theorems of this section.

Theorem 4.1.36 (Tarski’s Theorem). Let (R,<) be a real closed field, let p, q ∈ R[X] with

p 6= 0 and let a, b ∈ R ∪ {−∞,∞} with a < b such that a, b are not roots of p. Then

Var(SRS(p, p′q); a, b) = TaQ(q, p; a, b).

Proof. Proposition 4.1.35 implies

Var(SRS(p, p′q); a, b) = CInd(p
′q
p ; a, b),

and Proposition 4.1.30 already shows

TaQ(q, p; a, b) = CInd(p
′q
p ; a, b).

Theorem 4.1.37 (Sturm’s Theorem). Let (R,<) be a real closed field, let p ∈ R[X] with p 6= 0

and let a, b ∈ R ∪ {−∞,∞} with a < b such that a, b are not roots of p. Then the number of

distinct roots of p in (a, b)R is given by

Var(SRS(p, p′); a, b).

In particular, the number of distinct roots of p in R is

Var(SRS(p, p′)).
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Proof. It suffices to set q = 1 in Theorem 4.1.36.

Due to Sturm’s Theorem, the sequence SRS(p, p′) is also called a Sturm sequence. Sturm

sequences can thus be used to determine the number of roots of a given polynomial within a

certain inverval of a real closed field.

Theorem 4.1.38. Let (K,<) be an ordered field and let R1 and R2 be real closures of K such

that

(K,<) ⊆ (R1, <) and (K,<) ⊆ (R2, <).

Then there exists a unique Lor-isomorphism ϕ : (R1, <) ∼= (R2, <) such that ϕ|K = idK .

Proof. We first show uniqueness by demonstrating that each element of R1 can only be mapped

to one specific element of R2. Let ϕ : (R1, <) ∼= (R2, <) such that ϕ|K = idK and let α ∈ R1.

Let mα ∈ K[X] be the minimal polynomial of α over K. By Theorem 4.1.37, the number k of

distinct roots of mα in R1 is identical with the number of distinct roots of mα in R2. Indeed,

both are equal to Var(SRS(mα,m
′
α)). Let α1, . . . , αk ∈ R1 and β1, . . . , βk ∈ R2 be those roots

of mα with α1 < . . . < αk and β1 < . . . < βk. Since ϕ : R1
∼= R2, it must map roots of mα in R1

to roots of mα in R2. To preserve the order, ϕ must satisfy ϕ(αi) = βi for any i ∈ {1, . . . , n}.
Hence, if α = αj for some j ∈ {1, . . . , n}, then ϕ(α) = βj .

We now verify the existence of an Lor-isomorphism ϕ : (R1, <) ∼= (R2, <) with ϕ|K = idK .

Let

C = {ι : (F,<) ↪→ (R2, <) | (K,<) ⊆ (F,<) ⊆ (R1, <) and ι|K = idK}.

Note that the identity idK is contained in C. Moreover, the union of any chain in C (with respect

to set inclusion, where we identify each function with its graph) is again contained in C. Hence,

by Zorn’s Lemma, there exists a maximal ι ∈ C with domain F . To establish existence of the

desired ϕ, we have to show that ι is surjective and F = R1. Assume not. Set L = ι(F ) ⊆ R2.

Then ι is an Lor-isomorphism from (F,<) to (L,<). Let α ∈ R1 and let γ ∈ R2 such that not

both α ∈ F and γ ∈ L (which is possible by our assumption). As described above, there is a

unique element δ ∈ R1 such that an Lor-isomorphism from (R1, <) to (R2, <) fixing K must

map δ to γ. Let θ ∈ R1 such that

F ( F (α, δ) ⊆ F (θ) ⊆ R1.

We show that ι can be extended to an Lor-embedding

ι′ : (F (θ), <) ↪→ (R2, <),

contradicting the maximality of ι. Since

ι : (F,<) ∼= (L,<),

we may identify (F,<) and (L,<) with each other and treat ι is the identity function ι = idF .

(By this identification, (F,<) ⊆ (R2, <).)

Let mθ ∈ F [X] be the minimal polynomial of θ over F and let σ ∈ R2 be the uniquely

determined root of mθ in R2 to which any Lor-isomorphism from R1 to R2 needs to map θ (as
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described above). For some r ∈ N, let ψ1, . . . , ψr be all possible Lr-isomorphisms from F (θ) to

F (σ). Assume, for a contradiction, that none of them is an Lor-isomorphism. Then there are

positive b1, . . . , br ∈ F (θ) such that all of ψ1(b1), . . . , ψr(br) ∈ F (σ) are negative. Consider

M = F (θ)(
√
b1, . . . ,

√
br) ⊆ R1.

Let ξ ∈ R1 be a primitive element such that M = F (θ)(ξ). As before, there is some ξ′ ∈ R2

such that there exists

ψ : F (θ)(ξ) ∼= F (σ)(ξ′)

with ψ(F (θ)) = F (σ). Then ψ|F (θ) must be one of ψ1, . . . , ψr, say ψ1. But then

0 > ψ1(b1) = ψ
(

(
√
b1)

2
)

= ψ(
√
b1)

2 > 0,

a contradiction. Hence, ψ1 is the desired extension of ι contradicting the maximality of ι in

C.

4.2. Quantifier Elimination

In this section, we prove that the Lor-theory of real closed fields Trcf admits quantifier elimina-

tion. While there are several non-constructive proofs for this fact using certain model theoretic

criteria for a theory to admit quantifier elimination, we, instead, present an explicit procedure

to transform any Lor-formula into an equivalent quantifier-free Lor-formula. We thus establish

the following:

Theorem 4.2.1. The Lor-theory Trcf admits quantifier eliminiation, i.e. for any Lor-formula

ϕ(x), there is a quantifier-free Lor-formula ψ(x) such that

Trcf |= ∀x (ϕ(x)↔ ψ(x)).

Several model theoretic properties will be deduced from Theorem 4.2.1 in Subsection 4.2.2.

4.2.1. Algorithm

In this section, we present several transformation procedures. Generally, each of these procedures

describes a way to transform a given Lor-formula ϕ of a specific shape into an Lor-formula ψ that

is equivalent over Trcf to ϕ. The most important step, in which a single existential quantifier is

eliminated, utilises Tarski’s Theorem (Theorem 4.1.36).

Recursion on Lor-formulas

Let ϕ and ϕ′ be Lor-formulas and let ψ and ψ′ be quantifier-free Lor-formulas that are equivalent

over Trcf to ϕ and ϕ′, respectively. Then over Trcf

� ¬ϕ is equivalent to ¬ψ.

� ϕ ∨ ϕ′ is equivalent to ψ ∨ ψ′.
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� ϕ ∧ ϕ′ is equivalent to ψ ∧ ψ′.

� ϕ→ ϕ′ is equivalent to ψ → ψ′.

� ϕ↔ ϕ′ is equivalent to ψ ↔ ψ′.

� ∃x ϕ is equivalent to ∃x ψ for any variable x.

Only in the last transformation, we still have an Lor-formula with a single existential quantifier.

It thus remains to describe a procedure to find for a given Lor-formula of the form ∃x ψ, where

ψ is quantifier-free, an equivalent quantifier-free Lor-formula.

Example 4.2.2. Over Trcf , the Lor-formula ∃y xy = 1 is equivalent to x 6= 0 and the Lor-formula

∀z z2 ≥ 0 is equivalent to 0 = 0. Hence,

¬∀z z2 ≥ 0 is equivalent to ¬ 0 = 0,

∃y xy = 1 ∧ ∀z z2 ≥ 0 is equivalent to x 6= 0 ∧ 0 = 0, and

∃x∃y xy = 1 is equivalent to ∃x x 6= 0.

In the last case, it remains to transform ∃x x 6= 0 into an equivalent quantifier-free Lor-formula.

Disjunctive Normal Form

Let ϕ be a quantifier-free Lor-formula and let x be a variable. By application of De Morgan’s

Law on ¬, ∨ and ∧ as well as the distributivity of ∨ and ∧, we can transform ϕ into an equivalent

Lor-formula of the form

n∨
i=1

n∧
j=1

ϕij , (4.2.1)

where n ∈ N and each ϕij is an atomic Lor-formula or the negation of an atomic Lor-formula.

The Lor-formula (4.2.1) is called a disjunctive normal form of ϕ. Since the tools needed for

this transformation all give us logical equivalences, ϕ is even equivalent to an Lor-formula of the

form (4.2.1) over any Lor-theory, not only over Trcf .

By this procedure, ∃x ϕ is equivalent over Trcf to

n∨
i=1

∃x
n∧
j=1

ϕij .

It thus remains to transform each

∃x
n∧
j=1

ϕij

into an equivalent quantifier-free Lor-formula ψi, as then

n∨
i=1

∃x
n∧
j=1

ϕij is equivalent to

n∨
i=1

ψi

over Trcf .
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Example 4.2.3. Consider the quantifier-free Lor-formula ϕ given by

x ≥ 0 ∧ ¬(y < 0→ y + z = 1).

We first transform this into a quantifier-free formula only using ¬, ∨ and ∧ as logical connectives:

(0 < x ∨ x = 0) ∧ ¬(¬ y < 0 ∨ y + z = 1).

Using De Morgan’s Laws, we transform this formula into

(0 < x ∨ x = 0) ∧ (y < 0 ∧ ¬ y + z = 1).

Lastly, we apply distributivity of ∨ and ∧:

(0 < x ∧ (y < 0 ∧ ¬ y + z = 1)) ∨ (x = 0 ∧ (y < 0 ∧ ¬ y + z = 1)).

This formula is already in disjunctive normal form, as it would be found in the literature.

However, to obtain the form (4.2.1), we artificially have to add “false sentences” to obtain the

following equivalent Lor-formula:11

(0 < x ∧ y < 0 ∧ ¬ y + z = 1) ∨ (x = 0 ∧ y < 0 ∧ ¬ y + z = 1)

∨ (1 = 0 ∧ 1 = 0 ∧ 1 = 0).

The Lor-formula

∃x [x ≥ 0 ∧ ¬(y < 0→ y + z = 1)]

is thus equivalent to

∃x (0 < x ∧ y < 0 ∧ ¬ y + z = 1) ∨ ∃x (x = 0 ∧ y < 0 ∧ ¬ y + z = 1)

∨ ∃x (1 = 0 ∧ 1 = 0 ∧ 1 = 0).

Polynomial Equalities and Inequalities

Let n ∈ N and let ϕi = ϕi(x, y) be either an atomic Lor-formula or a negation of one for each

i ∈ {1, . . . , n}. We transform
n∧
i=1

ϕi

into an Lor-formula of the form

p(x) = 0 ∧
m∧
j=1

qj(x) > 0

for some m ∈ N and some p, q1, . . . , qm ∈ Q(y)[X]. To make sense of the latter, we need the

following convention.

11Adding true or false sentences is a general tool that can be used to obtain formulas of a prescribed length or

form.
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Notation 4.2.4. Let s1, s2, t1, t2 be Lor-terms. Then the expression

s1
s2

=
t1
t2

stands for

s2 6= 0 ∧ t2 6= 0 ∧ s1t2 = t1s2.

Moreover, the expression
s1
s2
<
t1
t2

stands for

(s2t2 > 0 ∧ s1t2 < t1s2) ∨ (s2t2 < 0 ∧ s1t2 > t1s2).

By Notation 4.2.4, for any Lor-terms t1(y) and t2(y) we can identify t1
t2

with an element of

Q(y). Naturally, we identify t1 with t1
1 .

For any Lor-terms t, s, we obtain atomic formulas or negations thereof of the form

� t = s,

� t 6= s,

� t < s,

� t ≥ s.

These are all possible representations of formulas of the form ϕi from above. Each of these

formulas can now be transformed into an equivalent one over Trcf :

� t = s is equivalent to t− s = 0.

� t 6= s is equivalent to (t− s)2 > 0.

� t < s is equivalent to s− t > 0.

� t ≥ s is equivalent to t− s = 0 ∨ t− s > 0.

If the transformation of t ≥ s into t − s = 0 ∨ 0 < t − s is applied, one has to perform a

transformation into the disjunctive normal form once more, as a further disjuction has been

added.

We have described how to transform
n∧
i=1

ϕi

into an equivalent Lor-formula of the form

∧̀
k=1

pk(x) = 0 ∧
m∧
j=1

qj(x) > 0

for some `,m ∈ N and some pk, qj ∈ Q(y)[X]. We now set12

p = p21 + . . .+ p2`

12If ` = 1, then one can also simply set p = p1.
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to obtain the desired equivalent Lor-formula

p(x) = 0 ∧
m∧
j=1

qj(x) > 0.

Hence,

∃x
n∧
i=1

ϕi

is equivalent over Trcf to

∃x

p(x) = 0 ∧
m∧
j=1

qj(x) > 0


and we only need to eliminate the existential quantifier from the latter.

Example 4.2.5. Consider the Lor-formula

y2 ≥ x ∧ z = zx− yx− xy.

This is equivalent over Trcf to

(−x+ y2 = 0 ∨ −x+ y2 > 0) ∧ (z − 2y)x− z = 0.

Since we added a disjunction, we transform this formula into the equivalent disjunctive normal

form

(−x+ y2 = 0 ∧ (z − 2y)x− z = 0) ∨ (−x+ y2 > 0 ∧ (z − 2y)x− z = 0).

Hence,

∃x (y2 ≥ x ∧ z = zx− yx− xy)

is equivalent over Trcf to

∃x [(−x+ y2)2 + ((z − 2y)x− z)2 = 0 ∧ 1 > 0] ∨ ∃x [(z − 2y)x− z = 0 ∧ −x+ y2 > 0],

where we added 1 > 0 in the first clause to obtain the required form.

Reducing Inequalities

Let m ∈ N and let p, q1, . . . , qm ∈ Q(y)[X]. Consider the Lor-formula ϕ given by

∃x

p(x) = 0 ∧
m∧
j=1

qj(x) > 0

 .

In the transformation procedure we now describe, we technically increase the number of quan-

tifiers. However, this will be done in a way such that the new quantifiers we introduce are

eliminated in the next transformation procedure.

Notation 4.2.6. Let k ∈ ω. Then the quantifier ∃k stands for “there exist exactly k many”.

Hence, for a formula ψ(x), the sentence ∃kx ϕ(x) states that there are exactly k many distinct

x making the formula ϕ(x) true. (See also Exercise 3.3 for details on how ∃k can be formalised.)
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Let d′ be the degree of p. Then ϕ is equivalent over Trcf to

d′∨
k=1

∃kx

p(x) = 0 ∧
m∧
j=1

qj(x) > 0

,
as p can have at most d′ distinct roots. Fix k ∈ {1, . . . , d}. We transform

∃kx

p(x) = 0 ∧
m∧
j=1

qj(x) > 0

 (4.2.2)

into a disjunctive normal form of equivalent Lor-formulas only using one polynomial inequality.

We do so inductively, where for the case m = 1 we already have the desired form. Suppose that

m ≥ 2 and consider

∃kx (p(x) = 0 ∧ q1(x) > 0 ∧ q2(x) > 0).

Note that

(a) q1(x)q22(x) > 0 if and only if q1(x) > 0 and q2(x) 6= 0;

(b) q21(x)q2(x) > 0 if and only if q1(x) 6= 0 and q2(x) > 0;

(c) q21(x)q22(x) > 0 if and only if q1(x) 6= 0 and q2(x) 6= 0;

(d) q1(x)q2(x) > 0 if and only if q1(x) > 0 ∧ q2(x) > 0 or q1(x) < 0 ∧ q2(x) < 0.

