
University of Konstanz Sebastian Gruler
Department of Mathematics and Statistics María López Quijorna
Summer Term 2015 Markus Schweighofer

Polynomial Optimization – Computer Project 2

This project will later be continued in Computer Project 3. The aim of the project is to
get a good intuition on the accuracy attained by the basic moment relaxation of certain
polynomial optimization problems of geometric flavor. This will be done by visualizing
the obtained solutions of the relaxation. You will also learn how to communicate between
MuPAD and MATLAB without using an auxiliary file. Moreover, we will treat an equality
constraint as such instead of writing it as two inequalities.

You will again need MATLAB, its Symbolic Math Toolbox MuPAD and the modeling
language YALMIP. As last time, you need to have installed and added to the MATLAB
path MOSEK or another SDP solver.

You have to construct four files inside a new directory named pop2narendra where
narendra1 must be replaced by your given name in lowercase letters:

(1) a MuPAD notebook robot.mn

(2) a MuPAD program robot.mu

(3) a MATLAB function file robot.m

(4) a MATLAB script robotdemo.m

All four files have to contain a comment with your name in the first line. Apart from this,
the only files which have to be commented are (1) and (4). Indeed, (1) should contain a
well-documented version of (2) whose only aim is to explain (2). The MuPAD file (2) will
contain (probably amongst others) a procedure robot:=proc(R) producing a very basic
moment relaxation of polynomial equalities and inequalities associated to the “robot”
R (see below). The MATLAB function file (3) contains a MATLAB function function
[constraints,x,y] = robot(R) calling (2). The MATLAB script (4) contains examples of
how to apply the robot procedure with interesting robots that you choose according to
our instructions below and also according to your own taste and creativity. You should
comment on the outcomes and observations in this script file. Your tutor should have fun
while executing (4)!

All files must be executable without producing errors. Note that this must work wher-
ever your directory pop2narendra is placed so please avoid using pathnames when spec-
ifying filenames. It is perfectly allowed to collaborate with other students. However, the
finalization, annotation and submission of the project has to be done by each participant
individually. Comments should be concise and in English language. It is preferable to do
the MuPAD programming basically in the notebook (1) and to generate (2) from (1) by
copy and paste.

1http://en.wikipedia.org/wiki/Karmarkar%27s_algorithm

http://en.wikipedia.org/wiki/Karmarkar%27s_algorithm


We define a robot to be a strictly (i.e., zero-diagonal) upper triangular matrix R ∈
{0, 1, 2}n×n for some n ≥ 3. One thinks of such a matrix as a “robot” in two-dimensional
space with n joints, the first two of which are called base joints. The base joints are an-
chored at positions (0, 0) and (1, 0) in R2. The position of the other joints can only be
constrained by the links. A nonzero entry in R means that the joints corresponding to the
line and column of the entry are connected by a rigid or flexible link. Rigid links have unit
length and are encoded by 1. Flexible links can vary their length from 1 to

√
3 and are

encoded by 2.

To each robot R ∈ {0, 1, 2}n×n, we associate a finite system of quadratic polynomial
equalities and inequalities in the variables xij (i ∈ {3, . . . , n}, j ∈ {1, 2}). These vari-
ables should be implemented as variables x(i,j) of the YALMIP type sdpvar in MAT-
LAB and as identifiers x[i,j] in MuPAD. We interprete xi = (xi1, xi2) ∈ R2 for
i ∈ {1, . . . , n} as the position of the i-th joint of the robot R. In particular, x1 = (0, 0)
and x2 = (1, 0) should always be fixed. However, this information and the correspond-
ing four real variables xij (i, j ∈ {1, 2}) do however not appear in the system we asso-
ciate to the robot. Instead, this information should be expressed separately by including
at some point x[1,1]:=0;x[1,2]:=0;x[2,1]:=1;x[2,2]:=0 in your MuPAD code and
x(1,1)=0;x(1,2)=0;x(2,1)=1;x(2,2)=0 in the MATLAB code produced within MuPAD.

For example, the system associated to the robot R0 :=
(

0 1 1
0 0 2
0 0 0

)
is

x2
3,1 + x2

3,2 = 1, 1 ≤ (x3,1 − 1)2 + x2
3,2 ≤ 3

where the first equality expresses that the third joint is linked rigidly to the first (anchor)
joint and the other two inequalities express that the third joint is linked flexibly to the
second (anchor) joint.

