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Hilbert’s 17th Problem

To write a polynomial (in one or several variables) as a
sum of squares gives an immediate proof that this
polynomial cannot take a negative value.
Algebraic certificate of positivity
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Sums of squares of polynomials

If a positive polynomial a sum of squares of polynomials ?
Yes if the number of variables is 1.
Indication : decompose the polynomial in powers of
irreducible polynomials: the factors of degree 2
(corresponding to complex roots) are sums of squares, the
factors of degree 1 (corresponding to real roots) appear
with an even exponent, product of sums of squares is a
sum of squares.
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Positivity and sum of squares

If a positive polynomial a sum of squares of polynomials ?
Yes if the number of variables is 1.
Yes if the degree is 2.
A quadratic form taking only positive values is a sum of
squares of linear polynomials.
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Positivité et sommes de carrés

If a positive polynomial a sum of squares of polynomials ?
Yes if the number of variables is 1.
Yes if the degree is 2.
No in general.
First explicit counter-example Motzkin ’69

1 + X 4Y 2 + X 2Y 4 − 3X 2Y 2

is positive and is not a square of polynomials.
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The counter example

M = 1 + X 4Y 2 + X 2Y 4 − 3X 2Y 2

M is positive. Indication: the arithmetic mean is always at
least the geometric mean .
M is not a sum of squares of polynomials. Indication : try
to write it as a sum of squares of polynomials of degree 3
and verify that it is t impossible.
Starting point: no monomial X 3 can appear in the sum of
squares. Etc ...
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Hilbert’s 17-th problem

Reformulation proposed after discussing with Minkowski.
Question Hilbert ’1900.
Is a positive polynomial a sum of squares of rational
functions?
Artin ’27: Positive answer. Non-constructive proof.
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Scheme of Artin’s proof

Suppose that P is not a sum of squares of rational
functions.
Sums of squares form a proper cone of the field of rational
functions and do not contain du P (a cone contains
squares and is closed by addition and multiplication, a
proper cone does not contain −1).
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Scheme of Artin’s proof

Suppose that P is not a sum of squares of rational
functions.
Sums of squares form a proper cone of the field of rational
functions and do not contain du P
Using Zorn’s lemma, we get a maximal proper cone of the
field of rational functions that does not contain P. Such a
maximal proper cone defines a total order on the field of
rational functions with P negative.
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Scheme of Artin’s proof

Suppose that P is not a sum of squares of rational
functions.
Sums of squares form a proper cone of the field of rational
functions and do not contain du P
Using Zorn’s lemma, we get a total order on the field of
rational functions with P negative. (?).
A real closed field is a totally ordered field where positive
elements are squares and every polynomial of odd degree
has a root.
Every ordered field has a real closure.
Taking the real closure of the field of rational functions for
the order obtained in (?), we get a field where P takes
nagative value (evaluating at the ”generic point” = point
(X1, . . . ,Xk )).
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Scheme of Artin’s proof

Suppose that P is not a sum of squares of rational
functions.
Sums of squares form a proper cone of the field of rational
functions and do not contain du P
Using Zorn’s lemma, we get a total order on the field of
rational functions with P negative. (?).
Taking the real closure of the field of rational functions for
the order obtained in (?), we get a field where P takes
nagative value (evaluating at the ”generic point” = point
(X1, . . . ,Xk ))
Finally P takes negative values at a real point. First
example of a transfer principle in real algebraic geometry.
Based on Sturm’s theorem, or Hermite’s quadratic form.
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Transfer principle

A statement about elements of R which is true in a real
closed field containing R (such that the real closure of the
field of rational functions on the order chosen in (?)) is true
in R.
Not any statement, a ”statement of the first order logic”.
Example of such a statement

∃x1 . . . ∃xk P(x1, . . . , xk ) < 0

is true in a real closed field containing R if and only if it is
true in R.
Exactly what we need to finish Artin’s proof.
Special case of quantifier elimination.
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Quantifier elimination

What is quantifier elimination ?
High school mathematics.

∃ x ax2 + bx + c = 0,a 6= 0

⇐⇒
b2 − 4ac ≥ 0,a 6= 0

If true in a real closed field containing R, true in R !
True for any formula, resultat of Tarski, uses
generalisations of Sturm’s theorem, or Hermite’s quadratic
form.
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Hermite’s quadratic form

Ni =
∑

x∈Zer(P,C)

µ(x)x i ,

where µ(x) is the multiplicity of x .

Herm(P) =



N0 N1 . . . . . . Np−1

N1 . . . . . . Np−1 Np

. . . . . . Np−1 Np . . .

. . . Np−1 Np . . .

. . . Np−1 Np . . . . . .

