Detecting optimality and extracting minimizers in polynomial optimization based on the Lasserre relaxation and the truncated GNS construction

María López Quijorna
University of Konstanz

Universität Konstanz

Graz, 7 September 2018

Notation: Let $n, k \in \mathbb{N}_{0}$ then:

$$
\underline{X}:=\left(X_{1}, \ldots, X_{n}\right), \mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]
$$

$\mathbb{R}[\underline{X}]_{k}$ real polynomials with degree less or equal to k
$\mathbb{R}[\underline{X}]_{=k}$ real forms of degree k

$$
\begin{aligned}
& \mathbb{R}[\underline{X}]_{k}^{*}:=\left\{L: \mathbb{R}[\underline{X}]_{k} \rightarrow \mathbb{R} \mid L \text { is } \mathbb{R} \text {-linear }\right\} \\
& \sum \mathbb{R}[\underline{X}]_{k}^{2}:=\left\{\sum_{i=0}^{m} g_{i}^{2} \mid m \in \mathbb{N}_{0}, g_{i} \in \mathbb{R}[\underline{X}]_{k}\right\}
\end{aligned}
$$

Notation: Let $n, k \in \mathbb{N}_{0}$ then:

$$
\underline{X}:=\left(X_{1}, \ldots, X_{n}\right), \mathbb{R}[\underline{X}]:=\mathbb{R}\left[X_{1}, \ldots, X_{n}\right]
$$

$\mathbb{R}[\underline{X}]_{k}$ real polynomials with degree less or equal to k $\mathbb{R}[\underline{X}]_{=k}$ real forms of degree k

$$
\begin{aligned}
& \mathbb{R}[\underline{X}]_{k}^{*}:=\left\{L: \mathbb{R}[\underline{X}]_{k} \rightarrow \mathbb{R} \mid L \text { is } \mathbb{R} \text {-linear }\right\} \\
& \sum \mathbb{R}[\underline{X}]_{k}^{2}:=\left\{\sum_{i=0}^{m} g_{i}^{2} \mid m \in \mathbb{N}_{0}, g_{i} \in \mathbb{R}[\underline{X}]_{k}\right\}
\end{aligned}
$$

The polynomial optimization problem
Let $f, p_{1}, \ldots, p_{m} \in \mathbb{R}[\underline{X}]$ and $m \in \mathbb{N}_{0}$,
$(P): \begin{cases}\text { minimize } & f(x) \\ \text { s.t. : } & x \in S:=\left\{y \in \mathbb{R}^{n} \mid p_{1}(y) \geq 0, \ldots, p_{m}(y) \geq 0\right\}\end{cases}$

$$
\begin{aligned}
& P^{*}:=\inf \{f(x) \mid x \in S\} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\} \\
& S^{*}:=\left\{x^{*} \in S \mid \text { for all } x \in S, f\left(x^{*}\right) \leq f(x)\right\}
\end{aligned}
$$

Strategy
Polynomial Optimization Problem (POP)

Strategy
Polynomial Optimization Problem (POP)
Step $1 \downarrow$
1.Relaxation of the problem in the space $\mathbb{R}[X]_{k}^{*}$, for relatively small k. Solve a SDP problem and find a solution in $\mathbb{R}[\underline{X}]_{k}^{*}$.

Strategy
Polynomial Optimization Problem (POP)

Step $1 \downarrow$

1.Relaxation of the problem in the space $\mathbb{R}[\underline{X}]_{k}^{*}$, for relatively small k. Solve a SDP problem and find a solution in $\mathbb{R}[\underline{X}]_{k}^{*}$.

$$
\text { Step } 2
$$

2. Check if a matrix is generalized Hankel

Strategy
Polynomial Optimization Problem (POP)

Step $1 \downarrow$

1.Relaxation of the problem in the space $\mathbb{R}[\underline{X}]_{k}^{*}$, for relatively small k. Solve a SDP problem and find a solution in $\mathbb{R}[\underline{X}]_{k}^{*}$.

