THE DIRICHLET PROBLEM FOR WEINGARTEN
HYPERSURFACES IN LORENTZ MANIFOLDS

OLIVER C. SCHNURER

ABSTRACT. We solve the Dirichlet problem for strictly convex spacelike hyper-
surfaces of prescribed Weingarten curvature under the main assumption that
there exists an upper barrier. We consider curvature functions that generalize
the Gauf} curvature.

1. INTRODUCTION

We solve the Dirichlet problem for strictly convex, spacelike hypersurfaces of
prescribed curvature F' € (f( *) in Lorentz manifolds under the main assumption

that there exists an upper barrier. A hypersurface M that solves a prescribed
curvature equation

Fly = f(z) YzeM,

where F|,, means that F' is evaluated at the vector (k;(x)) whose components are
the principal curvatures of M at x, is called a Weingarten hypersurface. Strictly
convex means in this paper, that the second fundamental form of the hypersurface,

as defined below, is positive definite. The class (f{ *), which will be defined below,
is an extension of the class (K*) of curvature functions introduced in [6]. Here, we
only remark, that the Gaufl curvature belongs to the class (f( *).

We assume that N"t! is a smooth, globally hyperbolic manifold with a Cauchy
hypersurface Sy, such that N™"*! is topologically a product, Nt = R x Sy, where
Sop is an n-dimensional Riemannian manifold, n > 2. According to [9, p. 212], there
exists a continuous time function. Furthermore, following [15], we see that there
exists also a smooth time function, so there exists a Gaussian coordinate system
(2*)o<a<n such that z¥ represents the time, and the (z)1<;<, are local coordinates
for Sp. We assume Sp = {z° = 0} and do not distinguish between Sy and {0} x Sp.
Now, we may write the metric of N**! in the form

dE?V,,LH =¥ {—dm02 + Uij({EO, m)dmidxj} ,

where 0;; is a Riemannian metric, ¢ a smooth real function defined on N"*!, and
x an abbreviation of (z%)1<;<p.

Let ©Q C Sy be an arbitrary bounded open set with smooth boundary. We may
always assume that  is connected. Let 0 < f € C%%(N"™*1). We assume that
there exists an upper barrier for the pair of curvature F' and f, (F, f), which is
strictly convex (convexity is defined in section 2 with respect to the past-directed
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2 The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds

normal), spacelike, and jepresented as the graph of a smooth function @ defined in
a neighborhood Uq of Q:

Flyapna > f(@(x),2), (hi;) >0, |Da| <1.

We assume that 2 is retractable to a point in Ug, i. e. there exists an open set {2y,
Q C Q; € Ug, and a smooth function

78 x [0,1] = Ug,

such that 7(-,0) = idq,, 7(-,1) = const. and 7(-,¢) is a diffeomorphism for any
1 >t > 0. The retractability of  will only be used in section 6.2 to prove the
existence of a hypersurface of prescribed curvature. If Ug is diffeomorphic to an
open ball in R", then such a function 7 exists automatically.

For any open subset (25 of Un we assume the following condition: Let graph U‘Qz
be a smooth spacelike hypersurface with ©u = @ on 9€Qy where Q5 C Ug. We
assume that the points lying on any such hypersurface have 2%-coordinates which
are uniformly bounded from below. This condition holds for example in Minkowski
space, as |u|, is bounded, because we may always assume that Uq is bounded.
Alternatively, we could require that there exists a subsolution to our problem which
is defined appropriately.

Furthermore, we assume that there exists a strictly convex function y € C? in
the sense that the second covariant derivatives of y are estimated from below by
a positive constant times the metric of N?*1 in the matrix sense which is defined
in a neighborhood of I x Ugq, where the interval I is chosen so large that I x Ug
contains the hypersurface we are looking for. In view of the C%-estimates below we
may assume that I is bounded.

Under the assumptions stated so far we prove

Theorem 1.1. There exists u € CH* (Q), such that M = graphu is a spacelike,
strictly convex hypersurface with

Fly, = Flu] = f(u(z),z) inQ,
u="1 on 012,

u<u m .

We mention some papers considering related problems: In [5] and [6] existence
results are proved for closed hypersurfaces of prescribed curvature F € (K) in
Riemannian manifolds and for those of prescribed curvature F' € (K*) in Lorentz
manifolds, respectively. The Dirichlet problem has been considered for the Gaufl
curvature in Riemannian manifolds in [12] and for a greater class of curvature
functions similar to the class (K) in [2] in Euclidean space. In Minkowski space the
Dirichlet problem has been studied for the Gaufl curvature in [7].

This paper is organized as follows: We mention notations and equations from
differential geometry in section 2, introduce some classes of curvature functions in
section 3, and derive the lower order estimates in section 4. In section 5 we prove
C?-estimates at the boundary. Finally, we describe in section 6 how to prove C?-
estimates in the interior, C*“-estimates, and existence. In section 7 we consider
a similar problem in Riemannian manifolds. Finally, we mention some existence
results for closed Weingarten hypersurfaces in section A.

The author wishes to thank Prof. Dr. C. Gerhardt for interesting discussions and
for his introduction to hypersurfaces of prescribed Weingarten curvature.
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2. DIFFERENTIAL GEOMETRY

We follow the notations of [6], use a future-oriented coordinate system and define
especially convexity by (h;;) > 0, where h;; is defined with respect to the past-
directed normal v:

(2.1) (V) =—v e (1,ut), wu'=oYuy

v =1—|Dul*=1- o (u(z), v)uzuj,

{E;‘E :hijy”‘_
Here and below, Greek indices, «, 3, v, ..., range from 0 to n and indicate that
the respective quantities are defined in N™*!, Latin indices range from 1 to n and
indicate quantities in M, whereas r, s, and t will be used from 1 to n — 1 to
denote tangential components with respect to a boundary of a set in a spacelike

hypersurface. We use the Einstein summation convention, if the indices are different
from 1 and n. The induced metric on graph u is given by

gij =" {oij — uiuy},
U d
ij __—2¢ ) 45, U
g’ =e {o + 02 }

By direct calculation we get a formula for the Christoffel symbols of M, where the
comma indicates partial differentiation, for covariant differentiation we use only
indices, as we have already done:

1 ukul
Fk kl

{2(ou — wgwp) (Y + Youy) + 2(oj — ujw) (¥i + ou)
—2(05; — wiuy) (Y + Yowr) — 2ugjup + oq g+ O — Oigy

+ oi,0U5 + 010U — 00U}

We remark that in normal Gaussian coordinates this equation takes the form

!
ko L] o wu
Iy = By {U + 2 {—2ujw +0ou;+ 0, —0iji+ ouous + 00w — oo}

We compute the second fundamental form by using the equation

_ -1 =0 =0 =0 =0
€ ¢’U hij = —U;5 — FOOUin — Fojui — FOin — Fij’

which follows from the component @ = 0 of the Gaufl formula zy = hiiv®. ug

denotes the covariant second derivatives and ' the Christoffel symbols of N"*1.
Since w;j = u 5 — Ffjuk, we deduce

j

® o uFul 1
=€V — Uy — Ui UUE O + ) + Qi (.T, U,Du) . U—2

(2.2) hi; =e%v {7U7ij + Ffjuk - fgouiuj — fgjui - fgiuj -1 }

1
:ed’f{—u,ij + a;j(z, u, Du)}.
v

We remark that the spacelike hypersurface M = graphu is a strictly convex hyper-
surface if and only if (—u ;; + a;;(x, v, Du)); ; is positive definite.
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The eigenvalues of the second fundamental form, x;, 1 < i < n, are defined by
using the mixed tensor h = h;rg".

