
Semidefinite Programming

Notes by Bernd Sturmfels
for the lecture on June 26, 2018, in the

IMPRS Ringvorlesung Introduction to Nonlinear Algebra

The transition from linear algebra to nonlinear algebra has a natural counterpart in convex
optimization, namely the transition from linear programming to semidefinite programming.
This transition is the topic of the current lecture. We work over the field R of real numbers.

Linear programming is concerned with the solution of linear systems of inequalities, and
with optimizing linear functions subject to such linear constraints. The feasible region is a
convex polyhedron, and the optimal solutions are given by some face of that polyhedron.

In semidefinite programming we work in the space of symmetric n× n-matrices, denoted
Sym2(Rn). The inequality constraints now stipulate that some linear combination of sym-
metric matrices be positive semidefinite. The feasible region given by such constraints is a
closed convex set, known as a spectrahedron. We again wish to optimize a linear function.

We know from the Spectral Theorem in Linear Algebra that all eigenvalues of a symmetric
matrix A ∈ Sym2(Rn) are real. Moreover, there is an orthonormal basis of Rn consisting of
eigenvectors of A. We say that the matrix A is positive definite if it satisfies the following
conditions. It is a basic fact about quadratic forms that these three conditions are equivalent:

(1) All n eigenvalues of A are positive real numbers.

(2) All 2n principal minors of A are positive real numbers.

(3) Every non-zero column vector u ∈ Rn satisfies uTAu > 0.

Here, by a principal minor we mean the determinant of any square submatrix of A whose
set of column indices agree with its set of row indices. For the empty set, we get the 0 × 0
minor of A, which equals 1. Next there are the n diagonal entries of A, which are the 1× 1
principal minors, and finally the determinant of A, which is the unique n×n principal minor.

Each of the three conditions (1), (2) and (3) behaves as expected when we pass to the
closure. This is not obvious because the closure of an open semialgebraic set {f > 0}, where
f ∈ R[x], is generally smaller than the corresponding closed semialgebraic set {f ≥ 0}.

Example 1. Let f = x3 + x2y + xy2 + y3 − x2 − y2. The set {f > 0} is the open halfplane
above the line x + y = 1 in R2. The closure of the set {f > 0} is the corresponding closed
halfplane. It is properly contained in {f ≥ 0} which also contains the origin (0, 0).

Luckily, no such thing happens with condition (2) for positive definite matrices.
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Theorem 2. For a symmetric n×n matrix A, the following three conditions are equivalent:

(1’) All n eigenvalues of A are nonnegative real numbers.

(2’) All 2n principal minors of A are nonnegative real numbers.

(3’) Every non-zero column vector u ∈ Rn satisfies uTAu ≥ 0.

If this holds then the matrix A is called positive semidefinite. The semialgebraic set PSDn of
all positive semidefinite n×n matrices is a full-dimensional closed convex cone in Sym2(Rn).

We use the notation X � 0 to express that a symmetric matrix X is positive semidefinite.
A spectrahedron S is the intersection of the cone PSDn with an affine-linear subspace L of
the ambient space Sym2(Rn). Hence, spectrahedra are closed convex semialgebraic sets.

A subspace L of symmetric matrices is either given parametrically, or as the solution set
to an inhomogeneous system of linear equations. In the equational representation, we write

L =
{
X ∈ Sym2(Rn) : 〈A1, X〉 = b1, 〈A2, X〉 = b2, . . . , 〈As, X〉 = bs

}
. (1)

Here A1, A2, . . . , As ∈ Sym2(Rn) and b1, b2, . . . , bs ∈ R are fixed, and we employ the usual
inner product in the space of square matrices, which is the trace of the matrix product:

〈A,X〉 := trace(AX) =
n∑
i=1

n∑
j=1

aijxij. (2)

The associated spectrahedron S = L ∩ PSDn consists of all positive semidefinite matrices
that lie in the subspace L. If the subspace is given by a parametric representation, say

L =
{
A0 + x1A1 + · · ·+ xsAs : (x1, . . . , xs) ∈ Rs

}
, (3)

then it is customary to identify the spectrahedron with its preimage in Rs. Hence we write

S =
{

(x1, . . . , xs) ∈ Rs : A0 + x1A1 + · · ·+ xsAs � 0
}
. (4)

Proposition 3. Every convex polyhedron is a spectrahedron. Convex polyhedra are precisely
the spectrahedra that arise when the subspace L consists only of diagonal n× n matrices.

