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Abstract

We consider flows of hypersurfaces in R
n+1 decreasing the energy

induced by radially symmetric potentials. These flows are similar to

the mean curvature flow but different phenomena occur. We show for

a natural class of potentials that hypersurfaces converge smoothly to a

uniquely determined sphere if they satisfy a strengthened starshaped-

ness condition at the beginning.

1 Introduction

Consider a smooth family Ft : M → R
n+1 \ {0} of oriented hypersurfaces

Mt := Ft(M) that evolve according to

(1)
d

dt
F = −(H − φ(s)〈F, ν〉)ν ≡ −fν,

where we have omitted the index t. Here, H denotes the mean curvature of
Mt w. r. t. the outer unit normal ν (i. e. H > 0 for the standard sphere)
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and φ is a smooth, radially symmetric function (reflecting the presence of

a central force) depending on s := |F |2

2
. More precisely φ is related to the

potential v on R
n+1 \ {0} by

v(s) := exp


−n

2

s∫

1

η(σ)

σ
dσ


, φ(s) = −

∂
∂σ
v(σ)

v(σ)

∣∣∣∣∣
σ=s

=
nη(s)

2s

where η : R+ → R is a smooth function. The total potential energy V (F ) of
the hypersurface F (M) will then be defined as

V (F ) :=

∫

M

v(s(F ))dµ.

A physical interpretation of our flow is as follows. Suppose we have an
electrically charged membrane with a constant charge per area. If this surface
is in a radially symmetric potential, then the energy of the system is given by
the energy in the exterior potential plus other terms, for example are there
forces between different parts of the surface, which we neglect. The negative
gradient flow for this energy is given by

d

dt
F = −v(H − φ(s)〈F, ν〉)ν,

so we see that the stationary solutions of (1) coincide with the stationary
solutions of the negative gradient flow. We will prove the following main
theorem

Theorem 1.1 Let F̃ : Sn → R
n+1 be a smooth embedding of a strictly star-

shaped hypersurface such that

0 < s− ≤ s =
|F̃ |2
2

≤ s+ <∞.

Further assume that η satisfies

∃ s0 ∈ [s−, s+] with η(s0) = 1,(6)

η′(s) < −2

n
cη < 0 ∀ s ∈ [s−, s+](7)
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for a constant cη and that the strengthened starshapedness condition

(8)
f

〈F̃ , ν〉
< cη

holds for F̃ . Then (1) admits an embedded solution Ft for all t ≥ 0 with

F0 = F̃ and St := Ft(S
n) converges exponentially in the C∞-topology to a

stable sphere centered at the origin with radius r0 =
√
2s0.

Remark: Condition (8) can be easily satisfied.

Let α > 0, β > 0 and assume that φ has the form φ(s) = α
s1+β . Let F̃ be

as in the main theorem, r0 = max
∣∣F̃

∣∣. At the point where this maximum is
attained we have with s0 =

1
2
r20

cη >
f〈
F̃ , ν

〉 ≥ 1

s0

(
n

2
− α

s
β
0

)
.

On the other hand η′(s0) < − 2
n
cη implies

αβ

s
1+β
0

> cη

so we obtain

s0 <

(
2

n
α(1 + β)

) 1

β

and see that r0 ≤ R(n, α, β).

We have chosen the special ansatz for the potential v as the stability of a
stationary sphere of radius r0 =

√
2s0 is equivalent to the simple condition

η′(s0) < 0.

We wish to explain the condition (8) assumed for the embedding F̃ . First we
show, that the flow does not preserve convexity nor starshapedness during the
evolution (so a somehow different initial condition is needed for the smooth
long-time existence), then we give a geometric interpretation of (8).

We assume a potential v that tends to infinity for s → 0 and decays for
s → ∞. Then a convex hypersurface does not need to stay convex during
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its evolution. We take a sphere of large radius but assume that the origin
is very close to the surface. At the beginning of the evolution the surface is
repelled apart from the origin where it is very close to the origin but moves
relatively slowly at a large distance from the origin. As a sphere of large
radius is nearly flat near a fixed point this destroys convexity.

A more elaborated example will show that starshapedness with respect to
the origin is not preserved, too. We describe our surface in polar coordinates
as follows. The height above the unit sphere is given by a positive constant
times the characteristic function of a small geodesic ball around a fixed point.
The example is obtained if we smooth out this situation slightly. Figure 1
shows a cross-section of this hypersurface.