3. CURVATURE FUNCTIONS

We introduce some classes of curvature functions similar to [6], [5], and [4].
Let I'y C R" be the open positive cone and F € C%*(I';)NC° (T'}) a symmetric
function satisfying the condition

oF
F;, = % > 0;
then, F' can also be viewed as a function defined on the space of symmetric, positive
definite matrices Sy, for, let (h;;) € Sy with eigenvalues &;, 1 <4 < n, then define
F on Sy by
We have F € C%(S;)NC° (S4). If we define
oF

FY
8hij ’

then oF
y 12
FY¢8; = O €] VEeR™,
and F' is diagonal, if h;; is diagonal. We define furthermore
Fij,kl — aQF )
8hij3hkl

Definition 3.1. A curvature function F' is said to be of the class (K), if
Fe CQ’OC(FJF) N CO (f+) s

F' is symmetric,

F is positive homogeneous of degree dy > 0,

F
F=P .0 wr,,
8/@
Fﬂ|61"Jr = 07
and
ij - i, 2 ik7j
(3.1) Fikly g < F7Y(Fn;)" — F*humm V€ S,

where S is the space of symmetric matrices and h'J denotes the inverse of hsj, or,
equivalently, if we set F = log F,
Fiarly e < —F*h'nm, Ve S,
where F' is evaluated at (hj).
If F satisfies
(3.2) Jeo>0: eoFH =eoF trh! < F9hyht
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for any (h;;) € Sy, where the index is lifted by means of the Kronecker-Delta, then
we indicate this by using an additional star, F' € (K™*).

The class of curvature functions F' which fulfill, instead of the homogeneity
condition, the following weaker assumption

1
(3.3) 360 >0: 0<%F§;FmigéoF

is denoted by an additional tilde, F' € (R’) or F e (f(*)
A curvature function F' which satisfies for any € > 0
F(e,...,e,R) — 400, as R — +o0,
or equivalently
F(,...,1,R) = 400, as R— +oo,
in the homogeneous case, a condition similar to an assumption in [2], is said to be

of the class (CNS).

We remark that in our applications it is often possible to replace positive con-
stants by positive continuous functions depending on the value of F' or to introduce
an additional constant as in [5] to enlarge the respective classes.

Example 3.2. We mention examples of curvature functions of the class (K) and
(K*) as given in [6].
Let Hy be the k-th elementary symmetric polynomials,

Hy (ki) := Z Kiy *oe iy, 1<k <mn,
11 <. <1
1
O — (Hk)’“

the respective curvature functions homogeneous of degree 1, then the inverses of
the oy defined by
1
ok(k;) i = ———~
oy (k7 ')
are of the class (K).
The n-th root of the Gaufl curvature K = o,, = &, is of the class (K™).
Furthermore, if F' € (K) and G € (K*), then

(3.4) F.-G* a>0,

is of the class (K*), and we may also drop both the condition F[,-, =0 and the
assumption of the continuity of F' up to the boundary.

Example 3.3. Let n € C*%(Rx¢) and ¢, > 0 such that
1
0<—<n<gey, n <0.
Cn
Let F' € (K), positive homogeneous of degree dy > 0, then G, defined by

G(k;) = F | exp /@dT ,

1
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is of the class (IN() Let K = []ks, a > 0, then we have F = G - K* € (K*),

provided G € (K) satisfies the conditions required for the function F' in the example
(3.4). Furthermore,

F(k;) :== F| exp /77(:)(17'

1

belongs to the class (f(*)

Proof. We prove only that (3.1), (3.3), and (3.2) are satisfied. Define

‘We compute

Gij (ki) =F; (Fﬂk)f%n?) Rj 175{/:;)
+ Fi(Rr)Ri (77(/@2-))2 ()R = (ki) dij-

From [5, Lemma 1.3, Remark 1.4] and [6] we know that the inequality
ij - ig, \2 ik7j
Fikly g < F7Y(Fn;)" — F*hmm Vne S
is equivalent to the following two conditions:
Fjlﬁj S Filﬂ for Kj S Rj
and

|2 VEeR™

(3.5) Fuy¢'ed < FY (R — Frt ¢
Let k; < ;. As F belongs to the class (K), we deduce
Fj(Rr)R; < Fi(Rg)R

and furthermore in view of the monotonicity of 7

n(kj) <n(ki),

-\~ Kj N i
Gj(kr)kj = Fj(lik;)ﬁj L(ﬁj) ki <F;(Rr)Ri 7759 ) ki = Gi(Kg)Ki.
4 4
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We have to check the second condition for the curvature function G. In view of
F € (K) and ' < 0 we obtain

i€ + G L€' =Fyj(Rr) - ('%z ' Wﬁl) . (Rj ' n(:j)gj>

as desired. As

ZG Ki = ZF Rr)kin(k) < do-G - max 77(/{1)

ZG ki >do- G- min n(k;)

1<i<n

in view of the homogenelty of F, we see that there exists dg > 0 such that

1

Fe (IN( *) remains to be proved. Therefore we use the inequality
deg >0: Fik; > el Vi

mentioned in [6] as a characteristic property of functions of the form G - K¢. We
compute for the logarithm of F

log F(ky) =log F(ky) = logG(& Z/

- ; 1
(logF(ﬁ;k)) >an("{) > a. ,
Cn HRi
a = a =
Fir2>—F i = —FH,
ST =
and see that F' belongs to the class (f(*) O

The following lemmata will be used in the proof of the C2-estimates at the
boundary:

Lemma 3.4. (K*) C (CNS).

Proof. Let F € (f(*), e>0. Weset (k;) = (e,...,¢, R) in the condition (3.2) and
estimate

coF(e,....e) - R<egF-H< Zme < 6oFe + F,R?,

where F is evaluated at (k;), if nothing else is stated, and obtain

8o F
eoF(e,...,e) < 0e

+ F,R.
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If Fe,...,e,R) — +00 as R — 400, there is nothing to be proved, otherwise we
deduce for R > Ry

€0 1

—F(e,... - = < F,.

g FEe) g s

We integrate from Ry to R and obtain

%F(E,...,E) [log R —log Ry) < F(e,...,e,R) — F(e,...,&,Rp).

Thus our claim is proved. ([l

Lemma 3.5. Let F' € (f{) N(CNS), ((Hkﬁl)1<k<n)l N be given with
SRR e
0<I€1’l §~-~§K3n,l

and assume that F (k) € [%,00] Then the following conditions are equivalent

forl — oo
K1, —0,
Kn, — + 00,
tr FY(kp1) = FY (kp1)0i5 — + 00.
Proof. Assume k1; — 0,1 — o0. If k1 < ¢, (k1) — O+ N Bey11(0) follows, and

F|ar+ = 0 implies F'(kx,;) — 0 contradicting F(ky,;) > i Thus x1,; — 0 implies
Kn, — 400. If Ky — 400, K1 > € > 0, then

co > F(kpy) > F(e,... &, En1) = 00
yields a contradiction to Lemma 3.4. Therefore x,,; — +oo implies k;; — 0. As

Fe (f(), we have

1 1 i
0<—F<F< ZFka,l <n-Fikyg <n-tr FY - Ky,
codo do &

so k1,, — 0 forces tr F — +400. On the other hand
tr Y gy < ZFkﬁk,l < 6o F < dgep,
k
so tr 7 — 400 implies k1,1 — 0. O
In the following, we will consider F' as a function of (k;), (hij,gij), or (hl) =
(hixg*?). Then

or

FY((hi), (gr)) = ohy,

is a contravariant tensor of second order,

; OF
J l _
R () = gy

is a mixed tensor.
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4. LOWER ORDER ESTIMATES

We assume now that u € C%¢ (ﬁ) and M = graphu is a spacelike, strictly convex
hypersurface satisfying v < @ in . For the lower order estimates we do not need
the fact that F|,, = f.