Step $2 \downarrow$
2.Check if a matrix is generalized Hankel

Strategy
Polynomial Optimization Problem (POP)
Step $1 \downarrow$
1.Relaxation of the problem in the space $\mathbb{R}[X]_{k}^{*}$, for relatively small k. Solve a SDP problem and find a solution in $\mathbb{R}[\underline{X}]_{k}^{*}$.

Step 2 \downarrow
2.Check if a matrix is
Yes: Step 3 \downarrow
3. Translate the solution from the space $\mathbb{R}[\underline{X}]_{k}^{*}$ to a set of points $N \subseteq \mathbb{R}^{n}$, via the truncated-GNS construction.

Strategy
Polynomial Optimization Problem (POP)

$$
\text { Step } 1 \downarrow
$$

1.Relaxation of the problem in the space $\mathbb{R}[\underline{X}]_{k}^{*}$, for relatively small k. Solve a SDP problem and find a solution in $\mathbb{R}[\underline{X}]_{k}^{*}$.

3. Translate the solution from the space $\mathbb{R}[X]_{k}^{*}$ to a set of points $N \subseteq \mathbb{R}^{n}$, via the truncated-GNS construction.

Strategy
Polynomial Optimization Problem (POP)
Step $1 \downarrow$
1.Relaxation of the problem in the space $\mathbb{R}[\underline{X}]_{k}^{*}$, for relatively small k. Solve a SDP problem and find a solution in $\mathbb{R}[\underline{X}]_{k}^{*}$.

Yes: Step $3 \downarrow$
3. Translate the solution from the space $\mathbb{R}[X]_{k}^{*}$ to a set of points $N \subseteq \mathbb{R}^{n}$, via the truncated-GNS construction.

Step 4
4. $N \subseteq S$ and $\operatorname{deg} f<k$?

Strategy
Polynomial Optimization Problem (POP)

$$
\text { Step } 1
$$

1. Relaxation of the problem in the space $\mathbb{R}[\underline{X}]_{k}^{*}$, for relatively small k. Solve a SDP problem and find a solution in $\mathbb{R}[\underline{X}]_{k}^{*}$.

2. Translate the solution from the space $\mathbb{R}[\underline{X}]_{k}^{*}$ to a set of points $N \subseteq \mathbb{R}^{n}$, via the truncated-GNS construction.

Strategy
Polynomial Optimization Problem (POP)

Step 1

1.Relaxation of the problem in the space $\mathbb{R}[\underline{X}]_{k}^{*}$, for relatively small k. Solve a SDP problem and find a solution in $\mathbb{R}[\underline{X}]_{k}^{*}$.

3. Translate the solution from the space $\mathbb{R}[X]_{k}^{*}$ to a set of points $N \subseteq \mathbb{R}^{n}$, via the truncated-GNS construction.

First attempt

Linearize the polynomial optimization problem:

$$
\underline{X}^{\alpha}:=X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}} \longmapsto y_{\alpha}, \text { new real variable }
$$

First attempt

Linearize the polynomial optimization problem:

$$
\underline{X}^{\alpha}:=X_{1}^{\alpha_{1}} \cdots X_{n}^{\alpha_{n}} \longmapsto y_{\alpha}, \text { new real variable }
$$

Second attempt

Add redundant inequalities and after linearize the polynomial optimization problem.

