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Abstract. This paper gives a survey, with detailed references to the liter-
ature, on recent developments in real algebra and geometry concerning the

polarity between positivity and sums of squares. After a review of founda-

tional material, the topics covered are Positiv- and Nichtnegativstellensätze,
local rings, Pythagoras numbers, and applications to moment problems.

In this paper I will try to give an overview, with detailed references to the
literature, of recent developments, results and research directions in the field of real
algebra and geometry, as far as they are directly related to the concepts mentioned
in the title. Almost everything discussed here (except for the first section) is less
than 15 years old, and much of it less than 10 years. This illustrates the rapid
development of the field in recent years, a fact which may help to excuse that this
article does not do justice to all facets of the subject (see more on this below).

Naturally, new results and techniques build upon established ones. Therefore,
even though this is a report on recent progress, there will often be need to refer to
less recent work. Sect. 1 of this paper is meant to facilitate such references, and
also to give the reader a coherent overview of the more classical parts of the field.
Generally, this section collects fundamental concepts and results which date back
to 1990 and before. (A few more pre-1990 results will be discussed in later sections
as well.) It also serves the purpose of introducing and unifying matters of notation
and definition.

The polarity between positive polynomials and sums of squares of polynomials is
what this survey is all about. After Sect. 1, I decided to divide the main body of the
material into two parts: Positivstellensätze (Sect. 2) and Nichtnegativstellensätze
(Sect. 3), which refer to strict, resp. non-strict, positivity. There is not always a
well-defined borderline between the two, but nevertheless this point of view seems
to be useful for purposes of exposition.

There are two further sections. Sect. 4 is concerned with positivity in the context
of local rings. These results are without doubt interesting enough by themselves.
But an even better justification for including them here is that they have immediate
significance for global questions, in particular via various local-global principles, as
is demonstrated in this paper.

The final part (Sect. 5) deals with applications to moment problems. Since
Schmüdgen’s groundbreaking contribution in 1991, the interplay between algebraic
and analytic methods in this field has proved most fruitful. My account here does
by far not exhaust all important aspects of current work on moment problems, and I
refer to the article [Lt] by Laurent (in this volume) for complementary information.

Speaking about what is not in this text, a major omission is the application of
sums of squares methods to polynomial optimization. Again, I strongly recommend
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to consult Laurent’s article [Lt], together with the literature mentioned there. Other
topics which I have not touched are linear matrix inequality (LMI) representations
of semi-algebraic sets, or positivity and sums of squares in non-commuting variables.
For the first one may consult the recent survey [HMPV]. Summaries of current work
on the non-commutative side are contained in the surveys [HP] and [Sm3]. Both
are recommend as excellent complementary reading to this article.

Throughout, I am not aiming at the greatest possible generality. Original ref-
erences should be consulted for stronger or for more complete versions. Also, the
survey character of this text makes it mostly impossible to include proofs.

A first version of this article was written in 2003 for the web pages of the Eu-
ropean network RAAG. For the present version, many updates have been incorpo-
rated which take into account what has happened in the meantime, but the overall
structure of the original survey has been left unchanged.

Contents:

1. Preliminaries and ‘classical’ results
2. Positivstellensätze

3. Nichtnegativstellensätze

4. Local rings, Pythagoras numbers
5. Applications to moment problems

Bibliography

1. Preliminaries and ‘classical’ results

In this section we introduce basic concepts and review some fundamental ‘clas-
sical’ results (classical roughly meaning from before 1990).

1.1. Hilbert’s Seventeenth Problem. Even though it is generally known so well,
this seems a good point of departure. Hilbert’s occupation with sums of squares
representations of positive polynomials has, in many ways, formed the breeding
ground for what we consider today as modern real algebra, even though significant
elements of real algebra had been in the air well before Hilbert.

A polynomial f ∈ R[x1, . . . , xn] is said to be positive semidefinite (psd for short)
if it has non-negative values on all of Rn. Of course, if f is a sum of squares of
polynomials, then f is psd. If n = 1, then conversely every psd polynomial is a sum
of squares of polynomials, by an elementary argument. For every n ≥ 2, Hilbert
[H1] showed in 1888 that there exist psd polynomials in n variables which cannot
be written as a sum of squares of polynomials. After further reflecting upon the
question, he was able to prove in the case n = 2 that every psd polynomial is a sum
of squares of rational functions [H2] (1893). For more than two variables, however,
he found himself unable to prove this, and included the question as the seventeenth
on his famous list of twenty-three mathematical problems (1900). The question was
later decided in the positive by Artin [A]:

Theorem 1.1.1 (Artin 1927). Let R be a real closed field, and let f be a psd
polynomial in R[x1, . . . , xn]. Then there exists an identity

fh2 = h2
1 + · · ·+ h2

r

where h, h1, . . . , hr ∈ R[x1, . . . , xn] and h 6= 0.

Remarks 1.1.2.
1. Motzkin (1967) was the first to publish an example of a psd polynomial f

which is not a sum of squares of polynomials, namely

f(x1, x2) = 1 + x2
1x

2
2 · (x2

1 + x2
2 − 3).

Although we know many constructions today which produce such examples, there
is still an interest in them. Generally it is considered non-trivial to produce explicit
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examples of psd polynomials which fail to be sums of squares. We refer the reader
to one of the available surveys on Hilbert’s 17th problem and its consequences. In
particular, we recommend the account written by Reznick [Re2] and the references
given there; see also [Re4].

2. The previous remark might suggest that ‘most’ psd polynomials are sums of
squares (sos). But there is more than one answer to the question for the quantitative
relation between psd and sos polynomials. On the one hand, if one fixes the degree,
there are results by Blekherman [Bl] saying that, in a precise quantitative sense,
there exist significantly more psd polynomials than sums of squares. He also gives
asymptotic bounds for the sizes of these sets, showing that the discrepancy grows
with the number of variables. On the other hand, if the degree is kept variable, there
are results showing that sums of squares are ubiquitous among all psd polynomials.
Berg et al. ([BChR] Thm. 9.1) proved that sums of squares are dense among the
polynomials which are non-negative on the unit cube [−1, 1]n, with respect to the l1-
norm of coefficients. A simple explicit version of this result is given by Lasserre and
Netzer in [LN]. Explicit coefficient-wise approximations of globally non-negative
polynomials are given by Lasserre in [La1] and [La2]. Of course, the degrees of the
approximating sums of squares go to infinity in all these results.

1.2. ‘Classical’ Stellensätze. Let R always denote a real closed field. The Stel-
lensätze, to be recalled here, date back to the 1960s and 70s. They can be considered
to be generalizations of Artin’s theorem 1.1.1 while, at the same time, they are re-
finements of this theorem. A common reference is [BCR] ch. 4. (Other accounts of
real algebra proceed directly to the ‘abstract’ versions of Sect. 1.3 below, using the
real spectrum.)

1.2.1. Given a set F of polynomials in R[x1, . . . , xn], we denote the set of common
zeros of the elements of F in Rn by

Z (F ) := {x ∈ Rn : f(x) = 0 for every f ∈ F}.
This is a real algebraic (Zariski closed) subset of Rn. Conversely, given a subset S
of Rn, write

I (S) := {f ∈ R[x1, . . . , xn] : f(x) = 0 for every x ∈ S}
for the vanishing ideal of S. So Z (I (S)) is the Zariski closure of S in Rn. On the
other hand, if F is a subset of R[x1, . . . , xn], the ideal I (Z (F )) (of polynomials
which vanish on the real zero set of F ) is described by (the ‘geometric’, or ‘strong’,
version of) the real Nullstellensatz:1

Proposition 1.2.2 (Real Nullstellensatz, geometric version). Let I be an ideal of
R[x1, . . . , xn] and let f ∈ R[x1, . . . , xn]. Then f ∈ I (Z (I)) if and only if there is
an identity

f2N + g2
1 + · · ·+ g2

r ∈ I

in which N , r ≥ 0 and g1, . . . , gr ∈ R[x1, . . . , xn].

This was first proved by Krivine (1964), and later found again independently by
Dubois (1969) and Risler (1970). The ideal I (Z (I)) is the real radical of I, see
1.3.5 below. Note the analogy to the Hilbert Nullstellensatz in classical (complex)
algebraic geometry.

1.2.3. In real algebraic geometry it is not enough to study sets defined by poly-
nomial equations f = 0. Rather, the solution sets of inequalities f ≥ 0 or f > 0
cannot be avoided. Therefore, given a subset F of R[x1, . . . , xn], we write

S (F ) := {x ∈ Rn : f(x) ≥ 0 for every f ∈ F}.

1bearing in mind that Z (F ) = Z (I) where I := (F ) is the ideal generated by F
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This is a closed subset of Rn (in the topology defined by the ordering of R). Here
we are interested in the case where F is finite, so that S (F ) is a basic closed semi-
algebraic set.2 In order to characterize the polynomials which are strictly (resp.
non-strictly) positive on S (F ), one needs to introduce the preordering generated by
F . For the general notion of preorderings see 1.3.6 below. Here, if F = {f1, . . . , fr},
we define the preordering generated by F to be the subset

PO(f1, . . . , fr) :=
{ ∑

e∈{0,1}r

se fe1
1 · · · fer

r : the se are sums of squares in R[x]
}

of R[x] := R[x1, . . . , xn].
As the name indicates, the Positivstellensatz (resp. Nichtnegativstellensatz) de-

scribes the polynomials which are strictly (resp. non-strictly) positive on the set
S (f1, . . . , fr):

Proposition 1.2.4. Let f1, . . . , fr ∈ R[x1, . . . , xn]. Put K = S (f1, . . . , fr), and
let T = PO(f1, . . . , fr) be the preordering generated by the fi. Let f ∈ R[x1, . . . , xn].

(a) (Positivstellensatz, geometric version) f > 0 on K iff there is an identity
sf = 1 + t with s, t ∈ T .

(b) (Nichtnegativstellensatz, geometric version) f ≥ 0 on K iff there is an
identity sf = f2N + t with N ≥ 0 and s, t ∈ T .

Remarks 1.2.5.
1. In 1964, Krivine [Kr] proved essentially the real spectrum version of (a) for

arbitrary rings (see 1.3.9 below), and could have deduced the geometric formulations
1.2.4 above. These were first proved by Stengle in 1974 [St1], who was unaware of
Krivine’s work. In each of the three Stellensätze 1.2.2 and 1.2.4, the ‘if’ part of
the statement is trivial, whereas the ‘only if’ part requires work. The upshot of
each of the Stellensätze is, therefore, that for any sign condition satisfied by f |K ,
there exists an explicit certificate (in the form of an identity) which makes this sign
condition obvious.

2. In terminology introduced further below (1.3.11), the Nichtnegativstellensatz
describes the saturated preordering generated by F .

3. In 1.2.4(b), note that the identity sf = f2N + t implies Z (s) ∩K ⊂ Z (f).
4. The particular case r = 1, f1 = 1 of 1.2.4(b) gives again the solution of

Hilbert’s 17th problem (Theorem 1.1.1), after multiplying the identity sf = f2N +t
with s. Using the previous remark, one gets actually a strengthening of Artin’s
theorem, to the effect that Z (h) ⊂ Z (f) can be achieved in 1.1.1.

5. The three Stellensätze 1.2.4 and 1.2.2 can be combined into a single one, the
general (geometric) real Stellensatz. See [BCR] Thm. 4.4.2, [S] p. 94, or 1.3.10
below.

1.2.6. The proofs of the real Nullstellensatz 1.2.2 and of the Stellensätze 1.2.4 do
not give a clue on complexity or effectiveness questions. These issues are not yet well
understood. Suppose, for example, that f1, . . . , fr are polynomials in R[x1, . . . , xn]
with S (f1, . . . , fr) = ∅. By 1.2.4(b) there are sums of squares of polynomials se

(e ∈ {0, 1}r) such that 1 +
∑

e sef
e1
1 · · · fer

r = 0. Can one give a bound d such that
there exist necessarily such se with deg(se) ≤ d?

It is not hard to see (fixing n, r and the deg(fi)) that such a bound d must
exist. But to find one explicitly is much more difficult. Lombardi and Roy have
announced around 1993 that there is a bound which is five-fold exponential in n
and in the degrees of the fi. It seems that this has never been published. Schmid

2If F is an arbitrary infinite set, it is generally more reasonable to look at XF , the real spectrum
counterpart of S (F ) (1.3.7).
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([Sd], 1998) has proved related results on the complexity of Hilbert’s 17th problem
(1.1.1) and the real Nullstellensatz. For 1.1.1, he has established a bound for the
deg(hi) which is n-fold exponential in deg(f).

Both the high complexity and the uncertainty about its precise magnitude are
in sharp contrast with the very precise results on the complexity of the classical
Hilbert Nullstellensatz (see [Ko]).

1.3. Orderings and preorderings of rings. To proceed further, we have to
follow a more abstract approach now. All rings will be assumed to be commutative
and to have a unit. The Zariski spectrum of A, denoted Spec A, is the set of all
prime ideals of A, equipped with the Zariski topology. Unless mentioned otherwise,
A is an arbitrary ring now.

1.3.1. We briefly recall a few basic notions of real algebra (see any of [BCR], [KS]
or [PD] for more details). Let A be a ring. The real spectrum of A, denoted SperA,
is the set consisting of all pairs α = (p, ω) where p ∈ Spec A and ω is an ordering
of the residue field of p. The prime ideal p is called the support of α, written
p = supp(α). A prime ideal of A is called real if it supports an element of SperA,
i. e., if its residue field can be ordered.

For f ∈ A and α = (p, ω) ∈ Sper A, the notation ‘f(α) ≥ 0’ (resp., ‘f(α) > 0’)
indicates that the residue class f mod p is non-negative (resp., positive) with respect
to ω. The Harrison topology on SperA is defined to have the collection of sets

U(f) := {α ∈ Sper A : f(α) > 0}
(f ∈ A) as a subbasis of open sets. The support map supp: Sper A → Spec A
is continuous. A subset of SperA is called constructible if it is a finite boolean
combination of sets U(f), f ∈ A, that is, if it can be described by imposing sign
conditions on finitely many elements of A.

1.3.2. A convenient alternative description of the real spectrum is by orderings. By
a subsemiring of A we mean a subset P ⊂ A containing 0, 1 and satisfying P+P ⊂ P
and PP ⊂ P . An ordering3 of A is a subsemiring P of A which satisfies P ∪(−P ) =
A and a2 ∈ P for every a ∈ A, such that in addition supp(P ) := P ∩ (−P ) is a
prime ideal of A. The elements of SperA are in bijective correspondence with
the set of all orderings P of A, the ordering corresponding to α ∈ Sper A being
Pα := {f ∈ A : f(α) ≥ 0}. Therefore, the real spectrum of A is often defined
through orderings.

1.3.3. If R[x] = R[x1, . . . , xn] is the polynomial ring over a real closed field, one
can naturally identify Rn with a subset of SperR[x], by making a point a ∈ Rn

correspond to the ordering Pa := {f ∈ R[x] : f(a) ≥ 0} of R[x]. The map a 7→ Pa is
in fact a topological embedding Rn ↪→ Sper R[x]. As a consequence of the celebrated
Artin–Lang theorem (see [BCR] 4.1 or [KS] II.11, for example), every non-empty
constructible set in SperR[x] contains a point of Rn. Therefore,

K 7→ K ∩Rn

is a bijection between the constructible subsets K of Sper R[x] and the semi-
algebraic subsets S of Rn. The inverse bijection is traditionally denoted by the
‘operator tilda’, S 7→ S̃. Thus, S̃ is the unique constructible subset of SperR[x]
with S̃ ∩Rn = S.

1.3.4. Back to arbitrary rings A. Given an ideal I of A, the real radical
re√

I of I
is defined to be the intersection of all real prime ideals of A which contain I. The
real radical is described by the weak real Nullstellensatz, due to Stengle (1974):

3also called a prime (positive) cone
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Proposition 1.3.5 (Weak (or abstract) real Nullstellensatz). Let I be an ideal of
A, let ΣA2 be the set of all sums of squares of elements of A. Then

re√
I =

{
f ∈ A : ∃N ≥ 0 ∃ s ∈ ΣA2 f2N + s ∈ I

}
.