Figure 1: Starshaped example

Rotating it around the horizontal axis gives the whole hypersurface. If the
neck is thin, n−1 principal curvatures become very large there. The remain-
ing negative principal curvature there is small compared to the others when
the neck becomes small. Of course the non-spherical part has to be made
longer simultaneously so that the curvature near the tip remains bounded.
This construction yields for a small potential compared to the mean curva-
ture that the motion of the surface is especially large at the neck where we
assume that it shrinks so fast that not only the starshapedness is lost but
also the evolution will become singular in finite time.
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If we represent the hypersurface as graph u|Sn (this is possible for starshaped
hypersurfaces with respect to the origin), then the time derivative of log u
equals − f

〈F,ν〉
. The change of coordinates u 7→ log u, however, is natural as

the induced metric of the hypersurface in this new coordinates is very similar
to the induced metric for graphs in Euclidean space, in fact, this shows the
conformal equivalence of Sn ×R and R

n+1 \ {0}. More details can be found
in the appendix.

Another interesting feature of our flow can be obtained for φ = 1, a case which
is not considered in our main theorem. Then the stationary solutions are
characterized by H = 〈F, ν〉 and these hypersurfaces shrink homothetically
under the evolution of the mean curvature flow d

dt
F = −Hν.

We consider a potential with appropriate asymptotics as for example the
potential induced by η(s) = 2

n
1
s
. Then there are two possibilities to reduce

the energy; the surface may move apart from the source of the potential or it
may contract and thus reduce its area and its energy as the charge is assumed
to be proportional to the area. When the surface encloses the origin, i. e. the
source of the potential, a charged point, these two effects are opposite to each
other and so it is reasonable to conjecture that the surface tends to a sphere
for which both forces compensate each other when the topology allows this.

We wish to mention some further papers on related problems. In [1], [4], [6]
and [7] the evolution of starshaped hypersurfaces for various curvature driven
flow equations has been considered. In contrast to outward directed flows,
where starshapedness usually is preserved, this fails for inward directed flows
like the mean curvature flow. For these flows convexity is naturally preserved
[2]. But even for inward directed flows we have nice properties for starshaped
hypersurfaces [6].

The paper is organized as follows: In section 2 we introduce notations from
differential geometry and compute the Euler-Lagrange equations, in section
3 we show how spheres can be used as barriers for our flow. In section
4 we derive evolution equations for geometric quantities, deduce a priori
estimates and prove the smooth convergence to a stable sphere. Finally, we
state additional properties of our flow in the appendix.

We wish to thank Jürgen Jost and the Max Planck Institute for Mathematics
in the Sciences (MPI MIS), Leipzig, for their hospitality.
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2 Euler-Lagrange equations

We are interested in the first and second variation of V . To this end assume
that Ft : (−ǫ, ǫ)×M → R

n+1 is a smooth family of immersions of orientable
hypersurfaces such that

d

dt
Ft = −fν,

with a smooth function f depending on t ∈ (−ǫ, ǫ) and ν denoting the
outward unit normal. We also recall the Gauß formula, the equations of
Gauß, Weingarten, Codazzi and Simons

Proposition 2.1

Rijkl = hikhjl − hilhjk,(13)

∇i∇jF = −hijν,(14)

∇iν = h l
i ∇lF,(15)

∇khij = ∇jhik,(16)

∇i∇jH = ∆hij −Hh l
i hlj + |A|2hij ,(17)

2hij∇i∇jH = ∆|A|2 − 2|∇A|2 − 2Z.(18)

Here hij is the second fundamental form and

H = gijhij,

|A|2 = gijgklhikhjl,

C = gijgklgsthikhjshlt,

Z = HC − |A|4.

gij is the inverse of the induced metric

gij :=

〈
∂F

∂xi
,
∂F

∂xj

〉
.

Doubled indices are always summed from 1 to n, indices are raised and
lowered with respect to the induced metric and ∇ denotes the Levi-Civita
connection on M w. r. t. gij. In the sequel we won’t distinguish between
vectors V ∈ TxM and DF (V ) ∈ TF (x)R

n+1 and we also use 〈·, ·〉 both for the
scalar product on R

n+1 and on M . The calculations in [5] give
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Proposition 2.2

d

dt
gij = −2fhij ,(20)

d

dt
dµ = −fHdµ ,(21)

d

dt
ν = DF (∇f) = gij∇if∇jF ,(22)

d

dt
hij = ∇i∇jf − fh k

i hkj ,(23)

d

dt
H = ∆f + f |A|2 ,(24)

d

dt
|A|2 = 2hij∇i∇jf + 2fC.(25)

In addition we get

(26)
d

dt
v = −nη

2s
v
d

dt
s = fφ〈F, ν〉v.

Lemma 2.3 The first and second variation for V and compactly supported
f ∈ C∞

0 (M) are given by

d

dt
V = −

∫

M

fv(H − φ〈F, ν〉)dµ,

d2

dt2
V = −

∫

M

(H − φ〈F, ν〉) d
dt
(fvdµ)

+

∫

M

v
(
|∇f |2 − f 2(|A|2 + φ+ φ′〈F, ν〉2)

)
dµ.