The 2 d-truncated quadratic module
Let $p_{1}, \ldots, p_{m} \in \mathbb{R}[\underline{X}]_{2 d}$ with $d \in \mathbb{N}_{0} \cup\{\infty\}$. We define the $2 d$ truncated quadratic module generated by p_{1}, \ldots, p_{m} as:

$$
\begin{aligned}
M_{2 d}\left(p_{1}, \ldots, p_{m}\right):= & \left(\mathbb{R}[\underline{X}]_{2 d} \cap \sum \mathbb{R}[\underline{X}]^{2}\right)+\left(\mathbb{R}[\underline{X}]_{2 d} \cap \sum \mathbb{R}[\underline{X}]^{2} p_{1}\right) \\
& +\cdots+\left(\mathbb{R}[\underline{X}]_{2 d} \cap \sum \mathbb{R}[\underline{X}]^{2} p_{m}\right) \subseteq \mathbb{R}[\underline{X}]_{2 d}
\end{aligned}
$$

The 2 d -truncated quadratic module

Let $p_{1}, \ldots, p_{m} \in \mathbb{R}[\underline{X}]_{2 d}$ with $d \in \mathbb{N}_{0} \cup\{\infty\}$. We define the $2 d$ truncated quadratic module generated by p_{1}, \ldots, p_{m} as:

$$
\begin{aligned}
M_{2 d}\left(p_{1}, \ldots, p_{m}\right):= & \left(\mathbb{R}[\underline{X}]_{2 d} \cap \sum \mathbb{R}[X]^{2}\right)+\left(\mathbb{R}[\underline{X}]_{2 d} \cap \sum \mathbb{R}[X]^{2} p_{1}\right) \\
& +\cdots+\left(\mathbb{R}[\underline{X}]_{2 d} \cap \sum \mathbb{R}[X]^{2} p_{m}\right) \subseteq \mathbb{R}[X]_{2 d}
\end{aligned}
$$

The 2d-degree Lasserre relaxation

Let $p_{1}, \ldots, p_{m} \in \mathbb{R}[\underline{X}]_{2 d}$ with $d \in \mathbb{N}_{0} \cup\{\infty\}$. The Lasserre relaxation (or Moment relaxation) of (P) of degree $2 d$ is the following problem:

$$
\left(P_{2 d}\right):\left\{\begin{array}{cl}
\text { minimize } & L(f) \\
\text { subject to: } & L \in \mathbb{R}[\underline{X}]_{2 d}^{*} \\
& L(1)=1 \text { and } \\
& L\left(M_{2 d}\left(p_{1}, \ldots, p_{m}\right)\right) \subseteq \mathbb{R}_{\geq 0}
\end{array}\right.
$$

The 2 d -truncated quadratic module
Let $p_{1}, \ldots, p_{m} \in \mathbb{R}[\underline{X}]_{2 d}$ with $d \in \mathbb{N}_{0} \cup\{\infty\}$. We define the $2 d$ truncated quadratic module generated by p_{1}, \ldots, p_{m} as:

$$
\begin{aligned}
M_{2 d}\left(p_{1}, \ldots, p_{m}\right):= & \left(\mathbb{R}[\underline{X}]_{2 d} \cap \sum \mathbb{R}[X]^{2}\right)+\left(\mathbb{R}[\underline{X}]_{2 d} \cap \sum \mathbb{R}[X]^{2} p_{1}\right) \\
& +\cdots+\left(\mathbb{R}[\underline{X}]_{2 d} \cap \sum \mathbb{R}[\underline{X}]^{2} p_{m}\right) \subseteq \mathbb{R}[\underline{X}]_{2 d}
\end{aligned}
$$

The 2d-degree Lasserre relaxation

Let $p_{1}, \ldots, p_{m} \in \mathbb{R}[\underline{X}]_{2 d}$ with $d \in \mathbb{N}_{0} \cup\{\infty\}$. The Lasserre relaxation (or Moment relaxation) of (P) of degree $2 d$ is the following problem:

$$
\left(P_{2 d}\right):\left\{\begin{array}{cl}
\text { minimize } & L(f) \\
\text { subject to: } & L \in \mathbb{R}[\underline{X}]_{2 d}^{*} \\
& L(1)=1 \text { and } \\
& L\left(M_{2 d}\left(p_{1}, \ldots, p_{m}\right)\right) \subseteq \mathbb{R}_{\geq 0}
\end{array}\right.
$$

the optimal value of $\left(P_{2 d}\right)$ is denoted by $P_{2 d}^{*} \in\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$.