Thus, f ∈ A lies in the real radical of I if and only if −f2N is a sum of squares
modulo I, for some N ≥ 0. For a proof see [St1], [BCR] 4.1.7, [KS] p. 105, or [PD]
4.2.5.

1.3.6. A subsemiring T of A is called a preordering of A if a2 ∈ T for every a ∈ A.
The preordering T is called proper if −1 /∈ T .4 Every preordering of A contains
ΣA2, the set of all sums of squares of A, and ΣA2 is the smallest preordering of A.
Any intersection of preorderings is again a preordering. Therefore it is clear what
is meant by the preordering generated by a subset F of A. It is denoted by PO(F )
or POA(F ), and consists of all finite sums of products

a2f1 · · · fm

where a ∈ A, m ≥ 0 and f1, . . . , fm ∈ F . If F = {f1, . . . , fr} is finite, one also
writes PO(f1, . . . , fr) := PO(F ). A preordering is called finitely generated if it can
be generated by finitely many elements.

1.3.7. Let F be any subset of A. With F one associates the closed subset

XF = XF (A) := {α ∈ Sper A : f(α) ≥ 0 for every f ∈ F}
= {P ∈ Sper A : F ⊂ P}

of SperA.5 If T = PO(F ) is the preordering generated by F then clearly XF =
XT . Note that if A = R[x1, . . . , xn] and the set F = {f1, . . . , fr} is finite, then

XF = S̃ (F ), the constructible subset of SperR[x1, . . . , xn] associated with the
semi-algebraic set S (F ) = {x : f1(x) ≥ 0, . . . , fr(x) ≥ 0} in Rn (see 1.3.3).

The next result is easy to prove, but of central importance:

Proposition 1.3.8. If T is a preordering of A and XT = ∅, then −1 ∈ T .

By a Zorn’s lemma argument, proving Proposition 1.3.8 means to show that every
maximal proper preordering is an ordering. The argument for this is elementary
(see, e. g., [KS] p. 141). Note however that the proof of 1.3.8 is a pure existence
proof. It does not give any hint how to find a concrete representation of −1 as an
element of T (c. f. also 1.2.6).

From Proposition 1.3.8 one can immediately derive the following ‘abstract’ ver-
sions of the various Stellensätze 1.2.2 and 1.2.4:

Corollary 1.3.9. Let T be a preordering of A, and let f ∈ A.
(a) (Positivstellensatz) f > 0 on XT ⇔ ∃ s, t ∈ T sf = 1 + t.
(b) (Nichtnegativstellensatz) f ≥ 0 on XT ⇔ ∃s, t ∈ T ∃N ≥ 0 sf = f2N +t.
(c) (Nullstellensatz) f ≡ 0 on XT ⇔ ∃N ≥ 0 −f2N ∈ T .

See, e. g., [KS] III §9 or [PD] §4.2. The implications ‘⇐’ are obvious. To prove
‘⇒’, apply 1.3.8 to the preordering T − fT in the case of (a). For (b), work with
the preordering Tf generated by T in the localized ring Af , and apply (a) using
f > 0 on XTf

. To get (c), apply (b) to −f2.
The Positivstellensatz 1.3.9(a) was essentially proved by Krivine [Kr] in 1964.

4In some texts, preorderings are proper by definition. If A contains 1
2
, then T = A is the only

improper preordering in A, according to the identity x =
`

x+1
2

´2 −
`

x−1
2

´2
.

5Here, of course, the second description refers to the description of Sper A as the set of orderings
of A.
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Remarks 1.3.10.
1. We deduced the statements of 1.3.9 from 1.3.8. Conversely, setting f = −1

exhibits 1.3.8 as a particular case of each of the three statements in 1.3.9.
2. The Nullstellensatz 1.3.9(c) also generalizes the weak real Nullstellensatz

1.3.5, as one sees by applying 1.3.9(c) to T = I + ΣA2, where I ⊂ A is an ideal.
3. The geometric versions 1.2.2 and 1.2.4 result immediately from the corre-

sponding abstract versions 1.3.9 via the Artin–Lang density property (1.3.3).
4. The three Stellensätze 1.3.9 can be combined into a single one: Given subsets

F , G, H of A, the subset⋂
f∈F

{α : f(α) = 0} ∩
⋂
g∈G

{α : g(α) ≥ 0} ∩
⋂

h∈H

{α : h(α) > 0}

of SperA is empty if and only if there exists an identity

a + b + c = 0

in which a ∈
∑

f∈F Af (the ideal generated by F ), b ∈ PO(G ∪H), and c lies in
the multiplicative monoid (with unit) generated by H. (Compare [BCR] 4.4.1.)

1.3.11. If X is any subset of SperA, we can associate with X the preordering

P(X) := {f ∈ A : f(α) ≥ 0 for every α ∈ X} =
⋂

P∈X

P

of A. The two operators X and P interact as follows.
A subset of SperA is called pro-basic closed if it has the form XF for some subset

F of A, i. e., if it can be described by a (possibly infinite) conjunction of non-strict
inequalities. Given a subset X of SperA, the set XP(X) is the smallest pro-basic
closed subset of SperA which contains X. On the other hand, a preordering T is
called saturated if it is an intersection of orderings, or equivalently, if it has the form
T = P(Z) for some subset Z of SperA. It is also equivalent that T = P(XT ),
i. e., that T contains every element which is non-negative on XT . Given a subset
F of A, the preordering P(XF ) is the smallest saturated preordering of A which
contains F , and is called the saturation of F , denoted Sat(F ) := P(XF ). If F = T
is itself a preordering, then the Nichtnegativstellensatz 1.3.9(b) tells us that

Sat(T ) =
{
f ∈ A : ∃ s, t ∈ T ∃N ≥ 0 fs = f2N + t

}
.

1.3.12. If A is a field, every preordering T is saturated. For other types of rings,
this is usually far from true. The study of the gap between T and Sat(T ) often leads
to interesting and difficult questions (see, e. g., Sections 3 and 5). As a rule, even if
T is finitely generated, its saturation Sat(T ) won’t usually be. For a basic example
take T0 = ΣA2, the preordering of all sums of squares in A. The saturation of T0

is the preordering

Sat(T0) = P(SperA) =
⋂

P∈Sper A

P =: A+

consisting of all positive semidefinite (or psd) elements of A. To study the gap
between T0 and Sat(T0) means to ask which psd elements of A are sums of squares.
We will say that ‘psd = sos holds in A’ if T0 is saturated, i. e., if every psd element
in A is a sum of squares. As remarked in the beginning, Hilbert proved that this
property fails for all polynomial rings R[x1, . . . , xn] in n ≥ 2 variables.6 However,
there are non-trivial and interesting classes of examples where psd = sos holds, see
Section 3.

6As a matter of fact, the saturation Sat(T0) fails to be finitely generated in these polynomial
rings ([Sch2] Thm. 6.4).
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1.3.13. The relation between the operators X and P described in 1.3.11 can be
summarized by saying that these operators set up a ‘Galois adjunction’ between the
subsets of A and the subsets of SperA.7 The closed objects of this adjunction are
the saturated preorderings of A on the one side and the pro-basic closed subsets
of SperA on the other. Hence X and P restrict to mutually inverse bijections
between these two classes of objects.

1.3.14. A preordering T of A is generating if T − T = A. This property always
holds if 1

2 ∈ A. The support of T is defined as supp(T ) := T ∩ (−T ). If T is
generating, this is an ideal of A (namely the largest ideal contained in T ), and one
has √

supp(T ) =
re√

supp(T ) =
⋂

α∈XT

supp(α).

(The first inclusion ‘⊃’ follows from the weak real Nullstellensatz 1.3.5, the second
‘⊃’ from the more general abstract Nullstellensatz 1.3.9(c). The inclusions ‘⊂’ are
obvious.)

1.4. Modules and semiorderings in rings.

1.4.1. The concept of preorderings has important generalizations in two directions:
Modules and preprimes. We first discuss the latter.

Let k be a (base) ring (usually k = Z, or k = R, a real closed field), and let A
be a k-algebra.8 A subsemiring P of A is called a k-preprime9 of A if a2 ∈ P for
every a ∈ k. The preprime P is said to be generating if P − P = A.

By definition, the preorderings of A are the A-preprimes of A. If k = Z, the
Z-preprimes of A are often just called preprimes. These are just the subsemirings
of A.

Any intersection of k-preprimes is again a k-preprime. The k-preprime generated
by a subset F of A is denoted PPk(F ). The smallest k-preprime in A is the image
of Σk2 in A.

1.4.2. Let P be a preprime of A. A subset M of A is called a P -module if 1 ∈ M ,
M +M ⊂ M and PM ⊂ M hold. If −1 /∈ M then M is called proper. The support
of M is the additive subgroup supp(M) := M ∩ (−M) of A; this is an ideal of A if
P is generating.

Particularly important is the case P = ΣA2. The ΣA2-modules of A are called
the quadratic modules of A. Given a subset F of A, we denote by QM(F ) the
quadratic module generated by F in A. Thus QM(f1, . . . , fr) = ΣA2 + f1 ΣA2 +
· · ·+ fr ΣA2.

Let us assume that 1
2 ∈ A and M is a quadratic module. Then supp(M) is an

ideal of A, and √
supp(M) =

re√
supp(M) ⊂

⋂
α∈XM

supp(α).

This should be compared to 1.3.14. Other than for preorderings, the second inclu-
sion can be strict. In particular, it can happen that −1 /∈ M but XM = ∅. An
example is the quadratic module M = QM(x − 1, y − 1, −xy) in R[x, y].10 How-
ever, equality can be recovered if XM (the set of all orderings which contain M)

7For F ⊂ A and X ⊂ Sper A one has F ⊂ P(X) ⇔ X ⊂ X (F ), and both are equivalent to
F |X ≥ 0. We have P ◦ X ◦ P = P and X ◦ P ◦ X = X . The operators F 7→ P ◦ X (F ) and

X 7→ X ◦ P(X) are closure operators: The first sends F to the saturated preordering generated
by F , the second sends X to the pro-basic closed subset generated by X.

8So A is a ring together with a fixed ring homomorphismus k → A. Usually one can think of

k as being a subring of A.
9the term preprime goes back to Harrison
10One uses valuation theory to show −1 /∈ M . See also [PD] exerc. 5.5.7.
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is replaced by the larger set YM of all semiorderings which contain M , as we shall
explain now.

1.4.3. Semiorderings are objects that relate to quadratic modules in the same way
as orderings relate to preorderings. A semiordering of a ring A is a quadratic
module S of A with S ∪ (−S) = A, for which the ideal supp(S) is prime (and
necessarily real).

Every ordering is a semiordering. With respect to a fixed semiordering S, every
f ∈ A has a unique sign in {−1, 0, 1}, as for orderings. However, this sign fails to
be multiplicative with respect to f , unless S is an ordering.

Given any subset F of A, we write

YF :=
{
S : S is a semiordering of A with F ⊂ S

}
for the semiorderings analogue of XF . The following is the analogue of Proposition
1.3.8:

Proposition 1.4.4. If M is a quadratic module in A and YM = ∅, then −1 ∈ M .

An equivalent formulation is that every maximal proper quadratic module is
a semiordering. See, e. g., [PD] p. 114 for the proof. One can derive abstract
Stellensätze from 1.4.4 in exactly the same way as 1.3.9 was obtained from 1.3.8.
They apply to quadratic modules and refer to semiorderings, instead of orderings:

Corollary 1.4.5. Let M be a quadratic module of A, and let f ∈ A.
(a) (Positivstellensatz) f > 0 on YM ⇔ ∃ s ∈ ΣA2 ∃m ∈ M fs = 1 + m.
(b) (Nichtnegativstellensatz) f ≥ 0 on YM ⇔ ∃ s ∈ ΣA2 ∃m ∈ M ∃N ≥ 0

fs = f2N + m.
(c) (Nullstellensatz) f ≡ 0 on YM ⇔ ∃N ≥ 0 −f2N ∈ M .

(Reference for (a): [PD] 5.1.10.) The question arises how to decide in a concrete
situation whether f |YM

> 0 holds. We will give an answer below (1.4.11).

Remarks 1.4.6.
1. Nullstellensatz 1.4.5(c) says

√
supp(M) =

⋂
β∈YM

supp(β).
2. If the quadratic module M is archimedean (see 1.5.2 below), then every max-

imal element in YM is an ordering, and not just a semiordering ([PD] 5.3.5). For
archimedean M , therefore, one can replace YM by XM in 1.4.4 and in 1.4.5(a).

3. Given a quadratic module M and g ∈ A, let M(g) = M + g · ΣA2, the
quadratic module generated by M and g. The Positivstellensatz 1.4.5(a) can be
rephrased as

f > 0 on YM ⇔ −1 ∈ M(−f).
The right hand condition says that the quadratic module M(−f) is improper.

1.4.7. It is an important fact that (im-) properness of quadratic modules is a
condition that can be ‘localized’. This uses quadratic form theory. If k is a field
(with char(k) 6= 2), then by a quadratic form over k we always mean a nonsingular
quadratic form in finitely many variables. If a1, . . . , an ∈ k∗, then <a1, . . . , an>
denotes the ‘diagonal’ quadratic form a1x

2
1 + · · ·+ anx2

n (in n variables) over k. A
quadratic form q = q(x1, . . . , xn) over k is said to be isotropic if there is 0 6= w ∈ kn

with q(w) = 0, that is, if q represents zero non-trivially. The form q is called
weakly isotropic if there are finitely many non-zero vectors w1, . . . , wN ∈ kn with
q(w1) + · · ·+ q(wN ) = 0.

If q is weakly isotropic, then clearly q is indefinite with respect to every ordering
of k. The converse is not true in general, but it becomes true if orderings are
replaced by semiorderings. In other words, q is weakly isotropic iff q is indefinite
with respect to every semiordering of k ([PD] Lemma 6.1.1).
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We are now going to explain how the properness condition for quadratic modules
of a ring A can be localized. To begin with, one has the following reduction to the
residue fields:

Lemma 1.4.8. Let M = QM(g1, . . . , gm), a finitely generated quadratic module of
A. Then −1 ∈ M if and only if for every real prime ideal p of A, the quadratic
form <1, g1, . . . , gm>∗ over the residue field κ(p) of p is weakly isotropic.

Here we keep writing gi (instead of gi) for the residue class of gi in κ(p). The
notation <1, g1, . . . , gm>∗ means that those entries gi which are zero in κ(p) (i. e.,
lie in p) should be left away. The proof of the non-trivial implication in 1.4.8 is
easy using 1.4.4.

The condition in Lemma 1.4.8 can be localized even further. This is the con-
tent of an important local-global principle for weak isotropy of quadratic forms
over fields, due to Bröcker and Prestel. The ‘local objects’ for this principle are
the henselizations of the field with respect to certain (Krull) valuations. For this
exposition we prefer a technically simpler formulation which avoids the notion of
henselization:

Theorem 1.4.9 (Bröcker, Prestel, 1974). Let q be a quadratic form over a field
k with char(k) 6= 2. Then q is weakly isotropic if and only if the following two
conditions hold:

(1) q is indefinite with respect to every ordering of k;
(2) for every valuation v of k with real residue field κ for which q has at least

two residue forms with respect to v, at least one of these residue forms is
weakly isotropic (over κ).

1.4.10. For the proof see [Br] and [Pr], or [Scha] 3.7.12. We briefly explain the
notion of residue forms that was used in the statement of 1.4.9 (see [Scha] for more
details). Let v : k∗ → Γ be a (Krull) valuation of k, where Γ is an ordered abelian
group, written additively. Given a quadratic form q over k, one can diagonalize q
in the form

q ∼=
r⊕

i=1

ci <ui1, . . . , uini
>

with r, ni ≥ 1 and ci, uij ∈ k∗, such that v(uij) = 0 for all i and j (that is, the
uij are v-units), and such that v(ci) 6≡ v(cj) (mod 2Γ) for i 6= j. The r quadratic
forms

qi := <ui1, . . . , uini>

(i = 1, . . . , r) over the residue field κ of v are called the residue forms of q (with
respect to v).

Although these residue forms may depend on the chosen diagonalization, the
question whether or not one of them is weakly isotropic does not.

