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Abstract. A classical problem in geometric optics is to find surfaces
that reflect light from a given light source such that a prescribed inten-
sity on a target is realized. We introduce a flow equation for surfaces
such that they converge to solutions of this reflector problem both for
closed hypersurfaces and for the illumination of prescribed domains.

1. Introduction

The classical reflector problem is to find a hypersurface such that light of a
given intensity is reflected at this hypersurface so that a prescribed inten-
sity on a target is realized. A ray of light in direction x is reflected at a
hypersurface according to the reflection law to the new direction

T (x) = x− 2〈x, ν〉ν,

where ν is a unit normal to the hypersurface at the point where the ray of
light is reflected. In [?] the authors study a light source in Rn+1, n ≥ 2,
located at the origin emitting light in all directions with a given smooth
positive intensity function f : Sn → R, defined on the unit sphere. Each
ray of light is reflected exactly once at a hypersurface that is star-shaped
with respect to the origin. The directions of the reflected light correspond
to points on the unit sphere Sn, so the reflection induces a new intensity
function. Using elliptic methods it is shown in [?] that for any two intensity
functions f and g as above there exists a smooth hypersurface that is star-
shaped with respect to the origin such that the intensity function induced by
the reflection equals the prescribed function g, if the energy of the emitted
and reflected light coincide, i. e. if∫

Sn

f =
∫
Sn

g. (1.1)

Moreover, the solution is unique up to dilatations when T : Sn → Sn is a
diffeomorphism. Using indices to denote covariant derivatives on Sn with
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respect to the metric σij induced from the standard embedding Sn → Rn+1,
this problem is equivalent, see [?], to the partial differential equation

det
(
uij +

(
u− |∇u|2+u2

2u

)
σij

)
det
(
|∇u|2+u2

2u · σij

) =
f(x)

g(T (x))
(1.2)

for u : Sn → R+ with positive definite matrices as arguments in the deter-
minants. The geometric meaning of this positivity condition is explained in
[?]. It means that our hypersurface lies on one side of appropriate parabola
that reflect light to one direction. We remark that |∇u| is also evaluated
using the induced metric of the sphere. The geometrical meaning of u is
as follows. For x ∈ Sn ⊂ Rn+1, we define ρ : Sn → R+ such that ρ(x) · x
belongs to our hypersurface. Then we have u(x) = 1

ρ(x) .

We give an alternative proof of the result presented above using a parabolic
flow equation. The flow, we are going to use, describes the deformation of re-
flecting hypersurfaces. These hypersurfaces converge finally to a stationary
solution solving Equation (??). In general it is difficult to use a parabolic
flow equation to obtain solutions to an elliptic problem that admits several
solutions. Here it is known that any two solutions differ by a positive mul-
tiple. As it seems easier to us to consider a situation in which two solutions
differ by an additive constant, we introduce a new function ϕ : Sn → R by
defining ϕ(x) = log u(x). It is easy to see that Equation (??) is equivalent
to

det
(
ϕij + ϕiϕj + 1

2

(
1− |∇ϕ|2

)
σij

)
det
(

1
2 (1 + |∇ϕ|2) σij

) =
f(x)

g(T (x))
. (1.3)

We wish to investigate a flow that becomes stationary at solutions of the
elliptic problem and keeps the argument of the determinant in the numerator
positive definite. We choose the following equation

ϕ̇ = Φ

(
log

{
det
(
ϕij + ϕiϕj + 1

2

(
1− |∇ϕ|2

)
σij

)
det
(

1
2 (1 + |∇ϕ|2) σij

) · g(T (x))
f(x)

})
(1.4)

with Φ : R → R, Φ(0) = 0, Φ′ > 0 and Φ′′ ≤ 0. For a discussion of this
ansatz for the flow equation, we refer to [?]. Besides the choice Φ(t) = t,
another interesting flow is obtained when Φ(t) = 1− e−λt, λ > 0, i. e. if

ϕ̇ = 1−

(
det
(

1
2

(
1 + |∇ϕ|2

)
σij

)
det
(
ϕij + ϕiϕj + 1

2 (1− |∇ϕ|2) σij

) · f(x)
g(T (x))

)λ

.