Remark 4.1 (C%-estimates). Let u be a function as above. Then u < @ and our as-
sumption, that the points lying on graph @& have z°-coordinates which are uniformly
bounded from below, states, that there exists ¢, such that

lu| < ey
Lemma 4.2 (C'-estimates). Let u be as above. Then there exists
¢pu = cpu(N", |aly, [ulg) >0
such that
|Du| <1 — cpy.

Proof. We follow the proof of the C'-estimates in [6] and formulate it so that we
can simultaneously estimate |Du| in the interior and at the boundary of Q.

Obviously, the tangential derivatives are bounded, because u = @ on 02 and
|Du| < 1= cpa, cpa > 0: We represent 992 in local coordinates in a neighborhood
of an arbitrary boundary point as graphw

00 = graphw, w=w(z!,...,2" ") =w(2)
with Dw(0) = 0. We calculate for i <n
(u—1a); + (u—@)pw; =0
and evaluate at 2’ =0
u;(0) = 1;(0).
Now, we define for A > 1, which will be chosen later,
1 1 -
pi=5 log || Dul|* — Au = ilogg”uiuj —Au
1 oy | Dul? 1 | Dul?
==1 29 —du=— Zlog /=2
g B¢ v? b 1/}+2 Og1—|Du|2

We see that ¢ is well-defined in {|Du| # 0}. In view of the C%estimates there
holds
|=¢ = M < c+ Aufy, [-¢¥][<c
thus we see that the estimate
|Du|<1—¢, ¢>0,
is equivalent to
|| Dul| < ¢
and also to
p <g,
when A is fixed. Here and below we use ¢ to denote a constant that may change
its value if necessary. We remark that ¢ is a scalar function, so the first partial and
covariant derivatives coincide. We assume now, that ¢ is maximal in zq € €,

p(z0) = SUp p > —00.
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If ¢ € 09, we choose a coordinate system such that e, coincides with the inner

unit normal vector in x¢ to 0Q and o;;(z¢) = d;; holds. Since the maximum is

attained in xg, we have 0 > @, (xo). If ¢ € Q, this inequality is also true, even

0 = ¢n(xo) holds. We calculate in xq

(41)  0=>pp
79ijumuj
= 2

|| Dul]

i, u?
o + 02 Uin Uy

i, u!
o’ + 3 uiuj
(%

:uiui,L A\
[Duf*
= D1u|2Ui {—67wv71hm — fgouiun — fgiun — fgnui — f?n} — Ay
For 1 <r <n-—1, we have ¢, =0,
(4.2) 0= |D1u|2m {—e‘¢v_1hiT - fgouiur - ngur - fgrui - f?r} — A,

We assume w. L. 0. g.
1
\Du|2(x0) > max {|D&2(gc0), 2} ,

because |Da| < 1 — cpg. Since u — @ < 0, (u — @)p(zo) < 0, (u — 4)r(xo) = 0,
1 <7 <n—1, hold for zy € 89, we see that u, () > 0 contradicts |Dul|*(zo) >
|Dil?(zo), 50 up < 0, u™ < 0 in zg. If 9 € 2, we have u™ < 0 after a suitable
choice of the coordinate system. We multiply (4.1) with —u™ and obtain

: — — =0 —0 =0 —0
> D |2u’u" {e Yo h, + Loouitn + Lyjun + Lo ui + I‘m} + A u"u,,.
U

We add (4.2) multiplied with —u", 1 <r < n—1, and use the convexity of graph u,
i. e. the positive definiteness of h;j,

! 5 ulu? {e_d’v_lhij}

_|_

1 5 (=0 ) =0 =0
D |2uzu3 {FOOUin + Touy + Lojui + Fij}
u

+ A|Dul?

— i . 1 ..
>Too|Dul® + 2To,ut + T)wind + A\ Dul’.
00 07 D 17

| Dul?
As 1> |Du)® > L,

02 —e(N™*",Jul) + A
holds with ¢(N™*1, |u|,) > 0, we deduce, that in the case A > 2¢(N"*! |ul,) the
maximum can only be attained in zo, if |Du|*(z) < 1or |Dul?(z0) < |Da|*(a0).
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In both cases
1 | Dul? ()
—log ——5—— < c(cpa
28 T DulP(ay) = PV

holds, so for A = 3¢(N"™ ", |ul,)

1. 1 | Dul? (o)
z) <o(zg) = = loge ¥ 4+ Zlog ———~ 21 _ Ny
p(x) <p(wo) = 5 log 2 %8 T DuP )
<c(N" epa, |ul,)
implies the C!-estimates. O

5. C2-ESTIMATES AT THE BOUNDARY
We assume that u solves the Dirichlet problem
Flu) = f(w,2) in 9,
on 01},
in Q,

(5.1)

e &
IN
Sy 2

where (—u;; + a;;(z,u, Du)); ; is positive definite, u € C*(Q), M = graphu is a
spacelike, strictly convex hypersurface, and F' is of the class (f( *). Once a priori

C2-estimates at the boundary are established, we can prove a priori C?-estimates
in the interior similar to [6], where these estimates are proved for the corresponding
curvature flow for closed hypersurfaces.

In this section we will use indices to denote partial derivatives.

5.1. Tangential C2-estimates and distinguished coordinate systems.

Lemma 5.1. Let u be as described above. Then the second tangential derivatives
of u are bounded,

tys| < (N, |09, [uly, cpus tly), 7,5 <n,
when 2", 1 < r < n, corresponds to the tangential directions, where |0Q|;, k € N,

denotes the respective C*-norm of a local representation of O as a graph.

Proof. We choose a local coordinate system in Sy, so that 92 is locally represented
as graphw

00 = graphw, w=w(z!,..., 2" 1)

w
with Dw(0) = 0. u— @ = 0 on 99 implies (v — @)(z’,w(z’
this equation, we obtain for r, s < n

(5.2) (u—1a), + (u—a)pw, =0,

('LL - ﬂ)rs + (U - ﬂ)rnws

('),
)

)) = 0. Differentiating

+ (4 — W pswr + (U — W) ppwrws + (U — @) pwrs =0.
Evaluated at 2/ = 0 we get
‘urs| < |Unwrs‘ + |ﬂ7"s| + |anw7"s|a

and therefore u,s is bounded. O
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Remark 5.2. For the following C%-estimates we will use special coordinate systems
which are described in the following. We refer to [12], where a similar coordinate
system is used in the Riemannian case.