Proof: The first variation formula is a direct consequence of (21) and (26).
For the second variation we use (22), (24) and compute

−vf d
dt
(H − φ〈F, ν〉) = −vf

(
∆f + f |A|2 + fφ′〈F, ν〉2 + fφ− φ〈∇s,∇f〉

)

= −div(vf∇f) + v
(
|∇f |2 − f 2(|A|2 + φ+ φ′〈F, ν〉2)

)

and the second variation formula follows from partial integration.
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Corollary 2.4 The Euler-Lagrange equation for stationary hypersurfaces w.
r. t. V is given by

H − φ〈F, ν〉 = 0.

A stationary hypersurface is stable (resp. strictly stable) if and only if

∫

M

(
|∇f |2 − f 2(|A|2 + φ+ φ′〈F, ν〉2)

)
vdµ ≥ 0 (resp. > 0)

for all smooth, compactly supported f 6≡ 0.

Corollary 2.5 Assume that s0 satisfies η(s0) = 1 and that η′(s0) < 0. Then
the sphere with center at the origin and radius r0 =

√
2s0 is strictly stable.

Proof: Left to the reader.

The negative gradient flow for V is given by d
dt
F = −v(H − φ〈F, ν〉)ν. Since

this is stationary if and only if H − φ〈F, ν〉 = 0 we can as well consider the
modified gradient flow

(30)
d

dt
F = −fν

with
f := H − φ〈F, ν〉.

We will set Mt := Ft(M). Then the results in [3] imply

Proposition 2.6 (30) is a system of quasilinear parabolic equations and
there exists a maximal time 0 < T ≤ ∞ such that (30) admits a smooth
solution on [0, T ).

3 Inclusion principle

Lemma 3.1 Assume that the initial value F0 of a smooth solution Ft, 0 ≤
t < T , of the flow equation (30) is embedded. Then Ft, 0 < t < T , is also
embedded.
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Proof: Let t0 be the first time when the immersion fails to be an embedding,
Ft0(x0) = Ft0(y0), x0 6= y0. We choose a local coordinate system such that
Ft0(x0) = Ft0(y0) = 0 and the unit normals at the origin are ±en+1. So we
may write Ft0 around x0 and y0 as graph (u1) and graph (u2), respectively.
The representation as a graph is possible for a small time interval [t0−ε, t0+ε],
ε > 0, too. We may assume that u1 > u2 for t < t0. If we replace ν by −ν in
the flow equation, H , 〈F, ν〉 and ν change sign, so we may assume that the
normals at (x0, t0) and (y0, t0) both equal en+1. We rewrite the geometric
evolution equation as a parabolic evolution equation for u1 and u2 and obtain

(32)
∂

∂t
(u1 − u2) = aij(u1ij − u2ij) + bi(u1i − u2i ) + c(u1 − u2).

We remark that this equation is parabolic as H is elliptic for every smooth
solution, i. e. especially for any function τu1 + (1 − τ)u2, 0 ≤ τ ≤ 1. From
the strong maximum principle we deduce, that u1 and u2 coincide locally and
furthermore, that these two functions have locally to be equal before t = t0.
This contradicts our assumption about t0.

Corollary 3.2 Let F be a smooth immersed solution of (30) and F̃ be an
immersed solution of this evolution equation. If F̃ is contained in a connected
component of Rn+1\F or in the closure of such a component at the beginning
of the evolution, then this remains true during the evolution.

Proof: As the geometric situation at the first point of contact is similar to
the situation in the proof of Lemma 3.1, we can argue as we have done there.
If F and F̃ touch for t = 0 then the strong maximum principle yields that
they are disjoint at least for small positive times unless there are connected
components of F and F̃ which coincide for t = 0.

The following barrier argument will become important in the sequel.

Lemma 3.3 Assume s−, s0, s+ are positive numbers such that s− < s0 < s+
and that η satisfies

η(s0) = 1,

η′(s) < 0 ∀ s ∈ [s−, s+].
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Then under our flow all centered spheres of radius r =
√
2s with s ∈ [s−, s+]

converge to the stable sphere with radius r0 =
√
2s0. Moreover, if Mt, t ≥ 0,

is a smooth evolution of hypersurfaces such that M0 is contained in

{y ∈ R
n+1|r− :=

√
2s− < |y| < r+ :=

√
2s+},

then Mt will be contained in

{y ∈ R
n+1|r−(t) < |y| < r+(t)},

where r−(t) and r+(t) are the radii for the evolutions of the inner and outer
sphere. If Mt exist for all t ≥ 0, then Mt converges pointwise to the stable
sphere of radius r0.