We get the following

Theorem 1.1. Let f, g : Sn → R+ be smooth functions and let ϕ0 : Sn →
R be a smooth function such that the argument of the determinant in the
numerator in (??) is positive definite. Then the evolution equation (??) with
initial condition ϕ|t=0 = ϕ0 has a solution for all positive times, i. e. there
exists a smooth function ϕ : Sn × [0,∞) → R satisfying (??). The function
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ϕ(·, t) converges in C∞ topology to a translating solution ϕ∞ as t → ∞, i.
e. there exists v∞ ∈ R such that ϕ∞(x, t) = ϕ∞(x, 0) + v∞ · t. Moreover,
v∞ is determined by

v∞ = Φ

log
∫
Sn

g − log
∫
Sn

f

 , (1.5)

so that we get a solution to the reflector equation (??) provided (??) holds
and the hypersurfaces induced by ϕ(·, t) as described above converge to the
reflector we look for as t →∞.

We remark that our parabolic approach does not only give a constructive
method to find reflectors. If (??) is violated, a translating solution (at a fixed
time) reflects the light such that the intensity of the reflected light equals g
up to a constant factor. Note that Theorem ?? implies the existence theorem
in [?] as ϕ0 = c ∈ R is an admissible initial value.

In the problem considered so far, the light source emits light in all directions
and light should be reflected to all directions. Now we address a model
problem of a reflector that shall only illuminate a prescribed domain. We
consider the situation when light is emitted from a domain Ω ⊂ Rn ↪→ Rn+1

in direction en+1, where we identify Rn and Rn × {0}. We assume that a
hypersurface, the reflector, is represented as a graph over Ω such that the
light is reflected back to a domain Ω∗ ⊂ Rn.

This is illustrated in Figure ??. There we see the upwards directed rays of
light, the reflecting surface, normals to this surface and finally the reflected
rays of light. For simplicity we consider the following simple model. If the
domain Ω is small compared to Ω∗, we can neglect the size of the reflector
and assume that the reflected light is emitted from a single point – we take
(0, 1) ∈ Rn ×R – in the direction given by the reflection law. This problem
has applications in the design of reflectors for lamps.

Figure ?? shows a lamp in the court yard of our institute that illuminates
the ground by sending light via a reflector to the ground. Up to now, the
reflector consists of four triangles, so it seems desirable to improve the shape
used there.

Using a flow ansatz similar as above we show that for any bounded smooth
strictly convex domains Ω, Ω∗ ⊂ Rn with 0 ∈ Ω∗ and for any smooth
functions f : Ω → R+, g : Ω∗ → R+, there exists a hypersurface, represented
as graph u|Ω, such that light emitted with intensity f from Ω is reflected –
in our model with small Ω – to Ω∗ and the intensity g is realized provided
that ∫

Ω

f =
∫
Ω∗

g.
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Indeed, we can solve this problem for a larger class of domains Ω∗, but to
describe these domains, it is useful to have a technical derivation of the
corresponding equations. So we give a description of the admissible class
of domains Ω∗ and the formulation of the corresponding theorem in Section
??.

In this second part we focus on the geometric description of the situation
considered. It turns out that we get a second boundary value problem for
a Monge-Ampère equation. This equation has been studied before in [?]
in the elliptic setting and in a slightly different version in [?], see also the
appendix in [?].

The purpose of the first part of this paper is to show how solutions to closed
reflector problems can be found using parabolic techniques. The a priori
estimates used here appear in similar form already in [?]. Note that we
cannot show directly convergence to a stationary solution. Instead, we show
convergence to a translating solution in a first step. Then we obtain that
translating solutions are indeed stationary, if (??) holds.

In the second part, we introduce a model for a boundary value problem
for reflectors corresponding to a light source emitting parallel light. This
model allows to obtain smoothness of the reflector up to the boundary. We
also discuss another slightly different reflector problem and indicate why we
expect that a priori estimates in this case fail to hold. This corresponds to
the fact that we can reconstruct a reflector when we use parallel light, but
cannot do so, if we use light emitted radially from a point-like light source.

It is a further issue to solve the reflector problem with prescribed domains
using a model that contains less simplifications. Weak solutions of boundary
value problems for reflectors have been considered before, see e. g. [?]. These
solutions are not necessarily smooth up to the boundary.