1.4.11. Let M = QM(f1, . . . , fr) be a finitely generated quadratic module. Given
f ∈ A, the local-global principle for weak isotropy can be used to decide whether
f > 0 on YM . Indeed, this holds if and only if the form <1,−f, f1, . . . , fr>

∗ is
weakly isotropic in κ(p) for every real prime ideal p of A (by 1.4.6.3 and 1.4.8). And
the local-global principle 1.4.9 allows to reformulate the last condition. (Compare
[PD] Th. 6.2.1.)

Applications of these ideas will be given in 2.3 below.
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1.4.12. The relations between the various concepts discussed so far are symbolically
displayed in the following picture: {

modules over
preprimes

}
ppppppppppp

NNNNNNNNNNN

{
quadratic
modules

}
ooooooooooo

OOOOOOOOOOO

{
preprimes

}
ooooooooooo

{
semiorderings

}
OOOOOOOOOOO

{
preorderings

}
ooooooooooo

{
orderings

}
1.5. The Representation Theorem. The Axiom of Archimedes says that for
any two positive real numbers a and b there exists a natural number n such that
na > b. This is a fundamental property which turns out to be of great importance
in more abstract and general settings.

1.5.1. Given an ordered field (K,≤) and a subring k of K, recall that K is said to
be (relatively) archimedean over k (with respect to ≤) if for every x ∈ K there exists
a ∈ k with ±x ≤ a. The ordered field (K,≤) is called (absolutely) archimedean if it
is relatively archimedean over Z. A classical (elementary) result of Hölder says that
every archimedean ordered field has a unique order-compatible embedding into R,
the field of real numbers.

Generalizing this, let now k be any ring and let A be a k-algebra. A subset X
of SperA is bounded over k if, for every a ∈ A, there is b ∈ k with |a| ≤ b on X.
Assuming that X is closed in SperA, one proves easily that X is bounded over k iff
the ordered residue field of every closed point of X is relatively archimedean over
(the image of) k ([KS] III.11).

1.5.2. Let k be a ring, A a k-algebra and M a module over some preprime of A.
(a) M is called archimedean over k if for every a ∈ A there exists b ∈ k with

b± a ∈ M .
(b) M is called weakly archimedean over k if for every a ∈ A there exists b ∈ k

with b± a ≥ 0 on XM .
The most important case is k = Z. Then one simply says archimedean, instead of
archimedean over Z, and similarly for weakly archimedean.

Obviously, archimedean implies weakly archimedean. By definition, the module
M is weakly archimedean over k iff the pro-basic closed set XM is bounded over k, iff
the saturated preordering Sat(M) is archimedean over k. So the weak archimedean
property of M depends only on the set XM . In contrast, the archimedean property
of M is stronger and much more subtle. It depends not only on the set XM , but
also on the ‘inequalities’ used for its definition, that is, on the module M .

If A = R[x1, . . . , xn] and M is a module in A for which the subset XM of R̃n =
Sper A is constructible (for example, M could be a finitely generated quadratic
module), say XM = K̃ where K is a semi-algebraic subset of Rn, then M is weakly
archimedean (over Z) if and only if the set K is compact. In general, the weak
archimedean property should be thought of as an abstract kind of compactness
property of XM .

1.5.3. Assume that A is generated by x1, . . . , xn as a k-algebra. Then it is obvious
that a module M in A is weakly archimedean over k iff there is a ∈ k with

∑n
i=1 x2

i ≤
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a on XM . Criteria for the archimedean property are somewhat more subtle. For
simplicity assume 1

2 ∈ k. If P is a k-preprime in A, then P is archimedean over k
iff there is ai ∈ k with ai ± xi ∈ P , for i = 1, . . . , n. If M is a quadratic module,
then M is archimedean over k iff a−

∑
i x2

i ∈ M for some a ∈ k. (Compare [BW1],
Lemmas 1 and 2.)

1.5.4. By (SperA)max we denote the set of closed points of SperA. Considered
as a topological subspace of SperA, (Sper A)max is a compact (Hausdorff) space
([KS] p. 126). More generally, if X is any closed subset of Sper A, we denote by
Xmax = X ∩ (SperA)max the space of closed points of X.

On the other hand, let us regard Hom(A, R) (the set of ring homomorphisms
A → R) as a closed subset of the direct product space RA =

∏
A R. Then naturally

Hom(A, R) ⊂ (SperA)max. This inclusion respects the topologies, and it identifies
Hom(A, R) with the set of orderings of A whose ordered residue field is archimedean.
For any closed subset X of Sper A, it follows that X is bounded over Z if and
only if X ∩ Hom(A, R) is compact (as a subset of Hom(A, R)), if and only if X ∩
Hom(A, R) = Xmax.

1.5.5. Let now X ⊂ Sper A be a closed subset that is bounded over Z. As just
remarked, to every α ∈ Xmax = X ∩ Hom(A, R) corresponds a unique ring homo-
morphism ρα : A → R which induces the ordering α on A. In this way, every f ∈ A
defines a function

ΦX(f) : Xmax → R, α 7→ ρα(f),

and ΦX(f) is clearly continuous. We thus have a representation

ΦX : A → C(Xmax, R) (1)

of A by continuous functions on the compact topological space Xmax. Note that
ΦX(f) ≥ 0 iff (1 + nf)|X ≥ 0 for every n ∈ N. From the Stone–Weierstraß
approximation theorem one concludes:

Proposition 1.5.6. Let A be a ring containing 1
q for some q ∈ N, q > 1, and let X

be a closed subset of Sper A that is bounded over Z. Then every continuous function
Xmax → R can be uniformly approximated by elements of A (via the representation
ΦX). �

1.5.7. The celebrated Representation Theorem, to be discussed next, has been
discovered and improved by many mathematicians over the years. The history of
its genesis is a complicated one. An ur-version is due to M. Stone (1940). Later
it was generalized by Kadison (1951) and Dubois (1967). Independently, Krivine
found essentially the full version discussed here in 1964. A purely algebraic proof
was given by Becker and Schwartz in 1983 [BS]. There, as in many other places of
the literature, the result goes under the name ‘Kadison–Dubois theorem’. We refer
to [PD] 5.6 for a more detailed historical account.

Let M be a module over some preprime of A. We want to study representation
(1) for the (pro-basic) closed set XM . So we have to assume that M is weakly
archimedean (over Z). As explained in 1.5.4, this means that the set

XM :=
{
α ∈ Hom(A, R) : α|M ≥ 0

}
is compact and equal to X max

M .
The Representation Theorem characterizes the elements f ∈ A for which ΦXM

(f)
is non-negative, or strictly positive, via identities involving elements of M . So it can
be considered to be a Nichtnegativ- or a Positivstellensatz. However, this theorem
requires the archimedean, and not just the weak archimedean property:
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Theorem 1.5.8 (Representation Theorem, 1st version). Let A be a ring, and let
M be a module over an archimedean preprime P of A. For every f ∈ A we have:

f ≥ 0 on XM = X max
M ⇔ ∀ n ∈ N ∃m ∈ N m(1 + nf) ∈ M.

If P contains 1
q for some integer q > 1, it is also equivalent that 1 + nf ∈ M for

every n ∈ N.

Note that it is the preprime P that is required to be archimedean. The archi-
medean property for the module M alone is not enough. However, there is an
important case in which the archimedean property of M suffices for the conclusion,
namely when M is a quadratic module. This is a more recent result and will be
discussed in 2.3 below.

Note also that the set {f ∈ A : f ≥ 0 on XM} described by 1.5.8 can be viewed
as kind of a bi-dual of the cone M .

While ‘⇐’ in 1.5.8 is trivial, the converse is not obvious at all, even though the
proof is not too hard. This converse is essentially equivalent to the ‘⇒’ implications
in

Theorem 1.5.9 (Representation Theorem, 2nd version). Let A be a ring, let M
be a module over an archimedean preprime P of A, and let f ∈ A.

(a) f > 0 on XM ⇔ ∃ n ∈ N nf ∈ 1 + M .
(b) If P contains 1

q for some 1 < q ∈ N, then

f > 0 on XM ⇔ ∃ r ∈ N f ∈ q−r + M.

In case (b), in particular, every f ∈ A with f > 0 on XM is contained in M .

For both versions, note that 1
q ∈ P is automatic if P is a k-preprime and 1

q ∈ k.
We refer to [BS] for the proof of 1.5.8 and 1.5.9. See also [PD] for the case M = P
(5.2.6 for preorderings and 5.4.4 for preprimes).

Version 1.5.9 exhibits the Representation Theorem as a Positivstellensatz. One
should compare it to the general Positivstellensatz 1.3.9(a) for preorderings. The
latter gives, for every f ∈ A with f > 0 on XM , a representation of f (in terms
of M) with denominator. Of course, this result does not require any archimedean
property. In contrast, the Representation Theorem (at least in its version 1.5.9(b))
gives a denominator-free representation, and it requires the archimedean hypothe-
sis.

As a corollary one gets the following characterization of archimedean preprimes:

Corollary 1.5.10. Let A be a ring, and let P be a preprime of A with 1
q ∈ P for

some q > 1. The following conditions are equivalent:
(i) P is archimedean;
(ii) P is weakly archimedean and contains every f ∈ A with f > 0 on XP .

Of course, in most applications of geometric origin, one will have 1
q ∈ P for all

q ∈ N. It may nevertheless be worthwile to record the more general case as well,
with applications to arithmetic situations in mind.

2. Positivstellensätze

We now start reviewing results which are more recent. The common feature of
much of what is assembled in this section is that these results give denominator-
free expressions for strictly positive functions, usually in terms of weighted sums
of squares. A good part can be regarded as applications of the Representation
Theorem (Section 1.5). For the sake of concreteness, we will often (but not always)
state results in geometric form (polynomials, semi-algebraic sets etc. over the reals),
even when more abstract versions are available.
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2.0. We will have to speak of affine algebraic varieties (over the reals). For this, the
language used in some of the textbooks on real algebraic geometry is not always
suitable. Instead, we prefer to use what has long become standard in algebraic
geometry, the Grothendieck language of schemes. It will be needed only in its most
basic form: Given a field k, by an affine k-variety we mean an affine k-scheme V
of finite type. This means V = Spec A where A is a finitely generated k-algebra
(not necessarily a domain, not even necessarily reduced). One writes A =: k[V ],
and calls the elements of k[V ] the regular functions on V . Thus, in this text, an
affine k-variety is usually neither irreducible nor reduced.

Given any field extension E/k, one writes V (E) := Homk(k[V ], E). This is the
set of E-rational points of V . If k[V ] is generated by a1, . . . , an as a k-algebra, and
if the kernel of the k-homomorphism

k[x1, . . . , xn] → k[V ], xi 7→ ai (i = 1, . . . , n)

is generated by f1, . . . , fm as an ideal, we may identify V (E) with the (‘k-algebraic’)
subset {x ∈ En : f1(x) = · · · = fm(x) = 0} of En. In particular, if E = R is a
real closed field, we have a natural (order) topology on V (R), and have a natural
notion of semi-algebraic subsets of V (R). Neither of them depends on the choice
of the generators a1, . . . , an of k[V ].

Recall that a subset K of V (R) is called basic closed if there are f1, . . . , fr ∈ R[V ]
with K = S (f1, . . . , fr) = {x ∈ V (R) : fi(x) ≥ 0, i = 1, . . . , r}.

2.1. Schmüdgen’s Positivstellensatz. Since its appearance, this result has trig-
gered much activity and stimulated new directions of research, some of which we
shall try to record here. For all of what follows it matters that R is the field of
classical real numbers (or a real closed subfield thereof). Results become false in
general over real closed fields that are non-archimedean.

In 1991, Schmüdgen proved

Theorem 2.1.1 ([Sm1]). Let f1, . . . , fr ∈ R[x1, . . . , xn], and assume that the
semi-algebraic set K = S (f1, . . . , fr) in Rn is compact. Then the preordering
PO(f1, . . . , fr) of R[x1, . . . , xn] contains every polynomial that is strictly positive
on K.

An equivalent formulation is:

Theorem 2.1.2. Let V be an affine R-variety, and assume that the set V (R) of
R-points on V is compact. Then every f ∈ R[V ] that is strictly positive on V (R) is
a sum of squares in R[V ].

Schmüdgen’s primary interest was in analysis rather than real algebra. In his
original paper [Sm1] he deduced 2.1.1 from his solution to the multivariate mo-
ment problem in the compact case (see Theorem 5.4 below). The latter, in turn,
was established by combining the Positivstellensatz 1.2.4 with operator-theoretic
arguments from functional analysis.

For the algebraist, it seems more natural to proceed in a different order. Thanks
to the Representation Theorem 1.5.10, an equivalent way of stating Theorem 2.1.1
is to say that the preordering in question is archimedean (c. f. 1.5.2):

Theorem 2.1.3. Let T be a finitely generated preordering of R[x1, . . . , xn]. Then
T is archimedean if (and only if) the subset S (T ) of Rn is compact.

Around 1996, Wörmann was the first to use this observation for a purely algebraic
proof of 2.1.1, resp. 2.1.3. His proof is simple and elegant, but not obvious, and
can be found in [BW1], or in [PD] Thm. 5.1.17, [Ma] Thm. 4.1.1. In this way,
Schmüdgen’s theorem becomes a (non-obvious!) application of the Representation
Theorem.
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The proof can be applied in a more general setting, leading to the following more
‘abstract’ formulation:

Theorem 2.1.4. Let k be a ring containing 1
2 , let A be a finitely generated k-

algebra, and let T be a preordering of A. Then

T is weakly archimedean over k ⇔ T is archimedean over k.

Moreover, if these equivalent conditions hold, and if the preordering k ∩ T of k is
archimedean, then T is archimedean (over Z). In particular, then, T contains every
f ∈ A with f > 0 on XT .

The second part is obvious (using the Representation Theorem), while the proof
of ‘⇒’ in the first part employs Wörmann’s arguments from [BW1]. See [Ma2]
Thm. 1.1 and [Sch4] Thm. 3.6. A sample application is the following very explicit
characterization of (finitely generated) archimedean preorderings on affine varieties
over totally archimedean fields (like number fields, for example):

Corollary 2.1.5. Let k be a field with only archimedean orderings, and let V be
an affine k-variety. Let T be a finitely generated preordering in k[V ]. For every
ordering P of k, let kP be the real closure of (k, P ), and let KP be the basic closed
semi-algebraic subset of V (kP ) defined by T . Then the following are equivalent:

(i) T is archimedean;
(ii) for every ordering P of k, KP is semi-algebraically compact.11

2.1.6. Yet another approach to the Positivstellensatz 2.1.1, again purely algebraic,
is due to Schweighofer [Sw1]. He reduces the proof to a celebrated classical result
of Pólya (Theorem 2.2.1 below), thereby even making the proof largely algorithmic.
To explain this in more detail, note first that, K being compact, there exists a real
number c > 0 such that K is contained in the open ball of radius c around the
origin. By the Positivstellensatz 1.2.4(a), there exist s, t in T = PO(f1, . . . , fr)
with

s
(
c2 −

∑
i

x2
i

)
= 1 + t. (2)

One may regard identity (2) as an explicit certificate for the compactness of K.
Let now f ∈ R[x1, . . . , xn] be strictly positive on K. Starting from a compactness
certificate (2), Schweighofer effectively constructs a representation

f =
∑

e∈{0,1}r

se · fe1
1 · · · fer

r (3)

of f , where the se are sums of squares. Essentially, he does this by suitably pulling
back a solution to Pólya’s theorem (see 2.2.1 below).

2.1.7. Before we proceed to discuss Pólya’s theorem, we sketch an application
of Schmüdgen’s Positivstellensatz to Hilbert’s 17th problem. Consider a positive
definite form12 f in R[x1, . . . , xn]. From Stengle’s Positivstellensatz 1.2.4(a) it
follows that f is a sum of squares of quotients of forms, where the denominators
are positive definite (see Remark 1.2.5.4). This fact was given a refinement by
Reznick in 1995 [Re1]. He showed that the denominators can be taken uniformly
to be powers of x2

1 + · · · + x2
n. In other words, the form (x2

1 + · · · + x2
n)N · f is a

sum of squares of forms for sufficiently large N .