Proof. Suppose that the matrices A0, A1, . . . , As are diagonal matrices. Then (4) is the
solution set in Rs of a system of n inhomogeneous linear inequalities. Such a set is a convex
polyhedron. Every convex polyhedron in Rs has such a representation. We simply write its
defining linear inequalities as the diagonal entries of the matrix A0 + x1A1 + · · ·+ xsAs.

The formula S = L ∩ PSDn with L as in (1) corresponds to the standard representation
of a convex polyhedron, as the set of non-negative points in an affine-linear space. Here the
equations in (1) include those that require the off-diagonal entries of all matrices to be zero:

〈X,Eij〉 = xij = 0 for i 6= j.

In the other inequalities, the matrices Ai are diagonal and the bi are typically nonzero.
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Example 4. Let L be the space of symmetric 3 × 3 matrices whose three diagonal entries
are all equal to 1. This is an affine-linear subspace of dimension s = 3 in Sym2(R3) ' R6.
The spectrahedron S = L ∩ SDP3 is the yellow convex body seen in the first lecture of this
course. To draw this spectrahedron in R3, one uses the representation (4), namely

S =

{
(x, y, z) ∈ R3 :

1 x y
x 1 z
y z 1

 � 0

}
.

The boundary of S consists of all points (x, y, z) where the matrix has determinant zero
and its nonzero eigenvalues are positive. The determinant is a polynomial of degree three in
x, y, z, so the boundary lies in cubic surface in R3. This cubic surface also contains points
where the three eigenvalues are positive, zero and negative. Such points are drawn in red in
our picture in Lecture 1. They lie in the Zariski closure of the yellow boundary points.

We next slice our 3-dimensional spectrahedron to get a picture in the plane.

Example 5. Suppose that L ⊂ Sym2(R3) is a general plane that intersects the cone PSD3.
The spectrahedron S is a planar convex body whose boundary is a smooth cubic curve,
drawn in red in Figure 1. On that boundary, the 3× 3 determinant vanishes and the other
two eigenvalues are positive. For points (x, y) ∈ R2\S, the matrix has at least one negative
eigenvalue. The black curve lie in the Zariski closure of the red curve. It separates points in
R2\S whose remaining two eigenvalues are positive from those with two negative eigenvalues.

Figure 1: A plane curve of degree three (left) and its dual curve of degree six (right). The
red part on the left bounds a spectrahedron while that on the right bounds its convex dual.

To be explicit, suppose that our planar cubic spectrahedron is defined as follows:

S =

{
(x, y) ∈ R3 :

 1 x x+ y
x 1 y

x+ y y 1

 � 0

}
. (5)
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The cubic curve is the locus where the 3× 3 matrix is singular. Its determinant equals

f = 2x2y + 2xy2 − 2x2 − 2xy − 2y2 + 1. (6)

The cubic curve {f = 0} has four connected components in R2, one in red and three in black,
as shown in Figure 1 (left). The convex curve in red is the boundary of the spectrahedron.