Proof: The first part is an easy consequence of

(35)
d

dt
s = n(η − 1)

which holds for centered spheres, see the independently proven Lemma 4.2.
The remainder then follows from the inclusion principle 3.2.

Remark: From (35), η(s0) = 1 and η′(s0) < 0 we deduce that the conver-
gence in Lemma 3.3 is even exponentially.

4 Convergence to a stable sphere

Lemma 4.1 The evolution equation for f is

d

dt
f = ∆f − φ〈∇s,∇f〉+ f(|A|2 + φ+ φ′〈F, ν〉2).

Proof: This has been calculated in the proof of Lemma 2.3.

Lemma 4.2 s satisfies

d

dt
s = ∆s− φ|∇s|2 + 2sφ− n,
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Proof: First we compute

∇is = 〈F, Fi〉

with Fi :=
∂F
∂xi . Then the Gauß formula implies

∇i∇js = gij − 〈F, ν〉hij.

Therefore
∆s = n−H〈F, ν〉 = n− f〈F, ν〉 − φ〈F, ν〉2.

On the other hand
d

dt
s = 〈F, d

dt
F 〉 = −f〈F, ν〉

and by writing F = DF (∇s) + 〈F, ν〉ν

−φ|∇s|2 = −φ(2s− 〈F, ν〉2).

The combination gives

d

dt
s = −f〈F, ν〉+∆s− n + f〈F, ν〉+ φ〈F, ν〉2

− φ|∇s|2 + φ(2s− 〈F, ν〉2)
= ∆s− φ|∇s|2 + 2sφ− n.

Next we want to compute the evolution of 〈F, ν〉.

Lemma 4.3 〈F, ν〉 satisfies

d

dt
〈F, ν〉 = ∆〈F, ν〉 − φ〈∇s,∇〈F, ν〉〉+ 〈F, ν〉(|A|2 + φ+ φ′〈F, ν〉2)

− 2H − 2sφ′〈F, ν〉

Proof: We compute
∇i〈F, ν〉 = h l

i ∇ls

and
∇i∇j〈F, ν〉 = ∇lhij∇ls+ hij − 〈F, ν〉h l

i hlj,
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where we used the Codazzi equation (16). This gives

∆〈F, ν〉 = 〈∇s,∇H〉+H − |A|2〈F, ν〉.

On the other hand with (22) and (30) we conclude

d

dt
〈F, ν〉 = −f + 〈F,DF (∇f)〉 = −f + 〈∇s,∇f〉

so that

d

dt
〈F, ν〉 = ∆〈F, ν〉 − 〈∇s,∇(H − f)〉 −H − f + |A|2〈F, ν〉.

Since

(48) ∇(H − f) = 〈F, ν〉φ′∇s+ φ∇〈F, ν〉

and

|∇s|2 = 2s− 〈F, ν〉2

we obtain the result.

We want to rewrite equations (24) and (25). To this end we need an expres-
sion for ∇i∇j(f −H). From (48) we obtain

∇i∇j(f −H) = −∇i(〈F, ν〉φ′∇js+ φ∇j〈F, ν〉)
= −∇i

(
(〈F, ν〉φ′δ

l
j + φh

l
j )∇ls

)

= −(h k
i ∇ksφ

′δ
l

j + 〈F, ν〉φ′′∇isδ
l

j + φ′∇ish
l
j + φ∇lhij)∇ls

− (〈F, ν〉φ′δ
l

j + φh
l
j )(gil − 〈F, ν〉hil)

= −φ′(h l
i ∇js+ h

l
j ∇is)∇ls− φ′′〈F, ν〉∇is∇js− φ∇lhij∇ls

− (φ− φ′〈F, ν〉2)hij + φ〈F, ν〉h l
i hlj − φ′〈F, ν〉gij.(50)

Then

∆(f −H) = −2φ′hij∇is∇js− φ′′〈F, ν〉(2s− 〈F, ν〉2)− φ〈∇s,∇H〉
− (φ− φ′〈F, ν〉2)H + φ〈F, ν〉|A|2 − nφ′〈F, ν〉.

Now (24) implies
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Lemma 4.4

d

dt
H = ∆H − φ〈∇s,∇H〉+H(|A|2 − φ+ φ′〈F, ν〉2)

− 2φ′hij∇is∇js+ 〈F, ν〉(φ′′〈F, ν〉2 − 2sφ′′ − nφ′).

(50) also gives

2hij∇i∇j(f −H) = −4φ′hilh
j
l ∇is∇js− 2φ′′〈F, ν〉hij∇is∇js

− φ〈∇s,∇|A|2〉 − 2|A|2(φ− φ′〈F, ν〉2)
+ 2φ〈F, ν〉C − 2φ′〈F, ν〉H.