Let zop € OQ be an arbitrary point, o = (@(zo), z0), Qo := {(u(xo),z) : = €
Q}, Moy := {(u(xo),z) : © € Ug}. Let (eg,e1,...,e,) be an orthonormal base of
Tz, N" 1 such that eq is the past-directed normal vector to My, defined analogously
to (2.1), e, the inner normal of Qo in My. Let M, be the hypersurface obtained
by applying expi\g "™ %o the vector space spanned by ey, ..., e, with a coordinate
system (2%)1<;<,, inherited from this map.

Locally we obtain a coordinate system of N™*!, if we denote by x° the oriented
geodesic distance to My. We may assume that this coordinate system is future
oriented.

We will call such a coordinate system a distinguished coordinate system associ-
ated with zg or xy. We remark that in such a coordinate system the metric g and
the Christoffel symbols I’ of N™*1 have the following properties:

oo =—1, Go; =Gj0=0, Jj>0,
(Gap)(0) = diag (—1,1,...,1),
gij,k(o)zoa lgz,],kzgn,

T3, (0) =0,
Gi5,0(0) = 2h£\j40 (0) =0,
ds3ni1 = Jopda®da’ = — dz"® + 0;5(2°, ) da'da?,

where the last equation states, that we have a normal Gaussian coordinate system,
S0 we can express a;; in view of (2.2) in a distinguished coordinate system as

1
a;j(z,u, Du) =3 {oF0? + uFul} -y
Aoig + ojii = Oiji + Tiou; + LU — Tijour
2 [0 =0 =0 =0
— {FOO’U,Z‘U]‘ + ]."Ojul- + FOiuj + Fij 5

which can be estimated due to the properties of the coordinate system chosen

Oa;
(5.3) jaij (@, u, Du)| < c-Jaf, | =22 (2, u, Du)| < e |
P
with ¢ = ¢(N" L, |u,).
In the same way we can estimate
Oa,.
jass (e, @ D@)| < - [e], \ S, D) < - fal,e= (N Jaly)

Hence we infer, that —@ is strictly convex in Qs = Q2 N By for small § in the
Euclidean sense,
—’[Lij Z € - §ij in Qg
for some 0 < € < 1, where the inequality holds in the matrix sense as usually.
In view of our lower order estimates, we deduce that there exists 0 < ¢ < 1 such
that

(54) 7’&1‘3‘ Z € Gij in Qg.
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Here we have used the fact that the hypersurfaces M and M can be represented
locally as graphs via functions u and 4, respectively.

5.2. Mixed C?-estimates at the boundary. In this section we prove that in a
distinguished coordinate system for any solution u the second derivatives uy, are a
priori bounded for 1 <t <n-—1

|utn|(0) <,

where the uniform constant depends on known or already estimated quantities,
more precisely

¢ = c(N" 1,109y, |aly, [ulgs cous | £y €)

and the norm of f is taken over a domain determined by |ulg. ¢ is given by

—;; > €d;; in the matrix sense in an appropriate domain Q5 = 2N Bs.

In the proof we use ideas of [1] and [7]. We remark that —@ is a subsolution in
the sense of [7, Theorem 1.1].

For an arbitrary point zy € 99 we choose a distinguished coordinate system
associated with (@(xg), xo).

Near the origin, 99 or more precisely the boundary of the projection in 2°-
direction of graph |, on {z = 0} can be represented as a graph

" =w(2) = %Brsx’“scs +0 (|:v’|3) ,oal = (.2
such that locally Q = {(2/,2"1) : 2"+ > w(a’)}.

The aim of the following remarks and lemmata is to derive the differentiated
form of the equation F' = f, where all the quantities are supposed to depend on
(2, u, Du, D*u) except F', which depends on (hij, gij) or hl. Statements obtained
by differentiating the defining equality for the respective quantity will be given
without a proof.

Remark 5.3 (Derivative of v). For the quantity v we obtain

v=4/1—ocVuu,,

dv 1 (100Y 1 90 ij

dek v
Remark 5.4 (Derivative of the metric). For the induced metric of M we have
Gij =0ij — WUillj,
dgij 80’ij 80’1']'
A R m
dzF 0z Oz
Remark 5.5 (Derivative of the second fundamental form). For the second funda-

mental form of M we obtain

1
hij 25 {—U,’j + aij(ac,u, Du)} R

dhij __hldl+l . _A'_aa'ij +aaij +8aij
dk Ty gk Ty Tk Opm tmk 20 T gk [

— UikUj — UiUj-
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Lemma 5.6. The derivatives of F' with respect to hi and gg; satisfy

kl k 1j
FR =Fkgl,
ai — _ pipk
091 !

Proof. We consider

(5.5) F = F (hij,95) = F () = F (b () (900)))

where h;; and g;; are independent matrices and differentiate with respect to hy;

OF on] _ F?a(mmgmj)

oh] Ohyy 7 Ohy

If we differentiate (5.5) with respect to gg; and use (5.6), we obtain
OF _ 0F 0 (Rimg™)

:7‘7:_F’Lh7r mk gl _ lehk
Ogrt  Oh? Ok imd g ’

Fz(sk:(sl gm] _ Fk l]

(5.6) FM =

O

Lemma 5.7. [Derivative of the equation] For a solution of the Dirichlet problem
of prescribed curvature F = f, we have the equality

af af “ 100" 100%
0= — 920Uk T Bk (F bhab) {2 570 kUil + 3 2 Ok Liti +0o ulkuj}
i 1 da ij 8(1@] aaij
+F]v{—uijk—|—ap mk—|—80 k+3xk

- % (F™hi, + F™h,) {86?3 up + 6(;” - 2Uikuj} :
Proof. We use the chain rule
dF OF dh;; = OF dg;
dzk  Oh;; dx*  Og;; dak’
the results stated above, and the fact, that matrices commute, since they can be
diagonalized simultaneously. [l

In view of this Lemma, we define the linear operator L for w € C? (ﬁ) by
(5.7)

il b 1 i1 0a;
Lw:=FY - w” (F hab)v—a UFw fFjvapw]lw

where the quantities F%/, h;; v, and 0% are evaluated by using the function w.
We fix t < n and define

MIpT o0 o MI BT o oy
m — F" R uw; — F™ hy ugws,

0 0 0
T:= By, — Blx,—,
gat Bt ggn ~ Bitng
where the indices of B and ™ are lifted and lowered by using the Kronecker-
Delta.

A consequence of Lemma 5.7 is

Lemma 5.8. We have
ILT(u—a)| <c- (1+trFY), c=c(N"",|aly, |ul,).
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Proof. Due to the definition of L we have
of of

Luj = — 2L

aO’C_awk
1900 100%

ab

b () {280uku2]+28k }

da 0a;; .o [ ODoyy d0;j
ij = 3 9 _ mipg 3 3
i F {ao ot G b ming, { S 4 70

As

|lehgnA”‘ S C(Aij) -tr Fmihgn S C(Aij7 |’LL|O7 CDu> (50, F)
holds for any A;;, we see, taking into account (3.3), that Luy can be estimated as
desired. Furthermore, we see

|Layg| <c- ’Fijﬂijk| +c-laly+c- tr F4 . |a|y + ¢ ‘Fmihfnujﬁi|
<c- (1+trFY).

