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X2
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Y5
Y6
X1 X22
3

Y6
X1x22
X{X2
X1 X2
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - 1+ Xx
B -y + 2 — 2y
C - 3 — ¥

+ 2x
+ ¥
+ X1

_l’_

DW=

irredundant families (parametrized by a, b, c,...):

1 x
X1 y3
(@ b c d e f) X2 )
3 n
Ya Yo
Y5 X1X22

X2
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X1 X22
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Y6
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - »n +
B — Y2 + 2y3 —
C - 3 -

irredundant families (parametrized by a, b, c,...):

1 x4
X1 y3
(@ b c d e f) X2 ya
3 n
Ya Y6
Ys y7

X1

2ys

Y5

X2
Y4
Y5
Y6
Y7

+ 2x -
+ ¥y -
+ x1 +

¥3
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Y6
X1
X13 X0
X2x2
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Yo
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X:E’XQ
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - »n +
B — Y2 + 2y3 —
C - 3 -

irredundant families (parametrized by a, b, c,...):

1 x4
X1 y3
(@ b c d e f) X2 ya
3 n
Ya Y6
Ys y7

X1

2ys

Y5

X2
Y4
Y5
Y6
Y7

+ 2x -
+ ¥y -
+ x1 +

¥3
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - »n +
B — Y2 + 2y3 —
C - 3 -

irredundant families (parametrized by a, b, c,...):

1 x4
X1 y3
(@ b c d e f) X2 ya
3 n
Ya Y6
Ys y7

X1

2ys

Y5

X2
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Y6
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - »n +
B — Y2 + 2y3 —
C - 3 -

irredundant families (parametrized by a, b, c,...):

1 x4
X1 y3
(@ b c d e f) X2 ya
3 n
Ya Y6
Ys y7

X1

2ys

Y5

X2
Y4
Y5
Y6
Y7

+ 2x -
+ ¥y -
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - »n +
B — Y2 + 2y3 —
C - 3 -

irredundant families (parametrized by a, b, c,...):

1 x5
X1 Y3
(@ b c d e f) X2 ya
3 n
Ya Y6
ys y7

X1

2ys
Y5

X2
Y4
Y5
Y6
yr
Yo

+ 2x -
+ ¥y -
+ x1 +

y3
1
Y6

Y8

2
X1%2
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X1 %2
X1X5
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - »n +
B — Y2 + 2y3 —
C - Y3 -

irredundant families (parametrized by a, b, c,...):

1 x5
X1 Y3
(@ b c d e f) X2 ya
3 n
Ya Y6
ys y7

X1

2ys
Y5

X2
Ya
Y5
Y6
yr
Yo

+ 2x -
+ ¥ -
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y3
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Y8
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + x1 + 2x - 1 >
B 2.+ 2y 2 + y5s — 3 >
C - B3 - ¥y o+ xx + 4 >

irredundant families (parametrized by a, b, c,...):

1 x1 x2 y3 ya ¥s
X1 Y3 ya N Y6 yr
(a b c d e f) X2 Y4 Y5 Y6 yr %’92
Y3 Y1 Yo Y8 Yio  XyX3
Ya Ye Y1 Yo X{X3 X1X;
Ys Yr Yo X12 X22 X1X§’ ¥2
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - + x1 + 20 - 1 >
B - v+ 23 - 2+ oy - 3 2
C - y3 — y5 + x1 + 4 >

irredundant families (parametrized by a, b, c,...):

1 x1 x2 y3 ya ¥s
X1 Y3 ya N Y6 yr
(a b c d e f) X2 Y4 Y5 Y6 yr %’92
Y3 Y1 Yo Y8 Yio  XyX3
Ya Yo Y1 Y0 X{X3 X1X5
Ys Yr Yo X12 X22 X1X§ ¥2

o
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - + x1 + 20 - 1 >
B - v+ 23 - 2+ oy - 3 >
¢ - » - vy + xx + 4 >
irredundant families (parametrized by a, b, c,...):
I xi 2 y3 ya s
X1 ¥y3 Ya Y1 Ye yr
(a b c d e f‘) X2 )/4 )/5 }/6 )/7 }/9
Y3 yi1 Yo Ys Yo Y1
3

