# Projective limit techniques for the infinite dimensional moment problem

### Maria Infusino

University of Konstanz

(Joint work with S. Kuhlmann, T. Kuna, P. Michalski)

### EWM-GM 2018

Karl-Franzens-Universität Graz – September 7th, 2018

# Outline

### Motivation and Framework

- The classical full K-Moment Problem (KMP)
- A general formulation of the full KMP

### Our strategy for solving the general KMP

- Preliminaries on projective limits
- The character space as a projective limit

### 3 Outcome of our "projective limit" approach

- Old and new results for the KMP
- Final remarks and open questions

# The classical moment problem in one dimension

Let  $\mu$  be a nonnegative Borel measure defined on  $\mathbb{R}$ . The *n*-th moment of  $\mu$  is:

$$m_n^{\mu} := \int_{\mathbb{R}} x^n \mu(dx)$$

If all moments of  $\mu$  exist and are finite, then  $(m_n^{\mu})_{n=0}^{\infty}$  is the **moment sequence** of  $\mu$ .

 $\mu$  non-neg. Borel measure with all moments finite

Let  $N \in \mathbb{N} \cup \{\infty\}$  and  $K \subseteq \mathbb{R}$  closed.

### The one-dimensional K-Moment Problem (KMP)

Given a sequence  $m = (m_n)_{n=0}^N$  of real numbers, does there exist a nonnegative Radon measure  $\mu$  supported on a closed  $K \subseteq \mathbb{R}$  s.t. for any  $n = 0, 1, \ldots, N$  we have

$$m_n = \underbrace{\int_{\mathcal{K}} x^n \mu(dx)}_{n-\text{th moment of } \mu} ?$$

 $N = \infty \rightsquigarrow \mathsf{Full KMP}$   $N \in \mathbb{N} \rightsquigarrow \mathsf{Truncated KMP}$ 

#### Motivation and Framework

Our strategy for solving the general KMP Outcome of our "projective limit" approach

The classical full *K*-Moment Problem (KMP) A general formulation of the full KMP

# **Riesz's Functional**

### **Riesz's Functional**

Let  $m = (m_n)_{n=0}^{\infty}$  be such that  $m_n \in \mathbb{R}$ .

$$\begin{array}{rccc} {}_m \colon & \mathbb{R}[x] & \to & \mathbb{R} \\ & p(x) \coloneqq \sum_{n=0}^N a_n \, x^n & \mapsto & L_m(p) \coloneqq \sum_{n=0}^N a_n \, m_n. \end{array}$$

#### Note:

If *m* is represented by a nonnegative measure  $\mu$  on *K*, then

$$L_m(p) = \sum_{n=0}^{N} a_n m_n = \sum_{n=0}^{N} a_n \int_{K} x^n \mu(dx) = \int_{K} p(x) \mu(dx).$$

### The one dimensional *K*-Moment Problem (KMP)

Given a sequence  $m = (m_n)_{n=0}^{\infty}$  of real numbers, does there exist a nonnegative Radon measure  $\mu$  supported on a closed  $K \subseteq \mathbb{R}$  s.t. for any  $p \in \mathbb{R}[x]$  we have

$$L_m(p) = \int_K p(x)\mu(dx) ?$$

# The classical full finite dimensional K-moment problem

Let  $\mathbf{x} := (x_1, \dots, x_d)$  with  $d \in \mathbb{N}$ .

### The *d*-dimensional *K*-Moment Problem (KMP)

Given a linear functional  $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ , does there exist a nonnegative Radon measure  $\mu$  supported on a closed  $K \subseteq \mathbb{R}^d$  s.t. for any  $p \in \mathbb{R}[\mathbf{x}]$  we have

$$L(p) = \int_{K} p(\mathbf{x}) \mu(d\mathbf{x}) \; ?$$

- What if we have infinitely many real variables?
- What if we take a generic  $\mathbb{R}$ -vector space V (even inf. dim.) instead of  $\mathbb{R}^d$ ?
- What if we take a generic unital commutative ℝ-algebra A instead of ℝ[x] ?

