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Notation: Let n,k ∈ N0 then:

X := (X1, . . . ,Xn), R[X ] := R[X1, . . . ,Xn]

R[X ]k real polynomials with degree less or equal to k

R[X ]=k real forms of degree k

R[X ]∗k := {L : R[X ]k → R | L is R-linear}∑
R[X ]2k := {

m∑
i=0

g2
i |m ∈ N0, gi ∈ R[X ]k}

The polynomial optimization problem
Let f ,p1, . . . ,pm ∈ R[X ] and m ∈ N0,

(P) :
{

minimize f (x)
s.t. : x ∈ S := {y ∈ Rn | p1(y) ≥ 0, . . . ,pm(y) ≥ 0}

P∗ := inf{f (x) | x ∈ S} ∈ {−∞} ∪ R ∪ {∞}

S∗ := {x∗ ∈ S | for all x ∈ S, f (x∗) ≤ f (x)}
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Strategy
Polynomial Optimization Problem (POP)

1.Relaxation of the problem in the space R[X ]∗k , for relatively
small k. Solve a SDP problem and find a solution in R[X ]∗k .

Step 1

2.Check if a matrix is generalized Hankel
Step 2

k:=k+1 and
go to step 1No

3.Translate the solution from the space R[X ]∗k to a set
of points N ⊆ Rn, via the truncated-GNS construction.

Yes: Step 3
Truncated
Moment
Problem

4. N ⊆ S and deg f < k?
Step 4

k:=k+1 and
go to step 1No

We have reached optimality and N contains minimizers
of the original POP.

Yes
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First attempt
Linearize the polynomial optimization problem:

Xα := Xα1
1 · · ·X

αn
n 7−→ yα, new real variable

Second attempt
Add redundant inequalities and after linearize the polynomial opti-
mization problem.
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The 2d-truncated quadratic module
Let p1, . . . ,pm ∈ R[X ]2d with d ∈ N0 ∪ {∞}. We define the 2d-
truncated quadratic module generated by p1, . . . ,pm as:

M2d (p1, . . . ,pm) :=
(
R[X ]2d ∩

∑
R[X ]2

)
+
(
R[X ]2d ∩

∑
R[X ]2p1

)
+ · · ·+

(
R[X ]2d ∩

∑
R[X ]2pm

)
⊆ R[X ]2d

The 2d-degree Lasserre relaxation
Let p1, . . . ,pm ∈ R[X ]2d with d ∈ N0 ∪ {∞}. The Lasserre relax-
ation (or Moment relaxation) of (P) of degree 2d is the following
problem:

(P2d ) :


minimize L(f )
subject to: L ∈ R[X ]∗2d

L(1) = 1 and
L(M2d (p1,..., pm)) ⊆ R≥0

the optimal value of (P2d ) is denoted by P∗2d ∈ {−∞} ∪ R ∪ {∞}.
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Notation: rd := dimR[X ]d
Generalized Hankel matrix (or Moment matrix)
Every matrix M ∈ Rrd×rd indexed by a basis of R[X ]d is called a
generalized Hankel matrix (of order d).

Example: n = 2


1 X1 X2

1 1 X1 X2
X1 X1 X 2

1 X1X2
X2 X2 X1X2 X 2

2

 −→


1 X1 X2

1 y(0,0) y(1,0) y(0,1)
X1 y(1,0) y(2,0) y(1,1)
X2 y(0,1) y(1,1) y(0,2)


A matrix of this form is a generalized hankel matrix (of order 2).
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Notation: rd−1 := dimR[X ]d−1 and sd := dimR[X ]=d

A Smul’jan result (1959)
Let L ∈ R[X ]∗2d be a feasible solution of (P2d ). Set the Moment
matrix associated to L:

ML := (L(Xα+β))|α|,|β|≤d

Then there exists W ∈ Rrd−1×sd and X ∈ Rsd×sd such that:

ML =
( R[X ]d−1 R[x ]=d

R[X ]d−1 AL ALW
R[X ]=d W T AL W T ALW + XXT

)

Observation and definition
Moreover:

M̃L :=
(

AL ALW
W T AL W T ALW

)
� 0

the modified Moment matrix associated to L is well defined, i.e it
does not depend of the choice of W .
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First result
Let L ∈ R[X ]∗2d be an optimal solution of (P2d ) and suppose M̃L is a
generalized Hankel matrix. Then there are a1, . . . ,ar ∈ Rn pairwise
different points and λ1 > 0, . . . ,λr > 0 weights such that:

L(p) =
r∑

i=1
λip(ai ) for all p ∈ R[X ]2d−1

where r = rank AL.

Moreover if {a1, . . . ,ar} ⊆ S and f ∈ R[X ]2d−1
then a1, . . . ,ar are global minimizers of (P) and P∗ = P∗2d = f (ai )
for all i ∈ {1, . . . ,r}.