Ya Yo Y7 Yo Yyii  X1X5
Ys Yr Yo Y1 X1X3 y2
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - + x1 + 20 - 1 >
B - v+ 23 - 2+ oy - 3 >
¢ - » - vy + xx + 4 >
irredundant families (parametrized by a, b, c,...):
I xi 2 y3 ya s
X1 ¥y3 Ya Y1 Ye yr
(a b c d e f‘) X2 )/4 )/5 }/6 )/7 }/9
Y3 yi1 Yo Ys Yo Y1
3

Ya Yo Y7 Yo Yyii  X1X3
Ys Y7 Yo Y1 X1xX3 y2

o
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + x
B — ¥+ 23 — 2y
C - 3 — ¥

irredundant families (parametrized by a, b, c,...):

1 X1
X1 Y3
X2 Y4
3 n
Ya Y6
VR

(a b c d e f)

+ 2x
+ ¥
+ X1

X2
Y4
Y5
Y6
y7
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¥3
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yia
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - 1+ Xx
B -y + 2 — 2y
C - 3 = ¥

irredundant families (parametrized by a, b, c,...):

1 X1
X1 Y3
X2 Y4
3 n
Ya Y6
VR

+ 2x
+ ¥
+ X1

X2
Ya
Y5
Y6
y7
Yo

¥3
yi
Ye
Y8
Y10
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_l’_

ya
Y6
y7
Y10
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - X + x1 + 20 — 1
B - X+ 2 - 2ax + & — 3
C - X - x5 + x3 + 4

VIV IV
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A xl3 + X1 + 2% — 1
B - x5 + 23 - 2ax + X3 !
C - X - x5 + x3 + 4

redundant families (parametrized by a, b, c,...):

(a+ bxy + cx0)?(—xF —x3+x1+4) >0

VIV IV
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A xl3 + X1 + 2% — 1
B - x5 + 23 - 2ax + X3 !
C - X - x5 + x3 + 4

redundant families (parametrized by a, b, c,...):

(a+ bxy + cx0)?(—xF —x3+x1+4) >0

(_X12 - X22 +x1 + 4)(3 + le + CX2) (1 X1 X2)

VIV IV
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - X + x1 + 20 — 1
B - x5 + 23 - 2ax + X3 !
C - X - x5 + x3 + 4

redundant families (parametrized by a, b, c,...):
(a+ bxy + cx0)?(—xF —x3+x1+4) >0
1

(- —-x3+x+4)(a b o) |x]|(l xx x)
X2
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o
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - X + x1 + 20 — 1
B - x5 + 23 - 2ax + X3 !
C - X - x5 + x3 + 4

redundant families (parametrized by a, b, c,...):
(a+ bxy + cx0)?(—xF —x3+x1+4) >0
1

(a b C)(—X12—X22—|—X1—|—4) x1 (1 x1 x2)
X

VIV IV
o
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A
B - x5
C

+ 2x
+ x22
+ X1

_l’_

redundant families (parametrized by a, b, c,...):

(a+ bxy + cx0)?(—xF —x3+x1+4) >0

1 X1

(a b o)(-xF—xG+x+4)[x P

X2

X1X2

X2

DW=

X1X2

2
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System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - x4 + xx + 20 - 1 >0
B - x5 + 23 - 2ax + X3 % > 0
C - X - x5 + x1 + 4 >0
redundant families (parametrized by a, b, c,...):
—x2 —x3+x1+4 cee 0\ /a
(a b C) —X3—X1X22—|-X12—|-4X1 bl >0

—xZxp — x5 +x1x0 +A4x2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - x4 + xx + 20 - 1 >0
B - x5 + 23 - 2ax + X3 % > 0
C - X - x5 + x1 + 4 >0
redundant families (parametrized by a, b, c,...):
—x2 —x3+x1+4 cee 0\ /a
(a b C) —Xf’—x1X22+X12+4x1 bl >0

—xZxp — x5 +x1x0 +A4x2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - »n + x1 + 2% — 1 >0
B - x5 + 23 - 2xax + X5 - % > 0
C — X12 - x22 + xx + 4 > 0
irredundant families (parametrized by a, b, c,...):
—x2 —x3+x1+4 cee 0\ /a
(a b C) —yl—x1x22+x12+4x1 bl >0

—xZxp — X5 +x1x2 +Ax2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - »n + x1 + 2% — 1 >0
B - x5 + 23 - 2xax + X5 - % > 0
C — X12 - x22 + xx + 4 > 0
irredundant families (parametrized by a, b, c,...):
—x2 —x3+x1+4 cee 0\ /a
(a b C) —yl—x1x22+x12+4x1 bl >0