The paper is organized as follows. In Section ?? we prove a priori estimates
and show that a solution to the flow equation (??) exists for all time, then
we obtain convergence to a translating solution in Section ??. In Section ??
we address the problem of illuminating domains in Rn and state the main
theorem for this problem. Finally, in Section ??, we discuss the possibility
to obtain a priori estimates for a point-like light source “outside” a reflector.

We would like to thank Jürgen Jost, Shing-Tung Yau, the Max Planck In-
stitute for Mathematics in the Sciences, Leipzig, Germany, the Alexander
von Humboldt foundation and Harvard University, Cambridge, MA, USA,
for discussions and support.
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2. Longtime Existence for Closed Hypersurfaces

In this section we address Theorem ??. It is known that the initial value
problem (??), ϕ|t=0 = ϕ0, admits a smooth solution for a maximal time
interval [0, T ). We remark that we get a similar result for ϕ0 ∈ C2,α (Sn),
α > 0, with less regularity at t = 0. To prove smooth longtime existence,
it suffices to prove that the (spatial) C2-norm of a smooth solution in a
given time interval [0, t] is bounded above by h(t) for any t > 0, where
h : R → R is a locally bounded function. As we get that the argument of Φ
is bounded, we see that our equation is uniformly parabolic. Thus we can
apply Corollary 14.9 in [?] and get C2,α-estimates for some α > 0. Higher
regularity and uniform estimates for higher derivatives follow from Schauder
theory. Then it is possible to extend a solution to [0,∞) due to shorttime
existence.

More precisely, we will prove uniform estimates for ϕ̇, uniform oscillation
estimates for ϕ and uniform estimates for Dϕ and D2ϕ. Due to the ϕ-
invariance of our problem these estimates imply uniform estimates for all
derivatives of ϕ.

We will use the Einstein summation convention and lift indices with respect
to the induced metric on Sn.

We first bound the time derivative of ϕ.

Lemma 2.1. Let ϕ be a smooth solution of our initial value problem. Then
we have the estimate

min
{

min
t=0

ϕ̇, 0
}
≤ ϕ̇ ≤ max

{
max
t=0

ϕ̇, 0
}

.

Proof. We rewrite the flow equation using

f̃(x,∇ϕ) = log det
(

1
2

(
1 + |∇ϕ|2

)
σij

)
− log g(T (x)) + log f(x)

and
wij = ϕij + ϕiϕj + 1

2

(
1− |∇ϕ|2

)
σij ≡ ϕij + rij

here and in the following. We get

ϕ̇ = Φ
(
log det wij − f̃(x,∇ϕ)

)
. (2.1)

For ϕ̇ we obtain the evolution equation

ϕ̈ = Φ′wijϕ̇ij + Φ′wij(2ϕiϕ̇j − ϕkϕ̇kσij)− Φ′f̃piϕ̇i,

where the index pi indicates derivatives with respect to ∇iϕ and
(
wij
)

de-
notes the inverse of (wij). The inverse wij is the only exception to our
convention to lift indices with respect to the induced metric on Sn. The
claimed inequality follows from the maximum principle. More precisely, we
see that for some time interval (wij) remains positive definite. During this
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time interval we get the claimed inequality. Thus the argument of Φ remains
uniformly bounded. From the definition of f̃ , we see that f̃ is uniformly
bounded from below and deduce a uniform lower bound for log detwij , thus
(wij) remains positive definite. �

Integrating this estimate, we obtain a very rough C0-estimate

|ϕ(x, t)| ≤ max |ϕ(x, 0)|+ t ·max |ϕ̇(x, 0)|.

We need a better estimate, that prevents different parts of the hypersurfaces
from moving “far apart” from each other. This is contained in the following
oscillation estimate

Lemma 2.2. Let ϕ be a smooth solution of our initial value problem. Then
its oscillation is uniformly bounded during the flow.