11semi-algebraically compact means closed and bounded (after some embedding into affine
space)

12i. e., f is homogeneous and strictly positive on Rn outside the origin
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2.1.8. Reznick’s uniform solution for positive definite forms can be considered as
a particular case of 2.1.2. (The original proof in [Re1], however, is very different.)
In fact, 2.1.7 can be generalized as follows. Given any two positive definite forms
f and g in R[x1, . . . , xn] such that deg(g) divides deg(f), there exists N ≥ 1 such
that gN · f is a sum of squares of forms. Indeed, setting r = deg(f)

deg(g) , it suffices to

apply 2.1.2 to the rational function f
gr . This is a strictly positive regular function

on the complement V of the hypersurface g = 0 in Pn−1. The R-variety V is affine,
and V (R) is compact. By 2.1.2, therefore, f

gr is a sum of squares in R[V ]. For a
generalization which goes still further see 2.5.7 below.

2.1.9. In general, the restriction to strictly positive forms in 2.1.7 and 2.1.8 is
necessary: For any n ≥ 4, there exists a positive semidefinite form f in n variables
together with a point 0 6= p ∈ Rn such that, whenever h2f =

∑
i f2

i with forms h
and fi, the form h vanishes in p. Such a point p has been called a bad point for f .
The existence of bad points for suitable forms has long been known (Straus 195613).
Later, Choi-Lam and Delzell proved that bad points do not exist for forms in three
variables ([CL], [De]). A much more recent result is that the uniform denominators
theorem holds even for all non-strictly psd forms in three variables: See 3.3.8 below.

2.2. Pólya’s theorem and preprimes. Pólya’s theorem, proved in 1928, is as
follows:

Theorem 2.2.1. Let f ∈ R[x1, . . . , xn] be a homogeneous polynomial that is strictly
positive on the positive hyperoctant, i. e. that satisfies f(x1, . . . , xn) > 0 whenever
x1, . . . , xn ≥ 0 and xi 6= 0 for at least one i. Then, for sufficiently large N ≥ 1, all
coefficients of the form

(x1 + · · ·+ xn)N · f
are strictly positive.14

Note that, conversely, the conclusion of Theorem 2.2.1 implies the strict positiv-
ity condition for f . So Pólya’s theorem is an example of a Positivstellensatz.

2.2.2. Pólya’s theorem can be considered as a special case of the Representation
Theorem 1.5.9, as shown in [BW1]: Write h = x1 + · · · + xn, and let V be the
complement of the hyperplane h = 0 in projective space Pn−1 over R. Note that V is
an affine R-variety. The R-preprime P := PPR(x1

h , . . . , xn

h ) in R[V ] is archimedean
since

∑
i

xi

h = 1. Letting d = deg(f), f
hd is an element of R[V ] which is strictly

positive on XP by the hypothesis on f . Therefore f
hd ∈ P by 1.5.9. This means

that, for some N ≥ 1, all coefficients of the form hN · f are non-negative. This is a
‘non-strict’ version of 2.2.1, from which it is easy to derive the full statement above.

2.2.3. Quantitative versions of Pólya’s theorem were studied by de Loera and San-
tos [LS]. Their results were improved by Powers and Reznick [PR2], who showed:
Given f =

∑
|α|=d aαxα as in 2.2.1, let λ = minx∈∆ f(x) and L = maxα

α!
d! |aα|.

(Here ∆ = {x :
∑

i xi = 1, xi ≥ 0} is the standard (n − 1)-simplex in Rn, and
d = deg(f).) Then for

N >
d

2
(d− 1)

L

λ
− d,

the form (x1 + · · ·+ xn)N · f has strictly positive coefficients. This bound is sharp
for d = 2.

13according to a remark in [De]
14that is, every monomial of degree N +deg(f) appears in this product with a strictly positive

coefficient.



POSITIVITY AND SUMS OF SQUARES 17

2.2.4. It is an important and difficult problem to give complexity estimates for
Schmüdgen’s Positivstellensatz 2.1.1. Given a polynomial f which is strictly posi-
tive on K, one would like to have both upper and lower bounds for the degrees of
the sums of squares se in a representation (3).

In a basic case (univariate polynomials n = 1, T = PO((1 − x2)3), a complete
complexity analysis was carried out by Stengle [St2]. In the general case, upper
complexity bounds have been given by Schweighofer [Sw3]. They are derived from
his approach 2.1.6, using the bounds in 2.2.3 for Pólya’s theorem.

Another related result is the following theorem by Handelman (1988):

Theorem 2.2.5 ([Ha1]). Let f1, . . . , fr ∈ R[1, . . . , xn] be polynomials of degree one
such that the polytope K := S (f1, . . . , fr) is compact and non-empty. Then the
R-preprime PPR(f1, . . . , fr) contains every polynomial that is strictly positive on
K.

In other words, every polynomial f with f |K > 0 admits a representation f =∑
i ci f i1

1 · · · f ir
r (finite sum) with real numbers ci ≥ 0.

A classical argument, due to Minkowski, shows that the preprime in question is
archimedean. Therefore Handelman’s theorem can be seen as a particular case of
the Representation Theorem 1.5.9 (c.f. also [BW1]). The argument mentioned in
2.2.2 shows also that Handelman’s theorem directly implies Pólya’s theorem. From
the bound in 2.2.3, one can deduce a quantitative version of Handelman’s theorem;
see Powers and Reznick [PR2]. In the particular case where K is a simplex, this is
immediate, whereas the general case is less explicit.

2.3. Quadratic modules.

2.3.1. Let f1, . . . , fr ∈ R[x1, . . . , xn] be such that the semi-algebraic set K =
S (f1, . . . , fr) in Rn is compact. By 2.1.1, every polynomial f with f > 0 on K can
be written

f =
∑

e∈{0,1}r

se fe1
1 · · · fer

r (4)

where the polynomials se are sums of squares.
Putinar raised the question whether all 2r summands in (4) are needed, or

whether one can get by with fewer of them. Specifically, he asked whether f can
always be written

f = s0 + s1f1 + · · ·+ srfr (5)

with sums of squares s0, . . . , sr, i. e., whether f ∈ QM(f1, . . . , fr). He was drawn
to such considerations by operator-theoretic ideas, and it was by such methods that
he proved in 1993 that the answer is positive under suitable hypotheses on the fi:

Theorem 2.3.2 ([Pu] Lemma 4.1). Let M be a finitely generated quadratic module
in R[x1, . . . , xn], and assume that there is g ∈ M for which {x ∈ Rn : g(x) ≥ 0}
is a compact set. Then M contains every polynomial that is strictly positive on
K = S (M).

Theorem 2.3.2 is known as Putinar’s Positivstellensatz. In its light, Putinar’s
question 2.3.1 (in its strong form (5)) can be rephrased as follows: Given a finitely
generated quadratic module M in R[x1, . . . , xn] for which K = S (M) is compact,
does M necessarily contain a polynomial g for which {g ≥ 0} is compact?

This question was subsequently answered in the negative by Jacobi and Prestel.
Unlike Putinar, they worked purely algebraically, but they took up some of Puti-
nar’s ideas. A key step is the following extension of the Representation Theorem
to archimedean quadratic modules, due to Jacobi ([Ja2] Thm. 4):
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Theorem 2.3.3. Let A be a ring containing 1
q for some q > 1, and let M be a

quadratic module in A which is archimedean. Then M contains every f ∈ A with
f > 0 on XM .

2.3.4. In the geometric case (A = R[x1, . . . , xn] and M finitely generated), Jacobi’s
theorem and Putinar’s Positivstellensatz directly imply each other.15 Thus, Jacobi’s
theorem can be considered to be a generalization of Putinar’s theorem to an abstract
setting.

Note that 2.3.3 is the exact analogue of Theorem 1.5.10, for quadratic modules
instead of preprimes. The proof is more complicated than for preprimes (see also
[PD] 5.3.6 or [Ma] 5.1.4) and requires the Positivstellensatz for archimedean qua-
dratic modules 1.4.5(a). The above formulation of 2.3.3 is not the most general
possible; we have assumed 1

q ∈ A for simplicity. Moreover, Jacobi generalizes his
result to archimedean modules over generating preprimes ([Ja2] Thm. 3), which
allows him to prove a ‘higher level’ analogue of 2.3.3 as well (see 2.5.2 below). A
common generalization of Jacobi’s result and the classical Representation Theorem
1.5.9 was found by Marshall [Ma3].

The next criterion, due to Jacobi and Prestel, gives a possible way to decide the
answer to Putinar’s question in concrete cases:

Theorem 2.3.5 ([JP] Thm. 3.2). Let M = QM(f1, . . . , fr) be a finitely generated
quadratic module in R[x1, . . . , xn] such that K = S (M) is compact. The following
conditions are equivalent:

(i) M is archimedean;
(ii) M contains every f ∈ R[x1, . . . , xn] with f > 0 on K;
(iii) there is g ∈ M with {g ≥ 0} compact;
(iv) there is N ∈ Z with N −

∑n
i=1 x2

i ∈ M ;
(v) for every prime ideal p of R[x] and every valuation v of κ(p) with real residue

field and with v(xi) < 0 for at least one index i ∈ {1, . . . , n}, the quadratic
form <1, f1, . . . , fr>

∗ over κ(p) has at least one residue form with respect
to v which is weakly isotropic over κv.

(See Section 1.4 for explanations of the terms occuring in (v).) The equivalence
of (i)–(iv) is Putinar’s theorem 2.3.2, but the algebraic condition (v) is new. The
proof of (v) ⇒ (i) uses 1.4.11 together with the fact that if every S ∈ YM is
archimedean, then M is archimedean. (See also [PD] Thm. 5.1.18, Thm. 6.2.2.)

Example 2.3.6. ([PD] 6.3.1) We illustrate the use of condition (v) from 2.3.5. Con-
sider the quadratic module

M = QM
(
2x1 − 1, . . . , 2xn − 1, 1− x1 · · ·xn

)
in R[x1, . . . , xn]. The associated semi-algebraic set K = S (M) is compact. But
for n ≥ 2, the module M is not archimedean (thus providing a negative answer to
Putinar’s question (5)). Using (v) from above, this can be verified as follows: The
composition of R-places

R(x1, . . . , xn) λ1−→ R(x2, . . . , xn) ∪∞ λ2−→ · · · R(xn) ∪∞ λn−→ R ∪∞
(where λi sends xi to ∞ and is the identity on xi+1, . . . , xn) induces a valuation v
on R(x1, . . . , xn) whose value group is Zn, ordered lexicographically. With respect

15Putinar⇒ Jacobi: Since M is archimedean, there is a real number c > 0 with g := c−
P

i x2
i ∈

M . Since {g ≥ 0} is compact, 2.3.2 applies and gives the conclusion of 2.3.3. — Jacobi ⇒ Putinar:
If there is g ∈ M with {g ≥ 0} compact, then QM(g) = PO(g) is archimedean by 2.1.3, and a
fortiori, the larger quadratic module M is archimedean. So 2.3.3 applies to give the conclusion of
2.3.2.
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to v, every non-zero residue form of the quadratic form

<1, 2x1 − 1, . . . , 2xn − 1, 1− x1 · · ·xn>

has rank one, and is therefore not weakly isotropic. For example, the polynomial
c−

∑
i x2

i is positive on K for c > 2n−1, but is not contained in M .

At a first glance, one may expect it to be cumbersome to use condition (v) for
showing that a given M is archimedean. However, the applications given in [JP]
demonstrate the usefulness of the condition. Here are two samples:

Theorem 2.3.7 ([JP] Thm. 4.1). Let f1, . . . , fr ∈ R[x1, . . . , xn], let di = deg(fi),
and let f̃i be the leading form of fi (i. e. the homogeneous part of degree di). Assume
that the following condition holds:

∀ 0 6= x ∈ Rn ∃ i ∈ {1, . . . , r} f̃i(x) < 0. (6)

Then the quadratic module QM(fi, fifj : 1 ≤ i < j ≤ r) is archimedean. Moreover,
if di ≡ dj (mod 2) for all i, j, then even QM(f1, . . . , fr) is archimedean.

(See also [PD] Thm. 6.3.4 for a slightly finer version.) Note that condition (6)
implies compactness of K := S (f1, . . . , fr), but in general, (6) is strictly stronger
(as shown by 2.3.6, for example). However, if all fi are linear, compactness of K
implies (6), giving an easy example case to which the theorem applies.

While the strong version of Putinar’s question has a negative answer, as we have
seen in 2.3.6, the next result gives a positive answer in a weaker sense: Indeed not
all 2r summands in (4) are needed, rather a bit more than half of them is already
enough:

Theorem 2.3.8 ([JP] Thm. 4.4). Let f1, . . . , fr ∈ R[x] such that K = S (f1, . . . , fr)
is compact. Then there are 2r−1 (explicit) elements h1, . . . , h2r−1 among the 2r − 1
products

fI :=
∏
i∈I

fi, ∅ 6= I ⊂ {1, . . . , r},

such that the quadratic module QM(h1, . . . , h2r−1) is archimedean (and hence con-
tains every polynomial f with f |K > 0).

Remarks 2.3.9.
1. If one enumerates the 2r − 1 products as

f1, . . . , fr, f1f2, . . . , fr−1fr, f1f2f3, . . . , f1 · · · fr,

it suffices for 2.3.8 to take the first 2r−1 of them.
2. In particular, the answer to Putinar’s question (5) is yes for r ≤ 2. On the

other hand, the answer is no in general for r ≥ 3, as is demonstrated by Example
2.3.6.

3. In [Ma3] one finds further sharpenings of some of the Jacobi-Prestel results.
They use the general version of the Representation Theorem proved in this paper.

2.4. Rings of bounded elements.

2.4.1. Let A be a ring with 1
2 ∈ A (for simplicity), and let T be a preordering of

A. The subset

OT (A) :=
{
a ∈ A : ∃ n ∈ Z n± a ∈ T

}
= (T + Z) ∩ − (T + Z)

of T -bounded elements in A is a subring of A. Clearly, OT (A) = A holds if and
only if A is archimedean. More generally, OT (A) is the largest subring B of A for
which the preordering T ∩B of B is archimedean.
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2.4.2. We put

BT (A) := OSat(T )(A) =
{
a ∈ A : ∃ n ∈ Z |a| ≤ n on XT

}
,

and call BT (A) the ring of weakly T -bounded elements of A. Clearly, BT (A) = A
holds if and only if the preordering T is weakly archimedean, i. e., if and only if
the closed subset XT of SperA is bounded over Z. In the case T = ΣA2, the ring
BT (A) is often called the real holomorphy ring of A and denoted H(A); thus H(A)
consists of the elements that are globally bounded by some integer in absolute value.

The study of these rings was initiated by Becker in the 1970s, in the case where
A = k is a field and T = Σk2. In this case, BT (k) = H(k) is the intersection of all
valuation rings of k that have a real residue field. (It is this fact that motivated the
name ‘real holomorphy ring’ for H(k).) The rings H(k) have important connections
to quadratic form theory, to sums of higher powers and to real algebraic geometry.
The article [BP] contains a good list of references for background reading.

2.4.3. Let T be a preordering of A. Starting from the preordered ring (A, T ), we
form the preordered ring

(A, T )′ :=
(
BT (A), T ∩BT (A)

)
.

This step can be iterated. Thus we put
(
Bn

T (A), Tn

)
:= (A, T )(n) for n ≥ 0, where

(A, T )(0) := (A, T ) and (A, T )(n) :=
(
(A, T )(n−1)

)′ for n ≥ 1. These iterated rings
of bounded elements were first studied by Becker and Powers [BP], in the case
T = ΣA2. (Note that H(A) ∩ ΣA2 = ΣH(A)2, so in this case there is no need to
keep track of the preordering.) The definition in the case of general preorderings
is due to Schweighofer [Sw2].16 A primary case of interest is when A is a finitely
generated R-algebra. However, there is a drawback: In general, the subalgebra
H(A) of A need not be finitely generated, not even noetherian. (See 2.4.7 below
for more information.)