From (25) and Simons’ identity (18) we then derive

d

dt
|A|2 = 2hij∇i∇jf + 2fC = 2hij∇i∇jH + 2hij∇i∇j(f −H) + 2fC

= ∆|A|2 − 2|∇A|2 − 2Z

− 4φ′hilh
j
l ∇is∇js− 2φ′′〈F, ν〉hij∇is∇js− φ〈∇s,∇|A|2〉

− 2|A|2(φ− φ′〈F, ν〉2) + 2φ〈F, ν〉C − 2φ′〈F, ν〉H + 2fC.

Cancellation gives

Lemma 4.5

d

dt
|A|2 = ∆|A|2 − φ〈∇s,∇|A|2〉 − 2|∇A|2

− 4φ′hilh
j
l ∇is∇js− 2φ′′〈F, ν〉hij∇is∇js

+ 2|A|2(|A|2 − φ+ φ′〈F, ν〉2)− 2φ′〈F, ν〉H.

In the next steps we want to prove that our spheres remain starshaped and
that (8) remains true under the evolution. Therefore we define the quantity

q :=
f

〈F, ν〉 .

A geometric motivation for q will be given in the appendix. Then the evolu-
tion equations for f and 〈F, ν〉 imply

d

dt
q =

1

〈F, ν〉
(
∆f − φ〈∇s,∇f〉+ f(|A|2 + φ+ φ′〈F, ν〉2)

)

− f

〈F, ν〉2
(
∆〈F, ν〉 − φ〈∇s,∇〈F, ν〉〉+ 〈F, ν〉(|A|2 + φ+ φ′〈F, ν〉2)

− 2H − 2sφ′〈F, ν〉
)
.(52)
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On the other hand we compute

∆q =
∆f

〈F, ν〉 + f
(
− 1

〈F, ν〉2∆〈F, ν〉+ 2

〈F, ν〉3 |∇〈F, ν〉|2
)

− 2

〈F, ν〉2 〈∇f,∇〈F, ν〉〉

=
∆f

〈F, ν〉 −
f

〈F, ν〉2∆〈F, ν〉 − 2

〈F, ν〉〈∇〈F, ν〉,∇q〉

Inserting this in (52) yields

Lemma 4.6

d

dt
q = ∆q +

2

〈F, ν〉〈∇〈F, ν〉,∇q〉 − φ〈∇s,∇q〉+ 2q(q + sφ′ + φ).(53)

Corollary 4.7 Under the assumptions of Theorem 1 there exists a positive
constant ǫ > 0 independent of t such that

q + sφ′ + φ ≤ −ǫ,(54)

q2 ≤ (max
t=0

q2)e−4ǫt(55)

as long as a smooth starshaped solution of (1) exists.

Proof: From Lemma 4.6 we obtain

d

dt
q2 = ∆q2 − 2|∇q|2 + 2

〈F, ν〉〈∇〈F, ν〉,∇q2〉 − φ〈∇s,∇q2〉

+ 4q2(q + sφ′ + φ).(56)

Since sφ′ + φ = n
2
η′, the barrier argument, Lemma 3.3, and inequality (7)

imply that
sφ′ + φ < −cη

as long as St remains smooth. Consequently

d

dt
q2 ≤ ∆q2 − 2|∇q|2 + 2

〈F, ν〉〈∇〈F, ν〉,∇q2〉 − φ〈∇s,∇q2〉

+ 4q2(q − cη).(58)
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Hence the maximum principle and (8) imply that q2 cannot develop a positive
maximum with d

dt
q2 > 0 and q − cη remains bounded above by its initial

(negative) maximum. This proves (54) with

ǫ := cη −max
t=0

q.

But then the evolution equation for q2 and (54) even imply that q2 e4ǫt re-
mains bounded by its initial maximum.

Lemma 4.8 Under the assumptions of Theorem 1 the starshapedness of St

remains true as long as a smooth solution of (1) exists.

Proof: We compute the evolution for the quantity

1

〈F, ν〉2

which remains bounded above if and only if St remains starshaped. From
Lemma 4.3 we get

d

dt

1

〈F, ν〉2 = − 2

〈F, ν〉3
(
∆〈F, ν〉 − φ〈∇s,∇〈F, ν〉〉

+ 〈F, ν〉(|A|2 + φ+ φ′〈F, ν〉2)− 2H − 2sφ′〈F, ν〉
)

= ∆
1

〈F, ν〉2 − 6

〈F, ν〉4 |∇〈F, ν〉|2 − φ

〈
∇s,∇ 1

〈F, ν〉2
〉

+
2

〈F, ν〉2 (−|A|2 − φ− φ′〈F, ν〉2 + 2(q + sφ′ + φ)).(61)