Proof. We rewrite our flow equation as

det
(
ϕij + ϕiϕj + 1

2

(
1− |∇ϕ|2

)
σij

)
det
(

1
2 (1 + |∇ϕ|2) σij

) =
f(x) · eΦ−1(ϕ̇)

g(T (x))
. (2.2)

For a fixed time t we consider Φ−1(ϕ̇) as a bounded function. Thus we can
apply the C0-estimates of Section 2.1 in [?] and get exactly the claimed
oscillation estimate. The C0-estimate in the cited paper is obtained for
normalized surfaces, i. e. the surfaces are rescaled so that the distance of
the surface to the origin is equal to 1. Thus these C0-estimates correspond
to oscillation estimates in our setting. �

The following lemma gives C1-a priori estimates.

Lemma 2.3 (C1-estimates). For any function ϕ ∈ C2 (Sn) with positive
definite (wij) (see the definition in the proof of Lemma ??) and bounded
oscillation, |∇ϕ| is uniformly bounded.

Proof. The quantity
1
2 log |∇ϕ|2 + ϕ

attains its maximum somewhere on Sn. So we deduce there (we multiply
the covariant derivative of the quantity above with ϕi)

0 =
ϕiϕijϕ

j

|∇ϕ|2
+ |∇ϕ|2.

As (wij) is positive definite, we get in the sense of matrices

ϕij ≥ −ϕiϕj − 1
2

(
1− |∇ϕ|2

)
σij

and deduce at the maximum point

1 ≥ |∇ϕ|2.
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Since the oscillation of ϕ is bounded, we get a uniform bound for |∇ϕ|
everywhere on Sn. �

Before we estimate the second covariant derivatives of ϕ, we recall formulae
for interchanging the order of covariant differentiation for functions on Sn

ϕijk = ϕkij + ϕjσik − ϕkσij ,

ϕijkl = ϕklij + 2ϕijσkl − 2ϕklσij + ϕkjσil − ϕilσkj .

Lemma 2.4 (C2-estimates). The second covariant spatial derivatives of ϕ
remain uniformly bounded during the flow.

Proof. We use the maximum principle for σijwij and compute its evolution
equation. We will rewrite

ẇij − Φ′wklwijkl

using terms we are able to control. The last two indices of wijkl denote
covariant derivatives on Sn. We use the definition

wij = ϕij + rij , (2.3)

differentiate this equation and use it to substitute ẇij and wijkl. Derivatives
of rij with respect to x vanish. Next, we differentiate the flow equation (??)
twice in spatial directions and replace ϕ̇ij using this equation

ẇij − Φ′wklwijkl =Φ′wklwklij − Φ′wklϕijkl

− Φ′wkrwlswkliwrsj + rijpr

(
ϕ̇r − Φ′wklϕrkl

)
− Φ′wklrijprpsϕrkϕsl − Φ′DjDif̃

+ Φ′′
(
wabwabi −Dif̃

)(
wcdwcdj −Dj f̃

)
.

The notation D· indicates that the chain rule has not yet been applied to the
respective terms. We rewrite wijkl in terms of derivatives of ϕ and rij and
interchange derivatives of ϕijkl. So the terms containing fourth derivatives
of ϕ drop out. The quantity rkl depends on (x,∇ϕ), but its covariant
derivatives with respect to the x variable vanish.

ẇij − Φ′wklwijkl =Φ′wkl(2ϕklσij − 2ϕijσkl + ϕilσkj − ϕkjσil)

+ rijpr ϕ̇r − Φ′wklrijprϕrkl + Φ′wklrklprϕrij

− Φ′wklrijprpsϕrkϕsl + Φ′wklrklprpsϕriϕsj

− Φ′wkrwlswkliwrsj − Φ′DjDif̃

+ Φ′′
(
wabwabi −Dif̃

)(
wcdwcdj −Dj f̃

)
.
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We interchange third derivatives of ϕ, use (??) and (??)

rijpr ϕ̇r − Φ′wklrijprϕrkl + Φ′wklrklprϕrij

=rijpr

(
ϕ̇r − Φ′wklϕklr

)
+ rijprΦ

′wkl(ϕlσkr − ϕrσkl)

+ Φ′wklrklpr(ϕijr − ϕjσir + ϕrσij)

=rijpr

(
Φ′wklrklpsϕsr − Φ′Drf̃

)
+ rijprΦ

′wkl(ϕlσkr − ϕrσkl)

+ Φ′wklrklpr(wijr − rijpsϕsr + ϕrσij − ϕjσir).