Let a, b, c, d be the number of distinct roots of p satisfying the respective conditions on q1 and

q2 above. Then the number of distinct roots x of p with q1(x) > 0 ∧ q2(x) > 0 is given by

a+ b− (c− d)

2
.

This counting argument now gives us that

∃kx (p(x) = 0 ∧ q1(x) > 0 ∧ q2(x) > 0)

is equivalent over Trcf to∨
a,b,c,d∈{0,...,d′}
a+b−(c−d)=2k

[∃ax (p(x) = 0 ∧ q1(x)q22(x) > 0) ∧ ∃bx (p(x) = 0 ∧ q21(x)q2(x) > 0)

∧ ∃cx (p(x) = 0 ∧ q21(x)q22(x) > 0)

∧ ∃dx (p(x) = 0 ∧ q1(x)q2(x) > 0)].

Hence, the Lor-formula (4.2.2) is equivalent over Trcf to∨
a,b,c,d∈{0,...,d′}
a+b−(c−d)=2k

[∃ax (p(x) = 0 ∧ q1(x)q22(x) > 0 ∧ q3(x) > 0 . . . ∧ qm(x) > 0)

∧ ∃bx (p(x) = 0 ∧ q21(x)q2(x) > 0 ∧ q3(x) > 0 . . . ∧ qm(x) > 0)

∧ ∃cx (p(x) = 0 ∧ q21(x)q22(x) > 0 ∧ q3(x) > 0 . . . ∧ qm(x) > 0)

∧ ∃dx (p(x) = 0 ∧ q1(x)q2(x) > 0 ∧ q3(x) > 0 . . . ∧ qm(x) > 0)].
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In each clause, the number of inequalities has reduced to m−1. We can thus repeat the procedure

to obtain an equivalent Lor-formula of the form

M∨
i=1

M∧
j=1

∃kijx (p(x) = 0 ∧Qij(x) > 0)

for some M ∈ N, kij ∈ ω and Qij ∈ Q(y)[X]. It remains to eliminate the quantifier ∃kij in each

formula

∃kijx (p(x) = 0 ∧Qij(x) > 0).

Example 4.2.7. Consider the Lor-formula

∃x (x2 + y = 0 ∧ x− y > 0 ∧ xz > 0).

This is equivalent to

∃1x (x2 + y = 0 ∧ x− y > 0 ∧ xz > 0) ∨ ∃2x (x2 + y = 0 ∧ x− y > 0 ∧ xz > 0).

We now perform the reduction procedure for multiple inequalities to the second clause

∃2x (x2 + y = 0 ∧ x− y > 0 ∧ xz > 0)

to obtain ∨
a,b,c,d∈{0,1,2}
a+b−(c−d)=4

[∃ax (x2 + y = 0 ∧ (x− y)(xz)2 > 0)

∧ ∃bx (x2 + y = 0 ∧ (x− y)2xz > 0)

∧ ∃cx (x2 + y = 0 ∧ (x− y)2(xz)2 > 0)

∧ ∃dx (x2 + y = 0 ∧ (x− y)xz > 0)].

Tarski’s Theorem

Consider the Lor-formula

∃kx (p(x) = 0 ∧ q(x) > 0)

for some k ∈ ω, and p, q ∈ Q(y)[x]. We transform this Lor-formula into an equivalent quantifier-

free Lor-formula. Recall that by Theorem 4.1.36, we have

Var(SRS(p, p′q)) = TaQ(q, p) =
∑

x∈p−1(0)

sign(q(x)).

Recall that TaQ(q, p) is the number of distinct roots of p at which q is positive minus the distinct

roots of p at which q is negative. Hence, TaQ(q2, p) is the number of distinct roots of p at which

q is non-zero. We obtain that p has exactly k distinct roots at which q is positive if and only if

TaQ(q, p) + TaQ(q2, p)

2
= k.
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Hence, the Lor-formula

∃kx (p(x) = 0 ∧ q(x) > 0)

is equivalent over Trcf to

2k∨
`=0

(TaQ(q, p) = ` ∧ TaQ(q2, p) = 2k − `).

We now describe how TaQ(q, p) = ` can be expressed as a quantifier-free Lor-formula for any

` ∈ {0, . . . , 2k}. Similarly, TaQ(q2, p) = 2k− ` can be expressed as a quantifier-free Lor-formula.

Let ` ∈ {0, . . . , 2k} be fixed. By Tarski’s Theorem, TaQ(q, p) = ` describes that

Var(SRS(p, p′q)) = `.

We thus have to express by an Lor-formula that the signed remainder sequence SRS(p, p′q) has

exactly ` many sign variations. Set s = p′q. Since p, s ∈ Q(y)[X], the signed remainder sequence

of p and s can be computed over Q(y)[X]. However, since we possible need to divide coefficients

within Q(y), in each step we need to make sure that no division by 0 is happening. In other

words, if the degree of ps is given by d, then there may be up to d different signed remainder

sequences to consider.

Example 4.2.8. Consider p(X) = yX2 + 1 and q(X) = (y + 1)X + 1. Then

p′(X)q(X) = 2y(y + 1)X2 + 2yX.

Let s = SRS(p, p′q). We make a case distinction on the coefficients of the polynomials by which

we divide. For later use, we give the polynomials in the signed remainder sequence superscripts

referring to the cases.

(i) Suppose that y 6= 0, y + 1 6= 0 and y2 + 3y + 1 6= 0. Then

s
(1)
0 = yX2 + 1

s
(1)
1 = 2y(y + 1)X2 + 2yX

s
(1)
2 =

y

y + 1
X − 1

s
(1)
3 = −2(y + 1)(y2 + 3y + 1)

y

s
(1)
4 = 0.

(ii) Suppose that y 6= 0, y + 1 6= 0 and y2 + 3y + 1 = 0. Then

s
(2)
0 = yX2 + 1

s
(2)
1 = 2y(y + 1)X2 + 2yX

s
(2)
2 =

y

y + 1
X − 1

s
(2)
3 = 0.
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(iii) Suppose that y 6= 0 and y + 1 = 0. Then

s
(3)
0 = yX2 + 1

s
(3)
1 = 2yX

s
(3)
2 = −1

s
(3)
3 = 0.

(iv) Suppose that y = 0. Then

s
(4)
0 = 1

s
(4)
1 = 0.

In order to express that SRS(p, p′q) has exactly ` many sign variations, we may use a disjunc-

tion of the form

m∨
j=1

(ρj(y) ∧Var(SRS(p, p′q)) = `),

where m ∈ N and each ρj(y) is a quantifier-free Lor-formula only depending on the variables

y that determines which of the coefficients in the signed remainder sequence are non-zero. Of

course, Var(SRS(p, p′q)) = ` is not yet an Lor-formula. However, once the conditions on the

coefficients of the signed remainder sequence are determined by ρj(y), the signed remainder

sequence can be calculated explicitly. It remains to replace Var(SRS(p, p′q)) = ` by all possible

sign combinations of the leading monomials evaluated at −1 and all possible sign combinations

of the leading monomials evaluated at 1 giving a difference of exactly ` sign variations in the

former compared to the latter. We illustrate this by continuing Example 4.2.8

Example 4.2.9. Let p and q (and all other notations) be as in Example 4.2.8, i.e. p(X) = yX2+1

and q(X) = (y+ 1)X + 1. We illustrate how to express Var(SRS(p, p′q)) = 2 as an Lor-formula.

In each clause, we simply express all combinations asserting that

Var(SRS(p, p′q);−∞)−Var(SRS(p, p′q);∞) = 2.

[y 6= 0 ∧ y + 1 6= 0 ∧ y2 + 3y + 1 6= 0 ∧ ϕ1(y)]

∨[y 6= 0 ∧ y + 1 6= 0 ∧ y2 + 3y + 1 = 0 ∧ ϕ2(y)]

∨[y 6= 0 ∧ y + 1 = 0 ∧ ϕ3(y)]

∨[y = 0 ∧ ϕ4(y)]

As an example, we only present all possible combination of sign variations that are expressed

by ϕ1(y). To ease the notation, we let ti = lm(s
(1)
i )(−1) and ri = lm(s

(1)
i )(1) for i ∈ {0, 1, 2, 3}.

Now ϕ1(y) is given by

(Var(t0, t1, t2, t3) = 3 ∧Var(r0, r1, r2, r3) = 1) ∨ (Var(t0, t1, t2, t3) = 2 ∧Var(r0, r1, r2, r3) = 0)
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As a final illustration, we also express Var(t0, t1, t2, t3) = 2 explicitly as:

(t0 > 0 ∧ t1 < 0 ∧ t2 > 0 ∧ t3 ≥ 0) ∨ (t0 < 0 ∧ t1 > 0 ∧ t2 < 0 ∧ t3 ≤ 0)

∨(t0 > 0 ∧ t1 < 0 ∧ t2 ≤ 0 ∧ t3 > 0) ∨ (t0 < 0 ∧ t1 > 0 ∧ t2 ≥ 0 ∧ t3 < 0)

∨(t0 ≥ 0 ∧ t1 > 0 ∧ t2 < 0 ∧ t3 > 0) ∨ (t0 ≤ 0 ∧ t1 < 0 ∧ t2 > 0 ∧ t3 < 0)

∨(t0 > 0 ∧ t1 ≥ 0 ∧ t2 < 0 ∧ t3 > 0) ∨ (t0 < 0 ∧ t1 ≤ 0 ∧ t2 > 0 ∧ t3 < 0).

Single Inequality

During the quantifier elimination procedure, it may happen that one obtains formulas of the

form

∃x (0 = 0 ∧ q(x) > 0).

for some q ∈ Q(y)[X]. In this case we have p = 0, and Tarski’s Theorem as well as the general

way of counting roots via signed remainder sequences is not applicable. However, here we can

perform the following procedure.

We have to transform ∃x q(x) > 0 into a quantifier-free Lor-formula equivalent over Trcf . If

q ∈ Q(y) (i.e. deg(q) = 0 or q = 0), then this quantifier-free Lor-formula is already given by

q(x) > 0.

Otherwise, express q as q =
∑`

i=0 aiX
i with a0, . . . , a` ∈ Q(y). We obtain that ∃x q(x) > 0 is

equivalent over Trcf to

∨̀
i=0

ai 6= 0 ∧

q
∑̀
j=0

∣∣∣∣ajai
∣∣∣∣+ 1

 > 0 ∨ q

−∑̀
j=0

∣∣∣∣ajai
∣∣∣∣− 1

 > 0

 ∨ ∃x (q′(x) = 0 ∧ q(x) > 0).

The first part of this formula is quantifier-free and simply expresses that evaluating q in some

suitable large point, it becomes positive (see Exercise 4.1.20). The reason for the disjunction∨`
i=0 is that all possible leading coefficients have to be considered.

Suppose that q does not become positive outside some interval I containing all roots of q. If

q becomes positive in some point a ∈ I, then there must also be a point b with q′(b) = 0 and

q(b) > 0. Indeed, q must have two roots c, d ∈ I with c < a < d and no further root strictly

between c and d. Moreover, q is positive between c and d. Now since q(c) = 0 = q(d) by Rolle’s

Theorem for real closed fields (see [1, Proposition 2.22]), we obtain that there must also be some

b with c < b < d and q′(b) = 0.

It remains to note that the quantifier in

∃x (q′(x) = 0 ∧ q(x) > 0)

can be eliminated by the procedures previously described.

In order to eliminate an existential quantifier from a formula of the form

∃x (q1(x) > 0 ∧ q2(x) > 0)

for some non-constant q1, q2 ∈ Q(y)[X], note that this is equivalent over Trcf to

∃x (ϕ1 ∧ q2(x) > 0) ∨ ∃x (ϕ2 ∧ q1(x) > 0)
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with ϕk (for k ∈ {1, 2}) of the form

∨̀
i=0

ai 6= 0 ∧

qk
∑̀
j=0

∣∣∣∣ajai
∣∣∣∣+ 1

 > 0 ∨ qk

−∑̀
j=0

∣∣∣∣ajai
∣∣∣∣− 1

 > 0

 ∨ (q′k(x) = 0 ∧ qk(x) > 0),

(where the aj are the coefficients of qk as above). For further inequalities, simply proceed

inductively.

4.2.2. Implications

We now deduce some powerful properties of Trcf from Theorem 4.2.1.

Theorem 4.2.10. The theory Trcf is complete.

Proof. Let σ be an Lor-sentence. Then by Theorem 4.2.1, there is a quantifier-free Lor-sentence

ρ such that

Trcf |= σ ↔ ρ.

However, the quantifier-free Lor-sentence simply consists of a combination of atomic Lor-formulas

without free variables. More specifically, as shown in Subsection 4.2.1, ρ is equivalent to

∨̀
i=1

∧̀
j=1

pij = 0 ∧
∧̀
j=1

qij > 0


for some ` ∈ N and pij , qij ∈ Z. Whether pij = 0, respectively qij > 0, holds is independent of

the specific choice of a model of Trcf . Hence, either ρ holds for all real closed fields or ¬ρ holds

for all real closed fields. Hence, we obtain

Trcf |= σ or Trcf |= ¬σ.

Theorem 4.2.11. The theory Trcf is decidable, i.e. there exists an algorithm that, for any given

Lor-sentence ρ, decides (after a finite processing time) whether ρ is true (Trcf |= ρ) or false

(Trcf |= ¬ρ) over Trcf .

Proof. The decision algorithm was presented in Subsection 4.2.1: For a given Lor-sentence ρ, our

quantifier elimination algorithm transforms ρ into a quantifier-free Lor-sentence. As explained

before, this is simply a combination of numerical equalities and inequalities. Whether these are

true or false can be determined by direct calculation.

Definition 4.2.12. Let (M,<) |= Tlo, let L be an expansion of L< and letM be an L-expansion

of (M,<). Then M is called o-minimal if every L-definable subset of M is a finite union of

points and open intervals in M , i.e. for any L-definable set A ⊆ M , there exist n,m ∈ ω,

a1, . . . , an, b1, . . . , bn ∈ M ∪ {−∞,∞} with ai < bi for any i ∈ {1, . . . , n} and c1, . . . , cm ∈ M
such that

A =
n⋃
i=1

(ai, bi)M ∪ {c1, . . . , cm}.
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Theorem 4.2.13. Let (R,<) be a real closed field. Then (R,<) is o-minimal.

Proof. Let A ⊆ R be Lor-definable. Then by Theorem 4.2.1, there exists a quantifier-free Lor-
formula ϕ(x, y) such that

A = ϕ((R,<), b)

for some b ∈ R. Now ϕ(x, b) is simply a boolean combination of polynomial equations and

inequations with coefficients in Z[b] ⊆ R. For any p(X) ∈ R[X], the solution set of p(X) = 0

and p(X) > 0 is either empty, a finite set of points or a finite union of open intervals. Since the

class of finite unions of points and open intervals is closed under boolean operations, we obtain

the required result.
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In this section, we prove the first main result of this lecture, which is due to [9]. We always

abbreviate LPA-structures M simply by (M,<) and Lor-structures Z simply by (Z,<). The

ordering should always be clear from the context.

5.1. Rings and Semirings

5.1.1. Open Induction for Rings

Notation 5.1.1. Recall from Exercise 4.3 the following notations.

