Detecting optimality and extracting minimizers in polynomial optimization based on the Lasserre relaxation and the truncated GNS construction

> María López Quijorna University of Konstanz

Universität Konstanz

・ロ・・師・・冊・・日・・日・

Graz, 7 September 2018

Notation: Let $n, k \in \mathbb{N}_0$ then:

$$\underline{X} := (X_1, \ldots, X_n), \mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \ldots, X_n]$$

 $\mathbb{R}[\underline{X}]_k \text{ real polynomials with degree less or equal to k}$ $\mathbb{R}[\underline{X}]_{=k} \text{ real forms of degree k}$ $\mathbb{R}[\underline{X}]_k^* := \{L : \mathbb{R}[\underline{X}]_k \to \mathbb{R} \mid L \text{ is } \mathbb{R}\text{-linear}\}$ $\sum \mathbb{R}[\underline{X}]_k^2 := \{\sum_{i=0}^m g_i^2 \mid m \in \mathbb{N}_0, g_i \in \mathbb{R}[\underline{X}]_k\}$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Notation: Let $n, k \in \mathbb{N}_0$ then:

$$\underline{X} := (X_1, \dots, X_n), \ \mathbb{R}[\underline{X}] := \mathbb{R}[X_1, \dots, X_n]$$
$$\mathbb{R}[\underline{X}]_k \text{ real polynomials with degree less or equal to k}$$
$$\mathbb{R}[\underline{X}]_{=k} \text{ real forms of degree k}$$
$$\mathbb{R}[\underline{X}]_k^* := \{L : \mathbb{R}[\underline{X}]_k \to \mathbb{R} \mid L \text{ is } \mathbb{R}\text{-linear}\}$$
$$\sum \mathbb{R}[\underline{X}]_k^2 := \{\sum_{i=0}^m g_i^2 \mid m \in \mathbb{N}_0, \ g_i \in \mathbb{R}[\underline{X}]_k\}$$

The polynomial optimization problem

Let
$$f, p_1, \ldots, p_m \in \mathbb{R}[\underline{X}]$$
 and $m \in \mathbb{N}_0$,

$$(P): \begin{cases} \text{minimize} \quad f(x) \\ \text{s.t.} : \quad x \in S := \{y \in \mathbb{R}^n \mid p_1(y) \ge 0, \ldots, p_m(y) \ge 0\} \end{cases}$$

$$P^* := \inf\{f(x) \mid x \in S\} \in \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$$

$$S^* := \{x^* \in S \mid \text{for all } x \in S, f(x^*) \le f(x)\}$$

Polynomial Optimization Problem (POP)

Polynomial Optimization Problem (POP)

Step 1

1.Relaxation of the problem in the space $\mathbb{R}[\underline{X}]_k^*$, for relatively small k. Solve a SDP problem and find a solution in $\mathbb{R}[\underline{X}]_k^*$.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで 2/12

First attempt

Linearize the polynomial optimization problem:

$$\underline{X}^{\alpha} := X_1^{\alpha_1} \cdots X_n^{\alpha_n} \longmapsto y_{\alpha}$$
, new real variable

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

First attempt

Linearize the polynomial optimization problem:

$$\underline{X}^{\alpha} := X_1^{\alpha_1} \cdots X_n^{\alpha_n} \longmapsto y_{\alpha}$$
, new real variable

Second attempt

Add redundant inequalities and after linearize the polynomial optimization problem.

The 2d-truncated quadratic module

Let $p_1, \ldots, p_m \in \mathbb{R}[\underline{X}]_{2d}$ with $d \in \mathbb{N}_0 \cup \{\infty\}$. We define the 2*d*-truncated quadratic module generated by p_1, \ldots, p_m as:

$$M_{2d}(p_1,\ldots,p_m) := \left(\mathbb{R}[\underline{X}]_{2d} \cap \sum \mathbb{R}[\underline{X}]^2\right) + \left(\mathbb{R}[\underline{X}]_{2d} \cap \sum \mathbb{R}[\underline{X}]^2 p_1\right) + \cdots + \left(\mathbb{R}[\underline{X}]_{2d} \cap \sum \mathbb{R}[\underline{X}]^2 p_m\right) \subseteq \mathbb{R}[\underline{X}]_{2d}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 4/12