So we get the evolution equation

ẇij − Φ′wklwijkl =Φ′wkl(2ϕklσij − 2ϕijσkl + ϕilσkj − ϕkjσil)

+ Φ′rijpr

(
wkl(rklpsϕsr − ϕrσkl + ϕlσkr)−Drf̃

)
− Φ′wklrijprpsϕrkϕsl + Φ′wklrklprpsϕriϕsj

+ Φ′wklrklpr(wijr − rijpsϕsr + ϕrσij − ϕjσir)

− Φ′wkrwlswkliwrsj − Φ′DjDif̃

+ Φ′′
(
wabwabi −Dif̃

)(
wcdwcdj −Dj f̃

)
.

(2.4)

Directly from the definitions of rkl and wkl we obtain

−wklrijprpsϕrkϕsl + wklrklprpsϕriϕsj

=wklϕlrσ
rsϕsk · σij − wklσkl · wirσ

rswsj

+ wklσkl · (wirσ
rsrsj + wjrσ

rsrsi)− wklσkl · rirσ
rsrsj .

(2.5)

The term −wklσkl · wirσ
rswsj will be very useful for further estimates. We

remark that the right-hand side of (??) is a tensor with indices i and j
and this is also true for both terms on the left-hand side. Let us note that
rij = wij − ϕij is bounded. We denote wklσkl by trwkl and obtain∣∣∣wklϕlj

∣∣∣ = ∣∣∣wklwlj − wkl(wlj − ϕlj)
∣∣∣ ≤ 1 +

∣∣∣wklrlj

∣∣∣ ≤ c ·
(
1 + trwkl

)
.

The matrix wij is positive definite, so it suffices to estimate W := σijwij

from above in order to prove boundedness of the second derivatives of ϕ. The
metric of the sphere, σij , is parallel with respect to covariant differentiation
on Sn and time-independent. So it is easy to combine (??) and (??) to
obtain the evolution equation for W . We use concavity of Φ, boundedness
of Φ′ and interchange third derivatives of ϕ in DjDif̃

Ẇ − Φ′wklWkl ≤Φ′wklϕlrσ
rsϕsk · n− Φ′wirσ

rswsjσ
ij · trwkl

+ Φ′wklrklprWr − Φ′f̃prWr

+ c ·
(
1 + trwkl +

∣∣D2ϕ
∣∣ · trwkl +

∣∣D2ϕ
∣∣2) .
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Using ϕij = wij − rij once again, the first term on the right-hand side
can be absorbed in the error term and

∣∣D2ϕ
∣∣ in the error term can be

replaced by W . Assume now that there exists (x0, t0) ∈ Sn×(0, T ) such that
W (x0, t0) ≥ W (x, t) for (x, t) ∈ Sn × [0, t0]. Then the parabolic maximum
principle implies that

0 ≤ Ẇ − Φ′wklWkl, Wr = 0.

For positive ai, we have 1
n

n∑
i,j=1

aiaj ≤
n∑

i=1
a2

i . We employ this inequality to

the eigenvalues of wij with respect to σij and deduce at (x0, t0) that

1
nΦ′W 2 · trwkl ≤ c ·

(
1 + trwkl + W · trwkl + W 2

)
.

We use that Φ′ is bounded from below by a positive constant. Moreover, as
log det wkl is bounded, we see that W → ∞ forces tr wkl → ∞. We deduce
that W is bounded at (x0, t0) and get a time-independent bound for

∣∣D2ϕ
∣∣

as long as a smooth solution of (??) exists. �

3. Convergence for Closed Hypersurfaces

Here we complete the proof of Theorem ??. The method used in [?] to
obtain a translating solution also applies to the case of closed hypersurfaces.
Indeed, the proof is a bit simpler in the closed case. For convenience of the
reader, we sketch the argument given there. Part of the argument is due to
Huisken [?].

Fix t0 > 0. We consider

w(x, t) := ϕ(x, t + t0)− ϕ(x, t).