# Infinite dimensional K-Moment Problem

The classical full K – Moment Problem (KMP) A general formulation of the full KMP

# A general formulation of the full KMP

### **Terminology and Notations:**

- A = unital commutative  $\mathbb{R}$ -algebra
- X(A) = character space of A = Hom $(A; \mathbb{R})$
- For  $a \in A$  the **Gelfand transform**  $\hat{a} : X(A) \to \mathbb{R}$  is  $\hat{a}(\alpha) := \alpha(a), \forall \alpha \in X(A)$ .
- X(A) is given the weakest topology  $\tau_A$  s.t. all  $\hat{a}, a \in A$  are continuous.

### The K-moment problem for unital commutative $\mathbb{R}$ -algebras

Given a linear functional  $L : A \to \mathbb{R}$ , does there exist a nonnegative Radon measure  $\mu$  supported on a closed subset  $K \subseteq X(A)$  s.t. for any  $a \in A$  we have

$$L(a) = \int_{X(A)} \hat{a}(lpha) \mu(dlpha) \; ?$$

If yes,  $\mu$  is called K-representing (Radon) measure for L.

Recall that  $\mu$  is supported on  $K \subseteq X(A)$  if  $\mu(X(A) \setminus K) = 0$ .

NB: Finite dimensional MP is a particular case

If  $A = \mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \dots, x_d]$  then  $X(A) = X(\mathbb{R}[\mathbf{x}])$  is identified (as tvs) with  $\mathbb{R}^d$ .

# A general formulation of the full KMP

### Terminology and Notations:

- *A* = unital commutative ℝ-algebra
- X(A) = character space of A = Hom $(A; \mathbb{R})$
- For  $a \in A$  the **Gelfand transform**  $\hat{a} : X(A) \to \mathbb{R}$  is  $\hat{a}(\alpha) := \alpha(a), \forall \alpha \in X(A)$ .
- X(A) is given the weakest topology  $\tau_A$  s.t. all  $\hat{a}, a \in A$  are continuous.

### The K-moment problem for $\mathbb{R}$ -algebras

Given a linear functional  $L : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ , does there exist a nonnegative Radon measure  $\mu$  supported on a closed  $K \subseteq X(\mathbb{R}[\mathbf{x}]) = \mathbb{R}^d$  s.t. for any  $a \in \mathbb{R}[\mathbf{x}]$  we have

$$L(a) = \int_{X(\mathbb{R}[x])} \hat{a}(\alpha) \mu(d\alpha) = \int_{\mathbb{R}^d} a(\alpha) \mu(d\alpha) ?$$

Recall that  $\mu$  is supported on  $K \subseteq \mathbb{R}^d$  if  $\mu(\mathbb{R}^d \setminus K) = 0$ .

### NB: Finite dimensional KMP is a particular case

If  $A = \mathbb{R}[\mathbf{x}] = \mathbb{R}[x_1, \dots, x_d]$  then  $X(A) = X(\mathbb{R}[\mathbf{x}])$  is identified (as tvs) with  $\mathbb{R}^d$ .

Preliminaries on projective limits The character space as a projective limit

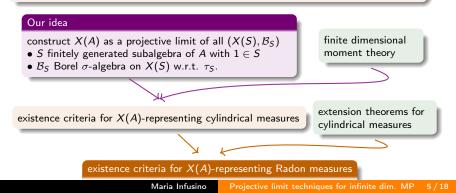
# Our strategy for solving the general KMP

The *K*-moment problem for unital commutative  $\mathbb{R}$ -algebras

Given a linear functional  $L : A \to \mathbb{R}$ , does there exist a nonnegative Radon measure  $\mu$  supported on a closed subset  $K \subseteq X(A)$  s.t. for any  $a \in A$  we have

$$L(a) = \int_{X(A)} \hat{a}(lpha) \mu(dlpha) \; ?$$

If yes,  $\mu$  is called K-representing (Radon) measure for L.



Preliminaries on projective limits The character space as a projective limit

# Projective limit of measurable spaces

 $(I, \leq)$  directed partially ordered set

 $\{(X_i, \Sigma_i), \pi_{i,j}, I\}$  projective system of measurable spaces, i.e.

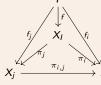
- $(X_i, \Sigma_i)$  measurable spaces
- $\pi_{i,j}: X_j \to X_i$  defined and measurable  $\forall i \leq j$  in I s.t.

### Projective limit of $\{(X_i, \Sigma_i), \pi_{i,j}, I\}$

is a measurable space  $(X_I, \Sigma_I)$  together with maps  $\pi_i : X_I \to X_i$  for  $i \in I$  s.t.