(i) Let (M,<) |= PA−. Then

ZM := M ∪ (−M) := M ∪ {−m | m ∈M \ {0}}

can be equipped with operations and an order relation such that (M,<) ⊆ (ZM , <).

Moreover, (ZM , <) is a discretely ordered ring.

(ii) Let (Z,<) |= Tdor. Then

MZ := Z≥0

inherits its operations and its order relation from (Z,<) such that (MZ , <) ⊆ (Z,<).

Moreover, (MZ , <) is a discretely ordered semiring.

Notation 5.1.1 gives us a way to switch between discretely ordered rings and discretely ordered

semirings. In fact, it was shown in Exercise 4.3 that there is a one-to-one correspondence

between these two classes of structures by the identification above. Also axiomatisations of

arithmetic have counterparts for discretely ordered rings. We introduce such a counterpart for

open induction.

Definition 5.1.2. The Lor-theory IOpen′ of open induction (for rings) is axiomatised by

the extension of Tdor by the induction scheme restricted to quantifier-free Lor-formulas:

for any quantifier-free Lor-formula ϕ(x, y),

∀y [(ϕ(0, y) ∧ ∀(n ≥ 0) [ϕ(n, y)→ (ϕ(n+ 1, y) ∧ ϕ(−n, y))])→ ∀n ϕ(n, y)].

It is now an easy but somewhat tedious exercise that IOpen and IOpen′ axiomatise the

corresponding classes of rings and semirings, i.e. the following.

Exercise 5.1.3. Let (M,<) |= PA− and let (Z,<) |= Tdor. Show that:

(i) (M,<) |= IOpen if and only if (ZM , <) |= IOpen′.

(ii) (Z,<) |= IOpen′ if and only if (MZ , <) |= IOpen.
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5.1.2. Integer Parts

Definition 5.1.4. Let (K,<) be an ordered field and let (Z,<) ⊆ (K,<). Then Z is called an

integer part of K if it is a discretely ordered ring such that for any a ∈ K there exists z ∈ Z
such that

z ≤ a < z + 1.

The element z is then called the13 integer part of a and denoted by bac.

Example 5.1.5. Let (K,<) ⊆ (R, <). Since (Z, <) is the only integer part of R, it is also the

only integer part of (K,<).

As the integer part of an ordered field takes the same role as Z in R, one is often interested

in the elements that can be written as a fraction of two elements in the integer part.

Notation 5.1.6. Let (Z,<) be a discretely ordered ring. We denote by QZ the field of fractions

ff(Z) =
{ a
b

∣∣∣ a ∈ Z, b ∈ Z \ {0}}
of Z.

Remark 5.1.7. If Z is the integer part of some ordered field (K,<), then QZ inherits an ordering

from K making (QZ , <) an ordered field. In fact, also for any discretely ordered ring (Z,<), we

can endow QZ with an ordering < making it an ordered field with (Z,<) ⊆ (QZ , <) by setting

a

b
> 0

if and only if ab > 0 for any a, b ∈ Z with b 6= 0.

Exercise 5.1.8. Prove, or disprove by providing a counterexample, the following statement:

For any (Z,<) |= Tdor, we have that Z is an integer part of (QZ , <).

Exercise 5.1.9. Let (K,<) be an ordered field and let Z be an integer part of (K,<). Moreover,

let m,n ∈ ω, let a1, . . . , an, b1, . . . , bn ∈ K ∪ {−∞,∞} with a1 < b1 < a2 < b2 < . . . < an < bn
and let c1, . . . , cm ∈ K with c1 < . . . < cm. Suppose that A is given by the disjoint union

A =
n⊔
i=1

(ai, bi)K t
m⊔
j=1

{cj}.

Show that there are k ∈ ω and s1, . . . , sk, t1, . . . , tk, r ∈ Z with si ≤ ti for any i ∈ {1, . . . , k}
such that A′ = A ∩ Z is of the form

A′ =

k⊔
i=1

[si, ti]Z t I,

where I is one of ∅, (−∞, r]Z , [r,∞)Z and Z.

13Its uniqueness is proved in Exercise 7.3 (a).
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5.2. Statement and Proof

Theorem 5.2.1 (Shepherdson). Let (Z,<) |= Tdor. Then the following are equivalent:

(i) (Z,<) |= IOpen′.

(ii) Z is an integer part of the real closure of (QZ , <).

Proof. We denote by (R,<) the real closure of (QZ , <). Let us first suppose that (Z,<) |=
IOpen′. Let a ∈ R. We need to find z ∈ Z such that z ≤ a < z+ 1. If a ∈ Z, then z = a will do.

Suppose that a ∈ (0,∞)R \Z. Since R is algebraic over QZ , there exists a non-zero polynomial

p ∈ QZ [X] such that p(a) = 0. Let k ∈ N such that a is the k-th positive root of p in R. By

clearing fractions, i.e. multiplying with a sufficiently large element from Z, we may assume that

all coefficients of p lie in Z, i.e. p ∈ Z[X]. Let d = deg(p) and let ϕ(x, b) be the Lor-formula

(with parameters b ∈ Z) given by

d∨
j=k

∃jy (0 < y < x ∧ p(y) = 0).

Note that ϕ(x, b) expresses that there are at least k many distinct positive roots of p strictly

below x. By Theorem 4.2.1, there exists a quantifier-free Lor-formula ψ such that

(R,<) |= ∀x (ϕ(x, b)↔ ψ(x, b)).

For any c ∈ (−∞, 0]R, we have

(R,<) |= ¬ϕ(c, b)

and hence

(R,<) |= ¬ψ(c, b).

Since (Z,<) ⊆ (R,<), we obtain by Lemma 2.4.6 that

(Z,<) |= ¬ψ(−n, b).

for any n ∈MZ . Hence,

(Z,<) |= ¬ψ(0, b) ∧ ∀(n ≥ 0) [¬ψ(n, b)→ ¬ψ(−n, b)].

Assume, for a contradiction, that

(Z,<) |= ∀(n ≥ 0) [¬ψ(n, b)→ ¬ψ(n+ 1, b)].

Since (Z,<) |= IOpen′, we obtain

(Z,<) |= ∀n ¬ψ(n, b).

Again, by Lemma 2.4.6, we obtain that for any n ∈MZ we have

(R,<) |= ¬ψ(n, b)
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and thus

(R,<) |= ¬ϕ(n, b).

We now express p ∈ Z[X] as

p(X) =
d∑
`=0

a`X
`.

Set

B = B(p) =

d∑
`=0

∣∣∣∣a`ad
∣∣∣∣+ 1

and recall that by Exercise 4.1.20, all positive roots of p in R must lie in [0, B)R. Since |ad|B ∈
MZ , we obtain

(R,<) |= ¬ϕ(|ad|B, b).

Hence, it is not true that there are there are at least k many distinct positive roots of p strictly

below |ad|B. This shows that a ≥ |ad|B. However, |ad|B ≥ B and thus a ∈ R is a positive root

of p in R outside the interval [0, B)R, a contradiction.

Hence, there is some z ∈MZ such that

(Z,<) |= ¬ψ(z, b) ∧ ψ(z + 1, b).

By Lemma 2.4.6, we obtain

(R,<) |= ¬ψ(z, b) ∧ ψ(z + 1, b)

and thus

(R,<) |= ¬ϕ(z, b) ∧ ϕ(z + 1, b).

Hence, there are there are at most k− 1 many distinct roots of p in (0, z)R and at least k many

distinct roots of p in (0, z+ 1)R. This shows that the k-th positive root of p in R must lie in the

interval [z, z + 1)R, i.e. z ≤ a < z + 1, as required. For the case x ∈ (−∞, 0)R \Z, it remains to

note that bxc = −b−xc − 1.

Conversely, suppose that Z is an integer part of (R,<). Since (Z,<) |= Tdor, we only have

to verify the induction scheme for quantifier-free Lor-formulas. Let ϕ(x, y) be a quantifier-free

Lor-formula and let b ∈ Z. Suppose that

(Z,<) |= ϕ(0, b) ∧ ∀(n ≥ 0) [ϕ(n, b)→ (ϕ(n+ 1, y) ∧ ϕ(−n, b))]. (5.2.1)

We have to show that for any n ∈ Z we have

(Z,<) |= ϕ(n, b).

Assume, for a contradiction, that there exists n ∈ Z with (Z,<) |= ¬ϕ(n, b). We may assume

that n ≥ 0, as otherwise we can replace it by −n, since

(Z,<) |= ∀(n ≤ 0) [¬ϕ(n, b)→ ¬ϕ(−n, b)].

Lemma 2.4.6 yields that also

(R,<) |= ¬ϕ(n, b).
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Let

A = ¬ϕ((R,<), b) ∩ [0,∞)R.

Since n ∈ A, we have that A is non-empty. By Theorem 4.2.13, the Lor-definable set A is a non-

empty finite union of open intervals and singeltons in R. Consider B = A∩Z. By Exercise 5.1.9,

there are k ∈ ω and c1, . . . , ck, d1, . . . , dk, s ∈ MZ with ci ≤ di for any i ∈ {1, . . . , k} such that

B is of the form

B =
k⊔
i=1

[ci, di]Z t I,

where I is either ∅ or [s,∞)Z . Set c = min{c1, . . . , ck} if k ≥ 1 and c = s if k = 0. Then c is the

least element of B. Since (Z,<) |= ϕ(0, b), we have 0 /∈ B. Hence, c ≥ 1. But then c − 1 /∈ B
and c ∈ B. This shows that

(Z,<) |= ϕ(c− 1, b) ∧ ¬ϕ(c, b),

contradicting (5.2.1).

By Exercise 5.1.3, we immediately obtain the following characterisation of models of open

induction.

Corollary 5.2.2. Let (M,<) |= PA−. Then the following are equivalent:

(i) (M,<) |= IOpen.

(ii) ZM is an integer part of the real closure of (QZM , <).

Exercise 5.2.3. Let (Z,<) |= Tdor. Show that the following are equivalent:

(i) (Z,<) |= IOpen′.

(ii) Z is an integer part of some real closed field (R,<).
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6. Hahn Fields

In this chapter, we introduce the class of Hahn fields, which will be used in the proof of our

second main result: the Mourgues–Ressayre Theorem.

6.1. Generalised Power Series

6.1.1. Well-Orderings and Ordinals

In this brief excursion, we cover the basics of well-orderings. Since this is only a brief introduc-

tion, several basic results on well-orderings and ordinal numbers are left as exercises.

Definition 6.1.1. Let (I,<) |= Tlo. A subset J ⊆ I is well-ordered if every non-empty subset

of J contains a least element. We call (I,<) a well-ordering (or also simply well-ordered) if I

is well-ordered.

For later use, we introduce the following notation.

Notation 6.1.2. Let (I,<) |= Tlo. We denote by wo(I) the family of all well-ordered subsets

of I.

Exercise 6.1.3. Let Let (I,<) |= Tlo and let J ⊆ I. Show that J is well-ordered if and only

if it contains no infinite strictly decreasing sequence, i.e. for any sequence (ai)i∈ω in J it is not

possible that a0 > a1 > a2 > . . ..

Exercise 6.1.4. Let (I,<) be a well-ordering and let f : (I,<)→ (I,<).

(i) Show that for any i ∈ I we have f(i) ≥ i.

(ii) Suppose that f : (I,<) ∼= (I,<). Show that f = idI .

(iii) Let (J,<) be an L<-structure with (I,<) ∼= (J,<). Show that there is a unique L<-

isomorphism from I to J .

Remark 6.1.5. Recall that J is an initial segment of some linearly ordered set I if for any j ∈ J ,

we have (−∞, j]I ⊆ J . We say that J is a proper initial segment of I if additionally J 6= I.

Proposition 6.1.6. Let (I,<) be a well-ordering and let J be a proper initial segment of I.

Then for some a ∈ I, we have

J = I<a := {i ∈ I | i < a}.

Proof. Since J ( I, we can set a = min(I \ J). Now let i ∈ I. If i < a, then i /∈ I \ J ,

whence i ∈ J . Conversely, if i ≥ a, then (−∞, i]I is not contained in J , as a ∈ (−∞, i]I . Hence,

i /∈ J .
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Proposition 6.1.7. Let (I,<) and (J,<) be well-orderings. Then exactly one of the following

holds:

(i) (I,<) ∼= (J,<).

(ii) (I,<) ∼= (J<j , <) for some j ∈ J .

(iii) (I<i, <) ∼= (J,<) for some i ∈ I.

Proof. Assume, for a contradiction, that the three cases were not exclusive. Then there exists a

well-ordering (X,<) and some f : (X,<) ∼= (X<x, <) for some x ∈ X, i.e. (X,<) is isomorphic

to a proper initial segment of itself. Now f(x) < x, and by iterative application of f we obtain

x > f(x) > f(f(x)) > . . . ,

contradicting Exercise 6.1.3.

First suppose that for any a ∈ I, there is some fa : (I<a, <) ∼= (J<a
′
, <) for some a′ ∈ J . By

Exercise 6.1.4, each fa is unique. Hence,

fa|(−∞,b]I = fb

for any a, b ∈ I with b < a. Taking

f =
⋃
a∈I

fa

(considering functions as the corresponding sets of their graphs), we obtain that f is an embed-

ding of (I,<) into (J,<) whose image ⋃
a∈I

J<a
′

is an initial segment of J . Hence, we obtain (I,<) ∼= (J,<) or (I,<) ∼= (J<j , <) for some j ∈ J .

Now suppose that there is some i ∈ I such that (I<i, <) is not L<-isomorphic to (J<b, <) for

any b ∈ J . We may take i to be least with that property. However, then for any c ∈ I<i, there

is some gc : (I<c, <) ∼= (J<i
′
, <) for some i′ ∈ J . As shown above, this implies that (I<i, <) is

L<-isomorphic to some initial segment of J . By assumption, we obtain (I<i, <) ∼= (J,<).

Taking ∼= as equivalence relation, Proposition 6.1.7 gives rise to a linear ordering on the class

of equivalence classes as follows.

Definition 6.1.8. Let (I,<) and (J,<) be well-orderings. We denote by [I] its equivalence

class under ∼= (i.e. L<-isomorphisms). Moreover, we write

[I] < [J ]

if (I,<) ∼= (J<j , <) for some j ∈ J .

Exercise 6.1.9. Show that < from Definition 6.1.8 defines a strict linear ordering on the class

of equivalence classes of well-orderings, i.e. for any well-orderings (I,<), (J,<), (L,<), verify

the following:
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(i) [I] 6< [I];

(ii) if [I] < [J ] and [J ] < [L], then [I] < [L];

(iii) [I] < [J ] or [I] = [J ] or [J ] < [I].

We now establish a canonical representative for each equivalence class of well-orderings. These

representatives will be called ordinal numbers. For these particular well-orderings, the binary

relation < coincides with the element relation ∈.

Example 6.1.10. Set 0 = ∅ and define iteratively for any n ∈ ω:

n+ 1 := n ∪ {n}.

Then for any n ∈ ω, the L<-structure (n,∈) is a well-ordering.14 For instance:

0 = ∅,
1 = 0 ∪ {0} = {0} = {∅},
2 = 1 ∪ {1} = {0, 1} = {∅, {∅}},
3 = 2 ∪ {2} = {0, 1, 2} = {∅, {∅}, {∅, {∅}}},

...

n+ 1 = n ∪ {n} = {0, . . . , n} = {∅, {∅}, {∅, {∅}}, . . .}.