Np−1 Np . . . . . . N2p−2
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Hermite’s quadratic form

a 6= 0,P(x) = ax2 + bx + c == a(x − x1)(x − x2)

N0 = x0
1 + x0

2 = 2

N1 = x1 + x2 = −b
a

N2 = x2
1 + x2

2 = (x1 + x2)2 − 2x1x2 =
b2

a2 − 2
c
a

=
b2 − 2ac

a2

Herm(P) =

[
N0 N1
N1 N2

]
=

[
2 −b

a
−b

a
b2−2ac

a2

]

det(Herm(P)) =
b2 − 4ac

a2 =
∆

a2

The signature of Herm(P) is
2 if ∆ > 0 (2 real roots)
1 if ∆ = 0 (1 real root)
0 if ∆ < 0 (no real root)
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Hermite’s quadratic form

Proposition

The signature of Hermite’s quadratic form Herm(P) is the
number of real roots of P.

Indication : conjugate complex roots contribute for a difference
of two squares.
Moreover the signature can be computed within the base field.
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Generailized Hermite’s quadratic form

Ni(P,Q) =
∑

x∈Zer(P,C)

µ(x)Q(x)x i ,

whereµ(x) is the multiplicity of x , Herm(P,Q)i,j = Ni+j−2(P,Q) .

Proposition
The signature of generalized Hermite’s quadratic form
Herm(P,Q) is the Tarski’s query of P and Q :

TaQu(P,Q) =
∑

x |P(x)=0

sign(Q(x))

Indication : conjugate complex roots contribute for a difference
of two squares.
We can then determine thanks to several Tarski queries the
number of roots of P whiere Q > 0 etc ... without approximating
the roots ..

Roy Quantifier elimination versus Hilbert’s 17 th problem



Quantifier elimination

Most quantifier elimination methods eliminate variables
one after the other : projection method.
non-empty sign conditions for P ⊂ K[x1, . . . , xk ] are fixed
by non-empty sign conditions for Proj(P) ⊂ K[x1, . . . , xk−1]

Tarski’s original method purely algebraic (based on Tarskis
data) but primitive recursive. Proj(P) is a list of minors of
generalized Hermite’s quadratic form between products of
elements of P
the projection method can be made more efficient =
elementary recursive
the correctness proof of the classical cylindrical
decomposition (Collins) uses the geometric notion of
connected component
new elementary recursive projection method based only on
algebra, smaller proj(P).
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Tools for elementary quantifier elimination based only
on algebra

Thom’s encoding : a real root x of a univariate polynomial
P is identified by the signs at x of the derivatives of P
sign determination : compute at the roots of P the signs of
the list of polynomials Q1, . . . ,Qs by a quick algorithm
using Tarski data of P and products of ”few” of the Qi ,
sign determination is used to compute Thom’s encodings
”small” proj(P)

gives a quantifier elimination method elementary recursive

Even better complexity using block projection (but not purely
algebraic)
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Scheme of Artin’s proof

Suppose that P is not a sum of squares of rational
functions.
Sums of squares form a proper cone of the field of rational
functions and do not contain du P
Using Zorn’s lemma, we get a total order on the field of
rational functions with P negative. (?).
Taking the real closure of the field of rational functions for
the order obtained in (?), we get a field where P takes
nagative value (evaluating at the ”generic point” = point
(X1, . . . ,Xk ))
Finally P takes negative values at a real point. First
example of a transfer principle in real algebraic geometry.
Based on generalized Hermite’s quadratic form.
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Hilbert’s 17 th problem: what remains to be done

Very indirect proof (by contraposition, uses Zorn, real
closure).
Artin notes that an effective construction is desirable but
difficult.
No indication on the denominators : bounds on the
degrees ?
Effectivity Problem : is there an algorithm deciding whether
a polynomial takes only positive value?
This can be decided by quantifier elimination by a purely
algebraic method and an elementary recursive complexity.
But how to construct the representation as sums of
squares ?
Complexity Problem : what are the best degree bounds on
the derees in the representation ?
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Positivstellensatz (Krivine ’64, Stengle ’74)

Find algebraic identities certifiying that a system of sign
conditions is empty.
In the spirit of Hilbert’s Nullstellensatz.
K a field, C an algebraic closed extension of K,
P1, . . . ,Ps ∈ K[x1, . . . , xk ]
P1 = . . . = Ps = 0 has no solution in Ck

⇐⇒
∃ (A1, . . . ,As) ∈ K[x1, . . . , xk ]s A1P1 + · · ·+ AsPs = 1.
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Quantitative Nullstellensatz

K a field, C an algebraic closed extension of K,
P1, . . . ,Ps ∈ K[x1, . . . , xk ]
P1 = . . . = Ps = 0 has no solution in Ck