Notation: $r_{d}:=\operatorname{dim} \mathbb{R}[\underline{X}]_{d}$
Generalized Hankel matrix (or Moment matrix)
Every matrix $M \in \mathbb{R}^{r_{d} \times r_{d}}$ indexed by a basis of $\mathbb{R}[\underline{X}]_{d}$ is called a generalized Hankel matrix (of order d).

Notation: $r_{d}:=\operatorname{dim} \mathbb{R}[\underline{X}]_{d}$
Generalized Hankel matrix (or Moment matrix)
Every matrix $M \in \mathbb{R}^{r_{d} \times r_{d}}$ indexed by a basis of $\mathbb{R}[\underline{X}]_{d}$ is called a generalized Hankel matrix (of order d).

Example: $n=2$

$$
\begin{gathered}
\\
1 \\
x_{1} \\
x_{2}
\end{gathered}\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
1 & X_{1} & x_{2} \\
X_{1} & X_{1}^{2} & x_{1} X_{2} \\
x_{2} & X_{1} X_{2} & X_{2}^{2}
\end{array}\right) \longrightarrow \begin{gathered}
1 \\
x_{1} \\
x_{2}
\end{gathered}\left(\begin{array}{ccc}
y_{(0,0)} & y_{(1,0)} & y_{(0,1)} \\
y_{(1,0)} & y_{(2,0)} & y_{(1,1)} \\
y_{(0,1)} & y_{(1,1)} & y_{(0,2)}
\end{array}\right)
$$

A matrix of this form is a generalized hankel matrix (of order 2).

Notation: $r_{d-1}:=\operatorname{dim} \mathbb{R}[\underline{X}]_{d-1}$ and $s_{d}:=\operatorname{dim} \mathbb{R}[\underline{X}]_{=d}$
A Smul'jan result (1959)
Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ be a feasible solution of $\left(P_{2 d}\right)$. Set the Moment matrix associated to L:

$$
M_{L}:=\left(L\left(\underline{X}^{\alpha+\beta}\right)\right)_{|\alpha|,|\beta| \leq d}
$$

Then there exists $W \in \mathbb{R}^{r_{d-1} \times s_{d}}$ and $X \in \mathbb{R}^{s_{d} \times s_{d}}$ such that:

$$
M_{L}=\underset{\mathbb{R}[X]=d}{\mathbb{R}[]_{d-1}}\left(\begin{array}{c|c}
\mathbb{R}\left[\mid X_{d-1}\right. & A_{\mathbb{R}[X]=d} \\
\hline W_{L} & A_{L} W \\
\hline W^{\prime} A_{L} & W^{\prime} A_{L} W+X X^{\top}
\end{array}\right)
$$

Notation: $r_{d-1}:=\operatorname{dim} \mathbb{R}[\underline{X}]_{d-1}$ and $s_{d}:=\operatorname{dim} \mathbb{R}[\underline{X}]_{=d}$

A Smul'jan result (1959)

Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ be a feasible solution of $\left(P_{2 d}\right)$. Set the Moment matrix associated to L:

$$
M_{L}:=\left(L\left(\underline{X}^{\alpha+\beta}\right)\right)_{|\alpha|,|\beta| \leq d}
$$

Then there exists $W \in \mathbb{R}^{r_{d-1} \times s_{d}}$ and $X \in \mathbb{R}^{s_{d} \times s_{d}}$ such that:

$$
M_{L}=\underset{\mathbb{R}[\mid] \mid=d}{\mathbb{R}[]_{d-1}}\left(\begin{array}{c|c}
\mathbb{R}^{\mathbb{R}\left[X_{d-1}\right.} \\
A_{L} & A_{L} W \\
\hline W^{\prime} A_{L} & W^{\prime} A_{L} W+X X^{\top}
\end{array}\right)
$$

Observation and definition
Moreover:

$$
\widetilde{M_{L}}:=\left(\begin{array}{c|c}
A_{L} & A_{L} W \\
\hline W^{T} A_{L} & W^{T} A_{L} W
\end{array}\right) \succeq 0
$$

the modified Moment matrix associated to L is well defined, i.e it does not depend of the choice of W.