• 
$$\pi_{i,j} \circ \pi_j = \pi_i$$
 for all  $i \leq j$  in  $I$ 

- $\Sigma_I$  is the smallest  $\sigma$ -algebra w.r.t. which all  $\pi_i$ 's are measurable
- For any measurable space (Y, Σ<sub>Y</sub>) and any measurable f<sub>i</sub> : Y → X<sub>i</sub> with i ∈ I and f<sub>i</sub> = π<sub>i,j</sub> ∘ f<sub>j</sub>, ∀ i ≤ j, ∃! measurable f : Y → X<sub>I</sub> s.t. π<sub>i</sub> ∘ f = f<sub>i</sub> ∀ i ∈ I.



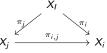




Preliminaries on projective limits The character space as a projective limit

# Cylindrical quasi-measures

 $\mathcal{P} := \{ (X_i, \Sigma_i), \pi_{i,j}, I \} = \text{projective system of measurable spaces}$  $\{ (X_I, \Sigma_I), \pi_i, I \} = \text{projective limit of } \mathcal{P}$ 



- cylinder set in  $X_I$ :  $\pi_i^{-1}(M)$  for some  $i \in I$  and  $M \in \Sigma_i$
- cylinder algebra on  $X_I$ :  $C_I := \{\pi_i^{-1}(M) : M \in \Sigma_i, \forall i \in I\}$ .
- cylinder  $\sigma$ -algebra on  $X_I$ :  $\sigma(C_I) \equiv \Sigma_I$

### Cylindrical quasi-measure

A cylindrical quasi-measure  $\mu$  w.r.t.  $\mathcal{P}$  is a set function  $\mu : \mathcal{C}_I \to \mathbb{R}^+$  s.t.

 $\pi_{i\#}\mu$  is a measure on  $\Sigma_i$  for all  $i \in I$ .

### NB: Cylindrical quasi-measures are NOT measures!

### Question 1

When can a cylindrical quasi-measure w.r.t.  $\mathcal{P}$  be extended to a measure on  $(X_I, \Sigma_I)$ ?

Preliminaries on projective limits The character space as a projective limit

# Projective limit of topological spaces

 $(I, \leq)$  directed partially ordered set

 $\{(X_i, \tau_i), \pi_{i,j}, I\}$  projective system of *topological* spaces, i.e.

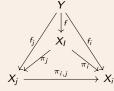
- $(X_i, \tau_i)$  topological spaces
- $\pi_{i,j}: X_j \to X_i$  defined and *continuous*  $\forall i \leq j$  in I s.t.

### Projective limit of $\{(X_i, \tau_i), \pi_{i,j}, I\}$

is a *topological* space  $(X_I, \tau_I)$  together with maps  $\pi_i : X_I \to X_i$  for  $i \in I$  s.t.

• 
$$\pi_{i,j} \circ \pi_j = \pi_i$$
 for all  $i \leq j$  in  $I$ 

- $\tau_i$  is the weakest topology w.r.t. which all  $\pi_i$ 's are continuous
- For any topological space  $(Y, \tau_Y)$  and any continuous  $f_i : Y \to X_i$  with  $i \in I$ and  $f_i = \pi_{i,j} \circ f_j, \forall i \leq j, \exists !$  continuous  $f : Y \to X_I$  s.t.  $\pi_i \circ f = f_i \forall i \in I$ .



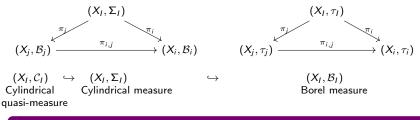


Preliminaries on projective limits The character space as a projective limit

# Cylindrical quasi-measure vs. Radon measures

 $(I, \leq)$  directed partially ordered set

$$\begin{split} \mathcal{T} &:= \{(X_i,\tau_i),\pi_{i,j},I\} \text{ projective system of Hausdorff topological spaces} \\ \mathcal{P}_{\mathcal{T}} &:= \{(X_i,\mathcal{B}_i),\pi_{i,j},I\} \text{ associated projective system of Borel measurable spaces} \\ \mathcal{B}_i &:= \text{Borel } \sigma\text{-algebra on } X_i \text{ w.r.t. } \tau_i \end{split}$$



### Question 1

When can a cylindrical quasi-measure be extended to a measure on  $(X_I, \Sigma_I)$ ?

#### Question 2

When can a cylindrical quasi-measure be extended to a Radon measure on  $(X_I, \mathcal{B}_I)$ ?