Clearly one has A ⊃ B1
T (A) ⊃ B2

T (A) ⊃ · · · , and a priori it is not clear whether
the iteration process stops. All rings Bn

T (A) contain the ring OT (A).

We are now going to recall important work of Schweighofer, which extends
former work by Becker–Powers and Monnier and, at the same time, generalizes
Schmüdgen’s Positivstellensatz. The following theorem generalizes the versions
2.1.3 or 2.1.4 of the latter. Now, the R-algebra in question is no longer assumed to
be finitely generated, rather only to have finite transcendence degree:17

Theorem 2.4.4 ([Sw2] Thm. 4.13). Let A be an R-algebra of finite transcendence
degree, and let T be a preordering of A. If T is weakly archimedean, then T is
archimedean.

In other words, BT (A) = A implies OT (A) = A. Marshall [Ma1] has given an
example of a preordering T of A = R[x1, x2, . . . ] that is weakly archimedean (i. e.,
has BT (A) = A) but satisfies OT (A) = R. This shows that the theorem breaks
down completely if the transcendence degree is infinite.

On the other hand, the iteration process stops at a finite level:

Theorem 2.4.5. Let A be an R-algebra of transcendence degree d < ∞, and let T
be a preordering of A. Then Bd

T (A) = Bd+1
T (A).

16[Sw2] writes H′(A) and H(A) for our OT (A) and BT (A), respectively; we prefer to make
the dependence on the preordering visible in the notation.

17By the transcendence degree of an R-algebra A we mean the largest number of elements in
A that are algebraically independent over R.
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Originally, this theorem is due to Becker and Powers, who proved it for the case
T = ΣA2 ([BP] Thm. 3.1). The extension to arbitrary preorderings was given by
Schweighofer ([Sw2] Thm. 3.11). There are examples by Pingel showing that, in
general, Bd−1

T (A) 6= Bd
T (A), with T = ΣA2 [Pi].

Combining Theorems 2.4.4 and 2.4.5, one gets the following corollary, conjec-
tured by Monnier [Mo]:

Corollary 2.4.6 ([Sw2] Thm. 4.16). Under the conditions of 2.4.5 one has Bd
T (A) =

OT (A).

Note that this corollary not only follows from 2.4.4 and 2.4.5, but also generalizes
both of them at the same time. Interestingly, the results from [Sw2] have been used
recently in an essential way in optimization, namely for an improved method to
globally optimize polynomials [Sw5].

2.4.7. In geometric situations, rings of bounded elements can be approached by
algebraic geometry methods, at least under suitable regularity conditions. Let V
be an affine normal R-variety and let K be a basic closed subset of V (R). A
Zariski open immersion V ↪→ X into a complete normal R-variety X is called a
K-good compactification of V if, for every irreducible component Z of X − V , the
set Z(R) ∩K is either empty or Zariski dense in Z.18

Let B(K) ⊂ R[V ] be the ring of regular functions which are bounded on K.
Given a K-good compactification X, let Y be the union of all irreducible compo-
nents Z of X − V with Z(R) ∩K = ∅, and let U = X − Y . Then V ⊂ U ⊂ X are
open immersions, and one has canonically B(K) = OX(U).

If V is a curve, a K-good compactification always exists. The same is true when
V is a surface and K is regular at infinity,19 using resolution of singularities. By a
theorem of Zariski, this implies that B(K) is a finitely generated R-algebra in this
case. In higher dimensions, this is not true in general. (For dim(V ) = 2 it can also
fail if K is not regular at infinity.) These and other related results can be found in
[Pl].

2.5. Higher level. There exist analogues of the various stellensätze and represen-
tation theorems for sums of higher (even) powers, resp. for preorderings of higher
level. I will briefly indicate a few results in this direction, but, unfortunately, can-
not go much into details. The interested reader is referred to Chapter 7 of the book
[PD], to [BW2] and to [Ja1].

2.5.1. Let A be a ring, and let m ≥ 1 be a fixed integer. A preordering of level 2m
in A is a (Z-) preprime (1.4.1) T of A which contains {a2m : a ∈ A}. The smallest
preordering of level 2m in A is ΣA2m. A module of level 2m in A is by definition a
ΣA2m-module in A (1.4.2).

It should be underlined that terminology is not uniform in the published litera-
ture. What we call ‘level 2m’ here is sometimes referred to as ‘level m’ instead.

Jacobi’s proof for the Representation Theorem 2.3.3 is given in a uniform way,
which includes higher level analogues as well:

Theorem 2.5.2. Let M be a module of level 2m in A, and assume Q ⊂ A (for
simplicity). If M is archimedean, then M contains every f ∈ A with f > 0 on XM .

See [Ja2] Thm. 4 or [PD] Thm. 7.3.2. This result is again complemented by
a recognition theorem for the archimedean property which is similar to Theorem

18of course, K means the closure of K in X(R)
19meaning that K is the union of a compact set and the closure of an open set
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2.3.5. The quadratic form <1, f1, . . . , fr> (and its analogues over the residue fields
of R[x]) is now replaced by the diagonal form

X2m
0 + f1X

2m
1 + · · ·+ frX

2m
r

of degree 2m. For more details see [PD] Thm. 7.3.9, or Jacobi’s doctoral thesis
[Ja1]. As an application, one can prove the higher level analogue of Theorem 2.3.7
above, see [PD] Thm. 7.3.11.

2.5.3. A thorough study of the archimedean property for preorderings of higher
level was made by Berr and Wörmann. A key notion is the concept of tame pre-
orderings introduced in [BW2]. Instead of giving the definition, we mention the
two most important classes of examples:

• If m is odd, every preordering T of level 2m (with XT 6= ∅) is tame;
• for any m, the preordering ΣA2m is tame (assuming SperA 6= ∅).

The main result is

Theorem 2.5.4 ([BW2] Thm. 3.8). Let A be a finitely generated algebra over a
field k, and let T be a preordering of level 2m in A for which k∩T is archimedean.
Assume that T is tame. Then, if the preordering Sat(T ) is archimedean, so is T .

By applying Wörmann’s formulation of Schmüdgen’s theorem (2.1.3) and the
Representation Theorem 1.5.10, one gets:

Corollary 2.5.5 ([BW2] Cor. 4.2). Let V be an affine R-variety, and let f1, . . . , fr ∈
R[V ] such that the subset K = S (f1, . . . , fr) of V (R) is compact. Let f ∈ R[V ]
with f > 0 on K. Then for every odd m ≥ 1, f lies in the preordering of level 2m
generated by f1, . . . , fr in R[V ].

If m is even, this is not necessarily true, due to the possible failure of the tameness
condition. A basic example is the following ([BW2] Ex. 4.5): The preordering T of
level 4 generated in R[x] by 1− x2 does not contain c− x for any real number c, as
can be seen by inspecting the valuation at infinity.

Corollary 2.5.6 ([BW2] Cor. 4.6). Let V be an affine R-variety for which V (R)
is compact. Let f ∈ R[V ] with f > 0 on V (R). Then f is a sum of 2m-th powers
in R[V ] for every m ≥ 1.

If R[V ] is a domain, the converse holds as well: If 0 6= f ∈ R[V ] is a sum of
2m-th powers in R[V ] for every m ≥ 1, then f is strictly positive on V (R) ([BW2]
Cor. 4.10).

2.5.7. The last corollary allows to give uniform solutions to the ‘higher level’ ana-
logue of Hilbert’s 17th problem, for positive definite forms: If the forms f and g in
R[x1, . . . , xn] are positive definite, and if deg(g) divides deg(f), then for any m ≥ 1
there exists an integer N ≥ 1 such that gN · f is a sum of 2m-th powers of forms.
The argument is similar to the one outlined in 2.1.8 (cf. [BW2] Thm. 4.13). The
case g =

∑
x2

i and 2m | deg(f) is already in [Re1] (Thm. 3.15).

3. Nichtnegativstellensätze

We now allow positive functions to have zeros, and we’ll try to understand to
what extent we can still find denominator-free representations (in terms of weighted
sums of squares). Necessarily, the hypotheses will have to be more restrictive
than in the previous section. For ease of exposition, we shall mainly stay in the
‘geometric’ setting (of finitely generated R-algebras), although many of the results
allow ‘abstract’ generalizations. For these, the reader is referred to the literature
cited. Again, we stress the fact that the results depend on the archimedean property
of the real closed base field.
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3.1. General results. Let V be an affine R-variety (see 2.0 for general con-
ventions). Let T be a finitely generated preordering of R[V ] for which the set
K := S (T ) in V (R) is compact, and let f ∈ R[V ] with f |K ≥ 0. If f |K > 0, then
we know f ∈ T by Schmüdgen’s Positivstellensatz 2.1.1. We wish to find conditions
which allow the same conclusion even when f has zeros in K. A very useful general
criterion is the following:

Theorem 3.1.1 ([Sch4] Thm. 3.13). Assume that K = S (T ) is compact, and let
f ∈ R[V ] with f |K ≥ 0. Let I be the ideal in R[V ] consisting of all functions that
vanish on Z (f) ∩K. If f ∈ T + In for every n ≥ 0, then f ∈ T .

3.1.2. We explain the condition in 3.1.1. First, recall that Z (f) denotes the zero
set of f in V (R). Write A := R[V ]. By 1.3.14 we have I =

√
supp(T + fA). Let

W0 = Spec(A/I), the reduced Zariski closure of Z (f)∩K in V . Given an ideal J of
A, let W := Spec(A/J) denote the closed subscheme of V = Spec A corresponding
to J , and call the preordering T |W := (T + J)/J of A/J = R[W ] the restriction
of T to W . Then the condition in the theorem says: f |W ∈ T |W for every closed
subscheme W of V with Wred = W0.

Loosely speaking, the theorem says therefore that the condition f ∈ T can
be localized to infinitesimal thickenings of the Zariski closure of the zeros of f
in K = S (T ). Schmüdgen’s Positivstellensatz is contained in 3.1.1 as the case
Z (f) ∩K = ∅, i. e., I = (1).

3.1.3. In [Sch4], an ‘abstract’ generalization of 3.1.1 is proved, in which A is
an arbitrary ring containing 1

2 , T is an archimedean preordering of A and I =√
supp(T + fA). Such generalizations are needed if one works over base fields (or

rings) other than real closed fields. See [Sch4] Thm. 3.19 for an application to sums
of squares on curves over number fields.

A version (of the abstract form) of 3.1.1 for quadratic modules instead of pre-
orderings is given in [Sch5] 2.4. The compactness condition for K has to be replaced
by the condition that the module is archimedean.

Theorem 3.1.1 becomes particularly useful when f has only isolated zeros in K:

Corollary 3.1.4 ([Sch4] Cor. 3.16). Let V be an affine R-variety and T a finitely
generated preordering of R[V ] for which K = S (T ) is compact. Let f ∈ R[V ] with
f |K ≥ 0, and assume that f has only finitely many zeros z1, . . . , zr in K. If f ∈ T̂zi

for i = 1, . . . , r, then f ∈ T .

Here T̂z denotes the preordering generated by T in the completed local ring
R̂[V ]mz , where mz is the maximal ideal of R[V ] corresponding to z. Note that
R̂[V ]mz is a power series ring R[[x1, . . . , xd]] if z is a nonsingular point of V , and is
always a quotient of such a ring by some ideal.

Corollary 3.1.4 is a perfect local-global principle for membership in T : There is
a local condition corresponding to each zero of f in K = S (T ).

Remarks 3.1.5.
1. For example, if p ∈ R[x1, . . . , xn] is such that K = {p ≥ 0} is compact, if a

polynomial f with f |K ≥ 0 is given which has only finitely many zeros z1, . . . , zr

in K, and if f |∂K > 0 and D2f(zi) > 0 for i = 1, . . . , r, then f can be written
f = s+ tp with s, t are sums of squares of polynomials ([Sch4] 3.18). For a stronger
statement see 3.1.7 below.

2. Let z be a point in V (R), let m denote the maximal ideal of the completed
local ring R̂[V ]mz

. The local condition f ∈ T̂z can be checked algorithmically.
Indeed, one can determine an integer N such that f ∈ T̂z + mN implies f ∈ T̂z.
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Testing whether f ∈ T̂z + mN holds is a matter of linear algebra, which can be
reformulated as a linear matrix inequality (LMI).

3.1.6. A local-global principle in the spirit of 3.1.4, but for a quadratic module
M instead of a preordering T , was proved in [Sch5] (Thm. 2.8). Since M is not
supposed to be multiplicatively closed, one needs to formulate the hypotheses in a
stronger way. Instead of K compact one has to assume that M is archimedean, and
instead of |Z (f) ∩K| < ∞ one needs that the ideal supp(M + (f)) has dimension
≤ 0. This last property is somewhat hard to control directly, but Prop. 3.4 of
loc. cit provides sufficient geometric conditions which imply this property. Rather
than including them here, we state a particularly useful and applicable case which
was exhibited by Marshall:

Theorem 3.1.7 ([Ma4] Thm. 2.3). Let V be an affine R-variety, and let M be a
finitely generated quadratic module in R[V ] which is archimedean. Let f ∈ R[V ]
such that f ≥ 0 on K = S (M). For every z ∈ Z (f) ∩K, assume that there are
t1, . . . , tm ∈ M satisfying

(1) t1, . . . , tm are part of a regular parameter system of V at z;20

(2) (df)(z) = a1(dt1)(z) + · · ·+ am(dtm)(z) with real numbers ai > 0;
(3) the restriction of f to the subvariety t1 = · · · = tm = 0 of V has positive

definite Hessian at z.
Then f ∈ M .

If t1, . . . , tn (with n ≥ m) is a regular parameter system of V at z, then (2)
means that the linear term of the Taylor expansion of f by the ti is

∑m
i=1 aiti.

Remarks 3.1.8.
1. Conditions (1)–(3) are called the boundary Hessian conditions in [Ma4]. The-

orem 3.1.7 can be obtained as a direct application of [Sch5] Prop. 3.4(2). (The
proof in [Ma4] proceeds in a different and more complicated way.)

2. For a sample application, let f ∈ R[x1, . . . , xn] be a polynomial for which
the set K = S (f) in Rn is compact and convex. If z = (z1, . . . , zn) is a non-
degenerate boundary point of K (that is, f(z) = 0, ∂f

∂xi
(z) 6= 0 for some i and the

Hessian D2f(z) negative definite), and l =
∑

i
∂f
∂xi

(z) · (xi − zi) is the equation
of the tangent hyperplane at z, then there is an identity l = s + s′f with sums
of squares s, s′ in R[x1, . . . , xn]. (The condition on the Hessian can be weakened,
according to (3) in 3.1.7.)

3.1.9. The basic tool on which Theorem 3.1.1 and all its consequences are built is
[Sch4] Prop. 2.5 (resp. [Sch5] Prop. 2.1 for quadratic modules). The original proof
of this key result is based on Stone-Weierstraß approximation and some (easy)
topological arguments. Meanwhile, other approaches have been found. One is due
to Kuhlmann-Marshall-Schwartz and Marshall and relies on the ‘Basic Lemma’
2.1 from [KMS] (see [KMS] Cor. 2.5, [Ma4] Thm. 1.3). Another one is due to
Schweighofer and is based on a refined analysis of Pólya’s theorem 2.2.1. Instead of
mentioning [Sch4] Prop. 2.5 here, we prefer to state Schweighofer’s version, which
is significantly more general:

Theorem 3.1.10 ([Sw4] Thm. 2). Let A be a ring and P an archimedean preprime
in A with 1

q ∈ P for some integer q > 1. Let X(P ) := {α ∈ Hom(A, R) : α|P ≥ 0}
= X max

P , and let f ∈ A with f ≥ 0 on X(P ). Suppose there is an identity

f = b1t1 + · · ·+ brtr

20so z is, in particular, assumed to be a nonsingular point of V
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with bi ∈ A and ti ∈ P such that bi > 0 on X(P ) ∩ {f = 0} (i = 1, . . . , r). Then
f ∈ P .

Note that this theorem extends (the preprimes version of) the Representation
Theorem: If f > 0 on X(P ), then f = f · 1 is an identity as required in 3.1.10. As
a (non-obvious) application of this criterion, Schweighofer gave a new proof to the
following theorem, originally due to Handelman [Ha2]:

Theorem 3.1.11. Let f ∈ R[x1, . . . , xn] be a polynomial such that fm has non-
negative coefficients for some m ≥ 1. If f(1, . . . , 1) > 0, then fr has non-negative
coefficients for all sufficiently large integers r.

