### Moments in Quantum Information Theory

#### Sabine Burgdorf

University of Konstanz

EWM GM 2018 - Graz Real Algebraic Geometry in Action

## What is this talk about?

#### Moment problem in Action: Quantum Information

- Entanglement: key feature of Quantum Mechanics
- Nonlocal games
- Quantum correlations
- Relation to the moment problem

# Entanglement

Entanglement is one of the most striking features of QM

- 2 particles split up and send to Alice & Bob
- 2 possible features randomly distributed
- 2 ways to learn the feature (measurements)
- Alice checks by method 1
  - Bob checks by method 2: anything can happen
  - Bob checks by same method: ALWAYS the opposite answer





# Basics of quantum theory

- ► A quantum system corresponds to a Hilbert space *H*
- Its states are unit vectors on H
- A state on a composite system is a unit vector ψ on a tensor Hilbert space, e.g. H<sub>A</sub> ⊗ H<sub>B</sub>
- $\psi$  is entangled if it is not a product state

 $\psi_{A} \otimes \psi_{B}$  with  $\psi_{A} \in \mathcal{H}_{A}, \psi_{B} \in \mathcal{H}_{B}$ 

- A state  $\psi \in \mathcal{H}$  can be measured
  - ▶ outcomes a ∈ A
  - ▶ POVM: a family  $\{E_a\}_{a \in A} \subseteq B(\mathcal{H})$  with  $E_a \succeq 0$  and  $\sum_{a \in A} E_a = 1$
  - probablity of getting outcome *a* is  $p(a) = \psi^T E_a \psi$ .
- Entanglement can be studied via nonlocal games

# One nonlocal game

- Two players: Alice and Bob
- During the game they are not allowed to communicate
- Alice gets 1 picture



Bob gets 1 picture



- They both answer 0 or 1
- Winning: If both get Graz, their answers must agree
  - Otherwise their answers must differ
- Classical strategy: winning probability 0.75
- Quantum strategy: winning probability  $\cos(\pi/8)^2 \approx 0.85$

## Nonlocal games

- Characterized by
  - > 2 sets of questions S, T, asked with probability distribution  $\pi$
  - 2 sets of answers A, B
  - A winning predicate  $V : A \times B \times S \times T \rightarrow \{0, 1\}$

Winning probability (value of the game)

$$\omega = \sup_{\rho} \sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b; s, t) p(a, b|s, t)$$

- optimize over a set of correlations  $p = (p(a, b|s, t))_{a,b,s,t}$
- $\blacktriangleright \ \omega$  depends on the chosen set of allowed correlations

# Correlations

### Classical strategy ${\mathcal C}$

Independent probability distributions  $\{p_s^a\}_a$  and  $\{p_t^b\}_b$ :

$$p(a,b \mid s,t) = p_s^a \cdot p_t^b$$

shared randomness: allow convex combinations

### Quantum strategy Q

POVMs  $\{E_s^a\}_a$  and  $\{F_t^b\}_b$  on Hilbert spaces  $\mathcal{H}_A, \mathcal{H}_B, \psi \in \mathcal{H}_A \otimes \mathcal{H}_B$ :

$$p(a,b \mid s,t) = \psi^{T}(E_{s}^{a} \otimes F_{t}^{b})\psi$$

#### Theorem

[Bell '64] There exist games such that  $\omega_{\mathcal{C}} < \omega_{\mathcal{Q}}$ .

## More correlations

### Quantum strategy ${\cal Q}$

POVMs  $\{E_s^a\}_a$  and  $\{F_t^b\}_b$  on Hilbert spaces  $\mathcal{H}_A, \mathcal{H}_B, \psi \in \mathcal{H}_A \otimes \mathcal{H}_B$ :

$$p(a,b \mid s,t) = \psi^{T}(E_{s}^{a} \otimes F_{t}^{b})\psi$$

Quantum strategy  $Q_c$ 

POVMs  $\{E_s^a\}_a$  and  $\{F_t^b\}_b$  on a joint Hilbert space, but  $[E_x^a, F_y^b] = 0$ :

$$p(a, b \mid s, t) = \psi^{T} (E_{s}^{a} \cdot F_{t}^{b}) \psi$$

Fact

$$\mathcal{C}\subseteq \mathcal{Q}\subseteq \overline{\mathcal{Q}}\subseteq \mathcal{Q}_{\textbf{C}}$$