Now as long as 〈F, ν〉 remains positive we can use (54) and estimate

d

dt

1

〈F, ν〉2 ≤ ∆
1

〈F, ν〉2 − φ

〈
∇s,∇ 1

〈F, ν〉2
〉
+

2

〈F, ν〉

〈
∇〈F, ν〉,∇ 1

〈F, ν〉2
〉

+
2

〈F, ν〉2 (−|A|2 − φ− 2ǫ)− 2φ′.
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The barrier argument, Lemma 3.3, implies

φ(s(x, t)) ≥ min
σ∈

[

min

{

min
t=t0

|F |2

2
,s0

}

,max

{

max
t=t0

|F |2

2
,s0

}]

φ(σ) =: cφ,t0 ,(62)

φ′(s(x, t)) ≥ min
σ∈

[

min

{

min
t=t0

|F |2

2
,s0

}

,max

{

max
t=t0

|F |2

2
,s0

}]

φ′(σ) =: cφ′,t0(63)

for all x ∈ Sn and all t ≥ t0, where t0 ≥ 0 is a fixed time. For the proof of
this lemma we will actually only use t0 = 0 but we need the same estimates
for a different t0 later. Hence for all t ≥ t0 the following inequality is valid
for starshaped St

d

dt

1

〈F, ν〉2 ≤ ∆
1

〈F, ν〉2 − φ

〈
∇s,∇ 1

〈F, ν〉2
〉
+

2

〈F, ν〉

〈
∇〈F, ν〉,∇ 1

〈F, ν〉2
〉

− 2(|A|2 + 2ǫ+ cφ,t0)

〈F, ν〉2 − 2cφ′,t0.(64)

The last term in the first line is nonpositive but we keep it for later purposes.
Let p(t) be the solution of

d

dt
p = −2(2ǫ+ cφ,t0)p− 2cφ′,t0,

p(t0) = max
t=t0

1

〈F, ν〉2 ,

i. e. for 2ǫ+ cφ,t0 6= 0

p(t) =

(
p(t0) +

cφ′,t0

2ǫ+ cφ,t0

)
e−2(2ǫ+cφ,t0)(t−t0) − cφ′,t0

2ǫ+ cφ,t0
.

Then for all t ≥ t0 and starshaped St

d

dt

(
1

〈F, ν〉2 − p

)
≤ ∆

(
1

〈F, ν〉2 − p

)
− φ

〈
∇s,∇

(
1

〈F, ν〉2 − p

)〉

− 2(2ǫ+ cφ,t0)

(
1

〈F, ν〉2 − p

)
.

The maximum principle then implies

(66)
1

〈F, ν〉2 ≤
(
max
t=t0

1

〈F, ν〉2 +
cφ′,t0

2ǫ+ cφ,t0

)
e−2(2ǫ+cφ,t0)(t−t0) − cφ′,t0

2ǫ+ cφ,t0

16



for all t ≥ t0. Consequently the quantity 〈F, ν〉 cannot tend to zero in finite
time and St remains starshaped.

Theorem 4.9 With the same assumptions as in Theorem 1 a smooth solu-
tion exists for all t > 0.

Proof: We need bounds for |∇kA|2 for all k ≥ 0. We begin with a bound
for

|A|2
〈F, ν〉2 .

From Lemma 4.5 and the evolution equation (61) we obtain

d

dt

|A|2
〈F, ν〉2 = |A|2

(
∆

1

〈F, ν〉2 − 6

〈F, ν〉4 |∇〈F, ν〉|2 − φ

〈
∇s,∇ 1

〈F, ν〉2
〉

+
2

〈F, ν〉2 (−|A|2 − φ− φ′〈F, ν〉2 + 2(q + sφ′ + φ))
)

+
1

〈F, ν〉2
(
∆|A|2 − φ〈∇s,∇|A|2〉 − 2|∇A|2

− 4φ′hilh
j
l ∇is∇js− 2φ′′〈F, ν〉hij∇is∇js

+ 2|A|2(|A|2 − φ+ φ′〈F, ν〉2)− 2φ′〈F, ν〉H
)

= ∆
|A|2

〈F, ν〉2 − 2

〈
∇|A|2,∇ 1

〈F, ν〉2
〉
− φ

〈
∇s,∇ |A|2

〈F, ν〉2
〉

− 2
|∇A|2
〈F, ν〉2 − 6

|A|2|∇〈F, ν〉|2
〈F, ν〉4 − 4φ′ |∇〈F, ν〉|2

〈F, ν〉2

− 2
φ′′

〈F, ν〉h
ij∇is∇js− 2φ′ H

〈F, ν〉 + 4
|A|2

〈F, ν〉2 (q + sφ′).