The picture on the right in Figure 1 shows the dual curve. This lives in the dual plane
whose points (u, v) represent the lines ` = {(x, y) : ux + vy = 1} in R2. The points in the
dual curve correspond to lines ` that are tangent to the original curve. The dual curve has
degree six, and its equation is computed by the following ideal computation in R[x, y, u, v]:

〈 f(x, y) , u · x+ v · y − 1 , ∂f/∂x · v − ∂f/∂y · u 〉 ∩ R[u, v] =

〈 8u6 − 24u5v + 21u4v2 − 2u3v3 + 21u2v4 − 24uv5 + 8v6 − 24u5 + 60u4v
−24u3v2 − 24u2v3 + 60uv4 − 24v5 + 12u4 − 24u3v + 36u2v2 − 24uv3

+12v4 + 24u3 − 36u2v − 36uv2 + 24v3 − 24u2 + 24uv − 24v2 + 4 〉.

(7)

The black points on the sextic correspond to lines that are tangent at black points of the
cubic, and similarly for the red points. Moreover, the convex set enclosed by the red sextic
on the right in Figure 1 is dual, in the sense of convexity, to the spectahedron on the left.

The polynomials in (??) and (6) have degree three and six respectively, confirming what
was asserted in the caption to Figure 1. A random line L will meet the curve in three (left)
or six (right) complex points. Consider the point on the other side that is dual to L. There
are three (right) or six (left) complex lines through that point that are tangent to the curve.

We now finally come to semidefinite programming (SDP). This refers to the problem of
maximizing or minimizing a linear function over a spectrahedron. Linear programming is
the special case when the spectrahedron consists of diagonal matrices. If the spectrahedron
is given in its standard form representation (1), then we get the SDP in its primal form:

Minimize 〈C,X〉 subject to 〈A1, X〉 = b1, 〈A2, X〉 = b2, . . . , 〈As, X〉 = bs and X � 0. (8)

Here C = (cij) is a matrix that represents the cost function. Every convex optimization
problem has a dual problem. On first glance, it is not so easy to relate that duality to those
for plane curves in Figure 1. The semidefinite problem dual to (7) takes the following form

Maximize bTx =
s∑
i=1

bixi subject to C − x1A1 − x2A2 − · · · − xsAs � 0. (9)

In this formulation, the spectrahedron of all feasible points lives in Rs, similarly to (4).
We refer to either formulation (7) or (8) as a semidefinite program, also abbreviated SDP.

Here the term “program” is simply an old-fashioned way of saying “optimization problem”.
The relationship between the primal and the dual SDP is given by the following theorem:

Theorem 6 (Weak Duality). If x is any feasible solution to (8) and X is any feasible solution
to (7) then bTx ≤ 〈C,X〉. If the equality bTx = 〈C,X〉 holds then both x and X are optimal.
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The term feasible means only that the point x resp. X satisfies the equations and inequal-
ities that are required in (8) resp. (7). The point is optimal if it is feasible and it solves the
program, i.e. it attains the minimum resp. maximum value for that optimization problem.

Proof. The inner product of two positive semidefinite matrices is a non-negative real number:

0 ≤ 〈C −
s∑
i=1

xiAi, X〉 = 〈C,X〉 −
s∑
i=1

xi · 〈Ai, X〉 = 〈C,X〉 − bTx. (10)

This shows that the optimal value of the minimization problem (7) is an upper bound for the
optimal value of the maximization problem (8). If the equality is attained by a pair (X, x)
of feasible solutions then X must be optimal for (7) and x must be optimal for (8).

There is also Strong Duality Theorem which states that, under suitable hypotheses, the
duality gap 〈C,X〉 − bTx must attain the value zero for some feasible pair (X, x). These
hypotheses are always satisfied for diagonal matrices, and we recover the Duality Theorem
for Linear Programming as a special case. Interior point methods for Linear Programming
are numerical algorithms that start at an interior point of the feasible polyhedron and create
a path from that point towards an optimal vertex. The same class of algorithms works for
Semidefinite Programming. These run in polynomial time and are well-behaved in practice.

Semidefinite Programming has a much larger expressive power than Linear Programming.
Many more problems can be phrased as an SDP. We illustrate this with a simple example.

