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1 x4
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3 y5 − 8
3x2 + 4
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D2 y3 − 2y4 + y5 ≥ 0
D2C − x4

1 + . . . + 4y3 + 4y4 + 4y5 ≥ 0
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1 x2 x1x2
2

x2 y4 y5 x2
1 x2 x1x2

2 x3
2

y3 y1 x2
1 x2 x4

1 x3
1 x2 x2

1 x2
2

y4 x2
1 x2 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
y5 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 x1x2

2
x2 y4 y5 y6 x1x2

2 x3
2

y3 y1 y6 x4
1 x3

1 x2 x2
1 x2

2
y4 y6 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
y5 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 x1x2

2
x2 y4 y5 y6 x1x2

2 x3
2

y3 y1 y6 x4
1 x3

1 x2 x2
1 x2

2
y4 y6 x1x2

2 x3
1 x2 x2

1 x2
2 x1x3

2
y5 x1x2

2 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 x4

1 x3
1 x2 x2

1 x2
2

y4 y6 y7 x3
1 x2 x2

1 x2
2 x1x3

2
y5 y7 x3

2 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 x4

1 x3
1 x2 x2

1 x2
2

y4 y6 y7 x3
1 x2 x2

1 x2
2 x1x3

2
y5 y7 x3

2 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 y8 x3

1 x2 x2
1 x2

2
y4 y6 y7 x3

1 x2 x2
1 x2

2 x1x3
2

y5 y7 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 x3

2
y3 y1 y6 y8 x3

1 x2 x2
1 x2

2
y4 y6 y7 x3

1 x2 x2
1 x2

2 x1x3
2

y5 y7 x3
2 x2

1 x2
2 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 x3

1 x2 x2
1 x2

2
y4 y6 y7 x3

1 x2 x2
1 x2

2 x1x3
2

y5 y7 y9 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 x3

1 x2 x2
1 x2

2
y4 y6 y7 x3

1 x2 x2
1 x2

2 x1x3
2

y5 y7 y9 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 x2

1 x2
2

y4 y6 y7 y10 x2
1 x2

2 x1x3
2

y5 y7 y9 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 x2

1 x2
2

y4 y6 y7 y10 x2
1 x2

2 x1x3
2

y5 y7 y9 x2
1 x2

2 x1x3
2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 x1x3

2
y5 y7 y9 y11 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 x1x3

2
y5 y7 y9 y11 x1x3

2 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)


1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 y12
y5 y7 y9 y11 y12 y2





a
b
c
d
e
f

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − y2 + 2y3 − 2y4 + y5 − 1

3 ≥ 0
C − y3 − y5 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2 + dx2
1 + ex1x2 + f x2

2 )2 ≥ 0 ⇐⇒

(
a b c d e f

)



1 x1 x2 y3 y4 y5
x1 y3 y4 y1 y6 y7
x2 y4 y5 y6 y7 y9
y3 y1 y6 y8 y10 y11
y4 y6 y7 y10 y11 y12
y5 y7 y9 y11 y12 y2





a
b
c
d
e
f



� 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a + bx1 + cx2)
(
1 x1 x2

)a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0

⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a + bx1 + cx2)
(
1 x1 x2

)a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)(a + bx1 + cx2)
(
1 x1 x2

)a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(−x2
1 − x2

2 + x1 + 4)
(
a b c

) 1
x1
x2

(1 x1 x2
)a

b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)
(−x2

1 − x2
2 + x1 + 4)

 1
x1
x2

(1 x1 x2
)a

b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)
(−x2

1 − x2
2 + x1 + 4)

 1 x1 x2
x1 x2

1 x1x2
x2 x1x2 x2

2

a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−x3

1 − x1x2
2 + x2

1 + 4x1 . . . . . .
−x2

1 x2 − x3
2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − x3
1 + x1 + 2x2 − 1 ≥ 0

B − x4
2 + 2x2

1 − 2x1x2 + x2
2 − 1

3 ≥ 0
C − x2

1 − x2
2 + x1 + 4 ≥ 0

ir

redundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−x3

1 − x1x2
2 + x2

1 + 4x1 . . . . . .
−x2

1 x2 − x3
2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−y1 − x1x2

2 + x2
1 + 4x1 . . . . . .