To proceed we define

Q2 := |〈F, ν〉∇ihjk −∇i〈F, ν〉hjk|2

= 〈F, ν〉2|∇A|2 + |A|2|∇〈F, ν〉|2 − 〈F, ν〉〈∇〈F, ν〉,∇|A|2〉.
This implies

− 2
|∇A|2
〈F, ν〉2 − 6

|A|2|∇〈F, ν〉|2
〈F, ν〉4 − 2

〈
∇|A|2,∇ 1

〈F, ν〉2
〉

= −2
Q2

〈F, ν〉4 +
2

〈F, ν〉

〈
∇〈F, ν〉,∇ |A|2

〈F, ν〉2
〉

17



and finally

d

dt

|A|2
〈F, ν〉2 = ∆

|A|2
〈F, ν〉2 − φ

〈
∇s,∇ |A|2

〈F, ν〉2
〉
+

2

〈F, ν〉

〈
∇〈F, ν〉,∇ |A|2

〈F, ν〉2
〉

− 2
Q2

〈F, ν〉4 − 4φ′ |∇〈F, ν〉|2
〈F, ν〉2 − 2

φ′′

〈F, ν〉h
ij∇is∇js

− 2φ′ H

〈F, ν〉 + 4
|A|2

〈F, ν〉2 (q + sφ′).(68)

To proceed we need the estimate

|∇〈F, ν〉|2 = hilh
lj∇is∇js

≤ |A|2|∇s|2

≤ 2s|A|2.

Moreover
∣∣∣∣
H

〈F, ν〉

∣∣∣∣ ≤ H2

2〈F, ν〉2 +
1

2

≤ n|A|2
2〈F, ν〉2 +

1

2
.

Then we use the barrier argument, Lemma 3.3, inequality (54) and estimate

d

dt

|A|2
〈F, ν〉2 ≤ ∆

|A|2
〈F, ν〉2 − φ

〈
∇s,∇ |A|2

〈F, ν〉2
〉
+

2

〈F, ν〉

〈
∇〈F, ν〉,∇ |A|2

〈F, ν〉2
〉

+ c1
|A|2

〈F, ν〉2 + c2(69)

for two positive constants c1, c2 independent of t. So we see that |A|2

〈F,ν〉2
can

increase at most exponentially in time and since by Lemma 4.8 St remains
starshaped and |〈F, ν〉| ≤ const, this also means that |A|2 remains bounded
on any finite time interval. We can then proceed as in [2] to derive uniform
upper bounds for all higher covariant derivatives of A on any finite time
interval [0, T̃ ) for which a smooth solution of the flow exists. Consequently
T = ∞.

Proof of the main theorem: We are now able to prove uniform upper
bounds in t also. First we need a uniform upper bound for 1

〈F,ν〉2
. Therefore

18



we go back to inequality (66). From Theorem 4.9 we know that the flow

exists for all t > 0 and since by assumption (6) φ(s0) = nη(s0)
2s0

= n
2s0

> 0,
the barrier argument, Lemma 3.3, implies the existence of t0 ≥ 0 estimated
from above such that cφ,t0 > 0. But then inequality (66) implies that with a
constant c3 > 0 and for all t > 0

(70)
1

〈F, ν〉2 ≤ c3.

Our idea is to add enough of 1
〈F,ν〉2

to |A|2

〈F,ν〉2
to obtain a uniform bound for

|A|2. Therefore, let
B :=

|A|2 + k

〈F, ν〉2

for a large constant k to be determined. Then (64) and (69) give

d

dt
B ≤ ∆B − φ〈∇s,∇B〉+ 2

〈F, ν〉〈∇〈F, ν〉,∇B〉

+ (c1 − 2k)
|A|2

〈F, ν〉2 − k

(
2(2ǫ+ cφ,t0)

〈F, ν〉2 + 2cφ′,t0

)
+ c2(72)

for all t ≥ t0, with a fixed t0, without loss of generality t0 = 0. We choose
k = c1. Then

d

dt
B ≤ ∆B − φ〈∇s,∇B〉+ 2

〈F, ν〉〈∇〈F, ν〉,∇B〉

− c1B + c4,(73)

where c4 depends only on c1, c2, c3, ǫ, cφ,0 and cφ′,0 but not on t. Consequently
a maximum of B with d

dt
B > 0 must be smaller than c4

c1
and furthermore B

and |A|2 are uniformly bounded. Once we’ve obtained a uniform bound
for |A|2 we use the technique in [2] to obtain uniform upper bounds for all
quantities |∇kA|2. This shows that Ft is uniformly bounded in C∞ for all
t ≥ 0. From the barrier argument, Lemma 3.3, we conclude that |s − s0|
decays exponentially. Then we use the elementary interpolation inequality

||∇ψ||2 ≤ const
(
M̃, g̃

)
· ||ψ|| ·

(
||∇ψ||+ ||∇2ψ||

)
,

for C2-functions ψ on a compact Riemannian manifold (M̃, g̃), where ∇
denotes the covariant derivative w. r. t. g̃ and the constant depends only on
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M̃ and g̃. This inequality, the Ck-bounds for s− s0 (which follow from those
for the second fundamental form) and the uniform equivalence of the induced
metrics on M = Sn for any t imply an exponential decay of |∇k(s− s0)|2 for
all k ∈ N. We thus conclude exponential convergence in C∞ to the stable
sphere of radius r0 =

√
2s0.