Example 7 (The largest eigenvalue). Let A be a real symmetric n×n matrix, and consider
the problem of computing its largest eigenvalue λmax(A). We would like to solve this without
having to write down the characteristic polynomial and extract its roots. Let C = Id be the
identity matrix and consider the SDP problems (7) and (8) with s = 1 and b = 1. They are

(7’) Minimize trace(X) subject to 〈A,X〉 = 1.

(8’) Maximize x subject to Id− xA � 0.

If x∗ is the common optimal value of these two optimization problems then λmax(A) = 1/x∗.

The inner product 〈A,X〉 = trace(A ·X) of two positive semidefinite matrices A and X
can only be zero when their matrix product A ·X is zero. We record this for our situation:

Lemma 8. If the expression in (9) is zero then (C −
∑s

i=1 xiAi) ·X is the zero matrix.

This lemma allows us to state the following algebraic reformulation of SDP:

Corollary 9. Consider the following system of s linear equations and
(
n+1
2

)
bilinear equations

in the
(
n+1
2

)
+ s unknown coordinates of the pair (X, x):

〈A1, X〉 = b1 , 〈A2, X〉 = b2 , . . . , 〈As, X〉 = bs and (C −
s∑
i=1

xiAi) ·X = 0. (11)

If X � 0 and C −
∑s

i=1 xiAi � 0 holds then X is optimal for (7) and x is optimal for (8).
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The equations (10) are known as the Karush-Kuhn-Tucker (KKT) equations. These play
a major role when one explores semidefinite programming from an algebraic perspective. In
particular, they allow us to study the nature of the optimal solution as function of the data.

A key feature of the KKT system is that the two optimal matrices have complementary
ranks. This follows from the complementary slackness condition on the right of (10):

rank
(
C −

s∑
i=1

xiAi
)

+ rank(X) ≤ n.

In particular, if X is known to be nonzero then the determinant of C −
∑s

i=1 xiAi vanishes.
For instance, for the eigenvalue problem in Example 7, we have (Id − xA) · X = 0 and
〈A,X〉 = 1. This implies det(Id−xA) = 0, so 1/x is a root of the characteristic polynomial.

Example 10. Consider the problem of maximizing a linear function `(x, y) = ux+ vy over
the spectrahedron S in (5). This is the primal SDP (7) with s = 2 and b = (u, v) and

A1 = −

0 1 1
1 0 0
1 0 0

 and A2 = −

0 0 1
0 0 1
1 1 0

 .

The KKT system (10) consists of eight equations in eight unknowns, with two parameters:

2x12+2x13+u = 2x13+2x23+v = 0 and

 1 x x+y
x 1 y

x+y y 1

·
x11 x12 x13
x12 x22 x23
x13 x23 x33

 =

0 0 0
0 0 0
0 0 0

.
By eliminating the variables xij we obtain an ideal I in Q[u, v, x, y] that characterizes the
optimal solution (x∗, y∗) to our SDP as an algebraic function of (u, v). Let `∗ now be a new
unknown, and consider the elimination ideal

(
I + 〈ux+vy−`∗〉

)
∩ Q[u, v, `∗]. Its generator

is a ternary sextic in u, v, `∗. This is precisely the homogenization of the dual sextic in (6).
It expresses the optimal value `∗ as an algebraic function of degree six in the cost (u, v).

This relationship between the dual hypersurface and the optimal value function general-
izes to arbitrary polynomial optimization problems, including semidefinite programs. This
is the content of [1, Theorem 5.23]. We refer to the book [1], and especially Chapter 5, for
further reading on spectrahedra, semidefinite programming, and the relevant duality theory.

A fundamental task in Convex Algebraic Geometry [1] is the computation of the convex
hull of a given algebraic variety or semialgebraic set. Recall that the convex hull of a set
is the small convex set containing the given set. Spectrahedra or their linear projections,
known as spectrahedral shadows, can be used for this task. This matters for optimization
since minimizing a linear function over a set is equivalent to minimizing over its convex hull.