# Extension theorems for cylindrical quasi-measures

 $(I, \leq)$  directed partially ordered set

 $\mathcal{T} := \{(X_i, \tau_i), \pi_{i,j}, I\}$  projective system of Hausdorff topological spaces

 $\mathcal{P}_{\mathcal{T}} := \{(X_i, \mathcal{B}_i), \pi_{i,j}, I\}$  associated projective system of Borel measurable spaces

An exact projective system of Radon measures w.r.t.  $\mathcal{P}_{\mathcal{T}}$  is a family  $\{\mu_i, i \in I\}$  s.t. •  $\mu_i$  Radon measure on  $\mathcal{B}_i$  for all  $i \in I$ 

•  $\pi_{i,j_{\#}}\mu_j = \mu_i$  for all  $i \leq j$  in I

cylindrical quasi-measure  $\Leftrightarrow$  exact projective system of measures  $\mu(\pi_i^{-1}(E_i)) = \mu_i(E_i), \quad \forall i \in I, \ \forall E_i \in B_i$ 

Answer to Question 1 (Prokhorov, 1956)

If  $\{\mu_i, i \in I\}$  is an exact projective system of Radon probabilities w.r.t.  $\mathcal{P}_T$ , then  $\exists$ ! cylinder probability  $\nu$  on  $(X_I, \Sigma_I)$  such that  $\pi_{i \neq \nu} = \mu_i$  for all  $i \in I$ .

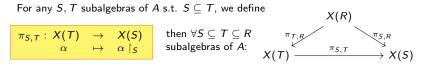
### Answer to Question 2 (Prokhorov, 1956)

If  $\{\mu_i, i \in I\}$  is an exact projective system of Radon probabilities w.r.t.  $\mathcal{P}_{\mathcal{T}}$ , then  $\exists !$  **Radon probability**  $\mu$  on  $(X_I, \mathcal{B}_I)$  such that  $\pi_{i\#}\mu = \mu_i$  for all  $i \in I$  if and only if  $\forall \varepsilon > 0 \exists K \subset X_I$  compact s.t.  $\forall i \in I, \ \mu_i(\pi_i(K)) > 1 - \varepsilon$  **(UT)** 

Preliminaries on projective limits The character space as a projective limit

### The character space as a projective limit

- A = unital commutative  $\mathbb{R}$ -algebra
- X(A) = character space of A = Hom $(A; \mathbb{R})$
- For  $a \in A$  the **Gelfand transform**  $\hat{a}_A : X(A) \to \mathbb{R}$  is  $\hat{a}_A(\alpha) := \alpha(a), \forall \alpha \in X(A)$ .
- X(A) is given the weakest topology  $\tau_A$  s.t. all  $\hat{a}, a \in A$  are continuous.



 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$  directed partially ordered set

If for any  $S \in J$ :

- $\tau_S$  :=the weakest topology  $\tau_S$  on X(S) s.t. all  $\hat{a}_S, a \in S$  are continuous.
- $\mathcal{B}_S$  be the Borel  $\sigma$ -algebra on X(S) w.r.t.  $\tau_S$

then

 $\{(X(S), \tau_S), \pi_{S,T}, J\} \text{ is a projective system of Hausdorff topological spaces } \{(X(S), \mathcal{B}_S), \pi_{S,T}, J\} \text{ is a projective system of Borel measurable spaces } \}$ 

Preliminaries on projective limits The character space as a projective limit

### The character space as a projective limit

A = unital commutative  $\mathbb{R}$ -algebra

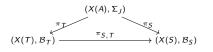
 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}$ 

### Proposition

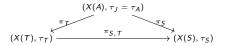
{ $(X(A), \tau_A), \pi_S, J$ } is the projective limit of { $(X(S), \tau_S), \pi_{S,T}, J$ } { $(X(A), \Sigma_J), \pi_S, J$ } is the projective limit of { $(X(S), \mathcal{B}_S), \pi_{S,T}, J$ } where for any  $S \in J$ 

• 
$$\pi_{S} := \pi_{S,A} : X(A) \to X(S), \alpha \mapsto \alpha \restriction_{S}$$

•  $\Sigma_J$  the smallest  $\sigma$ -algebra on X(A) s.t. all the  $\pi_S, S \in J$  are measurable