Now, we consider

L(m ug) =F= (5luk] + 6 u;ﬂ) + 2! Luy, + uy Lot

=- Flﬂhkj - F”hk» + o' Luy, + ug Lot
Flj ak + Fi *ak

and

L(x ap) = FiZ (5lukj + 5lu;ﬂ) + 2! Ly, + ay, Lot

and see, that the absolute Value of both expressions can be estimated from above
by c- (1 +tr F4 ) as desired. By combining all these estimates, the claim follows.
|

Remark 5.9.
T(u—@)| <c(N™*, [ul,,|al,) in
IT(u — )| <c(N™, 109, [ul,,ll,) - 22 on 00, [2] < c.
Proof. The first claim is obvious. To prove the second one we compute
T(u—a)=(u—1u);+ Bgrz"(u — @) — B{xp(u—a)., r<n.
In view of (5.2) and ¢ < n we obtain
T(u—1)=(u—1a), (—w + Bira” + B zpwy) .

(u—1), is bounded. On 9 we describe the second factor as a function of 2/, take
wrs(0) = B, into account and lift again the index by using the Kronecker-Delta

—wi(2") + wir (0)2" + wi (0)w(z")w,-(z).

This term vanishes in 2’ = 0. We differentiate with respect to 2%, s < n, take the
absolute value and estimate

|[—wis(2) + wis (0)] + [wf (0)ws (2)wr ()] + o] (0)w (2)wrs ()
<c-lz|+c-|z*+c- |z’

Thus the second estimate is proved. [
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We will employ a barrier function whose main part is given by
¥ = (it — u) + ad — pd?,

where d is the distance function in R™ from 012, and «, p are positive constants to
be determined. We choose 6 > 0 small enough so that d is smooth in Q5 = QN Bs(0).

Lemma 5.10. For pu sufficiently large and o, § sufficiently small,
1 »
Ly < —65 (1 —|—trF“) in Qs,
v
9 > 0 on 0

holds, where € is given by the inequality (5.4).
Proof. We observe that for small § > 0 and tr F/ = F'g;; there holds

3aij

.t F
Opm|

I .
LﬂS—trF”—!—C—I—C-‘
v

5 g
< 2S¢ pii +c,
6v

aaij

Opm

—Lu <c+c- (‘ + |aij|) “tr FY

1 y
<- Etr FY +¢,
6 v
- 4e i
La—u) <-— 6;trFJ + Ca—u,
where we assume cz_, > max {1, %%} , and furthermore there holds
|Ld| <cq- (14 tr F*7),
1
—Ld* = - 2F"~d;d; — 2dLd
v
1 g
<= 2FY—didj + 2dcqtr F*7 + 20cq.
v
We discuss the term
1
(5.8) —2F" —d;d;
v
in more detail. As F"® r, s < n, is positive definite, (5.8) is bounded from above
by
nn 1 nr 1
—2F" —d,d, — 4F"" —d,d,.
v v
When we evaluate the quadratic form defined by the positive definite matrix
FT"I" FTL’I"
FTLT’ FTLTL
by using the vectors (1,1) and (1,—1), we see that
2|Fnr| S EFrr +an StI'Fij

holds. By using the fact that d,,(0) = 1, d,.(0) =0, 1 < r < n — 1, we estimate
(5.8) further from above by

1 1 .
—F""— 4.5 —tr Y.
v v
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We therefore deduce
1 g
—Ld?> < —F"Z 4 §egetr FY + 25¢y.
v

Combining the above estimates yields
3 g
LY < <—€ + u5cd2> tr £
6v

1
— uF"— 4 2c5 4 + 21dcq
v
when we fix « sufficiently small.
1 y 1
f*ftr FY9 — pF™ = < —dcg_y,
6 v v

holds when we choose p sufficiently large: To see this, we may assume w. 1. o. g.
that tr ¥ is bounded from above by 6 - 4cz—y 7 in the point we consider. Then
Lemma 3.5 implies that the principal curvatures are contained in a compact subset
of 'y and therefore F™" is bounded from below by a positive constant, so the
estimate follows for sufficiently large p.

Now, we assume that § > 0 satisfies in addition to the above requirements

We arrive at 1
LY < —Z=(1+tF7) inQy
as desired.
On 99 we have ¥ = 0, on QN IBs(0)

9> (a—pd)d >0
holds with a possibly smaller § > 0. ]

Combining the above estimates, we see that we can choose A > B > 1 so that

L (Aﬁ + Blz £ T(u — a))

< - A%% (14 tr F7) 4+ BCy (14 tr F7) + Cy (1 + tr FY)
SO in Q(s,

AY + Blz|> £ T(u— @) > Bla|* — Csz|> >0 on 99N By
and the same estimate holds on Q N 9Bs.
It follows from the maximum principle that

AY + Blz|> £ T(u—a) > 0 in Q.
Since <A19 + Blz|* £+ T(u— ﬂ)) (0) = 0 we deduce

(Aﬁ + Bla)? + T(u — a)) (0) >0,
A = u)n(0) + Aar + [t | (0) + | By (w — @), [(0) Zus|(0)

due to the choice of our coordinate system. We see that all the terms on the
left-hand side are already bounded. This implies the a priori bound for the mixed
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second derivatives at the boundary, because we started with an arbitrary point of
the boundary 0f).
The estimates for u,; and us, imply especially

|hrs‘ S c, |htn| S c

due to the choice of our coordinate system, where ¢ depends on the same quantities
as in the estimates for u,.s and wuy,, respectively.

5.3. Normal C?-estimates at the boundary. In this section we prove
|u7m(0)| <c

or equivalently
|hnn(0)] < ¢

in a distinguished coordinate system for a solution u as stated above in (5.1), where
(5.9) c=c(N"H, 109y, |ulg, cDus |84 [ 11 |f_1|o)a

and the norms concerning f are taken over £ x [—|ul, — 1, |u|, + 1].
To prove this estimates, we use ideas of Trudinger [16], Guan [7], Guan and
Spruck [8], and Nehring [12]. The invariantly defined function
3
(5.10) N>z~ inf M
0#£¢eT,0Q ;¢ (7 ()
is positive and continuous, so there exists x¢p € 92 where it attains its positive
infimum. We may assume that this infimum equals h11(20)/g11(20)-

We intend to establish a positive lower bound for h11(zo)/g11(z0) depending
only on known or already estimated quantities, i. e. we want to prove the strict
tangential convexity of our solution. We choose a distinguished coordinate system
associated with xq. In view of the lower order estimates and the strict convexity of
the barrier function @ we know that

—1‘:611(330) >c>0.

Therefore we may assume that

*51711(350) > —ui1(xo),

for otherwise the strict tangential convexity of u is proved.

The next step is to introduce moving frames and to establish the convexity of 02
in direction e1: We choose smooth vector fields &;, 1 < i < n, such that & (o) = e,
&, equals the inner unit normal vector to d€2, and the vectors §;, 1 < i < n, form an
orthogonal basis pointwise with respect to the Euclidean metric of our distinguished
coordinate system, hence

(5.11) EFongl =65 and  F5gl = oM.