# Tsirelson's problem

#### Fact

### $\mathcal{C}\subseteq\mathcal{Q}\subseteq\overline{\mathcal{Q}}\subseteq\mathcal{Q}_{\textbf{C}}$

- Bell:  $C \neq Q$
- ▶ weak Tsirelson [Slofstra '16]:  $Q \neq Q_c$
- strong Tsirelson (open): Is  $\overline{Q} = Q_c$ ?
- strong Tsirelson is equivalent to Connes embedding problem
- Goal: Understand correlations via their values of a game
- Usually hard to compute...
- Brute force: lower bounds for ω<sub>C</sub> or ω<sub>Q</sub>
- What about upper bounds?

# NC moment problems<sup>1</sup>

### Classical moment problem

Let  $L : \mathbb{R}[\underline{x}] \to \mathbb{R}$  be linear, L(1) = 1. Does there exist a probability measure  $\mu$  (with supp  $\mu \subseteq K$ ) such that for all  $f \in \mathbb{R}[\underline{x}]$ :

$$L(f) = \int f(\underline{a}) \,\mathrm{d}\mu(\underline{a})?$$

#### (psd) NC moment problem

Let  $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$  be linear, L(1) = 1. Does there exist a Hilbert space  $\mathcal{H}$ , a unit vector  $\psi \in \mathcal{H}$  and a \*-representation  $\pi$  on  $B(\mathcal{H})$  such that for all  $f \in \mathbb{R}\langle \underline{X} \rangle$ :

$$L(f) = \langle \psi \pi(f), \psi \rangle?$$

<sup>&</sup>lt;sup>1</sup>B., Klep, Povh: Optimization of polynomials in non-commuting variables

# NC moment problems

### Classical moment problem

Let  $L : \mathbb{R}[\underline{x}] \to \mathbb{R}$  be linear, L(1) = 1. Does there exist a probability measure  $\mu$  (with supp  $\mu \subseteq K$ ) such that for all  $f \in \mathbb{R}[\underline{x}]$ :

$$L(f) = \int f(\underline{a}) \, \mathrm{d}\mu(\underline{a})?$$

#### tracial moment problem

Let  $L : \mathbb{R}\langle \underline{X} \rangle \to \mathbb{R}$  be linear, L(1) = 1, L([p, q]) = 0 for all  $p, q \in \mathbb{R}\langle \underline{X} \rangle$ . Does there exist a finite von Neumann algebra  $\mathcal{N}$  with trace  $\tau$  and a \*-representation  $\pi$  on N such that for all  $f \in \mathbb{R}\langle \underline{X} \rangle$ :

$$L(f) = \tau(\pi(f))?$$

- ▶ Von Neumann algebra =  $\infty$ -dim. analog of a matrix algebra
- The measure µ is hidden in the von Neumann algebra via direct integral decomposition

## Moment relaxation of $\omega_{\mathcal{C}}$

Reminder
$$\omega = \sup_{p} \sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b; s, t) p(a, b | s, t)$$
Let
$$f(\underline{E}, \underline{F}) = \sum_{s \in S, t \in T} \pi(s, t) \sum_{a \in A, b \in B} V(a, b; s, t) E_s^a F_t^b$$
Then
$$\omega_{\mathcal{C}} = \sup_{s \in S, t \in T} f(\underline{p}, \underline{q}) \colon p_s^a, q_t^b \ge 0, \sum_a p_s^a = \sum_b p_t^b = 1$$

$$= \inf_{s \in S, t \in T} \lambda \colon f(-\lambda) \ge 0 \text{ on } K$$

Moment relaxation [Lasserre]

$$\omega_{s} = \sup L(f) \colon L \in \mathbb{R}[\underline{x}]_{2s}^{\vee}, M_{\mathcal{K}}(L) \succeq 0, L(1) = 1.$$