⇐⇒
∃ (A1, . . . ,As) ∈ K[x1, . . . , xk ]s A1P1 + · · ·+ AsPs = 1.
What are the degrees of the Ai ?
using resultants (Grete Hermann 1925): doubly
exponential degrees in k
more recently (Brownawell 1987 (analytic methods),...,
Kollar (algebraic methods), ... singly exponential degrees
in k , cannot be improved
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Positivstellensatz

More complicated in the real case
• K an ordered field (to simplify statement :where all the
positives are squares), R a real closed field extension of K,

• P1, . . . ,Ps ∈ K[x1, . . . , xk ], • I 6=, I≥, I= ⊂ {1, . . . , s},

H(x) :


Pi(x) 6= 0 for i ∈ I 6=
Pi(x) ≥ 0 for i ∈ I≥
Pi(x) = 0 for i ∈ I=

no solution in Rk

⇐⇒
∃ S,N,Z with S(x) > 0,N(x) ≥ 0,Z (x) = 0 under the
hypothesis H(x) and

S + N + Z = 0.

This is noted
↓ H ↓
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Incompatibilities

H(x) :


Pi(x) 6= 0 for i ∈ I 6=
Pi(x) ≥ 0 for i ∈ I≥
Pi(x) = 0 for i ∈ I=

↓ H ↓ : S︸︷︷︸ + N︸︷︷︸ + Z︸︷︷︸ = 0

> 0 ≥ 0 = 0

with

S ∈
{∏

i∈I6= P2ei
i

}
← monoid associated to H

N ∈
{∑

I⊂I≥

(∑
j Q2

I,j

)∏
i∈I Pi

}
← cone associated to H

Z ∈ 〈Pi | i ∈ I=〉 ← ideal associated to H
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Degree of an incompatibility

H(x) :


Pi(x) 6= 0 for i ∈ I 6=
Pi(x) ≥ 0 for i ∈ I≥
Pi(x) = 0 for i ∈ I=

↓ H ↓ : S︸︷︷︸ + N︸︷︷︸ + Z︸︷︷︸ = 0

> 0 ≥ 0 = 0

S =
∏
i∈I 6=

P2ei
i , N =

∑
I⊂I≥

(∑
j

Q2
I,j
)∏

i∈I

Pi , Z =
∑
i∈I=

QiPi

the degree of H is the maximum degree of

S =
∏
i∈I 6=

P2ei
i , Q2

I,j

∏
i∈I

Pi (I ⊂ I≥, j), QiPi (i ∈ I=).
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Example of incompatibility

P < 0,P ≥ 0 has no solution in Rk

P 6= 0,−P ≥ 0,P ≥ 0 has no solution in Rk

↓ P 6= 0,−P ≥ 0,P ≥ 0 ↓

P2 + P × (−P) = 0︸︷︷︸ ︸ ︷︷ ︸
> 0 ≥ 0

The degree of this incompatibility is 2 deg(P).
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Positivstellensatz: proofs

Positivstellensatz’s classical proofs are based Zorn’s
lemma and transfer principal , very similar to Artin’s proof
for Hilbert’s 17 th problem.
Constructive proofs use quantifier elimination.
Principle: transform a proof of the fact that a system of sign
conditions is empty, using a quantifier elimination method,
into an incompatibility.
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Positivstellensatz implies Hilbert’s 17 th probleme

P ≥ 0 in Rk ⇐⇒ P(x) < 0 has no solution

⇐⇒
{

P(x) 6= 0
−P(x) ≥ 0

has no solution

⇐⇒
P2e +

∑
i Q2

i − (
∑

j R2
j )P = 0︸︷︷︸ ︸ ︷︷ ︸

> 0 ≥ 0

=⇒ P =
P2e +

∑
i Q2

i∑
j R2

j
=

(P2e +
∑

i Q2
i )(
∑

j R2
j )

(
∑

j R2
j )2

.
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Our strategy

For every empty sign condition, construct an incompatibility
and controll the degree.
Find Hilbert’s 17th problem as a particular case
Using the notions introduced by Lombardi ’90
Key concept: weak inference.
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Weak Inférence

(in the particular case we need)

Definition (weak inference)

F ,G systems of sign conditions K[u] and K[u, t ]. A weak
inference

F(u) ` ∃ t G(u, t)

is a construction which for every system of sign condition H in
K[v ] with v ⊃ u not containing t and every incompatibility

↓ G(u, t), H(v) ↓K[v ,t]

produces an incompatibility

↓ F(u), H(v) ↓K[v ] .

From right to left.

