Moments in Quantum Information Theory

Sabine Burgdorf

University of Konstanz

EWM GM 2018 - Graz
Real Algebraic Geometry in Action

What is this talk about?

Moment problem in Action: Quantum Information

- Entanglement: key feature of Quantum Mechanics
- Nonlocal games
- Quantum correlations
- Relation to the moment problem

Entanglement

- Entanglement is one of the most striking features of QM
- 2 particles - split up and send to Alice \& Bob
- 2 possible features - randomly distributed
- 2 ways to learn the feature (measurements)
- Alice checks by method 1
- Bob checks by method 2: anything can happen
- Bob checks by same method: ALWAYS the opposite answer

Basics of quantum theory

- A quantum system corresponds to a Hilbert space \mathcal{H}
- Its states are unit vectors on \mathcal{H}
- A state on a composite system is a unit vector ψ on a tensor Hilbert space, e.g. $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
- ψ is entangled if it is not a product state

$$
\psi_{A} \otimes \psi_{B} \text { with } \psi_{A} \in \mathcal{H}_{A}, \psi_{B} \in \mathcal{H}_{B}
$$

- A state $\psi \in \mathcal{H}$ can be measured
- outcomes $a \in A$
- POVM: a family $\left\{E_{a}\right\}_{a \in A} \subseteq B(\mathcal{H})$ with $E_{a} \succeq 0$ and $\sum_{a \in A} E_{a}=1$
- probablity of getting outcome a is $p(a)=\psi^{\top} E_{a} \psi$.
- Entanglement can be studied via nonlocal games

One nonlocal game

- Two players: Alice and Bob
- During the game they are not allowed to communicate
- Alice gets 1 picture

- Bob gets 1 picture

- They both answer 0 or 1
- Winning: - If both get Graz, their answers must agree - Otherwise their answers must differ
- Classical strategy: winning probability 0.75
- Quantum strategy: winning probability $\cos (\pi / 8)^{2} \approx 0.85$

Nonlocal games

- Characterized by
- 2 sets of questions S, T, asked with probability distribution π
- 2 sets of answers A, B
- A winning predicate $V: A \times B \times S \times T \rightarrow\{0,1\}$
- Winning probability (value of the game)

$$
\omega=\sup _{p} \sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b ; s, t) p(a, b \mid s, t)
$$

- optimize over a set of correlations $p=(p(a, b \mid s, t))_{a, b, s, t}$
- ω depends on the chosen set of allowed correlations

Correlations

Classical strategy \mathcal{C}

Independent probability distributions $\left\{p_{s}^{a}\right\}_{a}$ and $\left\{p_{t}^{b}\right\}_{b}$:

$$
p(a, b \mid s, t)=p_{s}^{a} \cdot p_{t}^{b}
$$

shared randomness: allow convex combinations
Quantum strategy \mathcal{Q}
POVMs $\left\{E_{s}^{a}\right\}_{a}$ and $\left\{F_{t}^{b}\right\}_{b}$ on Hilbert spaces $\mathcal{H}_{A}, \mathcal{H}_{B}, \psi \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$:

$$
p(a, b \mid s, t)=\psi^{\top}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

Theorem

[Bell '64] There exist games such that $\omega_{\mathcal{C}}<\omega_{\mathcal{Q}}$.

More correlations

Quantum strategy \mathcal{Q}
POVMs $\left\{E_{s}^{a}\right\}_{a}$ and $\left\{F_{t}^{b}\right\}_{b}$ on Hilbert spaces $\mathcal{H}_{A}, \mathcal{H}_{B}, \psi \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$:

$$
p(a, b \mid s, t)=\psi^{T}\left(E_{s}^{a} \otimes F_{t}^{b}\right) \psi
$$

Quantum strategy \mathcal{Q}_{c}
POVMs $\left\{E_{s}^{a}\right\}_{a}$ and $\left\{F_{t}^{b}\right\}_{b}$ on a joint Hilbert space, but $\left[E_{x}^{a}, F_{y}^{b}\right]=0$:

$$
p(a, b \mid s, t)=\psi^{T}\left(E_{s}^{a} \cdot F_{t}^{b}\right) \psi
$$

Fact

$$
\mathcal{C} \subseteq \mathcal{Q} \subseteq \overline{\mathcal{Q}} \subseteq \mathcal{Q}_{c}
$$