 $(X(A), \Sigma_J) \hookrightarrow$ Representing cylindrical measure



 $(X(A), \mathcal{B}_J)$ Representing Radon measure

# Constructing X(A)-representing cylindrical measures

Theorem\* (I., Kuhlmann, Kuna, Michalski, 2018)

 $\mathcal{P} := \{ (X(S), \mathcal{B}_S), \pi_{S,T}, J \}$  projective system

Let A be a unital commutative  $\mathbb{R}$ -algebra,  $L: A \to \mathbb{R}$  s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$ 

 $\left(\begin{array}{c} \forall S \in J, \exists ! \ X(S) - \text{representing} \\ \text{Radon measure } \mu_S \text{ for } L \upharpoonright_S \end{array}\right) \Longrightarrow \left(\begin{array}{c} \exists ! \ X(A) - \text{representing} \\ \text{cylindrical measure } \mu \text{ for } L \end{array}\right)$ 

Sketch of the proof

 $\nu$  is a constructibly Radon measure [Ghasemi-Kulmann-Marshall, '16]

 $\forall S \subseteq T$  in J both  $\mu_S$  and  $\pi_{S,T} + \mu_T$  are X(S)-representing Radon measures for  $L \upharpoonright_S$  $\Downarrow$  UNIQUENESS HP

 $\begin{array}{c} \forall S \subseteq T, \ \mu_S \equiv \pi_{S,T \, \#} \mu_T \\ \forall S \in J, \ \mu_S(X_S) = L \upharpoonright_S (1) = L(1) = 1 \end{array} \right\} \ \rightsquigarrow \{\mu_S, S \in J\} \ \text{exact projective system} \\ \text{ of Radon probabilities w.r.t. } \mathcal{P} \end{array}$ 

 $\Downarrow$  THM 1 (Prokhorov)

 $\exists !\nu \text{ measure on } (X(A), \Sigma_J) \text{ s.t. } \pi_{S\#}\nu = \mu_S, \quad \forall S \in J$ Hence, for any  $a \in A$  we have  $a \in S$  for some  $S \in J$  and so  $L(a) = L \upharpoonright_S (a) = \int_{X(S)} \hat{a}(\beta) d\mu_S(\beta) = \int_{X(A)} \hat{a}(\pi_S(\beta)) d\nu(\beta) = \int_{X(A)} \hat{a}(\alpha) d\nu(\alpha).$ 

Old and new results for the KMP Final remarks and open questions

# Constructing X(A)-representing cylindrical measures

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative  $\mathbb{R}$ -algebra,  $L: A \to \mathbb{R}$  s.t. L(1) = 1 and if

(I.) 
$$L(a^2) \ge 0$$
 for all  $a \in A$ .

(II.) For each  $a \in A$ , the class  $C\{\sqrt{L(a^{2n})}\}$  is quasi-analytic.

then  $\exists ! X(A)$ -representing cylindrical measure  $\nu$  on  $(X(A), \Sigma_J)$  for L.

#### Theorem (Nussbaum, 1965)

Let 
$$L : \mathbb{R}[X_1, \ldots, X_d] \to \mathbb{R}$$
 be linear s.t.  $L(1) = 1$ .

(i) 
$$L(p^2) \ge 0$$
 for all  $p \in \mathbb{R}[X_1, \ldots, X_d]$ .

(ii) 
$$\forall i = 1, \dots, d : \sum_{n=1}^{\infty} \frac{1}{\frac{2n}{\sqrt{L(X_i^{2n})}}} = \infty$$
 Carleman Condition

then  $\exists ! \mathbb{R}^d$ -representing Radon measure for *L*.

Old and new results for the KMP Final remarks and open questions

# Constructing X(A)-representing cylindrical measures

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative  $\mathbb{R}$ -algebra,  $L: A \to \mathbb{R}$  s.t. L(1) = 1 and if

(1.)  $L(a^2) \ge 0$  for all  $a \in A$ .

(II.) For each  $a \in A$ , the class  $C\{\sqrt{L(a^{2n})}\}$  is quasi-analytic.

then  $\exists ! X(A)$ -representing cylindrical measure  $\nu$  on  $(X(A), \Sigma_J)$  for L.