−x2
1 x2 − x3

2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
Attempt to linearize after adding families of redundant inequalities

A − y1 + x1 + 2x2 − 1 ≥ 0
B − x4

2 + 2x2
1 − 2x1x2 + x2

2 − 1
3 ≥ 0

C − x2
1 − x2

2 + x1 + 4 ≥ 0

irredundant families (parametrized by a, b, c , . . . ):

(a + bx1 + cx2)2(−x2
1 − x2

2 + x1 + 4) ≥ 0 ⇐⇒

(
a b c

)  −x2
1 − x2

2 + x1 + 4 . . . . . .
−y1 − x1x2

2 + x2
1 + 4x1 . . . . . .

−x2
1 x2 − x3

2 + x1x2 + 4x2 . . . . . .

 a
b
c

 ≥ 0



System of polynomial inequalities
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I X̄ = (X1, . . . ,Xn) variables

I R[X̄ ]

k

polynomials

of degree at most k

I g1, . . . , gm ∈ R[X̄ ] polynomials defining . . .
I . . . the set S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}
I T

k

:= {
∑

δ∈{0,1}m sδg
δ1
1 · · · g δmm | sδ ∈

∑
R[X̄ ]2

, deg(sδg δ) ≤ k

}
convex cone in R[X̄ ]

k

I L

k

:=
{
L | L : R[X̄ ]

k

→ R, L(1) = 1, L(T

k

) ⊆ R≥0
}

solution set of the “linearized” system

(linear matrix inequality)

I S

k

′ := {(L(X1), . . . , L(Xn)) | L ∈ L

k

} projection
Schmüdgen relaxation

We have S ⊆ conv S ⊆ S ′ ⊆ . . . ⊆ S ′4 ⊆ S ′3 ⊆ S ′2 ⊆ S ′1.
The question is whether conv S = S ′k for some k ∈ N.
If S is non-compact, then often conv S 6= S ′ and hence the answer is
often no. If S is compact, then we will see that conv S = S ′ but Parrilo
gave in his 2006 Banff talk an example where the answer nevertheless is
no.
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When is one of the Lasserre relaxations exact?
When is conv S = S ′k for some k ∈ N?

Proposition. Fix k ∈ N := {1, 2, 3, . . . } and suppose S 6= ∅ and conv S
is closed (e.g. S is compact). Then the following are equivalent:
(i) conv S = S ′k
(ii) ∀f ∈ R[X̄ ]1 : (f > 0 on S =⇒ f ∈ Tk)

(iii) ∀f ∈ R[X̄ ]1 : (f ≥ 0 on S =⇒ f ∈ Tk)

Proposition (Powers & Scheiderer 2005).
If S has non-empty interior, then each Tk is closed in R[X̄ ]k .

Theorem (Schmüdgen 1991). Suppose S is compact.
(a) ∀L ∈ L : ∃ probability measure µ on S : ∀p ∈ R[X̄ ] : L(p) =

∫
p dµ

(b) ∀f ∈ R[X̄ ] : (f > 0 on S =⇒ f ∈ T )

Corollary. If S is compact, then conv S = S ′.
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Suppose S is compact.

Schmüdgen’s theorem says that ∀f ∈ R[X̄ ] : (f > 0 on S =⇒ f ∈ T ).

Would like to have ∃k ∈ N : ∀f ∈ R[X̄ ]1 : (f > 0 on S =⇒ f ∈ Tk),
i.e., we would like to have degree bounds for sums of squares
representations of linear (i.e., degree ≤ 1) positive polynomials.

Theorem (2004). For f ∈ R[X̄ ], f =
∑

α∈Nn aα
(
α1+···+αn
α1! ... αn!

)
X̄α, aα ∈ R,

we define ‖f ‖ := max{|aα| | α ∈ Nn}. Suppose ∅ 6= S ⊆ (−1, 1)n.Then
there is a constant c ∈ N (depending only on n, m and g1, . . . , gm)
such that, for each f ∈ R[X̄ ]d with f ∗ := min{f (x) | x ∈ S} > 0, we
have f ∈ Tk for some

k ≤ c
(
1 +

(
‖f ‖
f ∗

)c)
.

Problem: Dependance on ‖f ‖f ∗ .
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In 2001, Prestel proved already the mere existence of such a degree
bound depending on n, m, g1, . . . , gm, d = deg f and ‖f ‖f ∗ .

His proof is
based on Wörmann’s 1998 purely algebraic proof of Schmüdgen’s
theorem. Using valuation theory, he finds a certain version of
Schmüdgen’s theorem valid over real closed fields. By the compactness
theorem of first order logic, he gets the existence of the degree bounds.
Using Gödel’s completeness theorem, he can conclude that his bound is
computable.