(Of course, the condition f(1, . . . , 1) > 0 is only needed when m is even, and
ensures that f is positive (instead of negative) on the open positive orthant.)

We now discuss a second powerful local-global principle. For simplicity, we give
the formulation only in the geometric case and only for preorderings. (See [Sch7]
for more general versions.)

Theorem 3.1.12 ([Sch7] Cor. 2.10). Let V be an affine R-variety, let T be a finitely
generated preordering of R[V ], and assume that K = S (T ) is compact. Let f ∈
R[V ] with f ≥ 0 on K. For every maximal ideal m of R[V ] with (f)+supp(T ) ⊂ m,
assume that f ∈ Tm. Then f ∈ T .

Here Tm denotes the preordering generated by T in the local ring R[V ]m. In
particular, one deduces a local-global principle for saturatedness ([Sch7] Cor. 2.9):

Corollary 3.1.13. Let V and T be as in 3.1.12. Then T is saturated if and only
if Tm is saturated (as a preordering of R[V ]m) for every maximal ideal m of R[V ].

It is interesting to compare 3.1.12 to the local-global principles mentioned earlier
in this section. By the general result 3.1.1, the question whether f is in T gets
localized to (nonreduced) ‘thickenings’ of the Zariski closure of Z (f) ∩ K. In
general, these are still ‘global’ schemes. The most favorable case is when Z (f)∩K
is a finite set; then the question can be reduced to finitely many completed local
rings (3.1.4). On the other hand, 3.1.12 always reduces the question to local rings,
but not usually to complete local rings, and not just to local rings belonging to
points in K, not even to local rings belonging to real points. (See [Sch7] 2.12 for
why one has to take maximal ideals with residue field C into account.) Therefore,
while both results give the global conclusion f ∈ T from local versions thereof, they
are in general not comparable.

The proof of Theorem 3.1.12 uses the ‘Basic Lemma’ 2.1 from [KMS] in a suitably
generalized version ([Sch7] 2.4, 2.8). Applications of 3.1.12 will be given in Section
3.3.

We conclude this section with a negative result of general nature. It says that for
a semi-algebraic set K of dimension at least three, there cannot be an unconditional
Nichtnegativstellensatz ‘without denominators’. This was realized quite early:

Proposition 3.1.14 ([Sch2] Prop. 6.1). Let V be an affine R-variety and T a
finitely generated preordering of R[V ] for which the set K = S (T ) has dimension
≥ 3. Then there exists f ∈ R[V ] with f ≥ 0 on V (R) and f /∈ T . In particular, T
is not saturated.

The proof is not hard. Basically, the reason is that there exist psd ternary forms
that are not sums of squares of forms, like the Motzkin form. By 3.1.14, general
denominator-free Nichtnegativstellensätze can only exist in dimensions at most two.
Therefore we will now take a closer look at curves and surfaces.
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3.2. Curves.

3.2.1. By an affine curve over a field k, we mean here an affine k-variety C (see
2.0) which is purely of Krull dimension one. Let us consider 3.1.4 in more detail
in the one-dimensional case. If V = C is an affine curve over R and f ∈ R[C],
the assumption |Z (f) ∩ K| < ∞ of 3.1.4 is almost always satisfied. In particu-
lar, it holds whenever f is not a zero divisor in R[C]. Therefore, 3.1.4 furnishes
a characterization of the elements of T by local conditions, provided that K is
compact.

3.2.2. These results can in fact be extended to cases where K is not necessarily
compact. It suffices that K is virtually compact. We explain the notion of virtual
compactness in the particular case where the curve C is integral (i. e., R[C] is an
integral domain), and refer to [Sch4] for the general case:

Let C be an integral curve over R. A closed semi-algebraic subset K of C(R)
is virtually compact if the curve C admits a Zariski open embedding into an affine
curve C ′ such that the closure of K in C ′(R) is compact. It is equivalent that
BC(K) 6= R (see 2.4.7), i. e., there exists a non-constant function in R[C] which is
bounded on K.

Theorem 3.2.3 ([Sch4] Thm. 5.5). Let C be an affine curve over R, and let T be a
finitely generated preordering of R[C] for which K = S (T ) is virtually compact. Let
f ∈ R[C] with f |K ≥ 0, and assume that f has only finitely many zeros z1, . . . , zr

in K. If f ∈ T̂zi
for i = 1, . . . , r, then f ∈ T .

Remark 3.2.4. Given f with f |K ≥ 0, the local condition f ∈ T̂z needs only to be
checked in those points z ∈ Z (f)∩K which are either singular points of the curve
C or boundary points of the set K. Otherwise it holds automatically.

Another consequence is the characterization of saturated one-dimensional pre-
orderings. We state here the nonsingular case, and refer to [Sch4] Thm. 5.15 for
the general situation:

Corollary 3.2.5. Let C be a nonsingular irreducible affine curve over R, and let
T = PO(f1, . . . , fr) with fi ∈ R[C]. Assume that K = S (T ) is virtually compact.
Then the preordering T is saturated if and only if the following two conditions hold:

(1) For every boundary point z of K there is an index i with ordz(fi) = 1;
(2) for every isolated point z of K there are indices i, j with ordz(fi) =

ordz(fj) = 1 and fifj ≤ 0 in a neighborhood of z on C(R). �

To summarize, the characteristic feature of virtually compact one-dimensional
sets K is that (finitely generated) preorderings T with S (T ) = K contain every
function which they contain locally (in the completed local rings at points of K).
Such preorderings are therefore as big as they are allowed by the local conditions.

Interestingly, the situation is very different in the remaining one-dimensional
cases, namely when K is not virtually compact (with the exception of rational
curves, see below):

Theorem 3.2.6 ([Sch2] Thm. 3.5). Let C be an irreducible nonsingular affine curve
over R which is not rational. Let T be a finitely generated preordering of R[C], and
assume that K = S (T ) is not virtually compact. Then there exists f ∈ R[C] with
f ≥ 0 on C(R) such that f is not contained in T . In particular, T is not saturated.

The condition that C is not rational eliminates the case where C is A1 (the affine
line) minus a finite set S of real points. See below for what happens in this case.

As a consequence of 3.2.6, we can characterize the one-dimensional sets K whose
saturated preordering P(K) is finitely generated (under the restriction that K is
contained in a nonsingular curve):
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Corollary 3.2.7. Let C be an irreducible nonsingular affine curve over R and K
a closed semi-algebraic subset of C(R).

(a) The preordering P(K) is finitely generated if and only if K is virtually
compact or C is an open subcurve of A1.

(b) If K is virtually compact, then P(K) can be generated by two elements,
and even by a single element if K has no isolated points.

(b) follows from 3.2.5. On the other hand, when C ⊂ A1 and K is not virtually
compact, the preordering P(K) is finitely generated but may need an arbitrarily
large number of generators. There is an (elementary) analogue of 3.2.5 in this case,
see [Sch4] 5.23 or [KM] Sect. 2.

The significance of the condition that P(K) is finitely generated is, of course,
that it implies an unconditional Nichtnegativstellensatz without denominators for
the set K.

3.2.8. In [Sch4] 5.21, a (partial) generalization of 3.2.7 is given for singular integral
curves C and virtually compact sets K. It characterizes finite generation of P(K)
(together with the number of generators) in terms of local conditions at the finitely
many boundary points and singular points of K. A sample application is the fol-
lowing (loc. cit., 5.26): Assume that C has no real singularities other than ordinary
double points. If every double point in K is either an isolated or an interior point
of K, then P(K) can be generated by at most four elements. If K contains a
double point which is neither isolated nor interior, then P(K) cannot be finitely
generated.

For the preordering of all sums of squares, stronger results have been proved:

Theorem 3.2.9 ([Sch4] Thm. 4.17). Let C be an integral affine curve over R
which is not rational and for which C(R) is not virtually compact. Then there
exists f ∈ R[C] with f > 0 on C(R) such that f is not a sum of squares.

An essential ingredient for the proofs of Theorems 3.2.6 and 3.2.9 is an analysis
of the Jacobians of (projective) curves over R.

In particular, one can give a characterization of all irreducible affine curves C
on which the preordering of sums of squares is saturated, i. e., on which every
psd regular function is a sum of squares. We’ll express this briefly by saying that
‘psd = sos holds on C’:

Corollary 3.2.10. Let C be an irreducible affine curve over R. Then psd = sos
holds on C in each of the following cases:

(1) C(R) = ∅;
(2) C is an open subcurve of the affine line A1;
(3) C is reduced, C(R) is virtually compact, and all real singular points are

ordinary multiple points with independent tangents.
In all other cases we have psd 6= sos on C. That is, if at least one of the following
conditions holds:

(4) C(R) 6= ∅ and C is not reduced;
(5) C is not an open subcurve of A1 and is not virtually compact;
(6) C has a real singular point which is not an ordinary multiple point with

independent tangents.

The proof (see [Sch4] 4.18) uses the results discussed before, together with a
study of sums of squares in one-dimensional local rings (Remark 4.6.3 below).

Note that if the curve C is integral and C(R) has no isolated points, then the
preordering of all psd regular functions on C is equal to R[C] ∩ ΣR(C)2, where
R(C) = Quot R[C] is the function field of C. Therefore, the condition psd = sos
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on C means that every regular function on C which is a sum of squares of rational
functions is in fact a sum of squares of regular functions.

Further results on finite generation of P(K) are contained in the thesis [Pl],
in particular in the case when the curve C has several irreducible components.
Summarizing, it seems fair to say that preorderings whose associated semi-algebraic
set is one-dimensional are rather well understood.

3.2.11. We end the section on curves with the following very useful fact. Let C
be an integral affine curve over R and M a finitely generated quadratic module in
R[C] for which K = S (M) is compact. If K doesn’t contain a singular point of C
then M is automatically a preordering, i. e., closed under products. This is [Sch5]
Cor. 4.4. Of course, the result doesn’t extend to higher dimensions.

3.3. Surfaces. Given Hilbert’s result on the existence of positive polynomials in
n ≥ 2 variables which are not sums of squares of polynomials, it came initially
as a surprise that there exist two-dimensional semi-algebraic sets, both compact
and non-compact ones, which allow an unconditional Nichtnegativstellensatz with-
out denominators. Here we record the most important results in this direction.
Although quite a bit is known by now, the understanding of the two-dimensional
situation is still less complete than for one-dimensional sets.

In this section, by an affine surface over a field k we will always mean an integral
affine k-variety V of Krull dimension two (integral meaning that k[V ] is a domain).

Theorem 3.3.1 ([Sch7] Cor. 3.4). Let V be a nonsingular affine surface over R for
which V (R) is compact. Then psd = sos holds on V : Every f ∈ R[V ] with f ≥ 0
on V (R) is a sum of squares in R[V ].

This follows from the localization principle 3.1.12 and from the fact that psd =
sos holds in every two-dimensional regular local ring (see 4.7 below). The result
becomes false in general for singular V , even (surprisingly) when all real points of
V are regular points ([Sch7] 3.8).

Theorem 3.3.1 has been generalized to compact basic closed sets K whose bound-
ary is sufficiently regular. We give an example in the plane:

Example 3.3.2. ([Sch7] Cor. 3.3) Let p1, . . . , pr be irreducible polynomials in R[x, y]
such that K = S (p1, . . . , pr) is compact. Assume that none of the curves pi = 0
has a real singular point, that the real intersection points of any two of these curves
are transversal, and that no three of them meet in a real point. Then the preordering
T = PO(p1, . . . , pr) of R[x, y] is saturated.

See loc. cit. for other examples as well. Even cases like a polygon or a disk in
the plane were initially quite unexpected. In order to apply 3.1.12 here, one needs
to study the saturatedness of certain finitely generated preorderings in (regular)
two-dimensional local rings. The case needed for 3.3.2 (generators are transversal
and otherwise units) is an easy consequence of 4.7 below. But similar results have
been proved as well (unpublished yet) in many cases where the boundary of K is
much less regular. For this, a deeper study of saturation in local rings is necessary,
as indicated in 4.16 and 4.17 below.

Closely related is the following result [Sch8]:

Theorem 3.3.3. Let V be a nonsingular affine surface, and let K be a basic closed
compact subset of V (R) which is regular (i. e., is the closure of its interior). Then
the following are equivalent:

(i) The saturated preordering P(K) in R[V ] is finitely generated;
(ii) the saturated preordering of the trace of K̃ in Sper R[V ]mz

is finitely gen-
erated in the local ring R[V ]mz

, for every point z ∈ ∂K which is a singular
point of the (reduced) Zariski closure of ∂K.
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Its essence is that the characterization of the two-dimensional sets K for which
P(K) is finitely generated is a local matter (under the above side conditions on V
and K), and is decided in the singular points of the boundary curve of K. Combined
with local results like 4.17 below, this implies statements in the spirit of, but more
general than, 3.3.2.

3.3.4. Results similar to 3.3.1 or 3.3.2 can be proved in situations of arithmetical
nature as well. For example, if k is a number field and V is a nonsingular affine
surface over k such that V (R, σ) is compact for every real place σ : k → R, then
psd = sos holds in the coordinate ring k[V ] ([Sch7] 3.10).

It is even possible, to some extent, to relax the compactness hypothesis for
K. In principle this is similar to the one-dimensional case, where compact could
be replaced by virtually compact for most results (Section 3.2). Not surprisingly,
matters become more difficult in dimension two. So far, a full and systematic
understanding has not yet been reached. We content ourselves here with giving
two examples:

Theorem 3.3.5. Let W be a nonsingular affine surface over R with W (R) compact,
and let C be a closed curve21 on W . Then V = W − C is an affine surface, and
psd = sos holds in R[V ] as well.

In other words, psd = sos holds on every affine R-surface V which admits an
open immersion into a nonsingular affine surface with compact set of real points.

Example 3.3.6. ([Sch7] 3.16) The preordering T = PO(x, 1−x, y, 1−xy) in R[x, y]
is saturated, although the associated set K = S (T ) in R2 is unbounded (of dimen-
sion two). This is derived by elementary arguments from the saturatedness of
PO(u− u2, v − v2) in R[u, v] (corresponding to the unit square), via the substitu-
tions u = x, v = xy.

Both in 3.3.5 and in 3.3.6, the ring B(K) of K-bounded polynomials (with
K = V (R) in the first case) is large in the sense that it has transcendence degree
two over R. The other extreme would be the case where B(K) consists only of the
constant functions. Here one expects that P(K) cannot be finitely generated. The
following theorem is a step in this direction. It has analogues relative to suitable
basic closed sets K on surfaces (see also [Sch2] Rem. 6.7).

Theorem 3.3.7 ([Sch2] Thm. 6.4). Let V be an affine surface over R which admits
a Zariski open embedding into a nonsingular complete surface X such that (X −
V )(R) is Zariski dense in X −V . Then the preordering of all psd elements in R[V ]
is not finitely generated. In particular, R[V ] contains psd elements which are not
sums of squares.

Unfortunately, the general picture is not yet well understood. As an example we
mention the following notorious open question: Is the preordering T generated by
1 − x2 in R[x, y] saturated? It is not even known if T contains every polynomial
which is strictly positive on the strip K = [−1, 1]×R. Note that B(K) = R[x] has
transcendence degree one here.

We conclude the section with an application to Hilbert’s 17th problem:

Corollary 3.3.8 ([Sch7] 3.12). Let f , h ∈ R[x, y, z] be two positive semidefinite
ternary forms, where h is positive definite. Then there exists an integer N ≥ 1 such
that hN · f is a sum of squares of forms.

21that is, a closed subvariety of W all of whose irreducible components have dimension one
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In particular, (x2 + y2 + z2)N · f(x, y, z) is a sum of squares of forms for all
N � 0. The proof is an application of Theorem 3.3.1 to the complement of the
curve g = 0 in the projective plane. The remarkable point is that the assertion
is true even when f has (non-trivial) zeros. As mentioned in 2.1.9, the corollary
becomes false for forms in more than three variables.