Example 11 (Toeplitz Spectrahedron). The Toeplitz spectrahedron is the convex body

{
(x, y, z) ∈ R3 :

1 x y z
x 1 x y
y x 1 x
z y x 1

 � 0

}
. (12)
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Figure 2: Toeplitz spectrahedron and its dual convex body.

The determinant of the given Toeplitz matrix of size 4× 4 factors as

(x2 + 2xy + y2 − xz − x− z − 1)(x2 − 2xy + y2 − xz + x+ z − 1).

The Toeplitz spectrahedron (11) is the convex hull of the cosine moment curve{(
cos(θ), cos(2θ), cos(3θ)

)
: θ ∈ [0, π]

}
.

The curve and its convex hull are shown on the left in Figure 2. The two endpoints, (x, y, z) =
(1, 1, 1) and (x, y, z) = (−1, 1,−1), correspond to rank 1 matrices. All other points on the
curve have rank 2. To construct the Toeplitz spectrahedron geometrically, we form the cone
from each endpoint over the cosine curve, and we intersect these two quadratic cones. The
two cones intersect along this curve and the line through the endpoints of the cosine curve.

Shown on the right in Figure 2 is the dual convex body. It is the set of trigonometric
polynomials 1+a1 cos(θ)+a2 cos(2θ)+a3 cos(3θ) that are nonnegative on [0, π] . This convex
body is not a spectrahedron because it has a non-exposed edge (cf. [1, Exercise 6.13]).

Semidefinite programming can used to model and solve arbitrary polynomial optimization
problems. The key to this is the representation of nonnegative polynomials in terms of sums
of squares, or, more generally, the Real Nullstellensatz (as seen on May 15). We explain this
for the simplest scenario, namely the problem of unconstrained polynomial optimization.

Let f(x1, . . . , xn) be a polynomial of even degree 2p, and suppose that f attains a minimal
real value f ∗ on Rn. Our goal is to compute f ∗ and a point u∗ ∈ Rn such that f(u∗) = f ∗.
Minimizing a function is equivalent to finding the best possible lower bound λ for that
function. Our goal is therefore equivalent to solving the following optimization problem:

Maximize λ such that f(x)− λ ≥ 0 for all x ∈ Rn. (13)

This is a difficult problem. Instead, we consider the following relaxation:

Maximize λ such that f(x)− λ is a sum of squares in R[x]. (14)
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Here relaxation means that we enlarged the set of feasible solutions. Indeed, every sum
of squares is nonnegative, but not every nonnegative polynomial is a sum of squares of
polynomials. For instance, the Motzkin polynomial x4y2 + x2y4 + 1− 3x2y2 is nonnegative
but it is not a sum of squares of polynomials (as seen on May 15).

For that reason, the optimal value of (13) is always a lower bound for the optimal value
of (12), but the two values can be different in some cases. However, here is the good news:

Proposition 12. The optimization problem (13) is a semidefinite program.

Proof. Let x[p] be the column vector whose entries are all monomials in x1, . . . , xn of degree
≤ p. Thus x[p] has length

(
n+p
n

)
. Let G = (gij) be a symmetric

(
n+p
n

)
×
(
n+p
n

)
matrix with

unknown entries. Then (x[p])T ·G ·x[p] is a polynomial of degree d = 2p in x1, . . . , xn. We set

f(x)− λ = (x[p])T ·G · x[p]. (15)

By collecting coefficients of the x-monomials, this translates into a system of
(
2p+n
n

)
linear

equations in the unknowns gij and λ. The number of unknowns is
((n+p

n )+1

2

)
+ 1.

Suppose the linear system (14) has a solution (G, λ) such that G is positive semidefinite.
Then we can write G = HTH where H is a real matrix with r rows and

(
p+n
n

)
columns.

(This is known as a Cholesky factorization of H.) The polynomial in (14) then equals

f(x)− λ = (Hx[p])T · (Hx[p]). (16)

This is the scalar product of a vector of length r with itself. Hence f(x) − λ is a sum of
squares. Conversely, every representation of f(x) − λ as a sum of squares of polynomials
uses polynomials of degree ≤ p, and it can hence be written in the form as in (15).