Quadrature rule
Let L ∈ R[X ]∗d . A quadrature rule for L on U ⊂ R[X ]d is a function
w : N → R>0 defined on a finite set N ⊆ Rn, such that:

L(p) =
∑
x∈N

w(x)p(x) for all p ∈ U
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Example
Let us consider the following polynomial optimization problem:

minimize f (x) = −12x1 − 7x2 + x2
2

subject to − 2x4
1 + 2− x2 = 0

0 ≤ x1 ≤ 2
0 ≤ x2 ≤ 3

We get the optimal value P∗4 = −16.7389 for the optimal solution
L ∈ R[X1,X2]∗4. With moment matrix:
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minimize f (x) = −12x1 − 7x2 + x2
2

subject to − 2x4
1 + 2− x2 = 0

0 ≤ x1 ≤ 2
0 ≤ x2 ≤ 3

We get the optimal value P∗4 = −16.7389 for the optimal solution
L ∈ R[X1,X2]∗4. With moment matrix:

ML =


1 X1 X2 X2

1 X1X2 X2
2

1 1.0000 0.7175 1.4698 0.5149 1.0547 2.1604
X1 0.7175 0.5149 1.0547 0.3694 0.7568 1.5502
X2 1.4698 1.0547 2.1604 0.7568 1.5502 3.1755
X2

1 0.5149 0.3694 0.7568 0.2651 0.5430 1.1123
X1X2 1.0547 0.7568 1.5502 0.5430 1.1123 2.2785
X2

2 2.1604 1.5502 3.1755 1.1123 2.2785 8.7737


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minimize f (x) = −12x1 − 7x2 + x2
2

subject to − 2x4
1 + 2− x2 = 0

0 ≤ x1 ≤ 2
0 ≤ x2 ≤ 3

We get the optimal value P∗4 = −16.7389 for the optimal solution
L ∈ R[X1,X2]∗4.

M̃L =


1 X1 X2 X2

1 X1X2 X2
2

1 1.0000 0.7175 1.4698 0.5149 1.0547 2.1604
X1 0.7175 0.5149 1.0547 0.3694 0.7568 1.5502
X2 1.4698 1.0547 2.1604 0.7568 1.5502 3.1755
X2

1 0.5149 0.3694 0.7568 0.2651 0.5430 1.1123
X1X2 1.0547 0.7568 1.5502 0.5430 1.1123 2.2785
X2

2 2.1604 1.5502 3.1755 1.1123 2.2785 4.6675


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We get the optimal value P∗4 = −16.7389 for the optimal solution
L ∈ R[X1,X2]∗4.

Since M̃L is generalized Hankel we will be able to find a quadrature
rule for L on R[X1,X2]3. In this case:

L(p) = p(α,β) for all p ∈ R[X1,X2]3

for α := 0.7175 and β := 1.4698.
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Given d ∈ N0 and L ∈ R[X ]∗2d such that L(
∑

R[X ]2d ) ⊆ R≥0, we
would like to find for all p ∈ R[X ]2d :

I nodes x1, . . . ,xr ∈ Rn and weights λ1 > 0, . . . ,λr > 0 st:

L(p) =
r∑

i=1
λip(xi )
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Given d ∈ N0 and L ∈ R[X ]∗2d such that L(
∑

R[X ]2d ) ⊆ R≥0, we
would like to find for all p ∈ R[X ]2d :

I a finite dimensional euclidean vector space V ,commuting
symmetric matrices M1, . . . ,Mn ∈ Rr×r and a vector a ∈ Rr

s.t:
L(p) = 〈p(M1, . . . ,Mn)a,a〉
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Given d ∈ N0 and L ∈ R[X ]∗2d such that L(
∑

R[X ]2d ) ⊆ R≥0, we
would like to find for all p ∈ R[X ]2d :

I a finite dimensional euclidean vector space V ,commuting
symmetric matrices M1, . . . ,Mn ∈ Rr×r and a vector a ∈ Rr

s.t:
L(p) = 〈p(M1, . . . ,Mn)a,a〉

Gelfand, Naimark and Segal construction
Let L ∈ R[X ]∗ s.t. L(

∑
R[X ]2 \ {0}) ⊆ R>0. Then define:

I V := R[X ]
I 〈p,q〉 := L(pq)
I Mi : R[X ] −→ R[X ], p 7→ Xip for i ∈ {1, . . . ,n}
I a := 1 ∈ R[X ]
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The GNS-truncated construction
Let L ∈ R[X ]∗2d s.t. L(

∑
R[X ]2d ) ⊆ R≥0. We define:

I

I

I

I

I
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Let L ∈ R[X ]∗2d s.t. L(

∑
R[X ]2d ) ⊆ R≥0. We define:

I UL := {p ∈ R[X ]d | L(pq) = 0 ∀q ∈ R[X ]d}.The truncated
GNS kernel.

I

I
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GNS kernel.
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. The truncated GNS-representation space .
I 〈pL,qL〉L := L(pq) for every p,q ∈ R[X ]d . The truncated GNS

inner product.
I ΠL : VL −→ { pL | p ∈ R[X ]d−1} := TL. The GNS orthogonal

projection.
I ML,i : ΠL(VL) −→ ΠL(VL), pL 7→ ΠL(pXi

L) for p ∈ R[X ]d−1.
The i-th truncated multiplication operator.
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Main Theorem
The following statements are equivalent:
(i) M̃L is a Generalized Hankel matrix.
(ii) The truncated multiplication operators ML,1, . . . ,ML,n

pairwise commute.



12/12

References
I R. E. Curto and L. A. Fialkow: Solution of the truncated

complex moment problem for flat data, Memoirs of the
American Mathematical Society 119 (568), 1996.

I C. F. Dunkl and Y. Xu: Orthogonal Polynomials of several
variables. Second Edition. Encyclopedia of Mathematics and
Its Applications 2014.

I J. B. Lasserre: Global optimization with polynomials an the
problems of moments, SIAM J.Optim. 11, No. 3, 796-817
,2001.

I I.P. Mysovskikh , Interpolatory Cubature Formulas, Nauka,
Moscow, 1981 (in Russian). Interpolatorische Kubaturformel,
Institut für Geometrie und Praktische Mathematik der RWTH
Aachen, 1992, Berich No.74 (in German).

I M. Putinar, A Dilation theory Approach to Cubature
Formulas. Expo. Math 15 183-192 Heidelberg, 1997.

I J. L. Smul’jan, An operator Hellinger integral (Russian), Mat
Sb 91 1959; 381-430.


