Übungsblatt 15 zur Algebra

im Wintersemester 2004/2005

Aufgabe 1: Bestimmen Sie die Minimalpolynome der komplexen Zahlen

$$a := \sqrt{2} + \sqrt{3}$$
 und $b := e^{\frac{\pi i}{5}}$

über \mathbb{Q} .

Aufgabe 2: $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$

Aufgabe 3: Untersuchen Sie, ob die folgenden Polynome in $\mathbb{Q}[X]$ irreduzibel sind:

- (i) $X^4 + X^3 + X + 1$
- (ii) $3X^3 5X + 1$
- (iii) $X^4 + 1$

Hinweis: Manchmal ist es hilfreich, für ein $a \in \mathbb{Q}$ den Automorphismus $f \mapsto f(X + a)$ von $\mathbb{Q}[X]$ zu betrachten.

Aufgabe 4: Bestimmen Sie (bis auf Isomorphie) alle vierelementigen kommutativen Ringe mit 1.

Aufgabe 5: Sei K ein Körper. Bezeichne $H := (K^{\times}, \cdot)$ seine multiplikative Gruppe und N := (K, +) seine additive Gruppe.

(i) Es ist

$$\psi: H \to \operatorname{Aut}(N): h \mapsto (n \mapsto hn)$$

ein wohldefinierter Gruppenhomomorphismus.

(ii) Es bezeichne $\operatorname{Aut}(K[T])$ die Automorphismengruppe des Polynomrings K[T]. Es ist

$$N \rtimes_{\psi} H \to \operatorname{Aut}(K[T]) : (n,h) \mapsto (T \mapsto hT + n)$$

ein wohldefinierter Gruppenisomorphismus.

Aufgabe 6: Die Automorphismengruppe des Ringes $\mathbb{F}_3[X]$ ist isomorph zur S_3 .

Aufgabe 7: Es seien a, b Elemente endlicher Ordnung in einer abelschen Gruppe G. Sei ord a = m und ord b = n. Dann existiert in G ein Element der Ordnung kgV(m, n).

Genauer, wählt man ganzzahlige Zerlegungen $m = m_0 m'$, $n = n_0 n'$ mit $kgV(m,n) = m_0 n_0$ und $ggT(m_0,n_0) = 1$, so ist $a^{m'}b^{n'}$ ein Element der Ordnung kgV(m,n). Insbesondere besitzt also ab die Ordnung mn, falls m und n teilerfremd sind.

Aufgabe 8: Es sei K ein Körper und H eine endliche Untergruppe der multiplikativen Gruppe K^{\times} . Dann ist H zyklisch.

Hinweis: Es sei $a \in H$ ein Element maximaler Ordnung m und H_m die Untergruppe aller Elemente aus H, deren Ordnung ein Teiler von m ist. Alle Elemente von H_m sind dann Nullstellen des Polynoms $T^m - 1$, so daß H_m höchstens m Elemente enthalten kann. Andererseits enthält H_m die von a erzeugte zyklische Gruppe $\langle a \rangle$, und deren Ordnung ist m. Somit folgt $H_m = \langle a \rangle$, und H_m ist zyklisch. Wir behaupten, daß bereits $H = H_m$ gilt. Gibt es nämlich ein Element $b \in H$, welches nicht zu H_m gehört, dessen Ordnung n also kein Teiler von m ist, so besitzt H aufgrund von Aufgabe 5 ein Element der Ordnung kgV(m,n) > m. Dies aber widerspricht der Wahl von a.

Abgabe bis 14. Februar vor der Vorlesung.