My proof is by finding a tame version of my 2002 nearly constructive
algebraic proof of Schmüdgen’s theorem which allows to keep track of
complexity. The dependance on d = deg f and ‖f ‖f ∗ is made explicit.
The core of a proof is an algebraic construction based on Powers’ and
Reznick’s 2001 bound (cf. de Loera & Santos 1996, erratum 2001) for:

Theorem (Pólya 1928). Suppose that f ∈ R[X̄ ] is homogeneous and
f > 0 on ∆n := {x ∈ Rn

≥0 | x1 + · · ·+ xn = 1}. Then, for sufficiently
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Suppose S is compact.

Theorem (Schmüdgen 1991). For all f ∈ R[X̄ ] :
f > 0 on S =⇒ ∃pδ ∈ R[X̄ ]1×∗ : f =

∑
δ∈{0,1} pδp

T
δ g δ

Hol and Scherer prove this theorem by generalizing Pólya’s theorem to
polynomials whose coefficients are symmetric matrices and then
imitating my algebraic constructions for Schmüdgen’s theorem.
Actually, they prove a more general theorem where the set S is defined
by a linear matrix inequality. The special case above follows in fact by
identifying F ∈ R[X̄ ]t×t with the family (fa)a∈St−1 of polynomials
fa := aTFa ∈ R[X̄ ] and applying my construction uniformly and
simultanuously for all a ∈ S t−1 (use compactness of S t−1; no need to
generalize Pólya to matrices; usual Pólya yields parametrized
nonnegative coefficients ca∈St−1 corresponding to positive semidefinite
quadratic forms; positive semidefinite quadratic forms are sums of
squares). In this way, one also gets degree complexity bounds similar to
the ones for Schmüdgen’s theorem. In a more complicated way (along
the lines of Hol and Scherer’s generalization of my construction),
Helton and Nie recently proved these degree bounds.
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Digression
Suppose S is compact.

Theorem (Schmüdgen 1991). ∀f ∈ R[X̄ ] : (f > 0 on S =⇒ f ∈ T )

Theorem (Hol & Scherer 2008). For all F ∈ R[X̄ ]t×t :
F � 0 on S =⇒ ∃Pδ ∈ R[X̄ ]t×∗ : F =

∑
δ∈{0,1} PδP

T
δ g δ

This result from Hol and Scherer (but not their more general one which
we don’t need) follows also directly from Schmüdgen’s theorem:
Given F ∈ R[X̄ ]t×t with F � 0 on S , we consider f := Y ∈ R[X̄ ,Y ]
and observe that f > 0 on

SF := {(x , y) ∈ Rn+1 | x ∈ S , y eigenvalue of F(x)}
= {(x , y) | g1(x) ≥ 0, . . . , gm(x) ≥ 0, pF (x , y) = 0}

where PF ∈ R[X̄ ][Y ] = R[X̄ ,Y ] is the characteristic polynomial of F .
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Cayley-Hamilton so that pF disappears in this representation. . .
Problem: We do not get the necessary degree bounds in this way.



Digression
Suppose S is compact.

Theorem (Schmüdgen 1991). ∀f ∈ R[X̄ ] : (f > 0 on S =⇒ f ∈ T )

Theorem (Hol & Scherer 2008). For all F ∈ R[X̄ ]t×t :
F � 0 on S =⇒ ∃Pδ ∈ R[X̄ ]t×∗ : F =

∑
δ∈{0,1} PδP

T
δ g δ

This result from Hol and Scherer (but not their more general one which
we don’t need) follows also directly from Schmüdgen’s theorem:

Given F ∈ R[X̄ ]t×t with F � 0 on S , we consider f := Y ∈ R[X̄ ,Y ]
and observe that f > 0 on

SF := {(x , y) ∈ Rn+1 | x ∈ S , y eigenvalue of F(x)}
= {(x , y) | g1(x) ≥ 0, . . . , gm(x) ≥ 0, pF (x , y) = 0}

where PF ∈ R[X̄ ][Y ] = R[X̄ ,Y ] is the characteristic polynomial of F .
Now get a sums of squares representation of f = Y using Schmüdgen’s
theorem, replace Y by f and use that PF (X̄ ,F ) = 0 by
Cayley-Hamilton so that pF disappears in this representation. . .
Problem: We do not get the necessary degree bounds in this way.



Digression
Suppose S is compact.