The set of all well-orderings obtained in this way is called ω, which is also the reason for the

notation we use for the natural numbers with 0.

Definition 6.1.11. A well-ordering (x,<) is called an ordinal (number) if for any a ∈ x we

have

x<a = a.

The class of all ordinal numbers is denoted by On.

Exercise 6.1.12. Let (x,<) be an ordinal number. Show that the binary relation < on x

coincides with the binary relation ∈ on x.

We will thus always set < to be ∈ in the context of ordinals.

Example 6.1.13. All well-orderings in Example 6.1.10 are ordinal numbers. For instance,

consider 3. Then 2 ∈ 3 and

3<2 = {0, 1} = 2.

An example of an infinite ordinal larger than ω is ω + 1 = ω ∪ {ω}. In fact, the class of

ordinals have no upper bound and for each cardinality there is a least ordinal of the cardinality.

For instance, ω is the least ordinal of cardinality ℵ0.

14In the special case (0,∈) we technically have no well-ordering since the domain is the empty set. However,

allowing this domain, all properties of a well-ordering are vacuously true.
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Remark 6.1.14. Several results on ordinals require the fact that for any set A there is no infinite

chain A 3 a0 3 a1 3 . . .. This is usually one of the axioms of set theory (more precisely, of

Zermelo–Fraenkel set theory) and we may thus use this fact without any further justification.

Exercise 6.1.15. Let α, β ∈ On. Show that α ∈ β if and only if α ( β.

Exercise 6.1.16. Let A ⊆ On be a set of ordinal numbers. Show that⋂
α∈A

α ∈ On and
⋃
α∈A

α ∈ On.

Exercise 6.1.17. Show that (On, <) (where < is given by ∈) is a well-ordering, i.e. for any

α, β, γ ∈ On, verify the following:

(i) α 6< α;

(ii) if α < β and β < γ, then α < γ;

(iii) α < β or α = β or β < α;

and show that every non-empty subset of On has a least element.

Definition 6.1.18. Let α ∈ On with 0 < α. Then α is called a successor ordinal if

α = β + 1 := β ∪ {β}

for some β ∈ On. Otherwise, it is called a limit ordinal.

Exercise 6.1.19. Show that the only limit ordinal in ω + 1 is ω.

We now establish that the previously established class of equivalence classes of well-orderings

is L<-isomorphic to On. More precisely, any equivalence class has a unique representative in

On and the ordering < on equivalence classes coincides with ∈ on On via this representation.

Proposition 6.1.20. Let (I,<) and (J,<) be well-orderings. Then there are unique α, β ∈ On

with

(α,<) ∈ [I] and (β,<) ∈ [J ].

Moreover, [I] < [J ] if and only if α < β.

Proof. We first prove the existence of α (and likewise the existence of β can be proved). By

Proposition 6.1.7, there are three cases to consider.

Case 1: For some γ ∈ On, we have (I,<) ∼= (γ,<). Then we only have to set α = γ.

Case 2: For some γ ∈ On and some α ∈ γ, we have (I,<) ∼= (γ<α, <). Then we simply have

to note that γ<α = α.

Case 3: For any γ ∈ On there is some i(γ) ∈ I such that (I<i(γ), <) ∼= (γ,<). First note

that for any γ, γ′ ∈ On with γ < γ′, we have i(γ) < i(γ′), as otherwise we would obtain a

contradiction to Exercise 6.1.4. Hence, i−1(I) = On is a set (rather than a proper class). This

implies that

α =
⋃

α∈On

α ∈ On.

70



6.1. Generalised Power Series

But then On ≤ α ∈ On, a contradiction.

For uniqueness, let α, α′ ∈ [I]∩On. If α < α′ or α′ < α, then (I,<) is isomorphic to a proper

initial segment of itself, which was shown not to be possible in Proposition 6.1.7. Hence, α = α′.

Now suppose that [I] < [J ]. Then (I,<) is isomorphic to a proper initial segment of (J,<)

and thus α is a proper initial segment of β. Hence, also α < β. The converse follows likewise

by using the properties of linear orderings.

Proposition 6.1.20 gives rise to the following.

Definition 6.1.21. Let (I,<) be a well-ordering. Then the order type ot(I,<) (or simply

ot(I)) of (I,<) is the unique ordinal α ∈ On with α ∈ [I].

Lastly, we identify the subclass of cardinal numbers amongst all ordinal numbers.

Remark 6.1.22. Let A be a set. Then the cardinality |A| of A is the L=-equivalence class of

(A) (see Exercise 3.3). More precisely, two sets A and B have the same cardinality if there exists

a bijection from A to B. We write |A| ≤ |B| (“the cardinality of A is at most the cardinality

of “B”) if there exists an injective map from A to B. The Principle of Cardinal Comparability,

which is equivalent to the Axiom of Choice, asserts that for any two sets either |A| ≤ |B| or

|B| ≤ |A| and, if both hold, then |A| = |B|.

Theorem 6.1.23 (Well-ordering Theorem). Let A be a set. Then there exists a linear ordering

< on A such that (A,<) is a well-ordering.

Proof. Let C be the set of all well-orderings on subsets of A. Formally, for any set B ⊆ A, we

have that C contains all subsets of B2 representing the graph of a binary relation on B that is

a well-ordering. Note that C is non-empty, as any finite subset of A can be well-ordered. We

define an ordering <C on C by setting R <C R′ if R ⊆ R′ and the domain B of R is a proper

initial segment of (B′, R′), where B′ is the domain of R′.

Now let (Ri)i∈I be a chain in C, i.e. (I,<) is a linear ordering and Ri ∈ C for any i ∈ I such

that Ri <C Ri′ for any i, i′ ∈ I with i < i′. Set

R =
⋃
i∈I

Ri.

Then the domain of R is

R =
⋃
i∈I

Bi,

where Bi is the domain of Ri for each i ∈ I. One can easily verify that R is a linear ordering

on B. Let A ⊆ B be non-empty. Let j ∈ I with A ∩ Bj 6= ∅ and set a = min(A ∩ Bj) (with

respect to the ordering Rj). We show that a is the minimal element of A: If not, then there is

some i ∈ I such that A ∩ Bi contains an element b smaller than a. However, if Bi is a proper

initial segment of Bj (i.e. i < j), then b ∈ Bj , and if Bj is a proper initial segment of Bi (i.e.

j < i), then also b ∈ Bj , both being contradictions. Hence, (B,R) is a well-ordering and thus

contained in C.
By Zorn’s Lemma, there exists a maximal element (B,R) ∈ C. If B 6= A, then let a ∈ A \B.

We extend R to Ra by setting b Ra a for any b ∈ B. Then B is an initial segment of (B∪{a}, Ra)
and Ra extends R. Hence, (B ∪ {a}, Ra) ∈ C, contradicting the maximality of (B,R). We thus

obtain that (A,R) ∈ C for some well-ordering R on A.
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Remark 6.1.24. Let A be a set. By Theorem 6.1.23 and Proposition 6.1.20, there is some well-

ordering R on A and some ordinal α ∈ On such that (A,R) ∼= (α,<). In particular, A and α have

the same cardinality. We associate to each set A the smallest ordinal of the same cardinality.

Hence, for each equivalence class of sets representing a cardinality, there is an associated ordinal

number, which is then called the corresponding cardinal number.

For instance, the sets N, Z and Q all have cardinality ℵ0. The smallest ordinal of cardinality

ℵ0 is ω. We thus identify ω with ℵ0.

Since the class of cardinal numbers forms a subclass of On, any set can be indexed by a unique

ordinal number, i.e. for any set A, there exists (a least) α ∈ On (its cardinality) such that A

can be expressed as

A = {xι | ι < α}.

We conclude this excursion by presenting a powerful tool that can be applied to any set by the

discussion above.

Proposition 6.1.25 (Transfinite Induction). Let P (x) be a property that is formulated for any

x ∈ On such that for any α ∈ On

if P (ι) holds for any ι < α, then also P (α) holds.

Then P (α) holds for any α ∈ On.

Proof. Assume that there is some β ∈ On such that P (β) does not hold. Since On is well-

ordered, we may take β least with that property. Then for any ι ∈ β, we have that P (ι) holds.

However, by assumption, this already implies that P (β) holds.

6.1.2. Definitions

Throughout the rest of this section, we denote Lr-structures of fields (k,+,−, ·, 0, 1) simply by

k and Log-structures of ordered abelian groups (G,+,−, 0, <) simply by G.

Definition 6.1.26. Let k be a field and let G be an ordered abelian group. For any s : G→ k,

we set the support supp(s) to be

supp(s) = {g ∈ G | s(g) 6= 0}.

Moreover, we let

k((G)) = {s : k → G | supp(s) ∈ wo(G)}.

An element s ∈ k((G)) is called a (generalised) power series or Hahn series (over k and G).

We denote it by

s =
∑
g∈G

sgt
g,

where sg = s(g) for any g ∈ G and tg may represent the indicator function mapping g to 1 and

everything else to 0.
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Notation 6.1.27. Let k be a field and let G be an ordered abelian group. For any s ∈ k((G)),

we denote by ot(s) the order type of the support of s, i.e. ot(s) := ot(supp(s)) ∈ On. We may

thus also express s as

s =
∑
α<γ

sαt
gα ,

where γ = ot(s), for some enumeration {gα | α < γ} of supp(s). We call this notation of s the

order type notation.

Example 6.1.28. For any field k, any polynomial p ∈ k[t] can be considered as an element in

k((Z)). For instance, the polynomial

p(t) = t3 + 2t− 3

can be written as power series ∑
z∈Z

pzt
z

with pz = 0 for any z ∈ Z \ {0, 1, 3} and p3 = 1, p1 = 2 and p0 = −3.

In order type notation, we obtain

p =
∑
α<3

pαt
zα

with (z0, p0) = (0,−3), (z1, p1) = (1, 2) and (z2, p2) = (3, 1).

Definition 6.1.29. Let k be a field and let G be an ordered abelian group. Moreover, let

s, r ∈ k((G)). Then we define the following operations:

(i)

r + s =
∑
g∈G

(rg + sg)t
g.

(ii)

r · s =
∑
g∈G

(∑
h∈G

rhsg−h

)
tg.

In the next section, we will verify that + and · as defined above make k((G)) a field.

6.2. Rayner Fields

6.2.1. Field Properties

In this section, we follow the main arguments of [5].

Definition 6.2.1. Let k be a field, let G be an ordered abelian group and let F ⊆ wo(G). Then

we call

k((F)) = {s ∈ k((G)) | supp(s) ∈ F}

the k-hull of F . If F = wo(A) for some A ⊆ G, we also simply write

k((A))

for the k-hull of F .
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Definition 6.2.2. Let G be an ordered abelian group and let F ⊆ wo(G) satisfy the following:

(i) F 6= ∅.

(ii) For any A,B ∈ F , also A ∪B ∈ F .

(iii) For any A ∈ F and any B ⊆ A, also B ∈ F .

(iv)
⋃
A∈F A generates (as a group) all of G.

(v) For any g ∈ G and any A ∈ F also A+ g := {a+ g | a ∈ A} ∈ F .

(vi) For any A ∈ F with A ⊆ G≥0, we have

∑
A :=

{
n∑
i=1

ai

∣∣∣∣∣ n ∈ ω, a1, . . . , ai ∈ A
}
∈ F .

Then for any field k, we call k((F)) a Rayner field.

In the following, we verify that any Rayner field is indeed a field.

Lemma 6.2.3. Let k((F)) be a Rayner field. Then it is closed under + as well as · and

(k((F)) ,+,−, ·, 0, 1) forms ring.

Proof. Let a, b ∈ k((F)) and let A,B ∈ F with supp(a) = A and supp(b) = B. Then

a+ b =
∑

g∈A∪B
agt

g +
∑

g∈A∪B
bgt

g =
∑

g∈A∪B
(ag + bg)t

g.

Hence, supp(a + b) ⊆ A ∪ B. By the properties of F , we obtain supp(a + b) ∈ F and thus

a+ b ∈ k((F)).

Now k((G)) is an ordered abelian group (under pointwise addition), whence commutativity

and associativity also hold in its substructure k((F)). Note further that the additive identity 0

is contained in k((F)), as its support ∅ is contained as a subset in any set in F . Finally, since

supp(−a) = supp(a), also −a ∈ k((F)). This establishes that (k((F)) ,+,−, 0) is an additive

abelian group.

Now consider multiplication. We have

ab =
∑
g∈G

 ∑
i∈A,j∈B
i+j=g

aibj

 tg.

Hence, supp(ab) ⊆ A+B = {a+ b | a ∈ A, b ∈ B}. It remains to verify A+B ∈ F . First note

that D = (A∪B)− c ∈ F , where c = min(A∪B). Now D ⊆ G≥0. Hence,
∑
D ∈ F . It remains

to note that

(A+B)− 2c = {(a− c) + (b− c) | a ∈ A, b ∈ B} ⊆
∑

D.

Hence, also (A+B)− 2c ∈ F and thus also A+B = ((A+B)− 2c) + 2c ∈ F .
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Now let r, s, u ∈ k((F)). Then

1 · r =
∑
g∈G

(∑
h∈G

1hrg−h

)
tg =

∑
g∈G

(1 · rg) tg = r,

rs =
∑
g∈G

(∑
h∈G

rhsg−h

)
tg =

∑
g∈G

(∑
h′∈G

sh′rg−h′

)
tg = sr,

r(su) =
∑
g∈G

(∑
h∈G

rh(su)g−h

)
tg =

∑
g∈G

(∑
h∈G

rh
∑
i∈G

siug−h−i

)
tg

=

∑
g∈G

∑
h∈G

∑
i∈G

rhsiug−h−i

 tg =
∑
g′∈G

∑
j∈G

∑
h∈G

rhsj−hug′−h

 tg
′

=
∑
g′∈G

∑
j∈G

(rs)hug′−j

 tg
′

= (rs)u,

r(s+ u) =
∑
g∈G

(∑
h∈G

rh(sg−h + ug−h)

)
tg =

∑
g∈G

(∑
h∈G

rh(sg−h)

)
tg +

∑
g∈G

(∑
h∈G

rh(ug−h)

)
tg

= rs+ ru.

This verifies the remaining ring axioms.

In order to show that a Rayner field k((F)) is also closed under taking inverses for non-zero

elements, we will use an instance of Neumann’s Lemma, the proof of which is part of Real

Algebraic Geometry II15.

Lemma 6.2.4 (Neumann’s Lemma). Let k be a field and let G be an ordered abelian group.

Moreover, let ε ∈ k
((
G>0

))
. Then

σ =
∑
n∈ω

εn ∈ k((G)) .

More precisely, for any g ∈ G, there are only finitely many n ∈ ω such that (εn)g 6= 0, whence

(σ)g is given by ∑
n∈ω

(εn)g,

and supp(σ) ∈ wo(G).

Proposition 6.2.5. Let k((F)) be a Rayner field. Then (k((F)) ,+,−, ·, 0, 1), indeed, forms a

field.

Proof. By Lemma 6.2.3, we only have to show that for any a ∈ k((F)) \ {0} there is some

b ∈ k((F)) with ab = 1. Let g0 = min(supp(a)). Set

a′ = a−1g0 t
−g0a = 1 +

∑
g∈G>g0

a−1g0 agt
g−g0 .