**Special case**:  $A = \mathbb{R}[X_i, i \in \Omega]$  with  $\Omega$  arbitrary index set.

Theorem (Ghasemi, Kuhlmann, Marshall, 2016), similar result in (Schmüdgen, 2018)

Let  $L : \mathbb{R}[X_i, i \in \Omega] \to \mathbb{R}$  be linear s.t. L(1) = 1. If

(i)  $L(p^2) \ge 0$  for all  $p \in \mathbb{R}[X_i, i \in \Omega]$ .

(ii) 
$$\forall i \in \Omega : \sum_{n=1}^{\infty} \frac{1}{\sqrt[2^n]{L(X_i^{2n})}} = \infty.$$

then  $\exists! \mathbb{R}^{\Omega}$ -representing constructibly Radon measure for L.

Old and new results for the KMP

# Constructing X(A)-representing cylindrical measures

Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative  $\mathbb{R}$ -algebra,  $L: A \to \mathbb{R}$  s.t. L(1) = 1 and if

(1.)  $L(a^2) > 0$  for all  $a \in A$ .

(II.) For each  $a \in A$ , the class  $\mathcal{C}\{\sqrt{L(a^{2n})}\}$  is quasi-analytic.

then  $\exists X(A)$ -representing cylindrical measure  $\nu$  on  $(X(A), \Sigma_I)$  for L.

**Special case**:  $A = \mathbb{R}[X_i, i \in \Omega]$  with  $\Omega$  arbitrary index set.

Theorem (Ghasemi, Kuhlmann, Marshall, 2016), similar result in (Schmüdgen, 2018) Let  $L : \mathbb{R}[X_i, i \in \Omega] \to \mathbb{R}$  be linear s.t. L(1) = 1. If  $\Omega$  is countable and (i)  $L(p^2) > 0$  for all  $p \in \mathbb{R}[X_i, i \in \Omega]$ . (ii)  $\forall i \in \Omega : \sum_{n=1}^{\infty} \frac{1}{\frac{2n}{\sqrt{L(X_i^{2n})}}} = \infty.$ 

then  $\exists! \mathbb{R}^{\Omega}$ -representing constructibly Radon measure for L.

Old and new results for the KMP Final remarks and open questions

# Constructing X(A)-Radon representing measures

Theorem\*\* (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative  $\mathbb{R}$ -algebra,  $L: A \to \mathbb{R}$  s.t. L(1) = 1 and

 $J := \{S \subseteq A : S \text{ finitely generated subalgebra of } A, 1 \in S\}.$ 

 $\left(\begin{array}{c} \forall S \in J, \exists ! \ X(S) - \text{representing} \\ \text{Radon measure } \mu_S \text{ for } L \upharpoonright_S + (\mathbf{UT}) \end{array}\right) \Longrightarrow \left(\begin{array}{c} \exists ! \ X(A) - \text{representing} \\ \text{Radon measure } \mu \text{ for } L \end{array}\right)$ 

Sketch of the proof  $\mathcal{P} := \{(X(S), \mathcal{B}_S), \pi_{S,T}, J\} \text{ projective system} \\ \downarrow \\ \forall S \subseteq T \text{ in } J \text{ both } \mu_S \text{ and } \pi_{S,T} \# \mu_T \text{ are } X(S) \text{-representing Radon measures for } L \upharpoonright_S \\ \downarrow \text{UNIQUENESS HP} \\ \forall S \subseteq T, \mu_S \equiv \pi_{S,T} \# \mu_T \\ \forall S \in J, \mu_S(X_S) = L \upharpoonright_S (1) = L(1) = 1 \end{cases} \xrightarrow{} \{\mu_S, S \in J\} \text{ exact projective system of Radon probabilities w.r.t. } \mathcal{P} \\ \downarrow \text{THM 2 (Prokhorov)} \\ \exists ! \nu \text{ Radon measure on } (X(A), \mathcal{B}_J) \text{ s.t. } \pi_S \# \nu = \mu_S, \forall S \in J \\ \text{Hence, for any } a \in A \text{ we have } a \in S \text{ for some } S \in J \text{ and so} \\ L(a) = L \upharpoonright_S (a) = \int_{X(S)} \hat{a}(\beta) d\mu_S(\beta) = \int_{X(A)} \hat{a}(\pi_S(\beta)) d\nu(\beta) = \int_{X(A)} \hat{a}(\alpha) d\nu(\alpha). \end{cases}$ 

Old and new results for the KMP Final remarks and open questions

# Constructing K-representing Radon measures

#### Theorem

Let A be a unital commutative  $\mathbb{R}$ -algebra,  $L : A \to \mathbb{R}$  s.t. L(1) = 1.