Theorem (Schmüdgen 1991). ∀f ∈ R[X̄ ] : (f > 0 on S =⇒ f ∈ T )

Theorem (Hol & Scherer 2008). For all F ∈ R[X̄ ]t×t :
F � 0 on S =⇒ ∃Pδ ∈ R[X̄ ]t×∗ : F =

∑
δ∈{0,1} PδP

T
δ g δ

This result from Hol and Scherer (but not their more general one which
we don’t need) follows also directly from Schmüdgen’s theorem:
Given F ∈ R[X̄ ]t×t with F � 0 on S , we consider f := Y ∈ R[X̄ ,Y ]
and observe that f > 0 on

SF := {(x , y) ∈ Rn+1 | x ∈ S , y eigenvalue of F(x)}
= {(x , y) | g1(x) ≥ 0, . . . , gm(x) ≥ 0, pF (x , y) = 0}

where PF ∈ R[X̄ ][Y ] = R[X̄ ,Y ] is the characteristic polynomial of F .
Now get a sums of squares representation of f = Y using Schmüdgen’s
theorem, replace Y by f and use that PF (X̄ ,F ) = 0 by
Cayley-Hamilton so that pF disappears in this representation. . .
Problem: We do not get the necessary degree bounds in this way.



Digression
Suppose S is compact.

Theorem (Schmüdgen 1991). ∀f ∈ R[X̄ ] : (f > 0 on S =⇒ f ∈ T )

Theorem (Hol & Scherer 2008). For all F ∈ R[X̄ ]t×t :
F � 0 on S =⇒ ∃Pδ ∈ R[X̄ ]t×∗ : F =

∑
δ∈{0,1} PδP

T
δ g δ

This result from Hol and Scherer (but not their more general one which
we don’t need) follows also directly from Schmüdgen’s theorem:
Given F ∈ R[X̄ ]t×t with F � 0 on S , we consider f := Y ∈ R[X̄ ,Y ]
and observe that f > 0 on

SF := {(x , y) ∈ Rn+1 | x ∈ S , y eigenvalue of F(x)}
= {(x , y) | g1(x) ≥ 0, . . . , gm(x) ≥ 0, pF (x , y) = 0}

where PF ∈ R[X̄ ][Y ] = R[X̄ ,Y ] is the characteristic polynomial of F .

Now get a sums of squares representation of f = Y using Schmüdgen’s
theorem, replace Y by f and use that PF (X̄ ,F ) = 0 by
Cayley-Hamilton so that pF disappears in this representation. . .
Problem: We do not get the necessary degree bounds in this way.



Digression
Suppose S is compact.

Theorem (Schmüdgen 1991). ∀f ∈ R[X̄ ] : (f > 0 on S =⇒ f ∈ T )

Theorem (Hol & Scherer 2008). For all F ∈ R[X̄ ]t×t :
F � 0 on S =⇒ ∃Pδ ∈ R[X̄ ]t×∗ : F =

∑
δ∈{0,1} PδP

T
δ g δ

This result from Hol and Scherer (but not their more general one which
we don’t need) follows also directly from Schmüdgen’s theorem:
Given F ∈ R[X̄ ]t×t with F � 0 on S , we consider f := Y ∈ R[X̄ ,Y ]
and observe that f > 0 on

SF := {(x , y) ∈ Rn+1 | x ∈ S , y eigenvalue of F(x)}
= {(x , y) | g1(x) ≥ 0, . . . , gm(x) ≥ 0, pF (x , y) = 0}

where PF ∈ R[X̄ ][Y ] = R[X̄ ,Y ] is the characteristic polynomial of F .
Now get a sums of squares representation of f = Y using Schmüdgen’s
theorem, replace Y by f and use that PF (X̄ ,F ) = 0 by
Cayley-Hamilton so that pF disappears in this representation. . .

Problem: We do not get the necessary degree bounds in this way.



Digression
Suppose S is compact.

Theorem (Schmüdgen 1991). ∀f ∈ R[X̄ ] : (f > 0 on S =⇒ f ∈ T )

Theorem (Hol & Scherer 2008). For all F ∈ R[X̄ ]t×t :
F � 0 on S =⇒ ∃Pδ ∈ R[X̄ ]t×∗ : F =

∑
δ∈{0,1} PδP

T
δ g δ

This result from Hol and Scherer (but not their more general one which
we don’t need) follows also directly from Schmüdgen’s theorem:
Given F ∈ R[X̄ ]t×t with F � 0 on S , we consider f := Y ∈ R[X̄ ,Y ]
and observe that f > 0 on

SF := {(x , y) ∈ Rn+1 | x ∈ S , y eigenvalue of F(x)}
= {(x , y) | g1(x) ≥ 0, . . . , gm(x) ≥ 0, pF (x , y) = 0}

where PF ∈ R[X̄ ][Y ] = R[X̄ ,Y ] is the characteristic polynomial of F .
Now get a sums of squares representation of f = Y using Schmüdgen’s
theorem, replace Y by f and use that PF (X̄ ,F ) = 0 by
Cayley-Hamilton so that pF disappears in this representation. . .
Problem: We do not get the necessary degree bounds in this way.