(a) In the MuPAD notebook (1), write a MuPAD function robot:=proc(R) that takes a
robot R ∈ {0, 1, 2}n×n as input,

• augments the system of polynomial equalities and inequalities by the family of
quadratic redundant inequalities

(a + bx3,1 + cx3,2 + . . . )2 ≥ 0 (a, b, c, . . . ∈ R parameters).

Of course, this should be expressed without parameters as a single quadratic
polynomial matrix inequality.

• relaxes this system to a system consisting of one linear matrix inequality and
possibly other linear inequalities and equalities.

• writes the (data defining) these linear constraints in YALMIP format into a single
string yal and returns this string. Before returning yal, the carriage returns
appearing in it should be deleted, e.g. by applying:

yal:=yal.stringlib::subs(yal,"\n"="")

Use generate::MATLAB to convert the linear constraints into a MATLAB read-
able string. Other MuPAD commands that could potentially be useful are subs,
subsex, monomials and DegreeOrder. Linear monomials in the variables xij



(i ∈ {3, . . . , n}, j ∈ {1, 2}) should not be affected by the linearization. Other
monomials will become linear monomials in the new variables y1, y2, . . . (y[i] in
MuPAD, y(i) in MATLAB). In the example from above, robot(R0) should return
a string like

x=sdpvar(3,2); x(1,1) = 0; x(1,2) = 0; x(2,1) = 1; x(2,2) = 0;
y=sdpvar(3,1); A0 = sdpvar(3,3); A0(1,1) = 1.0; A0(1,2) = x(3,1);
A0(1,3) = x(3,2); A0(2,1) = x(3,1); A0(2,2) = y(1); A0(2,3) = y(2);
A0(3,1) = x(3,2); A0(3,2) = y(2); A0(3,3) = y(3);
constraints = [A0>=0]; t0 = 1.0; constraints = [constraints,t0==1];
t0 = y(1)+y(3); constraints = [constraints,t0==1];
t0 = y(1)+y(3)-x(3,1)*2.0+1.0; constraints = [constraints,1<=t0<=3];

(b) Comment the file (1) very well, illustrate and test parts of the code with small ex-
amples and include this in the MuPAD notebook (1). Once you are convinced that
(1) works properly, copy its main content (without the comments) into a MuPAD
program (2).

(c) Implement in (3) a MATLAB function function [constraints,x,y] = robot(R) that
upon input of a robot R ∈ {0, 1, 2}n×n

• reads (2) by calling read(symengine,’robot.mu’),

• calls (2) and executes the command given by the returned string by calling
eval(char(feval(symengine,’robot’,R))),

• returns the list of linearized constraints in YALMIP format and the families of
variables (xij)1≤i≤n,1≤j≤2 and (yi)i) of YALMIP type sdpvar.

Note that (3) would fit almost in one line.

(d) Write a MATLAB script (4) which should define several example robots and illustrate
their behavior by solving SDPs whose constraints are produced by calling (3). For
finding a useful objective function, fix a joint of the robot which should serve as end
effector. One of the robots you consider could be defined by

R = zeros(7,7); R(1,2) = 1; R(1,3) = 1; R(2,4) = 1; R(3,4) = 1;
R(2,3) = 2; R(1,4) = 2; R(3,6) = 2; R(3,5) = 1; R(4,6) = 1;
R(5,6) = 1; R(5,7) = 2; R(6,7) = 2;

For this robot, it makes sense to consider joint 7 as end effector and one could
therefore take a random objective function randn*x(7,1)+randn*x(7,2) for solving
the SDP. Having solved the SDP one could draw the robot using a command like
gplot(R,value(x),’-*’);axis([-4 4 -4 4]). Make (4) into a pleasant demonstra-
tion of your discoveries concerning moment relaxations and robots! In this demo, you
should comment on what you think about the quality of the relaxations

Due by Friday, June 5th, 2015, 11:11 am. The four files (1)—(4) must be sent attached to
an electronic mail to both Sebastian Gruler2 and María López Quijorna3.

2http://www.math.uni-konstanz.de/~gruler/
3http://www.math.uni-konstanz.de/~lopez/

http://www.math.uni-konstanz.de/~gruler/
http://www.math.uni-konstanz.de/~lopez/