15See, for instance, http://www.math.uni-konstanz.de/~kuhlmann/Lehre/SS19-ReelleAlgGeo2/Scripts/RAG_

II-Gesamtskript.pdf, Lecture 11, Lemma 1.6.
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6. Hahn Fields

Set

ε = −
∑

g∈G>g0
a−1g0 agt

g−g0 ∈ k
((
G>0

))
.

Then a′ = 1− ε. By Lemma 6.2.4, we obtain∑
n∈ω

εn ∈ k((G)) .

Let E = supp(ε) ⊆ G>0. Since for any n ∈ N, we have

supp(εn) ⊆ E + . . .+ E︸ ︷︷ ︸
n times

⊆
∑

E,

we also obtain

supp

(∑
n∈ω

εn

)
⊆
∑

E ∈ F .

Hence, ∑
n∈ω

εn ∈ k((F)) .

Now note that

(1− ε)
∑
n∈ω

εn =
∑
n∈ω

εn −
∑
n∈ω

εn+1 = 1.

(This can, for instance, directly be verified by evaluating in g for any g ∈ G.) We can thus write∑
n∈ω

εn =
1

1− ε
=

1

a′
.

It remains to note that

a−1 =
a−1g0 t

−g0

a′
.

Exercise 6.2.6. Let k be a field and let G be an ordered abelian group. Show that k((G)) is a

Rayner field.

By Proposition 6.2.5 and Exercise 6.2.6, we immediately obtain the following:

Corollary 6.2.7. Let k be a field and let G be an ordered abelian group. Then

(k((G)) ,+,−, ·, 0, 1)

is a field.

Exercise 6.2.8. Let k be a field and let G be an ordered abelian group.

(i) Define k[G] ⊆ k((G)) by

k[G] = {s ∈ k((G)) | supp(s) is finite}.

Show that k[G] is an integral domain.
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(ii) Define k(G) ⊆ k((G)) by

k(G) = ff(k[G]).

Show that k(G) is the smallest subfield of k((G)) containing all monomials, i.e. the set{
ath

∣∣∣ a ∈ k, h ∈ G} ⊆ k((G)) .

Definition 6.2.9. Let k be a field and let G be an ordered abelian group. A Hahn field (over

k and G) is a field K with

k(G) ⊆ K ⊆ k((G)) .

We call k(G) the minimal Hahn field and k((G)) the maximal Hahn field (over k and G).

Exercise 6.2.10. Show that every Rayner field is a Hahn field, i.e. show that for any field k,

any ordered abelian group G, and any F ⊆ wo(G), if k((F)) is a Rayner field, then

k(G) ⊆ k((F)) ⊆ k((G)) .

Not every Hahn field is a Rayner field. Indeed, even the minimal Hahn field k(G) is not

(necessarily) a Rayner field as the following example shows.

Example 6.2.11. Consider the minimal Hahn field over Q and Z, i.e. K = Q(Z). Assume, for

a contradiction, that K is a Rayner field and let F ⊆ wo(G) such that K = Q((F)).

Now

s =
1

1− t
=
∞∑
i=0

ti ∈ K.

The support of this element is given by supp(s) = ω. Hence, ω ∈ F . By the properties of a

Rayner field, also for any B ⊆ ω, any element of k((G)) whose support equals B is contained in

K. However, the power set of ω is uncountable, whence there are uncountably many choices of

such B. Hence, K contains uncountably many elements.

It remains to note that Q(Z) is countable as the field of fractions of the countable ring Q[Z],

giving us the required contradiction.

6.2.2. Orderings

If k is a real field, then any ordering of k induces an ordering of k((G)) (for any ordered abelian

group G). In this section, we define this ordering on k((G)) stemming from an ordering of k.

Note that the restriction of an ordering on a field K can be restricted to an ordering on any

subfield of K. Hence, by establishing an ordering on k((G)), we obtain an ordering on any Hahn

field over k and G and, in particular, for any Rayner field.

Definition 6.2.12. Let (k,<) be an ordered field and let G be an ordered abelian group. We

define a linear ordering < on k((G)) by setting16

0 < s :⇔ (s 6= 0 ∧ s(min(supp(s))) > 0).

16By the Bonus Exercise on Exercise Sheet 5, we then define s < r if and only if 0 < r − s.
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Exercise 6.2.13. Let (k,<) be an ordered field and let G be an ordered abelian group. Verify

that (k((G)) , <) is, indeed, an ordered field.

Example 6.2.14. Recall that by the Bonus Exercise on Exercise Sheet 7, an ordered field is

archimedean if and only if Z is its unique integer part.

Let (k,<) be an ordered field and let G be a non-trivial ordered abelian group (i.e. G 6= {0}).
Then any Hahn field K over k and G is non-archimedean. Indeed, let g ∈ G<0. Then tg ∈ K.

Assume, for a contradiction, that for some z ∈ Z we have

z ≤ tg < z + 1.

Then −1 ≤ tg − (z + 1) < 0. However, for s = 1tg − (z + 1)t0, we have supp(s) = {g, 0} if

z + 1 6= 0 and supp(s) = {g} if z + 1 = 0. In either case,

s(min(supp(s))) = s(g) = 1 > 0,

whence s > 0, a contradiction.

Example 6.2.14 shows that Hahn fields over non-trivial ordered abelian groups are always non-

archimedean. Due to Kaplansky’s Embedding Theorem, whose proof goes beyond the scope of

this lecture, any ordered field is isomorphic to an ordered Hahn field. Hence, ordered Hahn fields

are prototypes for non-archimedean fields. In the next section, we will show how for a general

ordered field (K,<) we can find the ordered coefficient field (k,<) and the ordered abelian group

G in order that (K,<) is isomorphic to a Hahn field over k and G in the sense of Kaplansky’s

Embedding Theorem.

6.3. Valuation Theory

This section mainly follows [6, Chapters 0 and 1].

6.3.1. Valuations

Definition 6.3.1. Let G be an ordered abelian group and let K be a field. Let ∞ be a symbol

satisfying ∞ > g and

∞ =∞+∞ =∞+ g = g +∞

for any g ∈ G. A surjective map

v : K → G ∪ {∞}

is called a valuation on K if for any a, b ∈ K, the following hold:

(i) v(a) =∞ implies a = 0,

(ii) v(ab) = v(a) + v(b),

(iii) v(a+ b) ≥ min{v(a), v(b)}.
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We call G the value group of K under v and denote it by vK. The pair (K, v) is called a

valued field. The ring

Ov = {a ∈ K | v(a) ≥ 0}

is called the valuation ring of v and the maximal ideal

Iv = {a ∈ K | v(a) > 0}

of Ov is called the valuation ideal of v. The residue field of (K, v) is given by Ov/Iv and

denoted by K. For any a ∈ Ov, we denote a+ Iv by a and call it the residue of a. Moreover,

for any p ∈ Ov[X] with p =
∑n

i=0 aiX
i we denote by p the polynomial

∑n
i=0 aiX

i ∈ K[X].

Exercise 6.3.2. Let (K, v) be a valued field. Verify that Ov is a subring of K and that Iv is a

maximal ideal of Ov. Moreover, show that Iv is the unique maximal ideal of Ov.

Remark 6.3.3. Let (K, v) be a valued field. Note that the projection map

Ov → K, a 7→ a

defines an Lr-homomorphism. Hence, in particular, for any p ∈ Ov[X] and any a ∈ Ov, we have

p(a) = p(a).

The most important valuation in the context of Hahn fields is given in the following example.

Example 6.3.4. Let k be a field and let G be an ordered abelian group. We define the following

map vmin on K = k((G)):

vmin : K → G ∪ {∞}, s 7→

{
min(supp(s)) if s 6= 0,

∞ if s = 0.

We verify that (K, vmin) is a valued field with vK = G and K ∼= k. To ease the notation, we

write v for vmin.

First note that v is surjective, as for any g ∈ G we have v(tg) = g. By definition of v, we have

v(s) =∞ if and only if s = 0 for any s ∈ K. Now let a, b ∈ K. If a = 0 or b = 0, then it is easy

to verify that v(ab) = v(a) + v(b) and v(a + b) ≥ min{v(a), v(b)}. Hence, suppose that a 6= 0

and b 6= 0. We express a and b as

a =
∑
g∈G≥i

agt
g and b =

∑
g∈G≥j

bgt
g

with i = v(a) and j = v(b). Note that ai, bj 6= 0. Then

ab = aibjt
i+j +

∑
g∈G>i+j

(ab)gt
g.

Hence, v(ab) = i+ j = v(a) + v(b).

To verify that v(a + b) ≥ min{v(a), v(b)}, we may assume that i ≤ j, i.e. min{v(a), v(b)} =

v(a). Then

a+ b = ait
i + bjt

j +
∑
g∈G>i

agt
g +

∑
g∈G>j

bgt
g.
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If i < j or ai + bj 6= 0, then we obtain v(a+ b) = i = v(a). Otherwise, we have

a+ b =
∑
g∈G>i

agt
g +

∑
g∈G>j

bgt
g

and obtain v(a+ b) > min{i, j} = j = v(a).

We have thus established that (K, v) is a valued field with value group vK = G. Its valuation

ring Ov is given by k
((
G≥0

))
and its valuation ideal Iv by k

((
G>0

))
. Set

ϕ : K → k

with ϕ(a) = a0 for any a ∈ Ov. We show that ϕ is an Lr-isomorphism, establishing that k is

(isomorphic to) the residue field of (K, v). First note that ϕ is well-defined: For any a, b ∈ Ov
with a = b we have a− b ∈ Iv. Hence, (a− b)0 = 0, showing that

ϕ(a) = a0 = b0 = ϕ(b).

Clearly ϕ(0) = 0 and ϕ(1) = 1. Now let a, b ∈ Ov. Then,

ϕ(a+ b) = (a+ b)0 = a0 + b0 = ϕ(a) + ϕ(b),

and since v(a), v(b) ≥ 0, we obtain

ϕ(ab) = (ab)0 = a0b0 = ϕ(a)ϕ(b).

Exercise 6.3.5. Let (K, v) be a valued field and let F ⊆ K be a subfield. Show that w = v|F
defines a valuation on F whose value group is a subgroup of vK and whose residue field F is a

subfield of K.

If k is a field and G is an ordered abelian group, then vmin on k((G)) can be restricted to k(G).

We then also write (k(G), vmin), where the valuation on k(G) is actually given by vmin|k(G).

Exercise 6.3.6. Let k be a field and let G be an ordered abelian group. Show that for any Hahn

field K over k and G we have that (K, vmin) has value group G and residue field (isomorphic

to) k.

6.3.2. Natural Valuation

Later, we will only be interested in ordered Hahn fields with archimedean residue field. Here,

the concept of the natural valuation will become useful.

Definition 6.3.7. Let (K,<) be an ordered field. Denote by Ovnat the convex hull of Z in K,

i.e. the set

{a ∈ K | c ≤ a ≤ d for some c, d ∈ Z}.

We define an equivalence relation ∼ on K by setting

a ∼ b :⇔
(
a

b
∈ Ovnat ∧

b

a
∈ Ovnat

)
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for any a, b ∈ K×, as well as 0 ∼ 0 and 0 6∼ a for any a ∈ K×. Let G = {[a] | a ∈ K×}, where

[a] denotes the equivalence class of a under ∼, and define

[a] + [b] := [ab]

and

[a] < [b] :⇔
((
b 6= 0 ∧ a

b
/∈ Ovnat

)
∨ (b = 0 ∧ a 6= 0)

)
for any a, b ∈ K. We set ∞ = [0] and

vnat : K → G ∪ {∞}, a 7→ [a].

Then vnat is called the natural valuation on K.

Exercise 6.3.8. Let (K,<) be an ordered field. Show that (K, vnat) is a valued field.

The natural valuation on an ordered field is a coarse measure for the size of the elements with

respect to the ordering <. If an element of K has a positive valuation, then it is infinitesimal.

If it has a negative valuation, then it is infinitely large (positive or negative). This can directly

be applied to ordered Hahn fields.

Exercise 6.3.9. Let (k,<) be an archimedean ordered field and let G be an ordered abelian

group. Denote by vnat the natural valuation on (K,<) = (k((G)) , <).

(i) Show that Ovmin = Ovnat .

(ii) Show that

ϕ : G→ vnatK, g 7→ vnat(t
g)

defines an Log-isomorphism.

(iii) Show that for any a ∈ k((G))× we have

vnat(a) = ϕ(vmin(a)).

Remark 6.3.10. Exercise 6.3.9 shows that for an archimedean ordered field (k,<) and an ordered

abelian group G, the valuations vmin and vnat are equivalent in the sense that they have the

same valuation ring and the value groups are isomorphic, where the isomorphism preserves the

valuation. Hence, we identify the valuations vmin and vnat with each other and, in the following

sections and chapters, only denote them by v.

Given a non-archimedean ordered field (K,<), the natural valuation v always gives us a

method to naturally associate an archimedean ordered field (K,<) to it.

Definition 6.3.11. Let (K,<) be an ordered field. We define an order relation < on K as

follows:

a < b :⇔ (a 6= b ∧ a < b)

for any a, b ∈ Ov.
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Exercise 6.3.12. Let (K,<) be an ordered field. Show that (K,<) is an archimedean ordered

field.

Remark 6.3.13. Let (k,<) be an archimedean ordered field and let G be an ordered abelian

group. As shown in Example 6.3.4, the residue field of k((G)) coincides with k (up to the

presented isomorphism). We thus identify k((G)) with k. Now for any a, b ∈ Ov = k
((
G≥0

))
we

have a < b if and only if a 6= b and a < b, where the ordering here is meant to be the one from

Definition 6.3.11. Considering a = a0, b = b0 ∈ k (via the described identification of the residue

field with k), we also obtain a0 6= b0 and a0 < b0, where the ordering here is meant to be the

one from (k,<). Hence, the ordering given in Definition 6.3.11 on k coincides with the original

ordering on k.

6.3.3. Henselian Valuation

In this last section on the basics of valuation theory, we consider a special class of valuations

satisfying the condition that simple roots can be “lifted”.

Definition 6.3.14. Let (K, v) be a valued field. Then (K, v) is called henselian valued and

v is called henselian if for any p ∈ Ov[X] and any b ∈ Ov with p(b) = 0 and p′(b) 6= 0 there is

some c ∈ Ov with p(c) = 0 and c = b.

Generally, one can show that the valuation vmin on any maximal Hahn field is henselian. Since

we will mainly be interested in the natural valuation on real closed fields, this proof goes beyond

the scope of this lecture. However, we show that the natural valuation is always henselian in

any real closed field.

Proposition 6.3.15. Let (K,<) be a real closed field. Then also (K,<) is real closed.

Proof. We verify that K has the intermediate value property. In order to do so, let p ∈ Ov[X]

and let a, b ∈ Ov with a < b and p(a)p(b) < 0. Then

p(a)p(b) < 0,

whence p(a)p(b) < 0. This shows that p has a root c ∈ (a, b)K . Hence,

0 = p(c) = p(c),

showing that c ∈ (a, b)K is a root of p.

Proposition 6.3.16. Let (K,<) be a real closed field. Then (K, v) is henselian.

Proof. Let p ∈ Ov[X] and let b ∈ Ov with p(b) = 0 and p′(b) 6= 0. We need to find c ∈ Ov with

p(c) = 0 and c = b. We may assume that (K,<) is non-archimedean, as otherwise c = b will do.