First result

Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ be an optimal solution of $\left(P_{2 d}\right)$ and suppose $\widetilde{M_{L}}$ is a generalized Hankel matrix. Then there are $a_{1}, \ldots, a_{r} \in \mathbb{R}^{n}$ pairwise different points and $\lambda_{1}>0, \ldots, \lambda_{r}>0$ weights such that:

$$
L(p)=\sum_{i=1}^{r} \lambda_{i} p\left(a_{i}\right) \text { for all } p \in \mathbb{R}[\underline{X}]_{2 d-1}
$$

where $r=\operatorname{rank} A_{L}$.

First result

Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ be an optimal solution of $\left(P_{2 d}\right)$ and suppose $\widetilde{M_{L}}$ is a generalized Hankel matrix. Then there are $a_{1}, \ldots, a_{r} \in \mathbb{R}^{n}$ pairwise different points and $\lambda_{1}>0, \ldots, \lambda_{r}>0$ weights such that:

$$
L(p)=\sum_{i=1}^{r} \lambda_{i} p\left(a_{i}\right) \text { for all } p \in \mathbb{R}[\underline{X}]_{2 d-1}
$$

where $r=\operatorname{rank} A_{L}$. Moreover if $\left\{a_{1}, \ldots, a_{r}\right\} \subseteq S$ and $f \in \mathbb{R}[\underline{X}]_{2 d-1}$ then a_{1}, \ldots, a_{r} are global minimizers of (P) and $P^{*}=P_{2 d}^{*}=f\left(a_{i}\right)$ for all $i \in\{1, \ldots, r\}$.

First result

Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ be an optimal solution of $\left(P_{2 d}\right)$ and suppose $\widetilde{M_{L}}$ is a generalized Hankel matrix. Then there are $a_{1}, \ldots, a_{r} \in \mathbb{R}^{n}$ pairwise different points and $\lambda_{1}>0, \ldots, \lambda_{r}>0$ weights such that:

$$
L(p)=\sum_{i=1}^{r} \lambda_{i} p\left(a_{i}\right) \text { for all } p \in \mathbb{R}[\underline{X}]_{2 d-1}
$$

where $r=\operatorname{rank} A_{L}$. Moreover if $\left\{a_{1}, \ldots, a_{r}\right\} \subseteq S$ and $f \in \mathbb{R}[\underline{X}]_{2 d-1}$ then a_{1}, \ldots, a_{r} are global minimizers of (P) and $P^{*}=P_{2 d}^{*}=f\left(a_{i}\right)$ for all $i \in\{1, \ldots, r\}$.

Quadrature rule

Let $L \in \mathbb{R}[\underline{X}]_{d}^{*}$. A quadrature rule for L on $U \subset \mathbb{R}[\underline{X}]_{d}$ is a function $w: N \rightarrow \mathbb{R}_{>0}$ defined on a finite set $N \subseteq \mathbb{R}^{n}$, such that:

$$
L(p)=\sum_{x \in N} w(x) p(x) \text { for all } p \in U
$$

Example

Let us consider the following polynomial optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\underline{x})=-12 x_{1}-7 x_{2}+x_{2}^{2} \\
\text { subject to } & -2 x_{1}^{4}+2-x_{2}=0 \\
& 0 \leq x_{1} \leq 2 \\
& 0 \leq x_{2} \leq 3
\end{array}
$$