Using the mean value theorem, we see that w satisfies a parabolic flow
equation of the form

ẇ = aijwij + biwi. (3.1)
The strong maximum principle shows that the oscillation of w is strictly
decreasing during the flow or w is constant. We wish to show that the
oscillation does not tend to ε > 0. Otherwise we consider for x0 ∈ Sn fixed
and tn →∞

ϕ(x, t + tn)− ϕ(x0, tn) and ϕ(x, t + t0 + tn)− ϕ(x0, t0 + tn). (3.2)

Due to our a priori estimates we can find a subsequence such that the expres-
sions above converge locally uniformly (in Sn × (−∞,∞)) in any Ck-norm
to a solution of our flow equation for all time. It is easy to see that the
difference of the limits solves a parabolic equation similar to (??) and has
constant oscillation ε > 0. This contradicts the strong maximum principle.
As the oscillation of w tends to zero and w satisfies a parabolic equation of
the form (??), we see that w tends to some constant as t →∞. Considering
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sequences similar to (??) we obtain a solution ϕ∗ for all time. One checks
that

ϕ∗(x, t + t0)− ϕ∗(x, t) = const.. (3.3)

Next, we take an appropriate number, e. g. t0 ·
√

2, instead of t0 and start
with the solution ϕ∗ obtained. Our procedure gives a solution that satisfies
(??) (with a different constant) also for t0 ·

√
2 instead of t0, i. e. we obtain a

translating solution. Now we compare our original solution with the trans-
lating solution. As above, we get that the oscillation of the difference tends
to zero. Smooth convergence to a translating solution is then obtained by
using interpolation inequalities.

Thus ϕ converges smoothly to a translating solution ϕ∞ of (??) for t →∞.
To check that the velocity v∞ is as claimed in (??), we use the flow equation
(??) in the form (??) for the translating solution ϕ∞. We consider this
equation as an elliptic equation and obtain from the conservation of energy
and the derivation of the elliptic reflector equation, see the appendix in [?],∫

Sn

eΦ−1(v∞)f =
∫
Sn

g.

This implies (??), as v∞ is a constant, and completes the proof of Theorem
??.

We wish to remark, that we can enclose our initial function ϕ from above
and from below by the translating solutions obtained. Due to the maxi-
mum principle, these translating solutions act as barriers and show that our
solutions stay at a finite distance to a translating solution.

4. Illuminating Prescribed Domains

We start with a derivation of the equation fulfilled by solutions. Therefore
we follow light that moves upwards from (x, 0) ∈ Rn × R, x ∈ Ω, in direc-
tion (0, 1). The reflector is described as graph u|Ω. A unit normal to this
hypersurface is given by

ν =
(−Du, 1)√
1 + |Du|2

.

The direction of the reflected light is obtained as a function of x as follows

x 7→ (0, 1)− 2〈(0, 1), ν〉ν =

(
2Du,−1 + |Du|2

)
1 + |Du|2

.

Due to our hypotheses that in the simplified model the reflected rays of
light start at (0, 1), we see that this ray of light meets the “ground”, i. e.
the hyperplane Rn × {0}, at 2Du

1−|Du|2 . Thus we get a map T : Ω → Ω∗ such
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that light from x is reflected to T (x), in a formula

T (x) =
2Du

1− |Du|2
.

It is easy to see, that T is a diffeomorphism onto its image for a smooth
strictly convex function u with |Du| < 1; we will assume this in the following.

Next we derive the equation to be fulfilled by u. We assume that u is a
solution to our reflector problem. From the conservation of energy and the
transformation formula for integrals, we get for open domains E ⊂ Ω∫

T (E)

g(y)dy =
∫
E

f(x)dx =
∫

T (E)

f(x) · 1
det Tij

dy,

where Tij denotes the derivative of the i-th component of T in direction
j and y = T (x). Thus we obtain the elliptic equation for the reflecting
hypersurface

det Tij =
f(x)

g(T (x))
.

More explicitly, we use the Einstein summation convention and get

Tij =
∂Ti

∂xj
=

2
(1− |Du|2)2

(
uij

(
1− |Du|2

)
+ 2uiulδ

lkukj

)
.

For the evaluation of the determinant of Tij , we may assume without loss
of generality, that we have chosen coordinates such that 〈Du, e1〉 = |Du|.
(Tij) is then given by

2
(1− |Du|2)2


u11

(
1 + |Du|2

)
u12

(
1− |Du|2

)
· · · u1n

(
1− |Du|2

)
u12

(
1 + |Du|2

)
u22

(
1− |Du|2

)
· · · u2n

(
1− |Du|2

)
...