First note that p changes its sign in b, as b is a simple zero of p (as K is real closed by

Proposition 6.3.15). Let I ⊆ K be a closed interval such that b ∈ I and p has no further roots

and thus sign change within I. Moreover, let I be of the form I = [s, t]K for some s, t ∈ Ov with

s < b < t. Then

p(s)p(t) = p(s)p(t) < 0.
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Hence, p(s)p(t) < 0. This shows that p must change its sign within the interval J = [s, t]K ⊆ K.

Since K is real closed, it must have a root c ∈ J .

Assume, for a contradiction, that c 6= b. We may assume that c < b, as we can argue similarly

for the case that b < c. Then c < b. However,

s ≤ c ≤ t

implies that

s ≤ c < b ≤ t.

Since p(c) = 0, we have p(c) = p(c) = 0. This contradicts the assumption that p has no roots in

I except b.
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7.1. Ordered Hahn Fields

7.1.1. Residue Field and Value Group

We immediately obtain from Proposition 6.3.15 the following.

Corollary 7.1.1. Let (k,<) be an archimedean ordered field and let G be an ordered abelian

group. Suppose that (k((G)) , <) is real closed. Then also (k,<) is real closed.

For any Hahn field K over a field k and an ordered abelian group G, the residue field k of K

is naturally embedded, as k ⊆ k(G) ⊆ K. We show that this also holds for any real closed field.

Lemma 7.1.2. Let K be a real closed field and let F be a subfield of K. Then the relative

algebraic closure L of F in K is also real closed. Hence, F is real closed if and only if it is

relatively algebraically closed in K.

Proof. We prove that L is real closed by verifying the intermediate value property. Let p ∈ L[X]

and let a, b ∈ L with p(a) < 0 < p(b). Then there is some c ∈ K with c ∈ (a, b)K and p(c) = 0.

Hence, c is algebraic over L and thus over F . This implies that c ∈ L, as required.

Proposition 7.1.3. Let K be a real closed field. Then there exists an Lor-embedding

ι : (K,<) ↪→ (K,<).

Moreover, ι(a) = a for any a ∈ K.

Proof. Let C be the set of archimedean subfields of K, partially ordered by ⊆. Note that Q ∈ C.
Moreover, one can easily verify that the union of any increasing chain in C is again contained in

C. Hence, by Zorn’s Lemma, C contains a maximal element F . Note that F ⊆ Ov, as otherwise

F would contain an infinitely large element and thus not be archimedean.

We now show that F is real closed. Let L be the relative algebraic closure of F in K. Then

for any a ∈ L there are n ∈ ω and q0, . . . , qn ∈ F with qn 6= 0 such that

0 = q0a
0 + . . .+ qna

n.

If we had v(a) < 0, then

∞ = v(q0a
0 + . . .+ qna

n) = nv(a) < 0.

Hence, L contains no infinitely large element and is thus archimedean. By maximality of F , we

obtain L = F and thus F is real closed by Lemma 7.1.2.

85



7. Mourgues–Ressayre Theorem

Let π : Ov → K, a 7→ a and let π′ = π|F . We show that π′ is an Lor-isomorphism, yielding that

ι = (π′)−1 is an Lor-embedding of K into K. Since π′ is the restriction of an Lr-homomorphism,

it is itself an Lr-homomorphism. To show that π′ is preserves < (and is thus injective), let

a, b ∈ F with a < b. Then a ≤ b and v(b − a) = 0, as F ⊆ Ov. Hence, a 6= b and we obtain

π′(a) < π′(b).

We now prove that π′ is surjective.17 Let c ∈ Ov. We show that c ∈ π′(F ). We can assume

that c /∈ F since otherwise it already holds that c = π′(c) ∈ π′(F ). Then F (c)/F is a proper

field extension. By maximality of F , the field F (c) is non-archimedean and therefore contains a

(non-zero) element of Iv, i.e. there are p, q ∈ F [X] such that p(c), q(c) 6= 0 and

0 < v

(
p(c)

q(c)

)
= v(p(c))− v(q(c)).

Then

v(q(c)) < v(p(c)) .

Let n ∈ ω and let a0, . . . , an ∈ F such that q(X) =
∑n

j=0 ajX
j and an 6= 0. Since c ∈ Ov, we

have v(c) ≥ 0 and therefore

v(q(c)) = v

 n∑
j=0

(ajc
j)

 ≥ min{v(ajc
j) | 0 ≤ j ≤ n} = min{v(aj) + jv(c) | 0 ≤ j ≤ n} ≥ 0 .

This shows that 0 < v(p(c)) and therefore p(c) ∈ Iv. Applying the residue map yields 0 =

p(c) = p(c). Note that the coefficients of p lie in F and therefore no non-zero coefficient in p

vanishes by applying the residue map, i.e. p 6= 0. We obtain that c is algebraic over F = π′(F ).

Since F is real closed, F is real closed by Lemma 7.1.2 and therefore F is relatively algebraically

closed in K. Hence c ∈ F = π′(F ), which completes the proof.

We have thus established that

ι : (K,<) ∼= (F,<).

Finally, for any b ∈ Ov, we have

ι(b) = π′(ι(b)) = b,

showing the further requirement on ι.

Remark 7.1.4. Note that the embedding ι constructed in Proposition 7.1.3 maps K into Ov.
Moreover, we have ι(K

×
) ⊆ O×v = Ov \ Iv.

We now also consider the value group under the natural valuation of a real closed field.

Definition 7.1.5. Let G be an ordered abelian group. We say that G is divisible if for any

g ∈ G and any n ∈ Z \ {0} there exists h ∈ G with g = nh. We then also denote h by g
n .

Proposition 7.1.6. Let K be a real closed field. Then G = vK is divisible.

17I thank Daniel Happ for providing this more direct argument.
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Proof. Let g ∈ G and let n ∈ N. Moreover, fix a ∈ K with v(a) = g. We may assume that

a > 0, as otherwise we can replace it by −a.

Consider the polynomial p(X) = Xn − a ∈ K[X]. Then by the intermediate value property,

p has a root c ∈ K, as

p(0) = −a < 0 < (1 + a)n − a = p(a).

Now for h = v(c) we obtain

g = v(a) = v(cn) = nv(c) = nh,

as required.

We immediately obtain from Proposition 7.1.6 the following.

Corollary 7.1.7. Let (k,<) be an archimedean ordered field and let G be an ordered abelian

group. Suppose that (k((G)) , <) is real closed. Then G is divisible.

The following two exercises establish the embeddability of the value group of a real closed

field, analogous to Proposition 7.1.3.

Exercise 7.1.8. (i) Let G be a divisible ordered abelian group. Show that G is a Q-vector

space with usual addition and scalar multiplication

m

n
g =

mg

n

for any m,n ∈ Z with n 6= 0 and any g ∈ G.

(ii) Let K be a real closed field. Show that (K>0,�,�) is a Q-vector space where the addition

operation on K>0 is given by a�b = ab for any a, b ∈ K>0 (i.e. the standard multiplication)

and the scalar multiplication is given by

m

n
� a = n

√
am

for any m ∈ Z, n ∈ N and a ∈ K>0. Here, for any b ∈ K>0, we denote by n
√
b the unique

positive element c of K with cn = b.

Exercise 7.1.9. Let K be a real closed field and let G = vK. Consider both G and K>0 as

Q-vector spaces as in Exercise 7.1.8.

(i) Let B be a basis of G. For any g ∈ G, fix an element ag ∈ K>0 with v(ag) = g. Show that

{ag | g ∈ B} ⊆ K>0 is Q-linearly independent.

(ii) Deduce that there exists an embedding

ϕ : (G,+, 0) ↪→ (K>0, ·, 1)

with v(ϕ(g)) = g for any g ∈ G and ϕ(g) > ϕ(h) for any g, h ∈ G with g < h.

Combining Proposition 7.1.3 and Exercise 7.1.9, we obtain the embeddability of the minimal

Hahn field over the residue field and the value group of a real closed field as the next exercise

shows.
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Exercise 7.1.10. Let K be a real closed field. Set k = K and G = vK. Show that there exists

an Lor-embedding of (k(G), <) into (K,<).

(Hint: First find an Lor-embedding of (k[G], <) into (K,<).)

Recalling Corollary 7.1.1 and Corollary 7.1.7, if the maximal ordered Hahn field (k((G)) , <)

(where (k,<) is archimedean) is real closed, then k is real closed and G is divisible. The converse

also holds, but its proof needs more sophisticated tools for valued fields. We thus refer to Real

Algebraic Geometry II18 for its proof and simply state the result here for later application.

Theorem 7.1.11. Let (k,<) be an archimedean real closed ordered field and let G be a divisible

ordered abelian group. Then (k((G)) , <) is real closed.

Example 7.1.12. By Theorem 7.1.11, any Hahn field of the form k((Q)) is real closed, whenever

k is a real closed field. In particular, R((Q)) is a real closed Hahn field. In fact, even its subfield

of Puiseux series R〈〈t〉〉 (see Exercise 10.3) is real closed. (The proof for this result works similar

to the proof of Theorem 7.1.11.)

7.1.2. Truncation Closed Subfields

Definition 7.1.13. Let k be a field and let G be an ordered abelian group. A subring R of

the maximal Hahn field k((G)) is called truncation closed if for any s =
∑
g∈G

sgt
g ∈ R and any

h ∈ G, the truncation (at h)

s<h :=
∑
g<h

sgt
g :=

∑
g∈G<h

sgt
g ∈ k((G))

of s to the initial segment G<h of G also belongs to R. A truncation r of s is called a strict

truncation of s if r 6= s.

Remark 7.1.14. Let k be a field and let G be an ordered abelian group. Then s ∈ k((G)) only

has strict truncations if and only if supp(s) is cofinal in G, i.e. for any g ∈ G there is some

h ∈ supp(s) with g ≤ h. Indeed, if supp(s) is not cofinal in G, then for any h ∈ G with

supp(s) < h we have

s<h = s.

Conversely, if s has a truncation s<h = s for some h ∈ supp(s), then necessarily supp(s) < h.

Notation 7.1.15. Let k be a field and let G be an ordered abelian group. Recall that for

s ∈ k((G)) we established the order type notation

s =
∑
α<γ

sαt
gα ,

where γ = ot(s). In this notation, the truncation of s to the initial segment G<gβ of G for some

β < γ is denoted by

s<β =
∑
α<β

sαt
gα .

18See, for instance, http://www.math.uni-konstanz.de/~kuhlmann/Lehre/SS19-ReelleAlgGeo2/Scripts/RAG_

II-Gesamtskript.pdf, Lecture 15, Theorem 4.2.
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7.2. Statement and Proof

Example 7.1.16. Let k be a field and let G be an ordered abelian group.

(i) The coefficient field k is truncation closed in k((G)). Indeed, the truncation of any s ∈ k is

either s itself or 0.

(ii) The group ring k[G] is truncation closed. Indeed, let n ∈ N, let g1, . . . , gn ∈ G with

g1 < . . . < gn and let a1, . . . , an ∈ k. Then any truncation of

s = a1t
g1 + . . .+ ant

gn

is of the form

a1t
g1 + . . .+ amt

gm ∈ k[G]

for some m ≤ n (possibly m = 0).

(iii) Any Rayner field is truncation closed: Let F ⊆ wo(G) such that k((F)) is a Rayner field.

Let A ∈ F . Then for any s =
∑
g∈A

sgt
g ∈ k((F)) and any h ∈ G, the truncation of s at h is

given by

s<h =
∑

g∈A<h
sgt

g ∈ k((G)).

Since A<h ⊆ A, we obtain A<h ∈ F and thus s<h ∈ F .

Notation 7.1.17. We use several other notations to obtain “restrictions” of an element s ∈
k((G)) to an interval in G similar to the one in Definition 7.1.13. For instance, for any s ∈ k((G))

and h, h′ ∈ G we write s>h for ∑
g∈G>h

sgt
g ∈ k((G)) ,

and sh<·<h
′

for ∑
g∈G>h∩G<h′

sgt
g ∈ k((G)) ,

7.2. Statement and Proof

This section mainly follows the original arguments in [8] specialised to our setting.

7.2.1. Integer Parts via Pullbacks

We now come to the second main result of this lecture. First, we state the core result to prove

the Theorem of Mourgues–Ressayre.

Theorem 7.2.1. Let (K,<) be a real closed field and set k = K as well as G = vK. Then

there exists an Lor-embedding

ι : (K,<) ↪→ (k((G)) , <)

such that ι(K) is a truncation closed Hahn subfield of k((G)), i.e. k(G) ⊆ ι(K) and ι(K) is

truncation closed in k((G)).
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7. Mourgues–Ressayre Theorem

The map ι in Theorem 7.2.1 will be constructed step by step in Subsection 7.2.2. For now,

we show how from this truncation closed embedding one obtains an integer part via a pullback.

Theorem 7.2.2 (Mourgues–Ressayre). Let (K,<) be a real closed field. Then (K,<) admits

an integer part.

Proof. Set k = K as well as G = vK. By Theorem 7.2.1, there exists

ι : (K,<) ↪→ (k((G)) , <)

such that F = ι(K) is a truncation closed subfield of k((G)) with k(G) ⊆ F . Recall that by

Exercise 12.3 (a)19, there exists in integer part Z of F . Consider the pullback

Z ′ = ι−1(Z).

It is easy to check that the property of Z being a discretely ordered subring of k((G)) is preserved

by ι−1, i.e. Z ′ is a discretely ordered subring of K.

Let a ∈ K and let b = ι(a) ∈ F . Then there is z ∈ Z ⊆ F such that

z ≤ b < z + 1.

Applying ι−1, we obtain

ι−1(z) ≤ a < ι−1(z) + 1.

Since ι−1(z) ∈ Z ′, we obtain that Z ′ is an integer part of K.

7.2.2. Construction of Truncation Closed Embedding

Throught this section, we fix a real closed field (K,<), its real closed archimedean

residue field k = K and its value group G = vK. We thus consider the ordered fields

(K,<) and (k((G)) , <) and construct an Lor-embedding from the former into the latter. In this

procedure, we iteratively extend a truncation closed embedding of a subfield of K into k((G)).

To ease the notation, once a subfield F of K is embedded into k((G)) by a map ι, we simply

identify F with ι(F ) and treat F as a common subfield of K and k((G)). Moreover, all following

extensions of the embedding are chosen to be the identity on F . We explain this once in detail

after Step 1 of the procedure.

Step 1

By Example 7.1.16 (i), k is a truncation closed subfield of k((G)). Now Proposition 7.1.3 provides

an Lor-embedding

ϕ : (k,<)→ (K,<).

Hence, its inverse is an Lor-embedding of the subfield F = ϕ(k) of K into k((G)). We may

therefore identify k with F and treat k as a common subfield of K and k((G)). All following

embeddings will be the identity on k (or, formally, they will extend ϕ−1).

19In this exercise, the following is shown: Let (k,<) be an archimedean ordered field and let G be an ordered

abelian group. Consider a truncation closed Hahn field K over k and G and its subring Z = {s ∈ K | supp(s) ⊆
G≤0 and s0 ∈ Z}. Then Z is an integer part of K.
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Step 2

We now show that k(G) is truncation closed in k((G)). Hence by Exercise 7.1.10, k(G) will

become a mutual subfield of K and k((G)) that is truncation closed in k((G)). The corresponding

embedding is the identity on the common subfield k of K and k((G)) (see Exercise 12.2).

Lemma 7.2.3. Let a, b ∈ k((G)) and let d ∈ G such that (ab)<δ is a strict truncation of ab.