Our argument shows that the optimization problem (13) is equivalent to

Maximize λ subject to (G, λ) satisfying the linear equations (15) and G � 0. (17)

This is a semidefinite programming problem, and so the proof is complete.

If n = 1 or d = 2 or (n = 2 and d = 4) then, according to Hilbert, every nonnegative
polynomial is a sum of squares. In those special cases, problems (12) and (16) are equivalent.

Example 13 (n = 1, p = 2, d = 4). Suppose we seek to find the minimum of the degree 4
polynomial f(x) = 3x4+4x3−12x2. Of course, we know how to do this using Calculus. How-
ever, we here present the SDP approach. The linear equations (14) have a one-dimensional
space of solutions. Introducing a parameter µ for that line, the solutions can be written as

f(x)− λ =
(
x2 x 1

) 3 2 µ− 6
2 −2µ 0

µ− 6 0 −λ

x2x
1

 . (18)

Consider the set of all pairs (λ, µ) such that the 3× 3 matrix in (17) is positive semidefinite.
This set is a cubic spectrahedron in the plane R2, just like that shown on the left in (1).
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We seek to maximize λ over all points in that cubic spectrahedron. The optimal point
equals (λ∗, µ∗) = (−32,−2). Substituting this into the matrix in (17) we obtain a positive
definite matrix of rank 2. This can be factored as G = HTH, where H has format 2 × 3.
The resulting representation (15) as a sum of two squares equals

f(x)− λ∗ = f(x) + 32 =
(
(
√

3x− 4√
3

) · (x+ 2)
)2

+
8

3
(x+ 2)2.

The right hand side is nonnegative for all x ∈ R, and it takes the value 0 only when x = −2.

Any polynomial optimization problem can be translated into a relaxation that is a
semidefinite programming problem. If we are minimizing f(x) subject to some polynomial
constraints, then we seek a certificate for f(x)−λ < 0 to have no solution. This certificate is
promised by the Real Nullstellensatz or Postitivstellensatz. If we fix a degree bound then the
existence of a certificate translates into a semidefinite program, and so does the additional
requirement for λ to be minimal. This relaxation may or may not give the correct solution
for some fixed degree bound. However, if one increases the degree bound then the SDP
formulation is more likely to succeed, albeit at the expense of having to solve a much larger
problem. This is a powerful and widely used approach to polynomial optimization, known
as SOS programming. The term Lasserre hierarchy refers to varying the degree bounds.

Every spectrahedron S = L ∩ PSDn has a special point in its relative interior. This
point, defined as the unique matrix in S whose determinant is maximal, is known as analytic
center. Finding the analytic center of S is a convex optimization problem, since the function
X 7→ log det(X) is strictly convex on the cone of positive definite matrices X. The analytic
center is important for semidefinite programming because it serves as the starting point for
interior point methods. Indeed, the central path of an SDP starts at the analytic center and
runs to the optimal face. It is computed by a sequence of numerical approximations.

Example 14. The determinant function takes on all values between 0 and 1 on the spec-
trahedron S in (5). The value 1 is attained only by the identity matrix, for (x, y) = (0, 0).
This point is therefore the analytic center of S.

We close by relating spectrahedra and their analytic centers to statistics. Every positive
definite n×n matrix Σ = (σij) is the covariance matrix of a multivariate normal distribution.
Its inverse Σ−1 is known as the concentration matrix of that distribution.