We define
Viw = fkaw
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and compute second derivatives of this kind on 9Q (r, s, t < n) using (5.11)
V,Vew =€ D; (6] Djw)
=661 Dijw + & (Dig]) Djw
= Dyjw + & (Di&l) 6,1 6" Daw
=68 Dijw + & (Di€l) §j3vhq Dygqw + &, (Di€l) 851,616 Vyw
=161 Dijw — £1€0851, (Divlq) Dygqw + & (Di€l) 6610 Vw.
As @t —u = 0 on 092, we deduce there
V.Vt —u)=0, r s<n,
Vi(a—u) =0, t<mn,
and furthermore
(5.12) 0=V,s(@—u) — Dy, (1 — u)Cls,
where we have used the abbreviations
Visw =66 Dijw,
Crs =6180j1 (Diviq) -
We note for later reference
(5.13) Vo Vau =8 Diju+ &, (Di&l) Dju
=Vt + &, (D:i&]) Dju.
Using the fact that by assumption

—%Vnﬂ(xo) > —Viiu(zo) > 0
and
—%Vuﬁ(xo) >c>0,
we see that

1 - .
0<c< —§V11u(330) < Dypg (@ —u) - (—Ch1(w0)).

From u < @ and w = @ on 92 we obtain —C11(zg) > ¢ > 0 with a different constant
¢, and in a sufficiently small neighborhood of zy we deduce that —C11(x), x € 0%,
is bounded from below by a positive constant.

For later use we define a substitute for a;;, as defined in (2.2), when we use
moving frames

(5.14) tij(x,u, Vu) := §ff§akl(x, u, Du),

and remark that
—Vijw + tij((E, w, Vw)
equals —w;; + a;;(x, w, Dw) up to an orthogonal transformation. The advantage
of —=Vijw+t;j(x,w, Vw) is that —V,,w + t,s(z, w, Vw), r, s < n, corresponds to
the tangential directions of 9f2.
Our next aim is to find a barrier function for the normal derivative of u: We
assume that ¢ is chosen small enough, so that Lemma 5.10 holds on ©Q N Bs(xo)
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and —C11(z) is estimated from below by a positive constant for z € 9Q N Bs(xo).
Applying the maximum principle to

¥ =( — u) + ad — pd?,
Ly SO in Q(g,
¥ >0 on 0905,

we deduce that ¢ > 0 on 925 remains true if we choose § > 0 smaller. Representing
09 locally as graph w, we may assume that the function

00N Bs(xg) 3 x — —Viu(z) + t11(x, u, Vu)
is defined on Bj(z) = {2’ € R""! : [2/| < 6} via
Bj(zo) 2 2’ — Virul (g () +t((2', w(@')), u, Vu),

when we choose § > 0 smaller if necessary. As this function is bounded from above,
there exists a constant a > 0 such that

(5.15) 2’ — =Viu -+t +a- |2

attains its infimum in a point z} € B’% (x0), where || denotes the Euclidean distance
to the origin xg of our distinguished coordinate system. We obtain the inequality

0 < (=Viu+t1)(@") = (=Viu+tn) (@) +a- (|2 —[21]%)
for any 2’ € B5. Using (5.12) we deduce
Dypqu(a’) 2Dy,gu(z')
+(=Cu(a) ™t [Vina(a') =t (2') + (= Viru + t)(a4)]

+a- (=Cu(@))™h - (|21 = ')
x

whereby the tangential derivatives of u are assumed to be substituted by the
respective ones of 4. From (5.3) we deduce that the absolute value of the derivative
of = with respect to the second argument is bounded by a small constant provided
¢ is chosen sufficiently small, so we may assume

9
ow

We define (z',w) := w — E(a’, w), so that f(z', D,,,u(z’)) > 0 with equality in
x| and

1
=(2 < -.
(o) < 5

(5.16) 9o _ 9= [1 3}

ow dw |22

We apply the implicit function theorem to 8 and deduce in view of the estimated
derivatives that there exists a §; > 0, estimated from below by a positive constant
depending only on known quantities, and furtheron a function v = ('), defined
on {z' : |z’ — x| < d1}, such that

Y(@}) = Dypqu(a), B, y(z") = 0.
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As B(2',D,,,u(z')) > 0 we obtain
0 <B(a', Dupou(a’)) — B(a', y(2"))
1
= [ 92 Dygula’) + (1 = (@) dr - (Dyula) — ()
0
and furthermore from (5.16)
(5.17) Dypoule’) > (z')

in a neighborhood of 7. We remark that the absolute values of the derivatives
of v up to second order are estimated by quantities mentioned in (5.9). These
derivatives remain bounded when we extend ~ appropriately to Bs, (27, w(z})) N €.
We define z;1 := (21, w(x))), Qs, := Bs, (x1) NN, and

O(x) = AV(@) + B - |z — 1] — (2) + Dypyu()
=A9(z) + B |z — 1) — v(2) + Vyu(x)

for A > B > 1 to be chosen later. We want to apply the maximum principle to ©.
From (5.17) we deduce © > 0 on 92 N By, (x1). For sufficiently large B we obtain
© > 0 on 0By, (x1) N Q. Using estimates from the proof of Lemma 5.8 we deduce

ILD,,u| = |L(urvio)| < ¢ - (14 tr F¥)
and obtain
Le < <—Aéi +B-ct+ey +cy) -(1+tr FY)
<0 in Qs,
for sufficiently large A. Now, the maximum principle yields
© >0 in Q.
As ©(z1) = 0 we deduce D,,,0(z1) > 0, i. e. using (5.13)
AD,0 (@ = u)(x1) + A = Doy (1) + &, (Di€}) Dju(wr) > =Vanu(ar).

All the terms on the left-hand side are bounded, so —V,,,u(z1) is bounded. There-
fore all the derivatives —V,;u(x1) are a priori bounded and from (2.2), (5.3) and
(5.14) we deduce that

1
(5.18) hij(1) = = (=Viu(@n) + tra(w1, v, Vu)) - 8 €10; - 0'°€ b,

is bounded, too. Using Lemma 3.5 we see that the eigenvalues of h;;(z1) are also
bounded from below by a positive constant, thus

0<c< (=Viu+t)(r).

In view of the fact that at z} the function defined in (5.15) attains its infimum,
we deduce

0 <c S (7V11’LL —+ tll)(xl) +a- |£L’/1|2 S (7V11u —+ tll)(l’o)

Using an equation similar to (5.18) we obtain in view of &;(zg) = e1 that hi1(zo)
is bounded from below by a positive constant. The point zy has been chosen so
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that the function defined in (5.10) attains its infimum in xo, moreover for x € 99,
0+#¢eT,00

hij¢'¢ () S hijfif{(xo) _ hu(zo)
9i;C° ¢ (@)~ gi;&i€(mo)  g11(wo)

>co>0

and thus
hijC'¢) > o - giC'¢0 V¢ € TON,
where € is part of the Cauchy hypersurface. For x € 92 we may choose a coor-
dinate system such that g;;(z) = d;; and e,, equals the interior unit normal to 0.
By k1 < ... < Kk, we denote the eigenvalues of the second fundamental form, so
that
En > Rpn.

When 7 corresponds to an eigendirection of the smallest eigenvalue of h;;, we
deduce

rk1|n|? =hign'n’
=hes' 0 + 2Rt + B0, T, 8, t <,
>3 "o "2 = 2kl - '] - 107+ Bnt™ "

r
1

>7 2

7200|77| )

where we used the Young inequality and the estimate |hs,| < ¢, t < n, for the last
inequality, and assumed that h,, is sufficiently large. If h,, is bounded, all the
eigenvalues are estimated from above, otherwise we deduce from Lemma 3.5 and
the estimate k1 > %co that all the eigenvalues are estimated from above as claimed.