Then there are n ∈ ω, α0, . . . , αn ∈ supp(a) with α0 < . . . < αn and β0, . . . , βn ∈ supp(b) with

β0 > . . . > βn such that for any i ∈ {0, . . . , n} we have αi + βi ≥ δ and

(ab)<δ = ba<α0 + b<β0
(
a<α1 − a<α0

)
+ . . .+ b<βn

(
a− a<αn

)
. (7.2.1)

Proof. Since (ab)<δ is a strict truncation of ab, we have that δ 6> supp(ab) ⊆ supp(a) + supp(b).

Hence, there are α ∈ supp(a) =: A and β ∈ supp(b) =: B such that α + β ≥ δ. Since A and B

are well-ordered, we can take α0 ∈ A be the least element for which there is some β ∈ B with

α0 + β ≥ δ, and since B is well-ordered, we can take β0 ∈ B to be least with α0 + β0 ≥ δ.
First suppose that for any α ∈ A and any β ∈ B with α > α0 and β < β0 we have α+ β < δ.

Then

(ab)<δ = ba<α0 + b<β0a≥α0 = ba<α0 + b<β0
(
a− a<α0

)
,

and we are done.

Now suppose that there is some least α1 ∈ A with α1 > α0 such that for some β1 ∈ B (which

is least with the following properties) with β1 < β0 we have α1 + β1 ≥ δ. Suppose further that

for any α ∈ A and any β ∈ B with α > α1 and β < β1 we have α+ β < δ. Then Then

(ab)<δ = ba<α0 + b<β0aα0≤·<α1 + b<β1a≥α1

= ba<α0 + b<β0
(
a<α1 − a<α0

)
+ b<β1

(
a− a<α1

)
,

and we are done again.

This process can be continued iteratively. Since it results in a strictly decreasing sequence in

the well-ordered set B, it terminates after finitely many steps, as required.

Lemma 7.2.4. Let L be a subfield of k((G)) and let a, b ∈ L with a 6= 0 such that any truncation

of a and b are also contained in L. Then the following hold:

(i) Any truncation of a+ b and of a− b belongs to L.

(ii) Any truncation of ab belongs to L.

(iii) Any truncation of a−1 belongs to L.

Proof. (i) For any h ∈ G, we have

(a± b)<h = a<h ± b<h ∈ L.

(ii) This immediately follows from Lemma 7.2.3, as (7.2.1) expresses any strict truncation of

ab as a sum and product of truncations of a and truncations of b.
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7. Mourgues–Ressayre Theorem

(iii) Let A = supp(a), let c = a−1 and let C = supp(c). Note that minA = −minC. Hence,

0 = min(A + C). Assume, for a contradiction, that there is some least ζ ∈ C such that

c′ = c<ζ /∈ L. In particular, any strict truncation of c′ belongs to L.

Let δ ∈ A+ C be least with the property C<ζ + minA < δ. Note that δ exists, as A+ C

is well-ordered and minA + ζ ∈ A + C satisfies C<ζ + minA < minA + ζ. In particular,

δ ≤ minA+ ζ. As δ > 0, we have 1 = 1<δ = (ac)<δ.

We show the following:

(ac)<δ = c′a<α1 + c<β1
(
a<α2 − a<α1

)
+ . . .+ c<βn

(
a− a<αn

)
, (7.2.2)

where the αi and βi are as in (7.2.1) with c in place of b.

By application of Lemma 7.2.3, there are n ∈ ω, α0, . . . , αn ∈ A with α0 < . . . < αn and

β0, . . . , βn ∈ C with β0 > . . . > βn such that for any i ∈ {0, . . . , n} we have αi+βi ≥ δ and

(ac)<δ = ca<α0 + c<β0
(
a<α1 − a<α0

)
+ . . .+ c<βn

(
a− a<αn

)
.

Now minA is the least element of A such that there is some β ∈ C with minA + β ≥ δ.

Moreover, ζ is the least element of C with minA + ζ ≥ δ. Hence, as in the proof of

Lemma 7.2.3, we obtain α0 = minA and β0 = ζ.

In order to establish (7.2.2), we have to show that

ca<α0 + c<β0
(
a<α1 − a<α0

)
= c<ζa<α1 .

Indeed, since a<α0 = a<minA = 0, we obtain

ca<α0 + c<β0
(
a<α1 − a<α0

)
= c<β0a<α1 = c<ζa<α1 .

We have thus established that

1 = (ac)<δ = c′a<α1 + c<β1
(
a<α2 − a<α1

)
+ . . .+ c<βn

(
a− a<αn

)
.

Now

c<ζ = c′ =
1−
(
c<β1(a<α2 − a<α1) + . . .+ c<βn(a− a<αn)

)
a<α1

with a<α1 6= 0, as α1 > minA. Since ζ = β0 > . . . > βn, the right-hand side of that

equation only uses strict truncations of c′. By assumption, we obtain c′ ∈ L, giving us the

required contradiction.

Lemma 7.2.5. Let L be a truncation closed subfield of k((G)) and let y ∈ k((G)) such that any

strict truncation of y belongs to L. Then also L(y) is a truncation closed subfield of k((G)).

Proof. This follows directly from Lemma 7.2.4: We have that L(y) is a subfield of k((G)) that

contains any truncation of y and any truncation of a for any a ∈ L. Hence, L(y) also contains

any truncation of y ± a, ya, a
y and y

a (the later if respectively y and a are non-zero). Since any

element in L(y) can be obtained by a finite number of these operations (addition, subtraction,

multiplication, fractions) using elements from L and y, we obtain that any truncation of any

element of L(y) is also contained in L(y), as required.

92



7.2. Statement and Proof

Using the lemmas established above, we can now show that k(G) is truncation closed. In

order to do so, let κ = |G| and fix an enumeration of G, i.e. {gα | α < κ} = G. Now k is a

truncation closed subfield of k((G)). The only strict truncation of tg0 equals 0 and is therefore

contained in k. Hence, by Lemma 7.2.5, also k(tg0) is truncation closed.

Now let δ ≤ κ such that L = k(tgα | α < δ) is truncation closed. As above, the only strict

truncation of tgδ is 0 and thus also L(t
gδ ) = k(tgα | α ≤ δ) is truncation closed.

By transfinite induction, we obtain that k(tgα | α < κ) = k(G) is truncation closed.

Step 3

So far, we have established that k(G) is a common subfield of K and k((G)). Let R be the real

closure of k(G). Since both K and k((G)) are real closed, R is also a common subfield of K and

k((G)) (see Theorem 4.1.38). We now establish that also R is truncation closed in k((G)).

Definition 7.2.6. Let L ⊆ k((G)) be a Hahn field and let y ∈ k((G)) be algebraic over L with

v(y) = 0. We say that y satisfies condition (H) over L if there is some p ∈ k
((
G≥0

))
[X]∩L[X]

such that p(y) = 0 and p′(y) 6= 0.

Lemma 7.2.7. Let L ⊆ k((G)) be a Hahn field and denote by L′ the real closure of L in k((G)).

Moreover, let y ∈ L′ with v(y) = 0. Then there are d ∈ N and y1, . . . , yd ∈ L′ such that

y = y1 + . . . + yd and for any i ∈ {1, . . . , d} condition (H) is satisfied by xi = yi
tv(yi)

over

Li = L(y1, . . . , yi−1).

Proof. First note that for each i ∈ {1, . . . , d} we have that xi is algebraic over L and thus over

Li, and v(xi) = 0. Now let q ∈ L[X] be the minimal polynomial of y over L. Set

q(X) =
∑̀
i=0

qiX
i

and let g = min{v(q0), . . . , v(q`)}. Note that since q` = 1, we have g ≤ 0. Let

p(X) =
q(X)

tg
∈ k
((
G≥0

))
[X] ∩ L[X].

Then p(y) = 0 and p 6= 0. Moreover, y is a simple root of p. If p′(y) 6= 0, then we are done by

setting d = 1 and y1 = y.

Otherwise, let m ∈ N be the multiplicity of y in p. Then the (m − 1)-th formal derivative

r = p(m−1) of p has the property r(y) = 0 and r′(y) 6= 0. Since (L′, v) is henselian, there is some

y1 ∈ L′ ∩k
((
G≥0

))
such that y1 = y and r(y1) = 0. Hence, y1 satisfies condition (H) over L, and

so does x1 = y1.

Let z1 = y − y1. Note that r(y) = p(m−1)(y) 6= 0, as y is a simple root of p, and thus y 6= y1.

Hence, δ = v(z1) ∈ G>0. Let z′1 = z1
tδ

. Then v(z′1) = 0 and z′1 is a root of

s(X) = p(tδX + y1) ∈ k
((
G≥0

))
[X] ∩ L(y1)[X].
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Setting a = tδX and b = y1 and denoting the j-th formal derivative of p by p(j), we obtain

s(X) = p(a+ b)

=
∑̀
j=0

ajp(j)(b)

j!

=
∑̀
j=0

tjδXjp(j)(y1)

j!
.

Let sj = tjδp(j)(y1)
j! for any j ∈ {0, . . . , `}. Set h = min{v(s0), . . . , v(s`)} and

u(X) =
∑̀
j=0

ujX
j =

s(X)

th
∈ k
((
G≥0

))
[X] ∩ L(y1)[X].

As p(m)(y) 6= 0, we have

v
(
p(m)(y1)

)
= 0

and thus

v(sm) = mδ + v
(
p(m)(y1)

)
= mδ.

Hence, h ≤ mδ. Since r(y1) = p(m−1)(y1) = 0, we have sm−1 = um−1 = 0. For j > m, we have

v(sj) = jδ + v
(
p(j)(y1)

)
≥ jδ > mδ.

As a result, we obtain

u(X) = u0 + u1X + . . .+ um−2X
m−2 + umX

m.

Hence, u does not have a non-zero root of multiplicity m. Now u(z′1) = s(z′1) = 0, whence

u(z′1) = 0. Thus, z′1 must have a multiplicity strictly less than m in u.

If the multiplicity of z′1 in u equals 1, then u′(z′1) 6= 0. Hence, z′1 satisfies condition (H) over

L(y1). We can then set d = 2, y2 = z1 (as then y = y1 + z1 = y1 + y2) and x2 = z′1 to complete

the proof.

Otherwise, it remains to express z′1 as

z′1 = y′2 + . . .+ y′d

with y′i = yi
tδ

, where the y′i have the property that
y′i

tv(y
′
i
)

satisfies condition (H) over

L(y1)(y
′
2, . . . , y

′
i−1).

Indeed, then

y = y1 + z1 = y1 + tδz′1 = y1 + y2 + . . .+ yd,

and for any i we have L(yi) = L(y′i) and xi = yi
tv(yi)

=
y′i

tv(y
′
i
)
. In order to obtain those y′i, we may

iteratively repeat the argument above, starting with L(y1) instead of L as well as z′1 instead of

y and the minimal polynomial of z′1 (dividing u) instead of q instead of q. Since the multiplicity

of the root of the residue polynomial decreases in each iteration, this procedure terminates in

less than m steps.
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Lemma 7.2.8. Let L ⊆ k((G)) be a truncation closed Hahn field and denote by L′ the real

closure of L in k((G)). Moreover, let y ∈ L′ \ L satisfy condition (H) over L. Then

I = {v(y − z) | z ∈ L}

is an initial segment of G closed under addition.

Proof. We first show that I is an initial segment of G. Let y =
∑

i<α yit
gi in order type notation.

Since v(y) = 0, we have g0 = 0. Thus, for any g ∈ G≤0,

I 3 v(y + y0t
g) = g,

as −y0tg ∈ L. This shows that G≤0 ⊆ I. Now let h, h′ ∈ G with h′ < h and h ∈ I. Let z ∈ L
with v(y − z) = h. Then also z′ = z + th

′ ∈ L and

I 3 v(y − z′) = v((y − z)− th′) = h′,

as required.

The proof that G is closed under addition is postponed to the end, if time permits.

Lemma 7.2.9. Let L be a truncation closed Hahn subfield of k((G)) and denote by L′ the real

closure of L in k((G)). Moreover, let y ∈ L′ satisfy condition (H) over L, and let p(X) =∑n
i=0 piX

i ∈ k
((
G≥0

))
[X] ∩ L[X] with p(y) = 0 and p′(y) 6= 0. Let y′ be a truncation of y and

let G0 be the smallest convex subgroup of G containing supp(y′). For any s ∈ k((G)), denote by

s<G0 the largest truncation of s whose support is contained in G0.20 Then the following hold:

(i) Let

p<G0(X) =

n∑
i=0

p<G0
i Xi.

If y′ = y<G0, then p<G0 is a non-zero polynomial in L[X] and p<G0(y′) = 0. Hence,

y′ ∈ L′.

(ii) If y′ 6= y<G0, then y′ lies in the field extension of L generated by all strict truncations of

y′.

Proof. (i) First note that p<G0 is contained in L[X] as L is truncation closed. At least one

coefficient of p has valuation 0 and thus p<G0 is non-zero. Let r =
∑n

i=0 riX
i ∈ L[X] with

p = p<G0 + r.

By the choice of the coefficients of p<G0 , we have v(ri) > G0 for any i ∈ {0, . . . , n}. Hence,

v(r(y)) ≥ min{v(r0), . . . , v(rn)} > G0.

20In other words, let A be the largest initial segment of supp(s) contained in G0 and let s<G0 be the truncation

of s whose support equals A. If such A does not exist, then s<G0 = 0.
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Moreover,

p<G0(y) = p<G0(y′ + (y − y′)) = p<G0(y′) +

n∑
j=1

(y − y′)j(p<G0)(j)(y′)

j!︸ ︷︷ ︸
=:T

.

Since v(y − y′) > G0 and v
(
(p<G0)(j)(y′)

)
≥ 0 for any j ∈ {1, . . . , n}, we obtain that

v(T ) > G0. As a result,

0 = p(y) = p<G0(y) + r(y) = p<G0(y′) + T + r(y).

Since G0 is a group containing the support of all coefficients of p<G0 as well as the support

of y′ = y<G0 , we obtain that also supp(p<G0(y′)) ⊆ G0. Since v(T + r(y)) > G0, we obtain

v(p<G0(y′)) = v(−p<G0(y′)) = v(T + r(y)) > G0,

leaving p<G0(y′) = 0 as the only possibility.

(ii) In this case, y′ is a strict truncation of y<G0 . Let F be the field extension of L generated

by all strict truncations of y′. Set β = v(y<G0 − y′) ∈ G0. Since L is truncation closed, we

obtain by Lemma 7.2.5 that F is the union of a chain of truncation closed fields and thus

also truncation closed. If y ∈ F , then also y′ ∈ F .

Suppose that y /∈ F . Since the real closure of F contains L′ and y satisfies condition (H)

over F , we obtain by Lemma 7.2.8 that

I = {v(y − z) | z ∈ F}

is an initial segment of G closed under addition.

For any α ∈ supp(y′), we have

α = v
(
y − (y′)<α

)
∈ I,

as (y′)<α ∈ F . Hence, supp(y′) ⊆ I. Since I is closed under addition, we obtain G0 ⊆ I.

Hence, β ∈ I. Let z ∈ F with v(y − z) = β. Then

v(y′ − z) ≥ min{v(y′ − y), v(y − z)} = β.

But supp(y′) < β, implying that y′ is a truncation of z. Since z ∈ F and F is truncation

closed, we obtain y′ ∈ F , as required.

The following proposition now establishes that R is truncation closed in k((G)), as required.