The 2d-truncated quadratic module

Let $p_1, \ldots, p_m \in \mathbb{R}[\underline{X}]_{2d}$ with $d \in \mathbb{N}_0 \cup \{\infty\}$. We define the 2*d*-truncated quadratic module generated by p_1, \ldots, p_m as:

$$M_{2d}(p_1,\ldots,p_m) := \left(\mathbb{R}[\underline{X}]_{2d} \cap \sum \mathbb{R}[\underline{X}]^2\right) + \left(\mathbb{R}[\underline{X}]_{2d} \cap \sum \mathbb{R}[\underline{X}]^2 p_1\right) + \cdots + \left(\mathbb{R}[\underline{X}]_{2d} \cap \sum \mathbb{R}[\underline{X}]^2 p_m\right) \subseteq \mathbb{R}[\underline{X}]_{2d}$$

The 2d-degree Lasserre relaxation

Let $p_1, \ldots, p_m \in \mathbb{R}[\underline{X}]_{2d}$ with $d \in \mathbb{N}_0 \cup \{\infty\}$. The Lasserre relaxation (or Moment relaxation) of (*P*) of degree 2*d* is the following problem:

$$(P_{2d}): \begin{cases} \text{minimize} & L(f) \\ \text{subject to:} & L \in \mathbb{R}[\underline{X}]_{2d}^* \\ & L(1) = 1 \text{ and} \\ & L(M_{2d}(p_1, ..., p_m)) \subseteq \mathbb{R}_{\geq 0} \end{cases}$$

The 2d-truncated quadratic module

Let $p_1, \ldots, p_m \in \mathbb{R}[\underline{X}]_{2d}$ with $d \in \mathbb{N}_0 \cup \{\infty\}$. We define the 2*d*-truncated quadratic module generated by p_1, \ldots, p_m as:

$$M_{2d}(p_1,\ldots,p_m) := \left(\mathbb{R}[\underline{X}]_{2d} \cap \sum \mathbb{R}[\underline{X}]^2\right) + \left(\mathbb{R}[\underline{X}]_{2d} \cap \sum \mathbb{R}[\underline{X}]^2 p_1\right) + \cdots + \left(\mathbb{R}[\underline{X}]_{2d} \cap \sum \mathbb{R}[\underline{X}]^2 p_m\right) \subseteq \mathbb{R}[\underline{X}]_{2d}$$

The 2d-degree Lasserre relaxation

Let $p_1, \ldots, p_m \in \mathbb{R}[\underline{X}]_{2d}$ with $d \in \mathbb{N}_0 \cup \{\infty\}$. The Lasserre relaxation (or Moment relaxation) of (*P*) of degree 2*d* is the following problem:

$$(P_{2d}): \begin{cases} \text{minimize} & L(f) \\ \text{subject to:} & L \in \mathbb{R}[\underline{X}]_{2d}^* \\ & L(1) = 1 \text{ and} \\ & L(M_{2d}(p_1,...,p_m)) \subseteq \mathbb{R}_{\geq 0} \end{cases}$$

the optimal value of (P_{2d}) is denoted by $P_{2d}^* \in \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$.

Notation: $r_d := \dim \mathbb{R}[\underline{X}]_d$

Generalized Hankel matrix (or Moment matrix)

Every matrix $M \in \mathbb{R}^{r_d \times r_d}$ indexed by a basis of $\mathbb{R}[\underline{X}]_d$ is called a generalized Hankel matrix (of order d).

<□> < @> < E> < E> E の < ○ 5/12</p>

Notation: $r_d := \dim \mathbb{R}[\underline{X}]_d$

Generalized Hankel matrix (or Moment matrix)

Every matrix $M \in \mathbb{R}^{r_d \times r_d}$ indexed by a basis of $\mathbb{R}[\underline{X}]_d$ is called a generalized Hankel matrix (of order d).

Example: n = 2

A matrix of this form is a generalized hankel matrix (of order 2).