6. FURTHER ESTIMATES AND EXISTENCE

6.1. Further a priori estimates. In section 5 we have established C?-estimates
at the boundary for solutions of our Dirichlet problem of prescribed Weingarten cur-
vature F'. To prove C?-estimates in the interior we may therefore assume w. 1. o. g.
that the second fundamental form of our solution attains its greatest eigenvalue in
the interior, for all those eigenvalues at the boundary are already bounded. Now,
we can apply the C%-estimates from [6], where those estimates are derived for a
hypersurface whose embedding vector x satisfies the evolution equation

(6.1) z = (log F — log f)v.

The considerations there are of purely local character, so they can be applied to the
embedding vector of the hypersurface M (t) = M, because M is a stationary solution
of the parabolic flow equation (6.1). The fact that F' may be non-homogeneous does
not disturb this proof when we use the inequality (3.3) instead of the homogeneity.
In view of Lemma 3.5 we see that the principal curvatures are not only bounded
from above, but also from below by a positive constant.

Furthermore, the concavity of log F', as emphasized in the motivation for the new
definition of curvature functions of the class (K) in [6] is sufficient to conclude [11,
Theorem 2, p. 253; Theorem 8, p. 264], see also [3], that the function u representing
a solution M via M = graph u|, has Holder continuous second derivatives. Using
Schauder theory we deduce a priori estimates in C*® (ﬁ)
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6.2. Existence. We will deform the given problem into a corresponding problem
in Minkowski space, which has exactly one solution. Using degree mod 2, we deduce
that our original problem has at least one solution.

We only sketch the existence proof which is a slightly modified proof compared
to [12] or [10].

6.2.1. Reduction to a local problem. In this section we deform our problem (cor-
responding to 7 = 0) into a new problem (corresponding to 7 = 1) such that
prospective solutions of the new problem are contained in a small ball. Then we
use degree mod 2 to conclude that our original problem has at least one solution
provided the new problem has an odd number of solutions. In section 6.2.2 we show
that the new problem has an odd number of solutions.

In the introduction we assumed the existence of a deformation 7 : € x [0,1] —
Uq. Now, we define a deformation of €2y

n: Q1 X [Oﬂ 1] HUQ&
77(5577) :ﬁ(xaT ! (1 - 5))
for sufficiently small € > 0, such that 7(€;, 1) is contained in a set diffeomorphic to
By C R", and abbreviate 7, := n(-, 7). So the C®-norm of 7, and n;! is uniformly
bounded.
We remark, that in view of the existence of 7, the set 2; D Q can be covered by
a single coordinate system.

By approximating f, we may assume that @ is a strict supersolution for (F), f).
We choose a smooth path in C*

0,1]>7+— f >0
such that fo = f, f1 > 0 is a sufficiently small constant, and @ remains a strict
supersolution. We endow the space in which we are looking for a solution,
C*t(Q) = {v e C** (Q) : v]yo € CH*(0Q)},
with the topology induced by the norm | - |Cg.a(§) + | |ga.a a0y and define the
operator ® so that ® = 0 corresponds to an equation of prescribed curvature

B OB () x [0,1] —CHe (),
(v,7) =Flvon;on, — frwon ' n ) 0.

The open subset Y C C%** (€) x [0,1] is defined to consist of those elements
(v,7) such that the graph of von-! is a strictly convex hypersurface and [von ! <
lulo + %, ’D (v o 77;1)‘ <1-— %cDu, where cp,, > 0 has been chosen as above such
that |Du| < 1 — cp, and |u|o indicates the CY-estimates, where u is a prospective
solution of an equation of prescribed curvature F' with the same boundary values
as v on-!. Furthermore, we introduce the projection operator m that restricts a
function mainly to its boundary values

7Y —»CH(09) x [0,1],
(v, 7) = (v|50,T)-

Due to linear theory, the restriction ®|y. is a C*-submersion on ®~'(0). Con-
sequently, Mgy := ®~1(0) NY is a C?-submanifold of Y. We fix (v,7) € M. As
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C334(Q) is isomorphic to Cy* (Q) x C**(99Q) by extension of the boundary val-
ues, we see - using this isomorphism - that d® (v, 7)|ker dm (v, 7) is represented by
a second order elliptic partial differential operator with zero boundary values and
hence by a Fredholm operator of index 0. Therefore the restriction of the projection
operator dm(v,7)|ker d®(v,7) = dm(v,T)|T(y,-) Mo is also a Fredholm operator of
the class C? and index 0.

In view of our a priori estimates and the compact embedding C*® — C3< we
may approximate the path prescribing the boundary values

k1 [0,1] =CH*(99) x [0,1],

T=(@on.,T)

in C! by paths k.(s) = (ve(s),7-(s)), which are transversal to 7| My, and further-
more £.(0) and k(1) may be chosen as regular values of m| My, see [13]. We may
assume that v.(s) is extended to a supersolution.

Now, we apply degree mod 2. Since (7| M)~ 1(k([0,1])) is an onedimensional
submanifold of M with boundary, we deduce in view of the properness

62) # {(ﬂ/\/lo)_l (5o(1)) N {va(l) > 0> —fu]y - % in QH

— [(ﬂMO)‘l (5-(0)) N {UE(O) > 0> —|u]y - % in QH (mod 2),

because in view of the maximum principle, there is no sequence in

{(W|Mo)1(n5(s)) N {vs(s) >0 > —uly — % in Q} L s €0, 1]} ,

converging to (v,7) such that for some z € Q, s € [0,1] we have (v(z),7) =
(ve(s) (), 7=(s)), as ve is a strict supersolution. v(z) = —|ul, — 3 for z € Q is im-
possible, too. Both cardinal numbers in (6.2) are finite, and we prove in section 6.2.2
that the number on the left-hand side is odd for sufficiently good approximations.
As we have uniform C*%-estimates for u. in the set on the right-hand side of
(6.2) we obtain a subsequence converging to a solution.

6.2.2. Reduction to a problem in Minkowsk: space. In section 6.2.1 we have reduced
our problem such that we may assume that we have a strict supersolution, a con-
stant right-hand side f of our equation F' = f, and the setting is contained in a
small ball B,.

In this step we modify the metric according to

0 (1) == (1 —=7)oi; +7d;;, 0<71 <1,

where 0;; is the metric in a distinguished coordinate system, thus we may assume
that o;; is close to d;;.

We remark that for a metric o;; sufficiently close to d;;, C%-estimates |u — @] <
¢ - diam ) follow from the fact that graphw is a strictly spacelike hypersurface -
Q denotes the deformed domain. We restrict our considerations to a small subset
of N"*1. For sufficiently small p > 0 the supersolutions % and v. remain strict
supersolutions. We replace the strictly convex function y by the squared Euclidean
distance to the origin of our distinguished coordinate system. Instead of the oper-
ator ® we take the operator of prescribed curvature F' with respect to the metric
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0;j(7). We remark that the path
KT = (Ve|gq»T)

may be approximated such that the end points remain unchanged.

Proceeding like in section 6.2.1, we deduce that it suffices to prove the existence
of an odd number of hypersurfaces of prescribed curvature F' in Minkowski space
when f is a constant.

In Minkowski space, however, we can solve the following Dirichlet problems for
ug, t € [0, 1], for any smooth bounded domain € and any supersolution a,

F|graphut (x’ut(m)) = tf + (1 - t) F|graphd (.’17, ﬂ(l‘)) in Q7
U = U on 0,

UtSﬂ inQ,

by using the continuity method as described in [7, p. 4960]. In view of the maximum
principle, our problem in Minkowski space has exactly one solution.