3.3.9. Corollary 3.3.8 says that every definite ternary form h is a ‘weak common
denominator’ for Hilbert’s 17th problem, in the sense that, for every psd ternary
form f , a suitable power of h can be used as a denominator in a rational sums
of squares decomposition of f . This fact is nicely complemented by the following
result of Reznick [Re3]. It says that there cannot be any common denominator in
the ‘strong’ sense:

Theorem 3.3.10. Let finitely many non-zero forms h1, . . . , hN in R[x1, . . . , xn] be
given, where n ≥ 3. Then there exists a psd form f in R[x1, . . . , xn] such that none
of the forms fh1, . . . , fhN is a sum of squares of forms.

4. Local Rings, Pythagoras numbers

Apart from being interesting by their own, results on local rings are often im-
portant as tools in the study of rings of global nature. This is evident from results
like 3.1.4 or 3.1.12. Since the emphasis of this survey is on results from the last 15
years, I won’t try to summarize earlier work. Too much would have to be mentioned
otherwise. The reader is recommended to consult the original article [CDLR] by
Choi, Dai, Lam and Reznick, a classic on the topic of sums of squares in rings,
and Pfister’s book [Pf] on quadratic forms. One may also consult the survey article
[Sch1] from 1991.

4.1. Let A be a (commutative) ring. Given a ∈ A, we write `(a) for the sum of
squares length of a, i. e., the least integer n such that a is a sum of n squares in A.
If a /∈ ΣA2 we put `(a) = ∞. The level of A is s(A) := `(−1). Note that the level
of A is finite if and only if the real spectrum of A is empty (e. g. by 1.3.8).

The Pythagoras number of A is defined as

p(A) := sup
{
`(a) : a ∈ ΣA2

}
.

This is a very delicate invariant which has received considerable attention in number
theory, the theory of quadratic forms, and in real algebra and real geometry. We
refer to [Pf] for further reading and for links to the literature.

Recall (1.3.12) that an element of A is called psd if it is non-negative with respect
to every ordering of A.

4.2. Regarding the study of Pythagoras numbers in general (commutative) rings,
a wealth of information and ideas is contained in the important paper [CDLR]
by Choi, Dai, Lam and Reznick. One of the main results of this paper was the
construction of rings with infinite Pythagoras number, like k[x, y] (k a real field) or
Z[x]. From this, the authors deduced that p(A) is infinite whenever A has a real
prime ideal p such that the local ring Ap is regular of dimension ≥ 3. On the other
hand, the finiteness of the Pythagoras number was proved for a variety of real rings
of dimension one or two. In particular, it was shown that for any affine curve C
over a real closed field R, the Pythagoras number of R[C] is finite. This number
can be arbitrarily large, at least for singular C.

4.3. A classical theorem of Pfister says that if R is a real closed field and K/R is a
non-real field extension of transcendence degree d, then s(K) ≤ 2d. This result has
been generalized to rings by Mahé: Given an R-algebra A of transcendence degree
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d with s(A) < ∞, he proved s(A) ≤ 2d+1 + d − 4 if d ≥ 3, and s(A) ≤ 3 resp.
s(A) ≤ 7 if d = 1 resp. d = 2 [Mh].

On the other hand, Pfister has shown that any field extension K/R of transcen-
dence degree d has Pythagoras number p(K) ≤ 2d. This was extended to semilocal
rings by Mahé: If A is a semilocal R-algebra of transcendence degree d, then every
psd unit in A is a sum of 2d squares ([Mh] 6.1). Recently, this was generalized to
totally (strictly) positive non-zero divisors (not necessarily units) in [Sch3] 5.10.

Coming now to more recent results, we start by reviewing [Sch3]. All results
from this paper are based on the following lemma:

Lemma 4.4 ([Sch3] Thm. 2.2). Let A be a semilocal ring containing 1
2 , and let f

be a psd element in A. If f is a sum of squares modulo the ideal (f2), then f is a
sum of squares.

The following theorem is the (semi-) local analogue of Theorem 3.1.1 (or rather,
of the case T = ΣA2 of this theorem):

Theorem 4.5 ([Sch3] Thm. 2.5). Let A be semilocal, 1
2 ∈ A, and let f ∈ A be a psd

element which is not a sum of squares. Then there is an ideal J with
√

J = re√(f)
such that f is not a sum of squares in A/J .

Remarks 4.6.
1. It is easy to generalize 4.5 from sums of squares to arbitrary preorderings,

similar to 3.1.2.
2. A case which is particularly useful is when A is noetherian and re√(f) contains

Rad(A), the intersection of the maximal ideals of A: From 4.5 it follows that if f
is psd and is a sum of squares in A/mn for every maximal ideal m and sufficiently
large n ≥ 1, then f is a sum of squares in A ([Sch3] 2.7). This result is the local
analogue of Corollary 3.1.4 (c. f. also Remark 3.1.5.2).

3. The paper [Sch3] consists of applications of 4.5. It particular, local rings are
studied in which psd = sos holds. Theorem 3.9 analyzes the one-dimensional case.
If dim A = 1 and the residue field k = A/m is real closed, the answer is completely
understood.22 Namely, psd = sos holds if and only if

Â ∼= k[[x1, . . . , xn]]/(xixj : 1 ≤ i < j ≤ n)

for some n. For two-dimensional local rings, the main application of 4.5 is

Theorem 4.7 ([Sch3] Thm. 4.8). Let A be a regular semilocal ring of dimension
two. Then psd = sos holds in A.

On the other hand, the proof of 4.4 is sufficiently explicit to provide more infor-
mation, in particular on quantitative questions. The main result in this direction
is

Theorem 4.8 ([Sch3] Thm. 5.25). Let A be a regular local ring of dimension two,
with quotient field K. Then p(K) ≤ 2r implies p(A) ≤ 2r+1.

In particular, if p(K) is finite, then so is p(A), which answers a question from
[CDLR].

4.9. A series of important results has been obtained by Ruiz and Fernando. They
mostly study (real) local analytic rings, i. e., rings of the form

A = R{x1, . . . , xn}/I = R{x}/I,

22under the (weak) technical assumption that A is a Nagata ring, for example an excellent
ring
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where R{x} is the ring of convergent power series and I is an ideal. This is the
ring of analytic functions germs on the real analytic space germ X defined by I in
(Rn, 0).

We first consider analytic space germs with the property psd = sos. The one-
dimensional germs with this property are all determined by Remark 4.6.3: For any
n ≥ 1, the germ Xn = {xixj = 0, 1 ≤ i < j ≤ n} is the unique curve germ of
embedding dimension n with this property. For surface germs one has the following
result, due to Fernando and Ruiz:

Theorem 4.10. The (unmixed) singular analytic surface germs of embedding di-
mension three with the property psd = sos are exactly the germs z2 = f(x, y), where
f is one of the following:

x2, x2y, x2y + (−1)mym (m ≥ 3), x2 + ym (m ≥ 2),
x3 + xy3, x3 + y4, x3 + y5.

This is Theorem 1.3 in [Fe1]. It subsumes and completes earlier work from [Rz]
and [FR].

4.11. Fernando has also found several series of (irreducible) surface germs of arbi-
trarily large embedding dimensions for which psd = sos holds ([Fe3] Sect. 4). On
the other hand, germs of dimension ≥ 3 never have the property psd = sos (see
4.14 below).

4.12. We now consider germs with finite Pythagoras number. For curve germs, the
Pythagoras number is bounded by the multiplicity ([Or], [CR], [Qz]). For surface
germs, it is bounded by a function of the multiplicity and the embedding dimension
[Fe2]. Underlying this is the following result by Fernando ([Fe2] Thm. 3.10):

Theorem 4.13. Let K = Quot R{x} (the field of convergent Laurent series in one
variable), and let A be one of K[y], R{x}[y] or R{x, y}. If B is an A-algebra which
is generated by m elements as an A-module, then p(B) ≤ 2m.

The analogous result was known before for the polynomial ring A = R[t], see
[CDLR] Thm. 2.7. Fernando’s theorem gives, for the above list of rings, a positive
answer to the so-called ‘Strong Question’ from loc. cit.

A surprising fact, for which no direct proof has been given, is that the list of
surface germs in R3 with psd = sos is also the list of surface germs in R3 with
Pythagoras number two ([Rz], [Fe3]).

Every analytic surface germ of real dimension ≥ 3 has infinite Pythagoras num-
ber. This is a particular case of the following main result of [FRS1]:

Theorem 4.14. Let A be an excellent ring of real dimension ≥ 3. Then psd 6= sos
in A, and the Pythagoras number of A is ∞.

Here the real dimension of A is defined as follows: Given a specialization β  α
in SperA, one puts

dim(β  α) := dim
(
Asupp(α)/ supp(β)Asupp(α)

)
,

and defines the real dimension of A as

dimr(A) := sup{dim(β  α) : β  α in SperA}.
The main result of [FRS2], which we won’t state here, is a far generalization of

Theorem 4.13. Instead we give the application to germs of dimension two:

Theorem 4.15 ([FRS2] Thm. 2.9). Let A be an excellent henselian local ring of
dimension two, with residue field k. If the rational function field k(t) has finite
Pythagoras number, then so has A.
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All fields of geometric or arithmetic origin23 have finite Pythagoras number. So
4.15 says that p(A) is finite whenever k is such a field.

The results from [FRS2] give in fact more precise information. For A as in
4.15, the completion Â is a finite k[[x, y]]-algebra, by Cohen’s structure theorem.
If Â is generated by n elements as a k[[x, y]]-module, then p(A) ≤ 2n · τ(k), where
τ(k) = sup{s(E) : E/k finite, s(E) < ∞} is a power of two satisfying τ(k) < p(k(t)).

As an aside, we remark that it is a well-known open problem whether p(k) < ∞
implies p(k(t)) < ∞.

With 4.15, the understanding of the Pythagoras numbers of (excellent) henselian
local rings has become quite precise.

4.16. Above we have mentioned results that characterize local rings with the prop-
erty psd = sos. A natural generalization (which is important for geometrical appli-
cations, e. g. by 3.1.13 or 3.3.3) is the study of saturatedness of finitely generated
preorderings of local rings.

Let A be a local ring, e. g. the local ring of an algebraic surface over R in a real
point, and let T be a finitely generated preordering of A. Let Â be the completion
of A, and let T̂ be the preordering generated by T in Â. The question whether T
is saturated in A usually appears quite intractable at first sight. Its analogue in
the completed case, that is, the question whether T̂ is saturated in Â, is often more
accessible. Thus it would be nice to reduce the saturatedness question from T to T̂ .
In [Sch8], a series of results is proved which achieve this under certain conditions
of geometric nature. On the easier side, T saturated implies T̂ saturated. To get
back is usually harder. Instead of explicitly stating such results here (and thus
necessarily getting more technical), we prefer to show just one particular case as
an illustration:

Proposition 4.17. Let f ∈ R[x, y] be a polynomial with f = f2 + f3 + · · · , where
fd is homogeneous of degree d. Suppose that f2 6= 0. Let A = R[x, y](x,y), the local
ring at the origin, and let T be the preordering of A generated by f . Then T is
saturated if and only if the quadratic form f2 has a strictly positive eigenvalue.

A similarly complete result (but with a more complicated condition) exists when
f2 = 0 and f3 6= 0. Of course, when such results are combined with the localization
principle 3.1.12, they give global results like 3.3.2 in which stronger singularities
are allowed for the boundary.

5. Applications to Moment Problems

Results on sums of squares in polynomial rings over R have applications to a
classical branch of analysis, the moment problem. In fact, some of the results
reviewed in Section 2 were originally found (and proved) in this analytic setting, as
has already been mentioned.

This section is not meant to be a survey of recent work on moment problems.
Very important and substantial work related to moment problems will not be
touched and not even be mentioned here. Rather, my guideline has been to referee
such work (briefly) which has a direct and concrete relation to the title of this
paper, and more specifically, to the subjects discussed in sections 2 and 3.

For more material on moment problems, in particular for work on truncated
moment problems and relations to optimization, see the survey by Laurent and
Schweighofer in this volume.

23a more precise formulation is: all fields of finite virtual cohomological dimension (see [FRS2]
Rem. 2.2)
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5.1. We will often abbreviate R[x] := R[x1, . . . , xn]. Given a closed subset K of
Rn, the K-moment problem asks for a characterization of all (multi-) sequences
(mα)α∈Zn

+
of real numbers which can be realized as the moment sequence of some

positive Borel measure on K. In other words, the question is to characterize the
K-moment functionals on R[x], that is, the linear forms L : R[x] → R for which
there exists a positive Borel measure µ on K which satisfies

L(f) =
∫

K

f(x) dµ =: Lµ(f)

for every f ∈ R[x]. Let M (K) denote the set of all these K-moment functionals
(considered as a convex cone in the dual linear space R[x]∗).

By a classical theorem of Haviland, L is a K-moment functional iff L(f) ≥ 0 for
every f ∈ P(K).24 Given any subset M of R[x], let M∨ = {L ∈ R[x]∗ : L|M ≥ 0}
denote the dual cone of M . Thus, Haviland’s theorem says M (K) = P(K)∨. The
bi-dual of M is

M∨∨ =
{
f ∈ R[x] : ∀ L ∈ M∨ L(f) ≥ 0

}
.

If M is a convex cone25 in R[x], then by the Hahn-Banach separation theorem,
M∨∨ = M , the closure of M with respect to the natural linear topology on R[x].
By definition, a subset A of R[x] is closed in this topology if and only if A ∩ U
is closed in U for every finite-dimensional linear subspace U of R[x]. The natural
linear topology is the finest locally convex topology on R[x].

5.2. A convex cone M in R[x] is said to solve the K-moment problem if M∨ =
M (K), or equivalently, if M = P(K). We shall adopt a convenient terminology
introduced by Schmüdgen: A convex cone M has the strong moment property
(SMP) if M∨ ⊂ M (K) holds, where K := S (M) = {x ∈ Rn : ∀ f ∈ M f(x) ≥ 0}.
As remarked before, this is equivalent to M = P(K). Here we will only consider
cones M that are quadratic modules, and usually only the case where M is finitely
generated as a quadratic module. Under this condition we have P(K) = Sat(M),
and hence (SMP) is also equivalent to M being dense in its saturation.

5.3. Given K, it is a classically studied problem from analysis to exhibit ‘finite’
solutions to the K-moment problem, i. e., to find quadratic modules M which are
finitely generated and solve the K-moment problem.26 If M is given by explicit
generators f1, . . . , fr, the condition L ∈ M∨ translates into positivity conditions
for an explicit countable sequence of symmetric matrices.

The question whether M solves the K-moment problem depends usually on M ,
and not just on K. In other words, there may exist finitely generated quadratic
modules (or even preorderings) M1, M2 with S (M1) = S (M2) = K such that M1

solves the K-moment problem, but M2 does not.
If the saturated preordering P(K) happens to be finitely generated, then M =

P(K) is a finite solution to the K-moment problem. But as a rule, the finite
generation hypothesis is rarely fulfilled, and can anyway only hold if dim(K) ≤ 2
(see 3.1.14). See 3.2.7 and Section 3.3 for detailed information on when P(K) is
finitely generated.

Schmüdgen’s Positivstellensatz 2.1.1 gives a general (finite) solution to the mo-
ment problem in the compact case:

Theorem 5.4 ([Sm1]). If T is a finitely generated preordering of R[x] for which
S (T ) is compact, then T has the strong moment property (SMP).

24Recall (1.3.7) that P(K) denotes the saturated preordering associated with K.
25which, in the terminology of 1.4.2, is the same as an R+-module
26Clearly, such M can only exist when K is a basic closed semi-algebraic set.
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In other words, if f1, . . . , fr ∈ R[x] are such that K := S (f1, . . . , fr) is compact,
then the preordering PO(f1, . . . , fr) solves the K-moment problem.

Originally, the order of argumentation was reversed: Schmüdgen [Sm1] first
proved 5.4, using Stengle’s Positivstellensatz 1.2.4(a) and combining it with operator-
theoretic arguments on Hilbert spaces. From 5.4, he subsequently derived the
Positivstellensatz 2.1.1.