 $\left(\begin{array}{c} L(Q) \subseteq [0, +\infty) \text{ for some} \\ \text{Archimedean quadratic module } Q \text{ of } A, \\ \text{i.e. } \forall a \in A, \exists N \in \mathbb{N} \colon N \pm a \in M \end{array}\right) \Longrightarrow \left(\begin{array}{c} \exists ! \ K_Q - \text{representing} \\ \text{Radon measure for } L \end{array}\right)$ 

where  $K_Q := \{ \alpha \in X(A) : \hat{q}(\alpha) \ge 0, \forall q \in Q \}.$ 

This provides an alternative proof for the Jacobi-Prestel Positivstellensatz (2001).

#### Theorem (Putinar, 1993)

Let  $L : \mathbb{R}[X_1, \ldots, X_d] \to \mathbb{R}$  be linear s.t. L(1) = 1.

 $\left(\begin{array}{c} L(Q) \subseteq [0, +\infty) \text{ for some} \\ \text{Archimedean quadratic module } Q \text{ of } A \end{array}\right) \Longrightarrow \left(\begin{array}{c} \exists ! \ K_Q - \text{representing} \\ \text{Radon measure for } L \end{array}\right)$ 

where  $K_Q := \{y \in \mathbb{R}^d : q(y) \ge 0, \forall q \in Q\}$  i.e. basic closed semi-algebraic set.

# Constructing K-Radon representing measures

### Theorem (I., Kuhlmann, Kuna, Michalski, 2018)

Let A be a unital commutative  $\mathbb{R}$ -algebra, Q a quadratic module in A and  $L: A \to \mathbb{R}$ s.t. L(1) = 1. If  $\exists B_a, B_c$  subalgebras of A such that  $B_a \cup B_c$  generates A as a real algebra with  $B_c$  countably generated and

- (i)  $Q \cap B_{\mathrm{a}}$  is Archimedean in  $B_{\mathrm{a}}$
- (ii) For each  $a \in B_c$  the class  $\mathcal{C}\{\sqrt{L(a^{2n})}\}$  is quasi-analytic

(iii) 
$$L(Q) \subseteq [0, +\infty)$$

then  $\exists ! K_Q$ -representing Radon measure with  $K_Q := \{ \alpha \in X(A) : \alpha(q) \ge 0, \forall q \in Q \}.$ 

### Theorem (Ghasemi, Kuhlmann, Marshall, 2016)

Let Q be a quadratic module in  $\mathbb{R}[X_i, i \in \Omega]$  and  $L : \mathbb{R}[X_i, i \in \Omega] \to \mathbb{R}$  be linear s.t. L(1) = 1. and . If  $\exists \Lambda \subseteq \Omega$  countable such that

- (i)  $Q \cap \mathbb{R}[X_i]$  is Archimedian for all  $i \in \Omega \setminus \Lambda$ .
- (ii) For each  $i \in \Lambda$ ,  $\sum_{n=1}^{\infty} \frac{1}{\sqrt[2^n]{L(X_i^{2n})}} = \infty$ (iii)  $L(Q) \subset [0, +\infty)$

then  $\exists! \ K_Q$ -representing Radon measure with  $K_Q := \{y \in \mathbb{R}^{\Omega} : q(y) \ge 0, \forall q \in Q\}.$ 

Maria Infusino

Projective limit techniques for infinite dim. MP 17/1

Old and new results for the KMP Final remarks and open questions

# Final remarks and open questions

### Open questions

- Condition (ii) implies (UT). Does the converse hold?
- Does this approach allows to retrieve the known results about the KMP on the symmetric algebra of a locally convex space?
- Can our results be applied to localizations of a unital commutative real algebra (c.f. Marshall 2014, 2017)

### Advantages & Potential of the projective limit approach

- it is powerful technique to exploit the finite dimensional moment theory to get new advances in the infinite dimensional one.
- it provides a direct bridge from the KMP to a rich spectrum of tools coming from the theory of projective limits.
- it offers a unified setting in which compare the results known so far about the infinite dimensional KMP.

Old and new results for the KMP Final remarks and open questions

# Thank you for your attention

### For more details see:



M. Infusino, S. Kuhlmann, T. Kuna, P. Michalski, *Projective limits* techniques for the infinite dimensional moment problem, soon on ArXiv!!