Notation: $r_{d-1} := \dim \mathbb{R}[\underline{X}]_{d-1}$ and $s_d := \dim \mathbb{R}[\underline{X}]_{=d}$

A Smul'jan result (1959)

Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ be a feasible solution of (P_{2d}) . Set the Moment matrix associated to L:

$$M_L := (L(\underline{X}^{\alpha+\beta}))_{|\alpha|,|\beta| \leq d}$$

Then there exists $W \in \mathbb{R}^{r_{d-1} \times s_d}$ and $X \in \mathbb{R}^{s_d \times s_d}$ such that:

$$M_{L} = \frac{\mathbb{R}[X]_{d-1}}{\mathbb{R}[X]_{=d}} \begin{pmatrix} \mathbb{R}[X]_{d-1} & \mathbb{R}[X]_{=d} \\ \hline A_{L} & A_{L}W \\ \hline W^{T}A_{L} & W^{T}A_{L}W + XX^{T} \end{pmatrix}$$

Notation: $r_{d-1} := \dim \mathbb{R}[\underline{X}]_{d-1}$ and $s_d := \dim \mathbb{R}[\underline{X}]_{=d}$

A Smul'jan result (1959)

Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ be a feasible solution of (P_{2d}) . Set the Moment matrix associated to L:

$$M_L := (L(\underline{X}^{\alpha+\beta}))_{|\alpha|,|\beta| \leq d}$$

Then there exists $W \in \mathbb{R}^{r_{d-1} \times s_d}$ and $X \in \mathbb{R}^{s_d \times s_d}$ such that:

$$M_{L} = \frac{\mathbb{R}[X]_{d-1}}{\mathbb{R}[X]_{-d}} \left(\begin{array}{c|c} \mathbb{R}[X]_{d-1} & \mathbb{R}[X]_{-d} \\ \hline A_{L} & A_{L}W \\ \hline W^{T}A_{L} & W^{T}A_{L}W + XX^{T} \end{array} \right)$$

Observation and definition

Moreover:

$$\widetilde{M_L} := \left(\begin{array}{c|c} A_L & A_L W \\ \hline W^T A_L & W^T A_L W \end{array} \right) \succeq 0$$

the modified Moment matrix associated to L is well defined, i.e it does not depend of the choice of W.

First result

Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ be an optimal solution of (P_{2d}) and suppose $\widetilde{M_L}$ is a generalized Hankel matrix. Then there are $a_1, \ldots, a_r \in \mathbb{R}^n$ pairwise different points and $\lambda_1 > 0, \ldots, \lambda_r > 0$ weights such that:

$$L(p) = \sum_{i=1}^r \lambda_i p(a_i)$$
 for all $p \in \mathbb{R}[\underline{X}]_{2d-1}$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 7/12

where $r = \operatorname{rank} A_L$.

First result

Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ be an optimal solution of (P_{2d}) and suppose M_L is a generalized Hankel matrix. Then there are $a_1, \ldots, a_r \in \mathbb{R}^n$ pairwise different points and $\lambda_1 > 0, \ldots, \lambda_r > 0$ weights such that:

$$L(p) = \sum_{i=1}^r \lambda_i p(a_i)$$
 for all $p \in \mathbb{R}[\underline{X}]_{2d-1}$

where $r = \operatorname{rank} A_L$. Moreover if $\{a_1, \ldots, a_r\} \subseteq S$ and $f \in \mathbb{R}[\underline{X}]_{2d-1}$ then a_1, \ldots, a_r are global minimizers of (*P*) and $P^* = P^*_{2d} = f(a_i)$ for all $i \in \{1, \ldots, r\}$.

First result

Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ be an optimal solution of (P_{2d}) and suppose $\widetilde{M_L}$ is a generalized Hankel matrix. Then there are $a_1, \ldots, a_r \in \mathbb{R}^n$ pairwise different points and $\lambda_1 > 0, \ldots, \lambda_r > 0$ weights such that:

$$L(p) = \sum_{i=1}^{r} \lambda_i p(a_i)$$
 for all $p \in \mathbb{R}[\underline{X}]_{2d-1}$

where $r = \operatorname{rank} A_L$. Moreover if $\{a_1, \ldots, a_r\} \subseteq S$ and $f \in \mathbb{R}[\underline{X}]_{2d-1}$ then a_1, \ldots, a_r are global minimizers of (*P*) and $P^* = P^*_{2d} = f(a_i)$ for all $i \in \{1, \ldots, r\}$.