—xZxp — X5 +x1x2 +Ax2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + x + 2x — 1 > 0
B -y o+ 23 - 2ax + x5 - % > 0
C - X - x5 + x + 4 >0
irredundant families (parametrized by a, b, c,...):
—x2 —x3+x1+4 cee 0\ /a
(a b C) —yl—x1x22+x12+4x1 bl >0

—xZxp — X5 +x1x2 +Ax2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + XX + 2 — 1 > 0
B -y o+ 2 = 2x + X3 - % > 0
C — X12 - x22 + xx + 4 > 0
irredundant families (parametrized by a, b, c,...):
—x —x3+x1+4 cee 0\ /a
(a b C) —yl—x1x22+x12+4x1 bl >0

—xZxp — X5 +x1x2 +Ax2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - »n + xx + 2% — 1 > 0
B — 4+ 213 — 20 + X2 — 1 >0
C - y3 - X22 + xx + 4 > 0
irredundant families (parametrized by a, b, c,...):
—ys—x3+x+4 ... .\ /a
(@ b o)| -n—x+ys+ba ... ... b| >0

—xZxp — X5 +x1x2 +A4x2 ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - »n + xx + 2% — 1 > 0
B — v+ 213 — 20 + X2 — 1 >0
C - y3 - X22 + xx + 4 > 0
irredundant families (parametrized by a, b, c,...):
—ys—x3+x+4 ... .\ /a
(@ b o)| -n—x+ys+ba ... ... b| >0

—xZxo =3 +x1x0+4a ... .. c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - v+ x1 + 2% — 1 > 0
B — v+ 23— 2 4+ X2 — 2 >0
C - y3 - X22 + xx + 4 > 0
irredundant families (parametrized by a, b, c,...):
—)/3—X22+x1+4 a
(@ b o)|-n—xE+y+da ... ... b| >0

¥ —x3+yt+dxe ... ...) \c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - v+ x1 + 2% — 1 > 0
B — v+ 23 — 2+ B — 3 >0
C - y3 - x22 + xx + 4 > 0
irredundant families (parametrized by a, b, c,...):
—)/3—X22+x1+4 a
(@ b o)|-n—xE+y+da ... ... b| >0

¥ —x3+yt+dxe ... ...) \c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + x1 + 2% - 1 > 0
B - v+ 23 - 2n + ¥y - 3 >0
¢ - y3 — y5 + xx + 4 >0
irredundant families (parametrized by a, b, c,...):
—y3—Ystx1+4 a
(@ b o)|-n—xE+y+da ... ... b| >0

¥ —x3+yt+dxe ... ...) \c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + x1 + 2% - 1 > 0
B - v+ 23 - 2n + ¥y - 3 >0
¢ - y3 — y5 + xx + 4 >0
irredundant families (parametrized by a, b, c,...):
—y3—Ystx1+4 a
(@ b o)|-n—-—xE+y+da ... ... b| >0

¥ —x3+yt+dxe ... ...) \c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + x1 + 2% - 1 > 0
B - v+ 23 - 2n + ¥y - 3 >0
¢ - y3 — y5 + xx + 4 >0
irredundant families (parametrized by a, b, c,...):
—yv3—ys+x1+4 a
(@b o) -ni—yetys+da ... ... b| >0

¥ —x3+yt+dxe ... ...) \c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + x1 + 2% - 1 > 0
B - v+ 23 - 2n + ¥y - 3 >0
¢ - y3 — y5 + xx + 4 >0
irredundant families (parametrized by a, b, c,...):
—yv3—ys+x1+4 a
(@b o) -nn—yetys+da ... ... b| >0

—xixo— X3+ yathxo .. ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + x1 + 2% - 1 > 0
B - v+ 23 - 2n + ¥y - 3 >0
¢ - y3 — y5 + xx + 4 >0
irredundant families (parametrized by a, b, c,...):
—yv3—ys+x1+4 a
(@b o)-n—-yvt+ys+daa ... ... bl >0

—y7—x§’+y4+4x2 c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + x1 + 2% - 1 > 0
B - v+ 23 - 2n + ¥y - 3 >0
¢ - y3 — y5 + xx + 4 >0
irredundant families (parametrized by a, b, c,...):
—yv3—ys+x1+4 a
(@b o)-n—-yvt+ys+daa ... ... bl >0