5 Appendix

Corollary 5.1 Assume f > 0 for t = 0. If the absolute value of |A|2 +
φ+ φ′〈F, ν〉2 remains bounded from above by some positive constant c on the
time interval [0, t0), t0 ≤ T , then for t ∈ [0, t0)

min
x∈Mt

f(x) ≥ min
x∈M0

f(x)e−ct > 0.

Proof: This is a direct consequence of the parabolic maximum principle
applied to Lemma 4.1.

A geometric motivation for f

〈F,ν〉

We wish to represent our evolution problem via graphs over the sphere Sn

as in [1]. Therefore we use an embedding of the form

F = x
(
ξi, t

)
· u

(
x
(
ξi, t

)
, t
)
,
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where x ∈ Sn and ξi denotes local coordinates of Sn. We use covariant
derivatives with respect to the metric of Sn and compute

Fi = xiu+ xui,

Fij = xiju+ xiuj + xjui + xuij,

gij = 〈Fi, Fj〉 = u2σij + uiuj

= u2(σij + ϕiϕj), where ϕ = log u,

gij = u−2

(
σij − ϕiϕj

w2

)
,

ϕk = σklϕl,

w :=
√

1 + ϕiϕi,

where σij denotes the metric of the sphere Sn. The outer unit normal is given
by

ν =
1

w

(
x− ϕkxk

)
.

The Gauß formula relates the second covariant derivatives of the embedding
vector to the second fundamental form and the normal, where the second
derivatives are taken with respect to the induced metric. At the moment,
however, Fij denotes the second covariant derivatives with respect to the
metric σij . However, these derivatives are related by

F
g
ij = F σ

ij +
(
Γk
ij(σ)− Γk

ij(g)
)
Fk,

so we deduce from the Gauß formulae for M and Sn

〈F σ
ij, ν〉 = 〈−hijν, ν〉 = −hij,

hij = − 1

w

〈
x− 1

u
ukxk, uijx+ uixj + ujxi − uσijx

〉

=
u

w

(
σij + 2

1

u2
uiuj −

1

u
uij

)

=
u

w
(σij + ϕiϕj − ϕij)

=
1

uw
gij −

u

w
ϕij .
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Next, we will derive an evolution equation for u

d

dt
(x · u) =

∂

∂t
x · u+ x · ∂

∂t
u+ x ·

〈
∇u, ∂x

∂t

〉
,(79)

d

dt
F = −fν = −f 1

w

(
x− ϕixi

)
.

In view of

0 =
∂

∂t
〈x, x〉 = 2

〈
∂

∂t
x, x

〉
,

we obtain by multiplying (79) with x

−f 1

w
=
∂u

∂t
+

〈
∇u, ∂x

∂t

〉
.

From the remaining part of (79) we get

f
1

w
ϕixi =

∂

∂t
x · u,

thus

∂

∂t
u = −f 1

w

(
1 +

〈
∇ϕ, ϕixi

〉)

= −fw

and in view of 〈F, ν〉 = u
w

ϕ̇ :=
∂

∂t
ϕ = − f

〈F, ν〉 .

We now state the parabolic differential equations for ϕ, ϕ̇ and W = 1
2
(1 +

ϕkϕk) to give the reader the opportunity to compare the evolution equations
for ϕ̇ and q, Lemma 4.6, as well as those for W and 1

〈F,ν〉2
, equation (61),

ϕ̇ = gijϕij − ne−2ϕ + φ,

ϕ̈ = gijϕ̇ij − e−2ϕ 1

w2
(ϕ̇iϕj + ϕiϕ̇j)ϕij + 2e−2ϕ 1

w4
ϕiϕjϕijϕ

kϕ̇k

+ ϕ̇(−2ϕ̇ + 2φ+ φ′e2ϕ),

Ẇ = gijWij − e−2ϕϕ
j
iϕ

i
j −

1

w2
e−2ϕW iWi + 2

1

w4
e−2ϕ(W iϕi)

2

+ (2W − 1)
(
−e−2ϕ(n− 1)− 2ϕ̇+ 2φ+ φ′e2ϕ

)
.
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