Quadrature rule

Let $L \in \mathbb{R}[\underline{X}]_d^*$. A quadrature rule for L on $U \subset \mathbb{R}[\underline{X}]_d$ is a function $w : N \to \mathbb{R}_{>0}$ defined on a finite set $N \subseteq \mathbb{R}^n$, such that:

$$L(p) = \sum_{x \in N} w(x)p(x)$$
 for all $p \in U$

Let us consider the following polynomial optimization problem:

minimize
$$f(\underline{x}) = -12x_1 - 7x_2 + x_2^2$$

subject to $-2x_1^4 + 2 - x_2 = 0$
 $0 \le x_1 \le 2$
 $0 \le x_2 \le 3$

Let us consider the following polynomial optimization problem:

minimize
$$f(\underline{x}) = -12x_1 - 7x_2 + x_2^2$$

subject to $-2x_1^4 + 2 - x_2 = 0$
 $0 \le x_1 \le 2$
 $0 \le x_2 \le 3$

We get the optimal value $P_4^* = -16.7389$ for the optimal solution $L \in \mathbb{R}[X_1, X_2]_4^*$. With moment matrix:

	-/ -14	1	X_1	<i>X</i> ₂	X_{1}^{2}	X_1X_2	X_{2}^{2}
<i>M</i> _{<i>L</i>} =	1	/ 1.0000	0.7175	1.4698	0.5149	1.0547	2.1604
	<i>X</i> ₁	0.7175	0.5149	1.0547	0.3694	0.7568	1.5502
	<i>X</i> ₂	1.4698	1.0547	2.1604	0.7568	1.5502	3.1755
	X_{1}^{2}	0.5149	0.3694	0.7568	0.2651	0.5430	1.1123
	$X_1 X_2$	1.0547	0.7568	1.5502	0.5430	1.1123	2.2785
	X_{2}^{2}	2.1604	1.5502	3.1755	1.1123	2.2785	8.7737 /

Let us consider the following polynomial optimization problem:

minimize
$$f(\underline{x}) = -12x_1 - 7x_2 + x_2^2$$

subject to $-2x_1^4 + 2 - x_2 = 0$
 $0 \le x_1 \le 2$
 $0 \le x_2 \le 3$

We get the optimal value $P_4^* = -16.7389$ for the optimal solution $L \in \mathbb{R}[X_1, X_2]_4^*$.

-		1	X_1	<i>X</i> ₂	X_{1}^{2}	X_1X_2	X_{2}^{2}
$\widetilde{\mathbf{M}_L} =$	1	/ 1.0000	0.7175	1.4698	0.5149	1.0547	2.1604
	X_1	0.7175	0.5149	1.0547	0.3694	0.7568	1.5502
	X_2	1.4698	1.0547	2.1604	0.7568	1.5502	3.1755
	X_{1}^{2}	0.5149	0.3694	0.7568	0.2651	0.5430	1.1123
	$X_1 X_2$	1.0547	0.7568	1.5502	0.5430	1.1123	2.2785
	X_{2}^{2}	2.1604	1.5502	3.1755	1.1123	2.2785	4.6675

Let us consider the following polynomial optimization problem:

minimize
$$f(\underline{x}) = -12x_1 - 7x_2 + x_2^2$$

subject to $-2x_1^4 + 2 - x_2 = 0$
 $0 \le x_1 \le 2$
 $0 \le x_2 \le 3$

We get the optimal value $P_4^* = -16.7389$ for the optimal solution $L \in \mathbb{R}[X_1, X_2]_4^*$.

Since M_L is generalized Hankel we will be able to find a quadrature rule for L on $\mathbb{R}[X_1, X_2]_3$. In this case:

$$L(p) = p(\alpha, \beta)$$
 for all $p \in \mathbb{R}[X_1, X_2]_3$

for $\alpha := 0.7175$ and $\beta := 1.4698$.

Let us consider the following polynomial optimization problem:

minimize
$$f(\underline{x}) = -12x_1 - 7x_2 + x_2^2$$

subject to $-2x_1^4 + 2 - x_2 = 0$
 $0 \le x_1 \le 2$
 $0 \le x_2 \le 3$

We get the optimal value $P_4^* = -16.7389$ for the optimal solution $L \in \mathbb{R}[X_1, X_2]_4^*$.