A Gaussian graphical model is specified by requiring that some off-diagonal entries of
Σ−1 are zero. These entries correspond to the non-edges of the graph. Maximum likelihood
estimation for this graphical model translates into a matrix completion problem. Suppose
that S is the sample covariance matrix of a given data set. We regard S as a partial matrix,
with visible entries only on the diagonal and on the edges of the graph. One considers the
set of all completions of the non-edge entries that make the matrix S positive definite. The
set of all these completions is a spectrahedron. Maximum likelihood estimate for the data S
in the graphical model amounts to maximizing the logarithm of the determinant. We hence
seek to compute the analytic center of the spectrahedron of all completions.
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Example 15 (Positive definite matrix completion). Suppose that the eight entries σij in the
following symmetric 4× 4-matrix are visible, but the entries x and y are unknown:

Σ =


σ11 σ12 x σ14
σ12 σ22 σ23 y
x σ23 σ33 σ34
σ14 y σ34 σ44

 . (19)

This corresponds to the graphical model of the four-cycle 12, 23, 34, 41. Given visible entries
σij, we consider the set of pairs (x, y) that make Σ positive definite. This is the interior of a
planar spectrahedron Sσ bounded by a quartic curve. The MLE is the analytic center of Sσ.

One is also interested in conditions on the σij such that int(Sσ) is non-empty? In other
words, when can we find (x, y) that make Σ positive definite? A necessary condition is that
the four diagonal entries σii and the four visible principal 2× 2-minors are positive:

σ11σ22 > σ2
12 , σ22σ33 > σ2

23 , σ33σ44 > σ2
34 , σ11σ44 > σ2

14. (20)

But this is not sufficient. The true answer is a cone that is bounded by the hypersurface

σ233σ
2
44σ

4
12 − 2σ22σ

2
33σ44σ

2
12σ

2
14 − 2σ11σ33σ

2
44σ

2
12σ

2
23 − 2σ11σ22σ33σ44σ

2
14σ

2
23 + 4σ33σ44σ

2
12σ

2
14σ

2
23

+σ211σ
2
44σ

4
23 + 8σ11σ22σ33σ44σ12σ14σ23σ34 − 4σ33σ44σ

3
12σ14σ23σ34 − 4σ22σ33σ12σ

3
14σ23σ34

+σ222σ
2
33σ

4
14 − 4σ11σ44σ12σ14σ

3
23σ34 − 2σ11σ22σ33σ44σ

2
12σ

2
34 − 2σ11σ

2
22σ33σ

2
14σ

2
34 + 4σ22σ33σ

2
12σ

2
14σ

2
34

−2σ211σ22σ44σ223σ234 + 4σ11σ44σ
2
12σ

2
23σ

2
34 + 4σ11σ22σ

2
14σ

2
23σ

2
34 − 4σ11σ22σ12σ14σ23σ

3
34 + σ211σ

2
22σ

4
34.

This polynomial of degree eight is found by eliminating x and y from the determinant and
its partial derivatives with respect to x and y, after saturating by the ideal of 3× 3-minors.
For more details on this example and its generalizations we refer to [2, Theorem 4.8].

Exercises

1. Prove Theorem 2.

2. Show that a real symmetric matrix G is positive semidefinite if and only if it admits a
Cholesky factorization G = HTH over the real numbers, with H upper triangular.

3. What is the largest eigenvalue of any of the 3× 3 matrices in the set S in (5)?

4. Maximize and minimize the linear function 13x+ 17y + 23z over the spectrahedron S
in Example 4. Use SDP software if you can.

5. Maximize and minimize the linear function 13x+ 17y+ 23z over the Toeplitz spectra-
hedron in Example 11. Use SDP software if you can.

6. Write the dual SDP and solve the KKT system for the previous two problems.

7. Determine the convex body dual to the spectrahedron S in Example 4.
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8. Consider the problem of minimizing the univariate polynomial x6 + 5x3 + 7x2 + x.
Express this problem as a semidefinite program.

9. In the partial matrix (18) set σ11 = σ22 = σ33 = σ44 = 5, σ12 = σ23 = σ34 = 1 and
σ14 = 2. Compute the spectrahedron Sσ, draw a picture, and find the analytic center.

10. Find numerical values for the eight entries σij in (18) that satisfy (19) but int(Sσ) = ∅.
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