Construction ? an example !
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Example of a weak inference : positive elements are
squares

A(u) ≥ 0 =⇒ ∃t A(u) = t2

A(u) any polynomial in several variables

↓ H,A(u) = t2 ↓ −→
{

H(v)
A(u) = t2 has no solution

↓ ↓

↓ H(v), A(u) ≥ 0 ↓ −→
{

H(v)
A(u) ≥ 0

has no solution

A(u) ≥ 0 ` ∃ t A(u) = t2

From right to left.
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The construction

Start from incompatibility

S +
∑

i

V 2
i (t) · Ni +

∑
j

Wj(t) · Zj + W (t) · (t2 − A) = 0 (1)

Vi1 · t + Vi0 remainder of Vi(t) in the division by t2 − A
Wj1 · t + Wj0 remainder of Wj(t) in the division by t2 − A
there exists W ′(t) ∈ K[v ][t ] such that

S+
∑

i

(Vi1 ·t +Vi0)2 ·Ni +
∑

j

(Wj1 ·t +Wj0)·Zj +W ′(t)·(t2−A) = 0.

which is rewritten in

S+
∑

i

(V 2
i1 ·A+V 2

i0)·Ni +
∑

j

Wj0 ·Zj +W ′′′ ·t +W ′′(t)·(t2−A) = 0.

with W ′′′ ∈ K[v ] and W ′′(t) ∈ K[v ][t ].
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The construction (end)

S+
∑

i

(V 2
i1 ·A+V 2

i0)·Ni +
∑

j

Wj0 ·Zj +W ′′′ ·t +W ′′(t)·(t2−A) = 0.

Examining degrees in t , we obtain W ′′(t) = 0, then W ′′′ = 0
This ends the proof since

S +
∑

i

(V 2
i1 · A + V 2

i0) · Ni +
∑

j

Wj0 · Zj = 0.

is the incompatibility we are looking for.
On we can keep track of the degrees with respect to the
variabbles
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Construction ?

Procedure which makes it possible to construct a new
incompatibility starting from an initial one.
In our example :

Perform euclidean division.
Grouper terms differently.
Deduce that some pieces are zero by degree identification.
Keep track of the degree with respect to various variables.
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List of statements that we need to translate into weak
inferences

Tools from classical algebra to modern computer algebra
a positive polynomial has a real root (axiom)
a real polynomials has a complex root (algebraic proof due
to Laplace)
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List of statements that we need to translate into weak
inferences

a positive polynomial has a real root
a real polynomial has a complex root
the signature of generalized Hermite’s quadratic form is
equal to the Tarski query and can be computed by sign
conditions on principal minors
Sylvester’s inertia law: the signature of a quadratic form is
well defined
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List of statements that we need to translate into weak
inferences

a positive polynomial has a real root
a real polynomial has a complex root
the signature of generalized Hermite’s quadratic form is
equal to the Tarski query and can be computed by sign
conditions on principal minors
Sylvester’s inertia law
non empty sign conditions for a family of polynomials at the
roots of a polynomial determined by the signs of minors of
several generalized Hermite’s quadratic forms (using
Thom’s encoding and sign determination)
finally: non-empty sign conditions for P ⊂ K[x1, . . . , xk ]
deteremined by non empty sign conditions for
proj(P) ⊂ K[x1, . . . , xk−1] : using the elementary recursive
projection method using only algebra
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How to produce the sum of squares?

Suppose tat P takes only positive values. The proof by
quantifier elimination that

P ≥ 0

is transformed, step by step, in the proof of the weak inference

` P ≥ 0.

Which means that is we have an incompatibility of H with
P ≥ 0, we can construct an incompatibility of H

From right to left.
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How to produce the sum of squares?

P < 0, i.e. P 6= 0,−P ≥ 0, is incompatible with P ≥ 0, since

P2 + P × (−P) = 0︸︷︷︸ ︸ ︷︷ ︸
> 0 ≥ 0

This is the incompatibility of the system P ≥ 0,P 6= 0,−P ≥ 0
we are starting from!
So, using the weak inference

` P ≥ 0

we know how to construct an incompatibility of P 6= 0,−P ≥ 0
...

P2e +
∑

i Q2
i − (

∑
j R2

j )P = 0︸︷︷︸ ︸ ︷︷ ︸
> 0 ≥ 0

This is the incompatibility we are looking for !!
We have expressed P as a sum of squares of rational functions
!!!
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Hilbert’s 17 th problem degree bounds

• Kreisel ’57 - Daykin ’61 - Lombardi ’90 - Schmid ’00:
Constructive proofs primitives recursive degree bounds k
and d = deg P.

• Our results ’14: based on purely algebraic and elementary
recursive quantifier elimination elémentary recursive degree
bounds

222d4k

.
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