—y7—x23+y4+4x2 c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - n + x1 + 2% - 1 > 0
B - v+ 23 - 2n + ¥y - 3 >0
¢ - y3 — y5 + xx + 4 >0
irredundant families (parametrized by a, b, c,...):
-v3—ys+x1+4 ... ... a
(@b o)-r—-yvetys+da ... ... bl >0

—yvr—ys+yva+4x ... ... c



System of polynomial inequalities

Attempt to linearize after adding families of redundant inequalities

A - + x1 + 20 — 1 >
B — Yo + 2y3 — 2y4 4+ ¥5 — % >
C - 3 = y5 + x1 + 4 >

irredundant families (parametrized by a, b, c,...):

3= ystxi+4
—y1— Yo t+y3+4x
—yr—Ystyst4dx

o
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Linear matrix inequality

Y2

yi X2 »n a
(@ b o)y 1 yn||b
yi yr y2 c

a, b, ¢ independant
and normally distributed

Y1



Linear matrix inequality

Y2

yi X2 »n a
(@ b o)y 1 yn||b
yi yr y2 c

a, b, ¢ independant
and normally distributed

Y1



Linear matrix inequality
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a, b, ¢ independant
and normally distributed

Y1



Linear matrix inequality
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yi X2 »n a
(@ b o)y 1 yn||b
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a, b, ¢ independant
and normally distributed

Y1



Linear matrix inequality
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a, b, ¢ independant
and normally distributed

Y1



Linear matrix inequality
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a, b, ¢ independant
and normally distributed
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Linear matrix inequality
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a, b, ¢ independant
and normally distributed
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Linear matrix inequality

Y2

yi X2 »n a
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a, b, ¢ independant
and normally distributed
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Linear matrix inequality

Y2

yi X2 »n a
(@ b o)y 1 yn||b
yi yr y2 c

a, b, ¢ independant
and normally distributed

Y1



Linear matrix inequality

Vo yi X2 n a
(a b c) v 1 »n bl >0
yi yr y2 c

1+ a, b, ¢ independant
and normally distributed

Y1




Linear matrix inequality

Vo yi X2 n a
(a b c) v 1 »n bl >0
yi yr y2 c

1+ a, b, ¢ independant
and normally distributed

Y1




Linear matrix inequality

Vo yi X2 n a
(a b c) v 1 »n bl >0
yi yr y2 c

1+ a, b, ¢ independant
and normally distributed

Y1




Linear matrix inequality

Y2

yi X2 »n a
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a, b, ¢ independant
and normally distributed



Linear matrix inequality

Vo yi X2 n a
(a b c) v 1 »n bl >0
yi yr y2 c

1+ a, b, ¢ independant
and normally distributed




Linear matrix inequality

Vo yi X2 n a
(a b c) v 1 »n bl >0
yi yr y2 c

1+ a, b, ¢ independant
and normally distributed
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Linear matrix inequality

Vo yi X2 n a
(a b c) v 1 »n bl >0
yi yr y2 c

a, b, ¢ independant
and normally distributed

Y1




Linear matrix inequality

Vo yi x2 n a
(a b c) v 1 »n bl >0
/// non oy \c
‘ T a, b, ¢ independant
and normally distributed
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Linear matrix inequality

yi X2 n a
(a b c) v 1 »n bl >0
yi yr y2 c

a, b, ¢ independant
and normally distributed




Linear matrix inequality

yi X2 n a
(abc)yglyl bl >0
/// iy oy) \c
//

a, b, ¢ independant
and normally distributed




Linear matrix inequality

yi X2 »n a
(a b c) v 1 »n bl >0
,/,/”r vioyi oy c

a, b, ¢ independant
and normally distributed




Linear matrix inequality

a, b, ¢ independant
and normally distributed
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Linear matrix inequality

yi X2 n a
b C) v 1 »n b
yi yr ye c

a, b, c independant
and normally distributed

>0



Linear matrix inequality

B

a
b
c
and normally distributed

X2y
Y1
¥2
¢ independant

1
1

1
y2
1

b,

I

a




Linear matrix inequality
yi X2 n a
(@ b o)y 1 yn||b
yi yr ye c

R

v

yi

a, b, c independant
and normally distributed

>0
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Linear matrix

inequality

yi X2 »n a
(@ b o)y 1 yn||b
yi yr ye c

a, b, c independant
and normally distributed

>0



» X = (Xq,...,X,) variables
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» R[X] polynomials
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> g1,...,8m € R[X] polynomials defining . ..