Example

Let us consider the following polynomial optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\underline{x})=-12 x_{1}-7 x_{2}+x_{2}^{2} \\
\text { subject to } & -2 x_{1}^{4}+2-x_{2}=0 \\
& 0 \leq x_{1} \leq 2 \\
& 0 \leq x_{2} \leq 3
\end{array}
$$

We get the optimal value $P_{4}^{*}=-16.7389$ for the optimal solution $L \in \mathbb{R}\left[X_{1}, X_{2}\right]_{4}^{*}$. With moment matrix:

$$
M_{L}=\begin{gathered}
\\
1 \\
x_{1} \\
x_{2} \\
x_{2} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{gathered}\left(\begin{array}{ccc|ccc}
1.0000 & 0.7175 & 1.4698 & x_{1} & x_{1}^{2} & x_{1} x_{2} \\
0.5149 & 1.0547 & 2.1604 \\
0.7175 & 0.5149 & 1.0547 & 0.3694 & 0.7568 & 1.5502 \\
1.4698 & 1.0547 & 2.1604 & 0.7568 & 1.5502 & 3.1755 \\
\hline 0.5149 & 0.3694 & 0.7568 & 0.2651 & 0.5430 & 1.1123 \\
1.0547 & 0.7568 & 1.5502 & 0.5430 & 1.1123 & 2.2785 \\
2.1604 & 1.5502 & 3.1755 & 1.1123 & 2.2785 & 8.7737
\end{array}\right)
$$

Example

Let us consider the following polynomial optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\underline{x})=-12 x_{1}-7 x_{2}+x_{2}^{2} \\
\text { subject to } & -2 x_{1}^{4}+2-x_{2}=0 \\
& 0 \leq x_{1} \leq 2 \\
& 0 \leq x_{2} \leq 3
\end{array}
$$

We get the optimal value $P_{4}^{*}=-16.7389$ for the optimal solution $L \in \mathbb{R}\left[X_{1}, X_{2}\right]_{4}^{*}$.

Example

Let us consider the following polynomial optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\underline{x})=-12 x_{1}-7 x_{2}+x_{2}^{2} \\
\text { subject to } & -2 x_{1}^{4}+2-x_{2}=0 \\
& 0 \leq x_{1} \leq 2 \\
& 0 \leq x_{2} \leq 3
\end{array}
$$

We get the optimal value $P_{4}^{*}=-16.7389$ for the optimal solution $L \in \mathbb{R}\left[X_{1}, X_{2}\right]_{4}^{*}$.
Since \widetilde{M}_{L} is generalized Hankel we will be able to find a quadrature rule for L on $\mathbb{R}\left[X_{1}, X_{2}\right]_{3}$. In this case:

$$
L(p)=p(\alpha, \beta) \text { for all } p \in \mathbb{R}\left[X_{1}, X_{2}\right]_{3}
$$

for $\alpha:=0.7175$ and $\beta:=1.4698$.

Example

Let us consider the following polynomial optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & f(\underline{x})=-12 x_{1}-7 x_{2}+x_{2}^{2} \\
\text { subject to } & -2 x_{1}^{4}+2-x_{2}=0 \\
& 0 \leq x_{1} \leq 2 \\
& 0 \leq x_{2} \leq 3
\end{array}
$$

We get the optimal value $P_{4}^{*}=-16.7389$ for the optimal solution $L \in \mathbb{R}\left[X_{1}, X_{2}\right]_{4}^{*}$.
Since \widetilde{M}_{L} is generalized Hankel we will be able to find a quadrature rule for L on $\mathbb{R}\left[X_{1}, X_{2}\right]_{3}$. In this case:

$$
L(p)=p(\alpha, \beta) \text { for all } p \in \mathbb{R}\left[X_{1}, X_{2}\right]_{3}
$$

for $\alpha:=0.7175$ and $\beta:=1.4698$. Moreover since $(\alpha, \beta) \in S$ and $f \in \mathbb{R}\left[X_{1}, X_{2}\right]_{3}$ then $P^{*}=P_{4}^{*}=f(\alpha, \beta)$