...
. . .

...
u1n

(
1 + |Du|2

)
u2n

(
1− |Du|2

)
· · · unn

(
1− |Du|2

)
 ,

so we see immediately that

det Tij = 2n ·
(
1− |Du|2

)−n−1 ·
(
1 + |Du|2

)
· det D2u

and the reflector equation

det D2u =
f(x)

g(T (x))
· 2−n ·

(
1− |Du|2

)n+1

1 + |Du|2

follows. In our approach, we consider the flow equation

u̇ = Φ

(
log det D2u− log

(
f(x)

g(T (x))
· 2−n ·

(
1− |Du|2

)n+1

1 + |Du|2

))
(4.1)

with Φ as in (??). The inverse map to

Du 7→ 2Du

1− |Du|2
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is given by

τ : y 7→ y

|y|2
(√

1 + |y|2 − 1
)

. (4.2)

From the Taylor expansion of the square root at y = 0, we see that τ extends
smoothly to y = 0. The map τ is a diffeomorphism onto its image, so we
can rewrite the boundary condition T (Ω) = Ω∗ as Du(Ω) = τ(Ω∗). Directly
from the estimates in [?] and the appendix in [?] we obtain

Theorem 4.1. Let Ω, Ω∗ ⊂ Rn be smooth bounded domains such that Ω and
τ(Ω∗) are strictly convex domains where τ is the diffeomorphism introduced
in (??). Let u0 : Ω → R be a smooth strictly convex function such that
Du0(Ω) = τ(Ω∗). Then there exists a smooth solution u : Ω × (0,∞) to
Equation (??) – with u(·, t) → u0 in C2

(
Ω
)

as t ↓ 0 – such that Du(Ω) =
τ(Ω∗) or equivalently T (Ω) = Ω∗ (T is evaluated using u(·, t)). The function
u(·, t) converges in C∞ (Ω) topology to a translating solution of (??) that
moves with speed

Φ

log
∫
Ω∗

g − log
∫
Ω

f

 .

Proof. The existence and convergence to a translating solution follows from
[?, Theorem A.1] where we use estimates from [?]. Using the conservation of
energy and the transformation formula for integrals as in the derivation of
the reflector equation above, implies for a translating solution with velocity
v∞ ∫

Ω∗

g(y)dy =
∫
Ω

eΦ−1(v∞)f(x)dx.

Thus we get the formula for v∞. �

We remark that the maximum principle shows uniqueness of translating
solutions up to additive constants. Once again, our solution becomes sta-
tionary provided that the total amount of energy emitted and prescribed on
the ground coincide.

At a first glance, the convexity condition for τ (Ω∗) seems artificially. As
it turns out, however, that our problem corresponds to a second boundary
value problem for a Monge-Ampère equation, which can be solved – at least
at the moment – in general only for strictly convex domains, we see that
our condition for Ω∗ is indeed natural. We show in Lemma ?? that the
convexity condition for τ (Ω∗) is fulfilled for a large class of domains.

It remains to prove the assertion of the introduction that this illumination
problem can be solved for strictly convex domains Ω∗ that contain the origin,
i. e. it suffices to prove
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Lemma 4.2. Let Ω∗ ⊂ Rn be a convex open set, 0 ∈ Ω∗. For τ as in (??),
τ(Ω∗) is strictly convex.

Proof. As τ maps each point x ∈ Rn to a point λ ·x where λ = λ(|x|), we see
that it suffices to prove this lemma for Ω∗ ⊂ R2. Moreover, as |x| 7→ |τ(x)|
is a strictly monotone increasing function, we only have to check that τ
maps half-planes containing the origin to strictly convex sets. Due to the
rotational symmetry, it suffices to show that horizontal lines lying “above”
the origin are mapped to graphs over part of the horizontal axis, graphu,
such that u is a strictly concave positive function. More precisely, we fix
a > 0 and consider the horizontal line in R2 parameterized by R 3 t 7→ (t, a).
The diffeomorphism τ maps this line to

t 7→ (t, a) ·
√

1 + a2 + t2 − 1
a2 + t2

≡ (t, a) · g(t) ≡ (x(t), y(t)).