• We have<sup>2</sup> 
$$\omega_s \geq \omega_{s+1} \geq \omega_c$$
 and  $\lim_{s \to \infty} \omega_s \to \omega_c$ 

▶ If best *L* for  $\omega_s$  has a moment representation then  $\omega_c = \omega_s$ 

<sup>2</sup>essentially [Putinar '93]

# Moment relaxation of $\omega_{Q_c}$



$$\omega_{\mathcal{Q}_{c},s} = \sup L(f) \colon L \in \mathbb{R} \langle \underline{X} \rangle_{2s}^{\vee}, M_{\mathcal{K}}(L) \succeq 0, L(1) = 1.$$

- ▶ We have<sup>3</sup>  $\omega_{Q_c,s} \ge \omega_{Q_c,s+1} \ge \omega_{Q_c}$  and  $\lim_{s\to\infty} \omega_{Q_c,s} \to \omega_{Q_c}$
- If best L for ω<sub>Qc,s</sub> has an NC moment representation then ω<sub>Qc</sub> = ω<sub>Qc,s</sub>

<sup>3</sup>essentially [Helton '2000]

## Moment relaxation of $\omega_Q$

- ► For most games we can write  $p \in Q$  as<sup>4</sup>  $p(a, b | s, t) = \text{Tr}(\tilde{E}_{s}^{a}\tilde{F}_{t}^{b})$ with  $\tilde{E}_{s}^{a}, \tilde{F}_{t}^{b} \succeq 0, \sum_{a} \tilde{E}_{s}^{a} = \sum_{b} \tilde{F}_{t}^{b} = D$  with  $\text{Tr}(D^{2}) = 1$ ► Thus K  $\omega_{Q} = \sup \text{Tr}(f(\underline{E}, \underline{F})): (\underline{E}, \underline{F}) \in K$  $= \inf \lambda: \operatorname{Tr}(f - \lambda) \ge 0$  on K
- Moment relaxation

 $\omega_{\mathcal{Q},s} = \sup L(f) \colon L \in \mathbb{R} \langle \underline{X} \rangle_{2s}^{\vee}, \text{ tracial }, M_{\mathcal{K}}(L) \succeq 0, L(1) = 1.$ 

- $\blacktriangleright \text{ We have } \omega_{\mathcal{Q},s} \geq \omega_{\mathcal{Q},s+1} \geq \omega_{\mathcal{Q}} \text{ and } \lim_{s \to \infty} \omega_{\mathcal{Q},s} \to \omega_{\mathcal{Q}}$
- If best L for ω<sub>Q,s</sub> has a tracial moment representation then ω<sub>Q</sub> = ω<sub>Q,s</sub>

<sup>4</sup>Berta, Fawzi; Sikora, Varvitsiotis; Mančinska, Roberson;...

# It's just the beginning...

#### Numerical experiments<sup>5</sup>

- improved bounds for quantum graph parameters on specific graphs
- disproved a conjecture on quantum graph parameters by additional use of Gröber bases
- lower bounds on the needed amount of entanglement for specific games

### Other relaxations

...

- combinatorial relaxation of the tracial polynomial optimization problem not using moments
- better relaxations by adding additional equalities/inequalities
- Feasibility criteria to show existence/non-existence of several types of solutions (e.g. projections)

<sup>&</sup>lt;sup>5</sup>with de Laat, Gribling, Laurent, Piovesan, Mančinska, Roberson

# **Final Remarks**

#### **Comments/Questions**

- Non-commutative moment problems in combination with polynomial optimization give upper bounds for (quantum) values of nonlocal games
- If the optimizer corresponds to a flat matrix, we can even extract (numerically) the best strategy
- But flat solution is always finite dimensional: How can we verify exactness without flatness?
- Is there a way to compare ω<sub>Qc,s</sub> with ω<sub>Q,s</sub>?
- Is there a nonlocal game which does not have a finite dimensional optimizer?

### Big open question

Is there a nonlocal game with  $\omega_Q < \omega_{Q_c}$ ?

### Thank you for your attention.