Given $d \in \mathbb{N}_{0}$ and $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ such that $L\left(\sum \mathbb{R}[\underline{X}]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$, we would like to find for all $p \in \mathbb{R}[\underline{X}]_{2 d}$:

- nodes $x_{1}, \ldots, x_{r} \in \mathbb{R}^{n}$ and weights $\lambda_{1}>0, \ldots, \lambda_{r}>0$ st:

$$
L(p)=\sum_{i=1}^{r} \lambda_{i} p\left(x_{i}\right)
$$

Given $d \in \mathbb{N}_{0}$ and $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ such that $L\left(\sum \mathbb{R}[\underline{X}]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$, we would like to find for all $p \in \mathbb{R}[\underline{X}]_{2 d}$:

- a finite dimensional euclidean vector space V,commuting symmetric matrices $M_{1}, \ldots, M_{n} \in \mathbb{R}^{r \times r}$ and a vector $a \in \mathbb{R}^{r}$ s.t:

$$
L(p)=\left\langle p\left(M_{1}, \ldots, M_{n}\right) a, a\right\rangle
$$

Given $d \in \mathbb{N}_{0}$ and $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ such that $L\left(\sum \mathbb{R}[\underline{X}]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$, we would like to find for all $p \in \mathbb{R}[\underline{X}]_{2 d}$:

- a finite dimensional euclidean vector space V,commuting symmetric matrices $M_{1}, \ldots, M_{n} \in \mathbb{R}^{r \times r}$ and a vector $a \in \mathbb{R}^{r}$ s.t:

$$
L(p)=\left\langle p\left(M_{1}, \ldots, M_{n}\right) a, a\right\rangle
$$

Gelfand, Naimark and Segal construction
Let $L \in \mathbb{R}[\underline{X}]^{*}$ s.t. $L\left(\sum \mathbb{R}[\underline{X}]^{2} \backslash\{0\}\right) \subseteq \mathbb{R}_{>0}$. Then define:

- $V:=\mathbb{R}[\underline{X}]$
- $\langle p, q\rangle:=L(p q)$
- $M_{i}: \mathbb{R}[\underline{X}] \longrightarrow \mathbb{R}[\underline{X}], p \mapsto X_{i} p$ for $i \in\{1, \ldots, n\}$
- $a:=1 \in \mathbb{R}[\underline{X}]$

The GNS-truncated construction
Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ s.t. $L\left(\sum \mathbb{R}[\underline{X}]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. We define:

The GNS-truncated construction
Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ s.t. $L\left(\sum \mathbb{R}[\underline{X}]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. We define:

- $U_{L}:=\left\{p \in \mathbb{R}[\underline{X}]_{d} \mid L(p q)=0 \forall q \in \mathbb{R}[\underline{X}]_{d}\right\}$. The truncated GNS kernel.

The GNS-truncated construction
Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ s.t. $L\left(\sum \mathbb{R}[\underline{X}]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. We define:

- $U_{L}:=\left\{p \in \mathbb{R}[\underline{X}]_{d} \mid L(p q)=0 \forall q \in \mathbb{R}[\underline{X}]_{d}\right\}$. The truncated GNS kernel.
- $V_{L}:=\frac{\mathbb{R}[x]_{d}}{U_{L}}$. The truncated GNS-representation space .

The GNS-truncated construction

Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ s.t. $L\left(\sum \mathbb{R}[\underline{X}]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. We define:

- $U_{L}:=\left\{p \in \mathbb{R}[\underline{X}]_{d} \mid L(p q)=0 \forall q \in \mathbb{R}[\underline{X}]_{d}\right\}$. The truncated GNS kernel.
- $V_{L}:=\frac{\mathbb{R}[x]_{d}}{U_{L}}$. The truncated GNS-representation space.
- $\left\langle\bar{p}^{L}, \bar{q}^{L}\right\rangle_{L}:=L(p q)$ for every $p, q \in \mathbb{R}[\underline{X}]_{d}$. The truncated GNS inner product.