Tsirelson's problem

Fact

$$
\mathcal{C} \subseteq \mathcal{Q} \subseteq \overline{\mathcal{Q}} \subseteq \mathcal{Q}_{c}
$$

- Bell: $\mathcal{C} \neq \mathcal{Q}$
- weak Tsirelson [Slofstra '16]: $\mathcal{Q} \neq \mathcal{Q}_{c}$
- strong Tsirelson (open): Is $\overline{\mathcal{Q}}=\mathcal{Q}_{c}$?
- strong Tsirelson is equivalent to Connes embedding problem
- Goal: Understand correlations via their values of a game
- Usually hard to compute...
- Brute force: lower bounds for $\omega_{\mathcal{C}}$ or $\omega_{\mathcal{Q}}$
- What about upper bounds?

NC moment problems ${ }^{1}$

Classical moment problem

Let $L: \mathbb{R}[\underline{x}] \rightarrow \mathbb{R}$ be linear, $L(1)=1$.
Does there exist a probability measure μ (with supp $\mu \subseteq K$) such that for all $f \in \mathbb{R}[\underline{x}]$:

$$
L(f)=\int f(\underline{a}) \mathrm{d} \mu(\underline{a}) ?
$$

(psd) NC moment problem

Let $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ be linear, $L(1)=1$.
Does there exist a Hilbert space \mathcal{H}, a unit vector $\psi \in \mathcal{H}$ and a *-representation π on $B(\mathcal{H})$ such that for all $f \in \mathbb{R}\langle\underline{X}\rangle$:

$$
L(f)=\langle\psi \pi(f), \psi\rangle ?
$$

${ }^{1}$ B., Klep, Povh: Optimization of polynomials in non-commuting variables

NC moment problems

Classical moment problem

Let $L: \mathbb{R}[\underline{x}] \rightarrow \mathbb{R}$ be linear, $L(1)=1$.
Does there exist a probability measure μ (with $\operatorname{supp} \mu \subseteq K$) such that for all $f \in \mathbb{R}[\underline{x}]$:

$$
L(f)=\int f(\underline{a}) \mathrm{d} \mu(\underline{a}) ?
$$

tracial moment problem

Let $L: \mathbb{R}\langle\underline{X}\rangle \rightarrow \mathbb{R}$ be linear, $L(1)=1, L([p, q])=0$ for all $p, q \in \mathbb{R}\langle\underline{X}\rangle$. Does there exist a finite von Neumann algebra \mathcal{N} with trace τ and a *-representation π on N such that for all $f \in \mathbb{R}\langle\underline{X}\rangle$:

$$
L(f)=\tau(\pi(f)) ?
$$

- Von Neumann algebra = ∞-dim. analog of a matrix algebra
- The measure μ is hidden in the von Neumann algebra via direct integral decomposition

Moment relaxation of $\omega_{\mathcal{C}}$

- Reminder
$\omega=\sup _{p} \sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b ; s, t) p(a, b \mid s, t)$
- Let

$$
f(\underline{E}, \underline{F})=\sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b ; s, t) E_{s}^{a} F_{t}^{b}
$$

Then

$$
\begin{aligned}
\omega_{\mathcal{C}} & =\sup f(\underline{p}, \underline{q}): p_{s}^{a}, q_{t}^{b} \geq 0, \sum_{a} p_{s}^{a}=\sum_{b} p_{t}^{b}=1 \\
& =\inf \lambda: f-\lambda \geq 0 \text { on } K
\end{aligned}
$$

- Moment relaxation [Lasserre]

$$
\omega_{s}=\sup L(f): L \in \mathbb{R}[\underline{x}]_{2 s}^{\vee}, M_{K}(L) \succeq 0, L(1)=1
$$

- We have ${ }^{2} \omega_{s} \geq \omega_{s+1} \geq \omega_{\mathcal{C}}$ and $\lim _{s \rightarrow \infty} \omega_{s} \rightarrow \omega_{\mathcal{C}}$
- If best L for ω_{s} has a moment representation then $\omega_{\mathcal{C}}=\omega_{s}$
${ }^{2}$ essentially [Putinar '93]

Moment relaxation of $\omega_{\mathcal{Q}_{c}}$

- Reminder

$$
\omega=\sup _{p} \sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b ; s, t) p(a, b \mid s, t)
$$

- Let

$$
f(\underline{E}, \underline{F})=\sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b ; s, t) E_{s}^{a} F_{t}^{b}
$$