5.5. Implicitly, [Sm1] contains a stronger statement than 5.4, which is valid regard-
less of the compactness hypothesis. This was observed by Netzer. Indeed, let T be
any finitely generated preordering of R[x], and let K = S (T ). Let B(K) be the
ring of polynomials which are bounded on K. Then B(K)∩P(K) ⊂ T holds ([Ne]
Thm. 2.2). Of course, if K is compact, this reduces to P(K) ⊂ T , which means
that T solves the K-moment problem.

5.6. In the situation of 5.4, it is not in general true that the quadratic module
M := QM(f1, . . . , fr) solves the K-moment problem. A counter-example is given
by 2.3.6 (see [PD] p. 155). However, M will certainly solve the K-moment problem
if M is archimedean, since then M contains every f ∈ R[x] with f |K > 0 (Putinar’s
Positivstellensatz 2.3.2). Therefore, the results by Putinar and Jacobi–Prestel,
reviewed in Section 2.3, give sufficient conditions for M to solve the K-moment
problem. In particular, r ≤ 2 is such a sufficient condition.

A refinement which is very useful in optimization applications has recently been
considered by several mathematicians. The idea is that there is a version of Puti-
nar’s theorem which is well adapted to structured sparsity of the defining polyno-
mials.

We write x = (x1, . . . , xn), and write xI := (xi)i∈I for each subset I of {1, . . . , n}.
Assume that we have sets I1, . . . , Ir whose union is {1, . . . , n} and which satisfy the
following running intersection property :

∀ i = 2, . . . , r ∃ j < i Ii ∩
⋃
k<i

Ik ⊂ Ij .

For each index j = 1, . . . , r, suppose that Mj is a finitely generated archimedean
quadratic module in the polynomial ring R[xIj ], with associated compact set Kj :=
S (Mj) in RIj . Let K := {x ∈ Rn : xIj

∈ Kj , j = 1, . . . , r} ⊂ Rn.

Theorem 5.7. If f ∈ R[x1, . . . , xn] is strictly positive on K, and if f is sparse in
the sense that f ∈

∑
j R[xIj

], then f can be written f = f1 + · · ·+ fr with fj ∈ Mj

(j = 1, . . . , r).

The theorem as stated is essentially due to Lasserre [La3]. It goes back to ideas
of Waki, Kim, Kojima and Muramatsu, who demonstrated the usefulness of such
a decomposition for polynomial optimization by numerical implementations. The
above formulation is taken from [GNS], where an elementary proof is given which
only uses a weak form of 2.3.2. The result is also proved in [KP] in considerably
greater generality.

5.8. Putinar and Vasilescu [PV] have given a different twist to moment problems,
which works regardless of whether K is compact or not. To describe it, we follow
an algebraic approach due to Marshall and Kuhlmann ([Ma2], [KM] Sect. 4). Let
f1, . . . , fr ∈ R[x] be given and put K = S (f1, . . . , fr) and T = PO(f1, . . . , fr), as
before. Embed Rn ↪→ Rn+1 by

(x1, . . . , xn) 7→
(
x1, . . . , xn,

1
1 + x2

1 + · · ·+ x2
n

)
.
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Algebraically, this means adjoining 1/p to R[x], where we write p = 1 +
∑n

i=1 x2
i .

Let T ′ be the preordering generated by f1, . . . , fr in R
[
x, 1/p

]
. A linear functional

L : R[x] → R is a K-moment functional if and only if it extends to a linear functional

L′ : R
[
x, 1/p

]
→ R

with L′|T ′ ≥ 0 ([KM] Cor. 4.6). This shows that a finite characterization of the
extended moment sequences∫

K

xα

(1 + ‖x‖2)m
dµ (α ∈ Zn

+, m ≥ 0)

(instead of the usual ones
∫

K
xα dµ) is always possible. But note that this usually

doesn’t give a finite solution to the original K-moment problem.

5.9. To get a better understanding of the (original) moment problem in the non-
compact case, Kuhlmann and Marshall [KM] introduced several variants of the
(SMP) condition which are slightly stronger. Let M be a finitely generated qua-
dratic module in R[x]. Particularly interesting is the following condition on M :27

(‡) ∀ f ∈ Sat(M) ∃ g ∈ R[x] ∀ ε > 0 f + εg ∈ M .

Clearly, (‡) implies Sat(M) = M , that is, (SMP) for M . The question whether
conversely (SMP) implies (‡) was open for some time, until Netzer showed that
(SMP) is strictly weaker than (‡) (unpublished so far): The preordering T =
PO(1− x2, x + y, 1− xy, y3) of R[x, y] satisfies (SMP), but not (‡).

5.10. We now describe several results, both positive and negative ones, which
address the finite solvability of the moment problem in non-compact cases. Let a
basic closed set K ⊂ Rn be given. For studying the K-moment problem, one can
replace affine n-space by the Zariski closure V of K without essentially affecting the
question. Since geometric properties of V are inherent to the discussion anyway,
it is preferable to start with an affine R-variety V and a basic closed subset K of
V (R). On R[V ] we consider the natural linear topology as in 5.2 above. We say that
a finitely generated quadratic module M in R[V ] has the strong moment property
(SMP) if M = Sat(M), and that the K-moment problem is finitely solvable if there
exists such M with S (M) = K.

For many sets K, the K-moment problem can be shown to have no finite solution
at all. A large supply of such cases comes from the following result:

Theorem 5.11 ([PoSch] Thm. 2.14). Assume that V admits a Zariski open em-
bedding into a complete normal R-variety X for which K ∩ (X − V )(R) is Zariski
dense in X − V . Then every finitely generated quadratic module M in R[V ] with
S (M) = K is closed.28 In particular, the K-moment problem is not finitely solv-
able, unless the saturated preordering P(K) is finitely generated.

5.12. Cases in which P(K) is not finitely generated are when dim(K) ≥ 3 (3.1.14),
or when K ⊂ Rn contains a two-dimensional cone ([Sch2] 6.7). In the latter case,
the K-moment problem is not finitely solvable by 5.11 (see [KM] 3.10). More
generally, the same is true whenever K contains a piece of a nonrational algebraic
curve which is not virtually compact (cf. 3.2.6). See [PoSch] 3.10, and also [Sch4]
6.6.

In fact, the only known case where the condition of 5.11 holds and P(K) is
finitely generated is when V ⊂ A1.

27In [Sm2], condition (‡) was called (SPS).
28with respect to the natural linear topology
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5.13. Let A be a finitely generated R-algebra and M a finitely generated quadratic
module in A. If (SMP) holds for M , and if I is any ideal of A, then (SMP) holds for
M + I as well, and hence for the quadratic module (M + I)/I in A/I ([Sch6] 4.8).
This shows that (SMP) is inherited by restriction of quadratic modules to closed
subvarieties of affine R-varieties (in the sense of 3.1.2). Thus, if V is an affine R-
variety, if K is a basic closed set in V (R), and if there is a closed subvariety W of
V such that the moment problem for K ∩W (R) is not finitely solvable, then the
moment problem for K is not finitely solvable either.

5.14. On the other hand, there is a series of positive results. If T is a (finitely
generated) preordering of R[x] such that K = S (T ) has dimension one and is
virtually compact (3.2.2), then T contains every f with f |K > 0 (Theorem 3.2.3),
and, in particular, solves the K-moment problem ([Sch4] 6.3). Together with the
results mentioned before, this means that for one-dimensional sets K, the solutions
of the K-moment problem (by preorderings) are largely understood. (Parts of the
above discussion apply only when the Zariski closure V of K is irreducible. For
what can happen when V is a curve with several irreducible components, see [Pl].)

From results in 3.3 (see Example 3.3.6) we get finite solutions of the K-moment
problem for certain non-compact two-dimensional sets K. But in fact there exist
non-compact sets of arbitrary dimension with finitely solvable moment problem. A
case in point is cylinders with compact cross-section, which is due to Kuhlmann
and Marshall:

Proposition 5.15 ([KM] Thm. 5.1). Let f1, . . . , fr ∈ R[x1, . . . , xn] such that the
set K0 = S (f1, . . . , fr) in Rn is compact. Let T be the preordering generated by
f1, . . . , fr in R[x1, . . . , xn, y]. Then T solves the moment problem for K = K0×R ⊂
Rn+1.

In fact, what is shown in [KM] is that T has property (‡) (see 5.9), which is one
of the reasons for the interest in this property. In general, one cannot do much
better, since there may exist polynomials p /∈ T with p|K ≥ ε > 0 ([KM] 5.2).

In 2003, Schmüdgen proved a far-reaching and powerful generalization of 5.15:

Theorem 5.16 ([Sm2]). Let T = PO(f1, . . . , fr) be a finitely generated preordering
of R[x1, . . . , xn], let K = S (T ), and let h = (h1, . . . , hm) : Rn → Rm be a polyno-
mial map for which h(K) is bounded. For each y ∈ Rm consider the preordering

Ty := T + (h1 − y1, . . . , hm − ym)

= PO
(
f1, . . . , fr, ±(h1 − y1), . . . ,±(hm − ym)

)
in R[x1, . . . , xn]. If Ty has property (SMP) for every y, then T has property (SMP).

By 5.13, the fibre conditions in 5.16 are not only sufficient (for T to have (SMP)),
but also necessary. Note that S (Ty) = K ∩ h−1(y) =: Ky, the fibre of y in K.
Thus the theorem reduces the question whether T solves the K-moment problem
to the fibres of h. These will be of smaller dimension than K (except in degenerate
cases), thus opening the door for inductive reasoning.

5.17. Schmüdgen’s proof of 5.13 uses deep methods from operator theory. A sim-
pler and more elementary proof was later given by Netzer [Ne], which uses only
measure-theoretic arguments. (A similar approach was found independently by
Marshall.) Without doubt, it would be instructive to have a purely algebraic ap-
proach to this important result, as was the case in the past with Schmüdgen’s
Positivstellensatz 2.1.1. It seems not clear, however, if one can reasonably expect
such a proof to exist.
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As Netzer points out, both his and the original proof actually give a somewhat
sharper version of 5.16, namely

T =
⋂

y∈Rm

Ty.

(Note that Ty = R[x1, . . . , xn] unless y ∈ h(Rn).)

5.18. Theorem 5.16 does not allow any stronger conclusions on T , even if the
fibres Ty satisfy stronger hypotheses. For example, if Ty contains, for every y, all
polynomials that are strictly positive on Ky, it need not be true that T contains
every polynomial which is strictly positive on K ([KM] 5.2). Also, T may satisfy
(‡) fibrewise without satisfying (‡) globally, as shown by Netzer’s example 5.9 (take
for h the projection (x, y) 7→ x). This answers a question raised in [Sm2].

Proposition 5.15 is just one of the simplest applications of 5.16. Another appli-
cation of 5.16 is to one-dimensional sets K which are virtually compact. One finds
that any T with S (T ) = K solves the K-moment problem, a result we have already
mentioned (in stronger form) in 5.14. Beyond these examples, however, there is a
plethora of examples covered by Theorem 5.16 which are completely new.

5.19. Moment problems with symmetries have been studied in [CKS]. Given a ba-
sic closed set K ⊂ Rn which is invariant under a subgroup G of the general linear
group, one may ask for characterizations of M (K)G, the set of K-moment func-
tionals which are G-invariant, among all G-invariant linear functionals. It is shown
that such finite characterizations can exist in situations where the unrestricted K-
moment problem is unsolvable. On the other hand, an equivariant version of the
negative result 5.11 is proved. All these results require that the group G is compact.

5.20. Given a basic closed subset K of V (R) as before, let B(K) be the subring
of R[V ] consisting of all functions that are bounded on K. All known results
support the feeling that the ‘size’ of the ring B(K) directly influences the (finite)
solvability question of the K-moment problem. The idea is roughly that the K-
moment problem can only be solvable if B(K) is sufficiently large. As a crude
measure for the size one can take the transcendence degree of B(K) (as an algebra
over R), for example.

For a brief informal discussion, assume that K is Zariski dense in V (see 5.10)
and V is irreducible. On the one extreme, B(K) is as large as possible (namely
equal to R[V ]) if and only if K is compact, in which case the moment problem is
always solvable (5.4). Netzer’s remark 5.5 and Schmüdgen’s fibre criterion 5.16 also
supports the above idea. If V is a nonsingular irreducible curve, not rational, then
the K-moment problem is solvable if and only if B(K) 6= R (5.12, 5.14). In the
situation of 5.11 one has B(K) = R. No example seems to be known where the K-
moment problem is solvable and B(K) = R, except when V is a rational curve or a
point. If V is a nonsingular surface, the unsolvability of the K-moment problem is
proved in [Pl] under a condition which is slightly stronger than B(K) = R (negative
definiteness of the intersection matrix of the divisor X − U , where V ⊂ U ⊂ X is
as in 2.4.7).

5.21. We briefly discuss the concept of stability. Let M = QM(f1, . . . , fr) be a
finitely generated quadratic module in R[x]. Then M is called stable if there exists
a function φ : N → N such that the following holds: For every d ∈ N and every
f ∈ M with deg(f) ≤ d, there exists an identity f = s0 + s1f1 + · · · + srfr with
sums of squares si such that deg(si) ≤ φ(d). The existence of such φ depends only
on M , and not on the choice of the generators of M .
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Given M in terms of a generating system f1, . . . , fr, there are two natural com-
putational problems. The recognition problem is to decide whether a given poly-
nomial lies in M . The realization problem is to find an identity f = s0 +

∑r
i=1 sifi

explicitly, provided it is known to exist, together with explicit sums of squares de-
compositions of the si. If M is stable then both problems are a priori bounded,
and thus (at least in principle) accessible computationally. On the other hand, if
M is not stable, both problems are expected to be computationally hard.

The notion of stability was introduced in [PoSch]. There is a series of results
showing that the question whether M is stable is linked to the geometry of the
set K = S (M), and also to the solvability of the K-moment problem. The most
important results are:

Theorem 5.22. Let M be a finitely generated quadratic module in R[x]. If M is
stable, then M = M +

√
supp(M) holds, and this quadratic module is again stable.

See [PoSch] Cor. 2.11 and [Sch6] Thm. 3.17. In particular, the closure of a stable
quadratic module is always finitely generated. The proof of Theorem 5.11 above
was in fact given by first showing that the M discussed there is necessarily stable,
and by then applying 5.22.

Theorem 5.23 ([Sch6] Thm. 5.4). Let M be a finitely generated quadratic module
in R[x], let K = S (M). If M has the strong moment property and dim(K) ≥ 2,
then M cannot be stable.

This means, unfortunately, that except when dim(K) ≤ 1, M can only be stable
when M is quite far from being saturated. For example, M can never be stable
when M is archimedean and K has dimension ≥ 2. Interestingly, there are examples
where M is stable and K is compact of dimension 2 ([Sch6] 5.7).

The condition (SMP) for M in 5.23 can even be weakened to a condition called
(MP) (otherwise not discussed here), which requires that M contains all polynomi-
als which are psd on Rn.

5.24. The moment problem from analysis has classically two aspects, the existence
question and the uniqueness question. We have only discussed the former here,
since until recently the latter had not been related to positivity and sums of squares
questions. Given a closed set K ⊂ Rn and a K-moment functional L ∈ M (K) on
R[x], let us say that L is determinate (for K) if there exists a unique positive Borel
measure µ on K representing L. If there is more than one such µ, L is called
indeterminate.

If K is compact, it is classically known that every L ∈ M (K) is determinate.
In [PuSch] it is shown that the same is true more generally if the ring B(K) of
K-bounded polynomials separates the points of K. For example, this applies when
K is one-dimensional and is virtually compact (see 3.2.2). On the other hand, when
dim(K) = 1 and K is not virtually compact, it is shown under certain geometric
conditions that there exist indeterminate K-moment functionals. It is an open
question whether this is always true for K of dimension one and not virtually
compact. Even less is so far known in higher dimensions.
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[Ja2] Th. Jacobi: Über die Darstellung positiver Polynome auf semi-algebraischen Kompakta.
Doctoral Dissertation, Universität Konstanz, 1999.

[JP] Th. Jacobi, A. Prestel: Distinguished representations of strictly positive polynomials.

J. reine angew. Math. 532, 223–235 (2001).
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