The GNS-truncated construction

Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ s.t. $L\left(\sum \mathbb{R}[\underline{X}]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. We define:

- $U_{L}:=\left\{p \in \mathbb{R}[\underline{X}]_{d} \mid L(p q)=0 \forall q \in \mathbb{R}[\underline{X}]_{d}\right\}$. The truncated GNS kernel.
- $V_{L}:=\frac{\mathbb{R}[x]_{d}}{U_{L}}$. The truncated GNS-representation space .
- $\left\langle\bar{p}^{L}, \bar{q}^{L}\right\rangle_{L}:=L(p q)$ for every $p, q \in \mathbb{R}[\underline{X}]_{d}$. The truncated GNS inner product.
- $\Pi_{L}: V_{L} \longrightarrow\left\{\bar{p}^{L} \mid p \in \mathbb{R}[\underline{X}]_{d-1}\right\}:=T_{L}$. The GNS orthogonal projection.

The GNS-truncated construction

Let $L \in \mathbb{R}[\underline{X}]_{2 d}^{*}$ s.t. $L\left(\sum \mathbb{R}[\underline{X}]_{d}^{2}\right) \subseteq \mathbb{R}_{\geq 0}$. We define:

- $U_{L}:=\left\{p \in \mathbb{R}[\underline{X}]_{d} \mid L(p q)=0 \forall q \in \mathbb{R}[\underline{X}]_{d}\right\}$. The truncated GNS kernel.
- $V_{L}:=\frac{\mathbb{R}[x]_{d}}{U_{L}}$. The truncated GNS-representation space .
- $\left\langle\bar{p}^{L}, \bar{q}^{L}\right\rangle_{L}:=L(p q)$ for every $p, q \in \mathbb{R}[\underline{X}]_{d}$. The truncated GNS inner product.
- $\Pi_{L}: V_{L} \longrightarrow\left\{\bar{p}^{L} \mid p \in \mathbb{R}[\underline{X}]_{d-1}\right\}:=T_{L}$. The GNS orthogonal projection.
- $M_{L, i}: \Pi_{L}\left(V_{L}\right) \longrightarrow \Pi_{L}\left(V_{L}\right), \bar{p}^{L} \mapsto \Pi_{L}\left(\overline{p X_{i}}\right)$ for $p \in \mathbb{R}[\underline{X}]_{d-1}$. The i-th truncated multiplication operator.

Main Theorem

The following statements are equivalent:
(i) $\widetilde{M_{L}}$ is a Generalized Hankel matrix.
(ii) The truncated multiplication operators $M_{L, 1}, \ldots, M_{L, n}$ pairwise commute.

References

- R. E. Curto and L. A. Fialkow: Solution of the truncated complex moment problem for flat data, Memoirs of the American Mathematical Society 119 (568), 1996.
- C. F. Dunkl and Y. Xu: Orthogonal Polynomials of several variables. Second Edition. Encyclopedia of Mathematics and Its Applications 2014.
- J. B. Lasserre: Global optimization with polynomials an the problems of moments, SIAM J.Optim. 11, No. 3, 796-817 ,2001.
- I.P. Mysovskikh , Interpolatory Cubature Formulas, Nauka, Moscow, 1981 (in Russian). Interpolatorische Kubaturformel, Institut für Geometrie und Praktische Mathematik der RWTH Aachen, 1992, Berich No. 74 (in German).
- M. Putinar, A Dilation theory Approach to Cubature Formulas. Expo. Math 15 183-192 Heidelberg, 1997.
- J. L. Smul'jan, An operator Hellinger integral (Russian), Mat Sb 91 1959; 381-430.