» X = (Xq,...,X,) variables

» R[X] polynomials

> g1,...,8m € R[X] polynomials defining . ..

> ...theset S:={x e R" | gi(x) >0,...,gm(x) >0}
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X = (X1,...,X,) variables

R[X] polynomials

g1, ..,8mn € R[X] polynomials defining ...
...theset S:={x e R" | g1(x) >0,...,gm(x) >0}

s -
T = {256{0,1}m_55g11 .. gg"m ‘ Ss € ZR[X]2
convex cone in R[X]
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X = (X1,...,X,) variables

R[X] polynomials

g1, ..,8mn € R[X] polynomials defining ...
...theset S:={x e R" | g1(x) >0,...,gm(x) >0}
T = {Zae{o,l}m_ségfl g | s € CRIXP
convex cone in R[X]

L ={L|L:RX] =R, L(1)=1,L(T )< Rxo}
solution set of the “linearized” system
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v

X = (X1,...,X,) variables

R[X] polynomials

g1, ..,8mn € R[X] polynomials defining ...
...theset S:={x e R" | g1(x) >0,...,gm(x) >0}
T = {Zae{o,l}m_ségfl - gom | s € L R[XP?
convex cone in R[X]

L ={L|L:RX] =R, L(1)=1,L(T )< Rxo}
solution set of the “linearized” system

ST ={(L(X1),...,L(Xn)) | L€ L } projection
Schmiidgen relaxation
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X = (X1,...,X,) variables

R[X]x polynomials of degree at most k

g1, ..,8mn € R[X] polynomials defining ...

...theset S:={x e R" | g1(x) >0,...,gm(x) >0}

T = {Saconyn 55850 -7 | 55 € SRIKP, deg(ss°) < k)
convex cone in R[X]

L:={L|L:RX]x — R, L(1)=1,L(Tx) C Rxo}

solution set of the “linearized” system (linear matrix inequality)

S’ ={(L(X1),...,L(Xn)) | L € Lk} projection
k-th Lasserre relaxation



vV v.v v VY

X = (X1,...,X,) variables

R[X]x polynomials of degree at most k
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Corollary. If S is compact, then convS = §'.
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Actually, they prove a more general theorem where the set S is defined
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Helton and Nie recently proved these degree bounds.
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This result from Hol and Scherer (but not their more general one which
we don't need) follows also directly from Schmiidgen's theorem:

Given F € R[X]*™* with F = 0 on S, we consider f := Y € R[X, Y]
and observe that f > 0 on

Sri={(x,y) € R™! | x € S, y eigenvalue of F(x)}
={(x,y) | g1(x) 2 0,... . gm(x) = 0, pr(x,y) = 0}
where P € R[X][Y] = R[X, Y] is the characteristic polynomial of F.
Now get a sums of squares representation of f = Y using Schmiidgen's
theorem, replace Y by f and use that Pr(X, F) =0 by

Cayley-Hamilton so that pg disappears in this representation. . .
Problem: We do not get the necessary degree bounds in this way.
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The following terminology is not standard but suitable to us. It is a
kind of local concavity of a function which can be detected by looking

at its second derivative.
Definition. Let p € R[X] and U C R".
p strictly concave on U <= D?p<0on U <

Vx € U: Vv € R"\ {0}: D?p(x)[v,v] <0

p strictly quasiconcave on U <=

Vx € U: Yv e R"\ {0}: (Dp(x)[v] =0 = D?p(x)[v,v] < 0)
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Is every convex semialgebraic set an LMI projection?

Lemma (Helton & Nie). If Uy, ..., Us C R" are bounded non-empty
LMI projections, then conv Ule U; is an LMI projection.

Theorem (Helton & Nie). Suppose S is compact, each g; is strictly

quasiconcave on S N (JdconvS)N{g = 0} and the boundary of S is
contained in the closure of the interior of S. Then conv S is an LMI
projection.

Proof. Use the lemma and the first theorem of Helton & Nie.

Nemirovski asked in the ICM in Madrid 2006 whether any convex
semialgebraic set is an LMI projection: “This question seems to be
completely open.”
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