Direct calculations show that

∂x

∂t
=

(
t2 − a2

)
·
(√

1 + a2 + t2 − 1
)

+ a2 ·
(
a2 + t2

)
(a2 + t2)2

√
1 + a2 + t2

> 0.

Thus we can use x to parameterize the image. We use the chain rule and
obtain

∂2y

∂x2
=

∂2y

∂t2

(
∂t

∂x

)2

+
∂y

∂t

∂2t

∂x2

=
(

∂2y

∂t2
− ∂y

∂t

∂2x

∂t2
∂t

∂x

)
·
(

∂t

∂x

)2

.

Thus it suffices to show that

2
(
g′(t)

)2
> g(t) · g′′(t). (4.3)

We note that

g(t) =
1

1 + f
, where f(t) :=

√
1 + a2 + t2, so f ′ =

t

f
.

Now it is easy to obtain (??) by direct calculation. Thus our lemma follows.
�

5. Radial Light from Outside

In Sections ?? and ??, we have considered closed reflectors. We assumed
that ϕ = − log ρ is such that

ϕij + ϕiϕj + 1
2

(
1− |∇ϕ|2

)
σij

is positive definite. This admissibility means geometrically that for every
point on the reflector, there exists a paraboloid with focus at the origin
that touches the hypersurface from outside at the given point [?]. These
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paraboloids play a special role for this problem as they reflect the emitted
light such that it becomes parallel.

Another type of admissibility is obtained when those paraboloids touch so
that they separate the hypersurface from the origin. We refer to it as ex-
terior reflector problem. If our light source lies outside a given ball, the
“illuminated part” of its boundary is admissible for the exterior reflector
problem. Let x ∈ Sn and ρ : Ω → Rn, Ω ⊂ Sn, then the hypersurface given
by {ρ(x) · x : x ∈ Ω} is admissible, if for ϕ = log ρ

ϕij − ϕiϕj − 1
2

(
1− |∇ϕ|2

)
σij

is positive definite. The corresponding reflector equation is

det
(
ϕij − ϕiϕj − 1

2

(
1− |∇ϕ|2

)
σij

)
det
(

1
2 (1 + |∇ϕ|2) σij

) =
f(x)

g(T (x))
. (5.1)

Suppose that we want to prove a priori estimates for this equation subject
to a suitable boundary condition. Assume that we have C1-estimates in
a ball on Sn and C2-estimates at its boundary. Even in this situation, it
seems impossible to us to prove interior C2-estimates. The reason for this is,
that the term 1

2 |∇ϕ|2σij in the numerator in (??) gives rise to inestimable
terms. They correspond to −wklσkl · wirσ

rswsj in (??) but appear here
with a different sign. Numerical experiments confirm that we should not
expect to get these estimates. Our simulation produces smooth solutions to
(??) but with gradient terms as in the exterior reflector problem, we obtain
interior singularities for different initial values.

Constructing explicit counterexamples seems hard, as [?] shows, that there
are no axially symmetric interior counterexamples to C2-regularity. More-
over, it is proved in [?] that the corresponding linearized operator is formally
self-adjoint and an inverse function theorem argument yields almost axially
symmetric solutions. The counterexamples by Pogorelov [?] and Heinz-Levy
[?] have singularities that extend to the boundary.

It is already mentioned in [?], that it might be difficult to prove these a
priori estimates. In [?], a similar equation appears for conformally deformed
metrics, for which the product of the eigenvalues of the Schouten tensor is
prescribed. A priori estimates up to C1 are proved, but an estimate for
second derivatives could not be obtained in the situation corresponding to
(??). We wish to emphasize, that C2-estimates can be obtained, when there
is a −1

2 |∇ϕ|2σij term in the determinant, see e. g. Section ??, even local
interior a priori estimates are true [?, ?], whereas a term +1

2 |∇ϕ|2σij seems
to make C2-estimates impossible.

The situation considered in Section ?? is geometrically similar to the exterior
reflector problem, where C2-estimates fail to hold. This means that (in the
appropriate model) surfaces reflecting parallel light can be reconstructed,
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but this seems in general impossible for light emitted from a point-like light
source.
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Figure 1. Reflection at a surface
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Figure 2. Lamp in the court yard of the Max Planck Insti-
tute for Mathematics in the Sciences, Leipzig, Germany