Then

$$
\begin{aligned}
\omega_{\mathcal{Q}_{c}} & =\sup \psi^{\top} f(\underline{E}, \underline{F}): E_{s}, F_{t} \mathrm{POVM},\left[E_{s}^{a}, F_{t}^{b}\right]=0 \\
& =\inf \lambda: f-\lambda \succeq 0 \text { on } K
\end{aligned}
$$

- Moment relaxation [Pironio, Navascues, Acin]

$$
\omega_{\mathcal{Q}_{c}, s}=\sup L(f): L \in \mathbb{R}\langle\underline{X}\rangle_{2 s}^{\vee}, M_{K}(L) \succeq 0, L(1)=1
$$

- We have ${ }^{3} \omega_{\mathcal{Q}_{c}, s} \geq \omega_{\mathcal{Q}_{c}, s+1} \geq \omega_{\mathcal{Q}_{c}}$ and $\lim _{s \rightarrow \infty} \omega_{\mathcal{Q}_{c}, s} \rightarrow \omega_{\mathcal{Q}_{c}}$
- If best L for $\omega_{\mathcal{Q}_{c}, s}$ has an NC moment representation then $\omega_{\mathcal{Q}_{c}}=\omega_{\mathcal{Q}_{c}, s}$
${ }^{3}$ essentially [Helton '2000]

Moment relaxation of $\omega_{\mathcal{Q}}$

- For most games we can write $p \in \mathcal{Q}$ as ${ }^{4} p(a, b \mid s, t)=\operatorname{Tr}\left(\tilde{E}_{s}^{a} \tilde{F}_{t}^{b}\right)$ with $\tilde{E}_{s}^{a}, \tilde{F}_{t}^{b} \succeq 0, \sum_{a} \tilde{E}_{s}^{a}=\sum_{b} \tilde{F}_{t}^{b}=D$ with $\operatorname{Tr}\left(D^{2}\right)=1$
- Thus

$$
\begin{aligned}
\omega_{\mathcal{Q}} & =\sup \operatorname{Tr}(f(\underline{E}, \underline{F})):(\underline{E}, \underline{F}) \in K \\
& =\inf \lambda: \operatorname{Tr}(f-\lambda) \geq 0 \text { on } K
\end{aligned}
$$

- Moment relaxation

$$
\omega_{\mathcal{Q}, s}=\sup L(f): L \in \mathbb{R}\langle\underline{X}\rangle_{2 s}^{\vee}, \text { tracial }, M_{K}(L) \succeq 0, L(1)=1 .
$$

- We have $\omega_{\mathcal{Q}, s} \geq \omega_{\mathcal{Q}, s+1} \geq \omega_{\mathcal{Q}}$ and $\lim _{s \rightarrow \infty} \omega_{\mathcal{Q}, s} \rightarrow \omega_{\mathcal{Q}}$
- If best L for $\omega_{\mathcal{Q}, s}$ has a tracial moment representation then $\omega_{\mathcal{Q}}=\omega_{\mathcal{Q}, s}$
${ }^{4}$ Berta, Fawzi; Sikora,Varvitsiotis; Mančinska,Roberson;...

It's just the beginning...

Numerical experiments ${ }^{5}$

- improved bounds for quantum graph parameters on specific graphs
- disproved a conjecture on quantum graph parameters by additional use of Gröber bases
- lower bounds on the needed amount of entanglement for specific games

Other relaxations

- combinatorial relaxation of the tracial polynomial optimization problem not using moments
- better relaxations by adding additional equalities/inequalities
- Feasibility criteria to show existence/non-existence of several types of solutions (e.g. projections)

[^0]
Final Remarks

Comments/Questions

- Non-commutative moment problems in combination with polynomial optimization give upper bounds for (quantum) values of nonlocal games
- If the optimizer corresponds to a flat matrix, we can even extract (numerically) the best strategy
- But flat solution is always finite dimensional: How can we verify exactness without flatness?
- Is there a way to compare $\omega_{\mathcal{Q}_{c}, s}$ with $\omega_{\mathcal{Q}, s}$?
- Is there a nonlocal game which does not have a finite dimensional optimizer?

Big open question
Is there a nonlocal game with $\omega_{\mathcal{Q}}<\omega_{\mathcal{Q}_{c}}$?

Thank you for your attention.

[^0]: ${ }^{5}$ with de Laat, Gribling, Laurent, Piovesan, Mančinska, Roberson