Concavity

The following terminology is not standard but suitable to us. It is a
kind of local concavity of a function which can be detected by looking
at its second derivative.

Definition. Let p ∈ R[X̄ ] and U ⊆ Rn.

p strictly concave on U :⇐⇒ D2p ≺ 0 on U ⇐⇒
∀x ∈ U : ∀v ∈ Rn \ {0} : D2p(x)[v , v ] < 0

p strictly quasiconcave on U :⇐⇒
∀x ∈ U : ∀v ∈ Rn \ {0} : (Dp(x)[v ] = 0 =⇒ D2p(x)[v , v ] < 0)
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When is one of the Lasserre relaxations exact?
When is conv S = S ′k for some k ∈ N?

Lemma (Helton & Nie 2008). Suppose S is compact, convex and has
non-empty interior. Suppose moreover that each gi is strictly concave
on S . Then S = S ′k for some k ∈ N.

Idea of proof. Let u ∈ ∂S and f ∈ R[X̄ ]1 \ {0} with f ≥ 0 on S and
f (u) = 0. To show: f ∈ Tk for some k ∈ N which is independent of f .
Since the Slater condition is satisfied, we get Lagrange multipliers
λi ≥ 0, i ∈ I := {i | gi (u) = 0}, such that D(f −

∑
i∈I λigi )(u) = 0.

Now we have for x ∈ Rn

f (x)−
∑
i∈I

λigi (x) =

∫ 1

0

∫ t

0
D2(−

∑
i∈I

λigi )(u+s(x−u))[x−u, x−u]ds dt

Fi ,u ∈ SR[X ]n×n, Fi ,u � 0 on S , use Hol & Scherer with degree
bounds!
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When is one of the Lasserre relaxations exact?
When is conv S = S ′k for some k ∈ N?

Theorem (Helton & Nie 2008). Suppose S is compact, convex and has
non-empty interior. Suppose moreover that each gi is strictly
quasiconcave on S . Then S = S ′k for some k ∈ N.

Idea of proof. Quite stupid reduction to the proof of the lemma.
Explain on blackboard.

Theorem (Helton & Nie 2008). Suppose S is compact, convex and has
non-empty interior. Suppose moreover that each gi is strictly
quasiconcave on ∂S ∩ {gi = 0}, that gi vanishes nowhere in the interior
of S and that the derivative of gi vanishes nowhere on ∂S ∩ {gi = 0}.
Then S = S ′k for some k ∈ N.

Idea of proof. Originally extremely hard. Much easier approach seems
to be possible. Explain on blackboard.
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to be possible. Explain on blackboard.



Is every convex semialgebraic set an LMI projection?

Definition. A semialgebraic set in Rn is a set defined by a formula that
is built up from polynomial inequalities using “and”, “or” and “not”.

Elimination of real quantifiers (Tarski 1951). In the previous definition,
one may equivalently admit as further construction steps “for all real x”
and “for some real x”.

Definition. We call a set U ⊆ Rn an LMI projection if there exist t ∈ N
and Ai ,Bi ∈ SRt×t such that
U = {x ∈ Rn | ∃y ∈ Rm : A0 +

∑n
i=1 xiAi +

∑m
i=1 yiBi � 0}

Example. R>0 = {x ∈ R | ∃y ∈ R :
( x 1

1 y
)
� 0} is an LMI projection.

Remark. Each S ′k is an LMI projection.

Remark. Each LMI projection is (of course) convex and (by elimination
of real quantifiers) semialgebraic.
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Is every convex semialgebraic set an LMI projection?

Lemma (Helton & Nie). If U1, . . . ,U` ⊆ Rn are bounded non-empty
LMI projections, then conv

⋃`
i=1 Ui is an LMI projection.

Theorem (Helton & Nie). Suppose S is compact, each gi is strictly
quasiconcave on S ∩ (∂ conv S) ∩ {gi = 0} and the boundary of S is
contained in the closure of the interior of S . Then conv S is an LMI
projection.

Proof. Use the lemma and the first theorem of Helton & Nie.

Nemirovski asked in the ICM in Madrid 2006 whether any convex
semialgebraic set is an LMI projection: “This question seems to be
completely open.”
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