Proposition 7.2.10. Let L ⊆ k((G)) be a truncation closed Hahn subfield. Then also the real

closure L′ of L in k((G)) is truncation closed.
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Proof. Let z ∈ L′. We may assume that v(z) = 0, as otherwise we may replace z by z
tv(z)

.

By Lemma 7.2.7 there are d ∈ N and y1, . . . , yd ∈ L′ such that z = y1 + . . . + yd and for any

i ∈ {1, . . . , d} condition (H) is satisfied by xi = yi
tv(yi)

over Li = L(y1, . . . , yi−1).

Let i ∈ {1, . . . , d}. Assume that there is a smallest h ∈ supp(xi) such that x′i = x<hi is not

contained in L′. By Lemma 7.2.9, either x′i lies in the real closure L′ of Li or x′i lies in the field

extension of Li generated by all strict truncations of x′i. Since all strict truncations of x′i are

contained in L′, we obtain in either case x′i ∈ L′, a contradiction. Hence, all truncations of xi
and thus also all truncations of yi lie in L′.

We have thus shown that all truncations of y1, . . . , yd lie in L′. Since z = y1 + . . . + yd, also

all truncations of z lie in L′, as required.

Step 4

We have already established that the real closure R of k(G) is a common subfield of K and

k((G)). This serves as the base case for the transfinite induction we perform in this step. This

will also complete the construction of the truncation closed embedding of K into k((G)).

Lemma 7.2.11. Let L be a common real closed subfield of K and k((G)) with k(G) ⊆ L. Suppose

that L is truncation closed in k((G)). Let y ∈ K \ L and denote by L′ the real closure of L(y)

in K. Then there is an embedding f : (L′, <) ↪→ (k((G)) , <) such that f |L = idL, for any a ∈ L′

we have v(a) = v(f(a)) and f(L′) is truncation closed in k((G)).

Proof. We first show that if the embedding f with f |L = idL has been found, then for any a ∈ L′

we have v(a) = v(f(a)). Let a ∈ L′. If a ∈ L, then v(f(a)) = v(idL(a)) = v(a). Otherwise,

assume, for a contradiction, that v(a) < v(f(a)). (The case v(a) > v(f(a)) leads to a similar

contradiction.) We may assume that a > 0, as otherwise we can replace it by −a. Let g ∈ G
with v(a) < g < v(f(a)). We can choose such g, as G is divisible and thus densely ordered. Now

a > tg. Since L is a Hahn field, we have tg ∈ L and thus, by applying f , we obtain f(a) > tg.

However, this shows that v(f(a)) ≤ g, a contradiction.

Let a =
∑

i<α ait
hi ∈ L (in order type notation). We will say that a is a development at order

α of y if for any i < α we have

v(y − a) > hi.

We first show inductively that for any n ∈ ω the element y has a development a(n) =
∑

i<n yit
gi

at order n. Set g0 = v(y) ∈ G and y0 = yt−g0 ∈ k. Then

v
(
y − a(1)

)
= v(y − y0tg0) > g0,

as

0 < v(yt−g0 − y0) = v(y − y0tg0)− g0.

Now suppose that for some n ∈ ω, we already have that a(n) is a development at order n of y.

Let y′ = y−a(n). Set gn = v(y′) ∈ G and yn = yt−gn ∈ k. As above, we obtain for any i < n+ 1

that

v
(
y − a(n+1)

)
= v(y′ − yntgn) > gn ≥ gi,

completing the induction.
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Let S ⊆ L denote the set of all developments of y. Arguing as in the induction above, one

can show that if S contains a development at order α of y, then it also contains a development

at order α + 1 of y. We show that S is linearly ordered by the relation “strict truncation of”.

Let a =
∑

i<α ait
hi ∈ L and b =

∑
i<β bit

ji ∈ L be developments at order α, respectively β, of

y. Suppose that α < β. We verify that a is a truncation of b. First note that for any i < α we

have

v(a− b) = v((a− y)− (b− y)) ≥ min{v(a− y), v(b− y)} ≥ min{hi, ji}.

Assume, for a contradiction, that there is some least i < α such that ait
hi 6= bit

ji . If i+ 1 < α,

then

v(a− b) ≥ min{hi+1, ji+1} > min{hi, ji} = v(a− b),

a contradiction. If i+ 1 = α, then

a =
∑
`<i

b`t
j` + ait

hi

and

b− a = −aithi +
∑
i≤`<β

b`t
j` .

Hence,

ji+1 < v(y − b) = v((y − a) + (a− b)) = min{v(y − a)︸ ︷︷ ︸
>hi

, v(a− b)︸ ︷︷ ︸
=min{hi,ji}

} = min{hi, ji} ≤ ji,

if i+ 1 < β, also a contradiction. Otherwise, α = β and

b− a = −aithi + bit
ji 6= 0.

If ji < hi, then as above v(y − b) = ji, and if hi < ji likewise v(y − a) = hi, both being

contradictions to the choice of a and b. Hence, ji = hi and

b− a = (bi − ai)tji .

Then

ji < v(y − a) = v((y − b) + (bi − ai)tji) = ji,

as v(y − b) > ji, giving us the final contradiction.

Now let f(y) ∈ k((G)) be the element with smallest support such that all strict truncations of

f(y) lie in S. This choice is possible, as the union of all supports of elements in S is well-ordered

and we may simply set f(y)(g) = s(g) for any s ∈ S and any g ∈ G. As observed above, the

set of order types of supports of elements in S is closed under taking successors. Hence, S does

not have a maximum and f(y) does not lie in S. If f(y) were an element of L, then it would

be a development of y. However, since this is not the case, we obtain f(y) /∈ L. In particular,

both y and f(y) are transcendental over L. We now show that (L(y), <) and (L(f(y)), <) are

Lor-isomorphic. It suffices to show that for any z ∈ L we have z < y if and only if z < f(y).

Note that v(y − f(y)) > g0 = v(y). Thus, v(f(y)) = v(y). Moreover, we have f(y) > 0 if and

only if y0 > 0, and the latter holds if and only if y > 0. Let z ∈ L. If z and f(y) have opposite
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signs, then it is easy to show that z < y if and only if z < f(y), as f(y) > 0 if and only if y > 0.

Likewise, if v(z) 6= v(f(y)) = v(y), then we also obtain z < y if and only if z < f(y). Hence,

suppose that v(z) = v(f(y)).

We show that if z < y, then z < f(y). (To show that from y < z it follows that f(y) < z one

can argue similarly.) Let a ∈ k>0 and α ∈ G with

y − z = atα + y′

with v(y′) > α = v(y − z). Let

z′ = z≤α + atα.

Since L is a truncation closed Hahn field, we have z′ ∈ L. Moreover, z′ is the development of y

at order α. Indeed,

v(y − z′) = v
(
y − z≤α − atα

)
= v
(
−z≤α + z + y′

)
= v
(
−z>α + y′

)
> α ≥ h

for any h ∈ supp(z′). We have

z < z≤α +
a

2
tα < z′ + s

for any s ∈ L with v(s) > α. Since z′ ∈ S, we obtain, in particular, that z is strictly smaller

than any element in S of which z′ is a truncation. This implies that z < f(z), as required.

Since (L(y), <) and (L(f(y)), <) are Lor-isomorphic via an isomorphism extending f , we may

extend f also to an Lor-isomorphism of (L′, <) to (H,<) ⊆ (k((G)) , <), where H is the real

closure of L(f(y)) in k((G)). Since L is truncation closed and contains al strict truncations

of f(y), we obtain by Lemma 7.2.5 that also L(f(y)) is truncation closed. By application of

Proposition 7.2.10, we also obtain that H is truncation closed. Hence, f is an Lor-embedding of

L′ into k((G)) whose image H = f(L′) is truncation closed, as required.

Let κ = |K| and fix an enumeration {yα | α < κ} of K. First let α0 ∈ κ be least such

that yα0 /∈ R. By Lemma 7.2.11, there is a truncation closed embedding fα0 over R from the

real closure of R(yα0) in K into k((G)) that preserves the valuation. We may thus identify

Rα0 = R(yα0) with its image in k((G)) under fα0 and regard Rα0 as a common subfield of K

and k((G)) truncation closed in the latter. Moreover, we set Rα = Rα0 for any α < α0.

Now let α < κ such that a chain of common subfields of K and k((G)) truncation closed in

the latter {Rβ | β < α} has already been established such that yβ ∈ Rβ for any β < α. Set

R′α =
⋃
β<α

Rα.

If yα ∈ R′α, then simply set Rα = R′α. Otherwise, let Rα be the real closure of R′α(yα) in K and

proceed as above, noting that R′α is a truncation closed subfield of k((G)).

By transfinite induction, we obtain a common truncation closed subfield Rκ of K and k((G))

such that

K = {yα | α < κ} ⊆ Rκ.

Hence, K can be regarded (via the isomorphisms constructed above) a truncation closed subfield

of k((G)).
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7.3. Models of Open Induction

By Shepherdson’s Theorem and the construction of the truncation closed embedding for the

Mourgues–Ressayre Theorem, if there is some real closed archimedean ordered field (k,<), some

ordered abelian group G and some real closed truncation closed Hahn field K ⊆ k((G)) such that

an Lor-structure (Z,<) is Lor-isomorphic to{
a ∈ K | supp(a) ⊆ G≤0 and a0 ∈ Z

}
=
(
k
((
G<0

))
∩K

)
+ Z,

then (Z,<) is a model of IOpen′. However, not all integer parts of K must be of the form above.

Hence, there may be models of Open Induction which are not obtained by pullbacks of integer

parts of truncation closed real closed Hahn fields.

In this section, we re-visit two number theoretic results provable in PA. We will establish that

they are not provable in the weaker fragment of arithmetic IOpen.

7.3.1. Irrationality of
√
2

Let K = R((Q)). Then K is real closed and thus

Z = R
((
Q<0

))
+ Z

is a model of IOpen′. Consider MZ = Z≥0 |= IOpen. Set

m =
√

2t−1 ∈MZ and n = t−1 ∈MZ .

Then

m2 = 2t−2 = 2n2.

We have thus established the following.

Proposition 7.3.1. IOpen 6|= ¬∃m∃(n 6= 0) m2 = 2n2.

We use the observations above to present a real closed field with two integer parts that are

not elementarily equivalent and thus, in particular, not isomorphic.

Example 7.3.2. Let (M,<) |= PA be non-standard. Let R be the real closure of QZM (i.e.

the field of fractions of ZM = M ∪ (−M)). Then ZM is an integer part of R. Note that R is

non-archimedean. Moreover, its residue field k = R is real closed and its value group G = vR is

divisible.

Fix a truncation closed embedding k(G) ⊆ R ⊆ k((G)). Since k is real closed, we have
√

2 ∈ k.

Now as above, we can let g ∈ G<0 be arbitrary and set

m =
√

2t−g and n = t−g.

Then

m2 = 2n2.

Hence, for the integer part Z ′ = k
((
G<0

))
+ Z of R we have that MZ′ 6|= PA, as PA proves that√

2 is irrational. In particular, M and MZ′ are not isomorphic als LPA-structures and thus ZM
and Z ′ are not isomorphic as Lor-structures.

This shows that R is a real closed field with two non-isomorphic integer parts.
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7.3.2. Euclid’s Theorem

Recall that Euclid’s Theorem over PA states that the set of prime numbers is unbounded (see

Proposition 3.1.18). In the proof of Corollary 3.1.15 it was shown that any prime is irreducible:

the argument used there works also within IOpen instead of PA. We show that IOpen does not

suffice to prove Euclid’s Theorem.

Proposition 7.3.3. IOpen 6|= ∀n∃(m > n) pr(m).

In order to do so, we find a model MZ of IOpen satisfying

∃n∀(m > n) ¬ irr(m).

In particular, we then obtain

∃n∀(m > n) ¬pr(m).

Recall from Example 7.1.12 that the field of Puiseux series K = R〈〈t〉〉 is real closed. Since K is

a Rayner field, it is, in particular, a truncation closed Hahn subfield of R((Q)). We thus obtain

that

Z =
(
R
((
Q<0

))
∩K

)
+ Z

is an integer part of K. Hence by Shepherdson’s Theorem, MZ = Z≥0 |= IOpen. We show that

the irreducible elements of MZ are exactly the standard prime numbers in N ⊆MZ . Then

MZ |= ∀(m > t−1) ¬ irr(m),

as required.

Let

a =
m∑
i=0

ait
− i
n ∈MZ ,

where n ∈ N and a0 ∈ Z. If a = 0, then it is not irreducible. If a0 = 0 and a 6= 0, then

a = t−
1
2n ·

m∑
i=1

ait
− 2i−1

2n ,

where both factors lie in MZ \ {1, 0}. Thus, a is not irreducible.

Suppose that a 6= 0 and a0 6= 0. If m = 0, then a ∈ N. Since the product of two non-constant

elements in MZ (i.e. elements in MZ \ ω) is also non-constant, we have that a is irreducible in

MZ if and only if it is irreducible in N. Now suppose that m ≥ 1. Set

s = t−
1
3n .

Then

a =

m∑
i=0

ai

(
t−

1
3n

)3i
=

m∑
i=0

ais
3i ∈ R[s].

Hence, a is a polynomial in R[s] of degree at least 3 and therefore reducible. We may factorise

it as

a = am

u∏
i=1

(s+ bi)

w∏
j=1

(s2 + cjs+ dj)
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with all bi, cj , dj ∈ R. Since a0 ∈ N, we obtain

am

u∏
i=1

bi

w∏
j=1

dj ∈ N.

Hence,

a = am

u∏
i=1

[(
s

bi
+ 1

)
bi

] w∏
j=1

[(
s2

dj
+
cjs

dj
s+ 1

)
dj

]

= a0

u∏
i=1

(
s

bi
+ 1

) w∏
j=1

(
s2

dj
+
cjs

dj
+ 1

)

= a0

u∏
i=1

(
t−

1
3n

bi
+ 1

)
w∏
j=1

(
t−

2
3n

dj
+
cjt
− 1

3n

dj
+ 1

)
,

where the last expression is a product of elements of Z and thus also lies in Z. By adjusting the

signs, we obtain a non-trivial factorisation of a into elements of MZ . Hence, a is not irreducible,

as required.
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A. Appendix

A.1. Abbreviations within Formulas

Let L be a language.

� If f is a binary function symbol of L and t1 as well as t2 are L-terms, then the infix

notation

(t1 f t2)

stands for the prefix notation of the term f(t1, t2). In many cases, brackets of infix nota-

tions are omitted. This happens, for example, if another function symbol g is applied (e.g.

exp(0+1) rather than exp((0+1)) in the language Lexp), if the brackets are the outermost

brackets of the term (e.g. 1+1 < (1+0) ·1 rather than (1+1) < ((1+0) ·1) in the language

Lor), if the usual interpretation of the binary relation is associative (e.g. 1+0+1+1 rather

than ((1 + 0) + (1 + 1)) in the language Lsemr) or if the usual interpretation of the binary

relation has a natural order of brackets (e.g. 1 + 1 · 0 rather than (1 + (1 · 0))).

� For binary relations symbols R and S and L-terms t1, t2, t3, we write

t1 R t2 S t3

for

t1 R t2 ∧ t2 S t3.

Similar abbreviations are used for longer chains of relations.

� If − is a binary relation symbol of L and 0 is a constant symbol of L, then for any L-term

t, we denote by −t the L-term 0− t.
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