Thus, the degree mod 2 implies that we find at least one solution to the Dirichlet
problem of prescribed curvature F in Lorentz manifolds.

7. THE DIRICHLET PROBLEM FOR WEINGARTEN HYPERSURFACES IN
RIEMANNIAN MANIFOLDS

In this section we describe how the methods of the previous sections can be used
to prove the solvability of the Dirichlet problem for hypersurfaces of prescribed cur-
vature in Riemannian manifolds. We extend the Main Theorem in [12] by replacing
the GauB} curvature by a curvature function F' € (K) N (CNS):

Theorem 7.1. Let N"*! be an (n + 1)-dimensional Riemannian manifold and
B C N a strictly locally convex, strongly convex subset of N1 with C** boundary
and compact closure. Let F € (K)N(CNS). Assume f : B — R is a strictly
positive function of the class C** such that the inequality f < F|,p5 holds, and,
unless N1 is a manifold of constant non-negative sectional curvature, that there
exists a strictly convex smooth function x : B — R. Then for any connected region
0_B C 0B with nonempty C** boundary T' there is a hypersurface M C B, which
is of the class C* up to the boundary, admissible with respect to O_B (i. e. M
is diffeomorphic to 0_B, OM =T, and M is strictly locally convex with respect to
the normal vy pointing into the set bounded by M UT' UO_B), and which satisfies

f:F|M‘

Proof. The proof of the a priori estimates of lower order for prospective solutions
of this Dirichlet problem is exactly the same as in the case of prescribed Gaufl
curvature, because these estimates use only the convexity of the hypersurfaces and
not the equation of prescribed curvature. The C?-estimates at the boundary need
some more considerations:

The coordinate systems chosen in [12] guarantee that we can locally describe
the hypersurface and the barrier as graphs in a distinguished coordinate system,
where the distance from the origin of such a coordinate system to points in the
hypersurface not described via the graph representation is a priori bounded from
below by a positive constant.
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Using the formulae

9ij =0ij + Uiy,

. . utud
o i
9" =0 — —-,
v
ay _ . —1 )
(V )—1) (1,—’&),
« «a
l‘uz—hwy,
hiy =v (—ui; + Thuy — T
ij =V \ —Uij ij Uk ij )
a _ 1k o
vy =hizy,

valid in normal Riemannian coordinate systems, where u;; denote partial deriva-
tives, we deduce similar to the calculations in the sections 2 and 5.2

1
hi':—*ui'
J v J

1
2,1 2
+o <2’U u'(0irj + 01 — Oija + Tiouj + 040U — oijou) — vl

1
E;(*uz‘j + aij(x,u, Du)),

and the estimates for a;; stated in (5.3) remain valid. The differentiated equation
has the form
0 0 1 (195" 190 y
aixj;)Uk + 87;; =— (Fabhab) 2 (xukuiuj + *Tuiuj + U”uikuj>

1 0a;j Oa; 0a;;
Fiiz (—u,, iy ij ij
+ v( ujk+8pmu k+8x0uk+8zk

imyi 90 doj
—F b <8x0 R T QUikuj) ’

hence we define the operator L by

Lw = F”Ewij + (Fubhab) %oijujwi — FUE%

v v D,
so it equals the operator defined in (5.7) except some signs in front of the lower
order terms. As these terms, however, are estimated by the absolute values of the
respective quantities, we see that the C? a priori estimates derived for the Lorentz
case remain valid in the Riemannian setting.

The CZ-estimates in the interior are proved in [5, Lemma 3.6]. They remain
valid, when the additional term on the right-hand side is dropped, i. e. if we consider
solutions of the equation F' = f instead of F' = f — ye #"[u — ug]. The fact that
F may be non-homogeneous does not matter, we use the inequality (3.3) instead
of the homogeneity. Now, in view of the concavity of log F', we deduce a priori
estimates in the C*® norm. The existence proof is similar to [10], [12], and the
sketched existence proof above. We remark, that the C%-estimates for the local
problem are obtained by using the strict convexity of the hypersurface. O

Wy, + 2Fimhfnujwi,

APPENDIX A. NOTES

Remark A.1 (Closed Hypersurfaces in Lorentz Manifolds).
We mentioned in section 6.1 that the interior a priori estimates for hypersurfaces of
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prescribed curvature F' € (K*) remain valid for functions F € (f( *), not only for
stationary solutions, but also for solutions of the corresponding flow equation, so

the Main Theorem of [6] can be extended to curvature functions of the class (f( *).

Remark A.2. The C?-estimates at the boundary remain valid when we allow addi-
tionally that the function f may depend on the normal vector v.

Remark A.3 (Closed Hypersurfaces in Riemannian Manifolds). When we want to
find closed hypersurfaces of prescribed curvature for non-homogeneous curvature
functions F € (K), we may modify the proof of [4] by using (3.3) instead of the

homogeneity and by using the concavity of log F' instead of the concavity of F.
Therefore, however, we have to assume that the sectional curvature of N™*1! is
non-positive.

Another possibility is to proceed as in [5]. We assume that F' € (f( ) satisfies

>0

.. . F(tr;)
A1l 1 f f
(A1) it ()

and use this condition to show that the elliptic regularisation of F,
. -1 -1\ _ k —17—1 1
F(ri)=F ([57" +e0] ") = F (k"] ), a:zk:;k,

does not only belong to the class (K' ), but satisfies also

OF;
Ok;
whenever F. is bounded from above. Using [5], we have to show especially that F.
satisfies (3.3), but this inequality can be deduced immediately from

N Fki=Y F ([ognl—l] ’1) o] 2 (Z U§H;1> (cf. [5, (1.34)])
7 k %
=Y B (lotsr ] ) [owten] ™
k

and the inequality (3.3) applied to F. Thus F € (K’) = F. € (K’)
To prove (A.2), we remark that the inequality (3.3) implies

OF.

8;@

so there is nothing to prove when x; is large as F; is bounded from above. Otherwise

(A.1) implies for t = ex; !

OF.

8/@»

(A.2)

< (o),

S‘SOFE'H;l

)

<6y - F ([Ufcnl_l]ﬂ) . Hi—l
<ép-c-F (5/1;1 [025;1]71) g7t
<bp-c-F(1,...,1)-e71,

so we have proved (A.2).
In view of these estimates we may follow [5] to prove the existence of closed
hypersurfaces of prescribed Weingarten curvature under the assumptions of [5] for
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curvature functions F' € (f( ) which guarantee (A.2),s0 F' € (f( ) and the property

(A.1) are sufficient for F' to prove the existence. We remark once more, that we use

(3.

3) instead of the homogeneity and the concavity of log F' instead of the concavity

of F.

Examples of curvature functions satisfying (A.1) are given by

F(ki) =F | exp /@dT ,
1

a
where F' = G - (H /*ii) and G has the properties of the function F' in (3.4),

(2

whenever 7 satisfies n > ¢, > ﬁ > 0 besides the conditions in Example 3.3. To
see this, we estimate for t > 1

10.

11.

iy C(on(]2200))- (oo (T220))

CF(R) G<eXp (?"() d7>) . (E[exp (;f 2(r) dT))a

tkq a
1 ¢
> ex 2 dr
Ki
1 ~
=7 exp (n-a-é,-logt)
>1.
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