Since M_L is generalized Hankel we will be able to find a quadrature rule for L on $\mathbb{R}[X_1, X_2]_3$. In this case:

$$L(p) = p(\alpha, \beta)$$
 for all $p \in \mathbb{R}[X_1, X_2]_3$

for $\alpha := 0.7175$ and $\beta := 1.4698$. Moreover since $(\alpha, \beta) \in S$ and $f \in \mathbb{R}[X_1, X_2]_3$ then $P^* = P_4^* = f(\alpha, \beta)$

Given $d \in \mathbb{N}_0$ and $L \in \mathbb{R}[\underline{X}]_{2d}^*$ such that $L(\sum \mathbb{R}[\underline{X}]_d^2) \subseteq \mathbb{R}_{\geq 0}$, we would like to find for all $p \in \mathbb{R}[\underline{X}]_{2d}$:

• nodes $x_1, \ldots, x_r \in \mathbb{R}^n$ and weights $\lambda_1 > 0, \ldots, \lambda_r > 0$ st:

$$L(p) = \sum_{i=1}^{r} \lambda_i p(\mathbf{x}_i)$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 9/12

Given $d \in \mathbb{N}_0$ and $L \in \mathbb{R}[\underline{X}]_{2d}^*$ such that $L(\sum \mathbb{R}[\underline{X}]_d^2) \subseteq \mathbb{R}_{\geq 0}$, we would like to find for all $p \in \mathbb{R}[\underline{X}]_{2d}$:

► a finite dimensional euclidean vector space V, commuting symmetric matrices M₁,...,M_n ∈ ℝ^{r×r} and a vector a ∈ ℝ^r s.t:

$$L(p) = \langle p(M_1, \ldots, M_n) a, a \rangle$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQ @ 9/12

Given $d \in \mathbb{N}_0$ and $L \in \mathbb{R}[\underline{X}]_{2d}^*$ such that $L(\sum \mathbb{R}[\underline{X}]_d^2) \subseteq \mathbb{R}_{\geq 0}$, we would like to find for all $p \in \mathbb{R}[\underline{X}]_{2d}$:

a finite dimensional euclidean vector space V, commuting symmetric matrices M₁,...,M_n ∈ ℝ^{r×r} and a vector a ∈ ℝ^r s.t:

$$L(p) = \langle p(M_1, \ldots, M_n) a, a \rangle$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • ○ ○ ○ 0/12</p>

Gelfand, Naimark and Segal construction

Let $L \in \mathbb{R}[\underline{X}]^*$ s.t. $L(\sum \mathbb{R}[\underline{X}]^2 \setminus \{0\}) \subseteq \mathbb{R}_{>0}$. Then define:

 $\blacktriangleright V := \mathbb{R}[\underline{X}]$

$$\blacktriangleright \langle p,q\rangle := L(pq)$$

• $M_i : \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}[\underline{X}], p \mapsto X_i p \text{ for } i \in \{1, \dots, n\}$

► $a := 1 \in \mathbb{R}[\underline{X}]$

Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ s.t. $L(\sum \mathbb{R}[\underline{X}]_d^2) \subseteq \mathbb{R}_{\geq 0}$. We define:

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 10/12

- Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ s.t. $L(\sum \mathbb{R}[\underline{X}]_d^2) \subseteq \mathbb{R}_{\geq 0}$. We define:
 - ► $U_L := \{p \in \mathbb{R}[\underline{X}]_d \mid L(pq) = 0 \ \forall q \in \mathbb{R}[\underline{X}]_d\}$. The truncated GNS kernel.

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ ○ 10/12

- Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ s.t. $L(\sum \mathbb{R}[\underline{X}]_d^2) \subseteq \mathbb{R}_{\geq 0}$. We define:
 - ► $U_L := \{p \in \mathbb{R}[\underline{X}]_d \mid L(pq) = 0 \ \forall q \in \mathbb{R}[\underline{X}]_d\}.$ The truncated GNS kernel.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 10/12

• $V_L := \frac{\mathbb{R}[\underline{x}]_d}{U_l}$. The truncated GNS-representation space .

- Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ s.t. $L(\sum \mathbb{R}[\underline{X}]_d^2) \subseteq \mathbb{R}_{\geq 0}$. We define:
 - ► $U_L := \{p \in \mathbb{R}[\underline{X}]_d \mid L(pq) = 0 \ \forall q \in \mathbb{R}[\underline{X}]_d\}$. The truncated GNS kernel.
 - $V_L := \frac{\mathbb{R}[\underline{x}]_d}{U_l}$. The truncated GNS-representation space .
 - ▶ $\langle \overline{p}^L, \overline{q}^L \rangle_L := L(pq)$ for every $p, q \in \mathbb{R}[\underline{X}]_d$. The truncated GNS inner product.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 10/12

►

- Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ s.t. $L(\sum \mathbb{R}[\underline{X}]_d^2) \subseteq \mathbb{R}_{\geq 0}$. We define:
 - ► $U_L := \{p \in \mathbb{R}[\underline{X}]_d \mid L(pq) = 0 \ \forall q \in \mathbb{R}[\underline{X}]_d\}$. The truncated GNS kernel.
 - $V_L := \frac{\mathbb{R}[\underline{x}]_d}{U_l}$. The truncated GNS-representation space .
 - ► $\langle \overline{p}^L, \overline{q}^L \rangle_L := L(pq)$ for every $p,q \in \mathbb{R}[\underline{X}]_d$. The truncated GNS inner product.
 - ► $\Pi_L : V_L \longrightarrow \{ \overline{p}^L \mid p \in \mathbb{R}[\underline{X}]_{d-1} \} := T_L.$ The GNS orthogonal projection.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 10/12

- Let $L \in \mathbb{R}[\underline{X}]_{2d}^*$ s.t. $L(\sum \mathbb{R}[\underline{X}]_d^2) \subseteq \mathbb{R}_{\geq 0}$. We define:
 - ► $U_L := \{p \in \mathbb{R}[\underline{X}]_d \mid L(pq) = 0 \ \forall q \in \mathbb{R}[\underline{X}]_d\}$. The truncated GNS kernel.
 - $V_L := \frac{\mathbb{R}[\underline{x}]_d}{U_l}$. The truncated GNS-representation space .
 - ► $\langle \overline{p}^L, \overline{q}^L \rangle_L := L(pq)$ for every $p,q \in \mathbb{R}[\underline{X}]_d$. The truncated GNS inner product.
 - ► $\Pi_L : V_L \longrightarrow \{ \overline{p}^L \mid p \in \mathbb{R}[\underline{X}]_{d-1} \} := T_L.$ The GNS orthogonal projection.
 - $M_{L,i} : \Pi_L(V_L) \longrightarrow \Pi_L(V_L), \ \overline{p}^L \mapsto \Pi_L(\overline{pX_i}^L) \text{ for } p \in \mathbb{R}[\underline{X}]_{d-1}.$ The *i*-th truncated multiplication operator.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ○ ○ ○ ○ 10/12

Main Theorem

The following statements are equivalent:

- (i) $\widetilde{M_L}$ is a Generalized Hankel matrix.
- (ii) The truncated multiplication operators $M_{L,1}, \ldots, M_{L,n}$ pairwise commute.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 11/12

References

- R. E. Curto and L. A. Fialkow: Solution of the truncated complex moment problem for flat data, Memoirs of the American Mathematical Society 119 (568), 1996.
- C. F. Dunkl and Y. Xu: Orthogonal Polynomials of several variables. Second Edition. Encyclopedia of Mathematics and Its Applications 2014.
- ▶ J. B. Lasserre: Global optimization with polynomials an the problems of moments, SIAM J.Optim. 11, No. 3, 796-817, 2001.
- I.P. Mysovskikh , Interpolatory Cubature Formulas, Nauka, Moscow, 1981 (in Russian). Interpolatorische Kubaturformel, Institut für Geometrie und Praktische Mathematik der RWTH Aachen, 1992, Berich No.74 (in German).
- ► **M. Putinar**, A Dilation theory Approach to Cubature Formulas. Expo. Math **15** 183-192 Heidelberg, 1997.
- J. L. Smul'jan, An operator Hellinger integral (Russian), Mat Sb 91 1959; 381-430.