Theory Graphs and Meta-Logical/Grammatical

 Frameworks: MMT as aLogic/Language/World-Workbench

Michael Kohlhase \& the KWARC Group

Professur für Wissensrepräsentation und -verarbeitung Informatik, FAU Erlangen-Nürnberg
http://kwarc.info
14. Jan. 2019 - Logik-Kolloquium, Konstanz

1 Introduction \& Motivation

About Humans and Computers in Mathematics

- Computers and Humans have complementary strengths.
- Computers can handle large data and computations flawlessly at enormous speeds.
- Humans can sense the environment, react to unforeseen circumstances and use their intuitions to guide them through only partially understood situations.

About Humans and Computers in Mathematics

- Computers and Humans have complementary strengths.
- Computers can handle large data and computations flawlessly at enormous speeds.
- Humans can sense the environment, react to unforeseen circumstances and use their intuitions to guide them through only partially understood situations.

In mathematics: we exploit this, we

- let humans explore mathematical theories and come up with novel insights/proofs,
- delegate symbolic/numeric computation and typesetting of documents to computers.
- (sometimes) delegate proof checking and search for trivial proofs to computers

About Humans and Computers in Mathematics

- Computers and Humans have complementary strengths.
- Computers can handle large data and computations flawlessly at enormous speeds.
- Humans can sense the environment, react to unforeseen circumstances and use their intuitions to guide them through only partially understood situations.
In mathematics: we exploit this, we
- let humans explore mathematical theories and come up with novel insights/proofs,
- delegate symbolic/numeric computation and typesetting of documents to computers.
- (sometimes) delegate proof checking and search for trivial proofs to computers

Overlooked Opportunity: management of existing mathematical knowledge
\rightarrow cataloguing, retrieval, refactoring, plausibilization, change propagation and in some cases even application do not require (human) insights and intuition

- can even be automated in the near future given suitable representation formats and algorithms.

About Humans and Computers in Mathematics

- Computers and Humans have complementary strengths.
- Computers can handle large data and computations flawlessly at enormous speeds.
- Humans can sense the environment, react to unforeseen circumstances and use their intuitions to guide them through only partially understood situations.

In mathematics: we exploit this, we

- let humans explore mathematical theories and come up with novel insights/proofs,
- delegate symbolic/numeric computation and typesetting of documents to computers.
- (sometimes) delegate proof checking and search for trivial proofs to computers

Overlooked Opportunity: management of existing mathematical knowledge
\rightarrow cataloguing, retrieval, refactoring, plausibilization, change propagation and in some cases even application do not require (human) insights and intuition

- can even be automated in the near future given suitable representation formats and algorithms.
Math. Knowledge Management (MKM): is the discipline that studies this.
- Application: Scaling Math beyond the One-Brain-Barrier

The One-Brain-Barrier

- Observation 1.1. More than 10^{5} math articles published annually in Math.
- Observation 1.2. The libraries of Mizar, Coq, Isabelle,... have $\sim 10^{5}$ statements+proofs each.
(but are mutually incompatible)
- Consequence: humans lack overview over - let alone working knowledge in - all of math/formalizations. (Leonardo da Vinci was said to be the last who had)
- Dire Consequences: duplication of work and missed opportunities for the application of mathematical/formal results.

The One-Brain-Barrier

- Observation 1.1. More than 10^{5} math articles published annually in Math.
- Observation 1.2. The libraries of Mizar, Coq, Isabelle,. . . have $\sim 10^{5}$ statements+proofs each.
(but are mutually incompatible)
- Consequence: humans lack overview over - let alone working knowledge in - all of math/formalizations. (Leonardo da Vinci was said to be the last who had)
- Dire Consequences: duplication of work and missed opportunities for the application of mathematical/formal results.
- Problem: Math Information systems like arXiv.org, Zentralblatt Math, MathSciNet, etc. do not help (only make documents available)
- Fundamenal Problem: the One-Brain Barrier (OBB)
- To become productive, math must pass through a brain
- Human brains have limited capacity
(compared to knowledge available online)

The One-Brain-Barrier

- Observation 1.1. More than 10^{5} math articles published annually in Math.
- Observation 1.2. The libraries of Mizar, Coq, Isabelle,... have $\sim 10^{5}$ statements+proofs each.
(but are mutually incompatible)
- Consequence: humans lack overview over - let alone working knowledge in - all of math/formalizations. (Leonardo da Vinci was said to be the last who had)
- Dire Consequences: duplication of work and missed opportunities for the application of mathematical/formal results.
- Problem: Math Information systems like arXiv. org, Zentralblatt Math, MathSciNet, etc. do not help (only make documents available)
- Fundamenal Problem: the One-Brain Barrier (OBB)
- To become productive, math must pass through a brain
- Human brains have limited capacity (compared to knowledge available online)
- Idea: enlist computers (large is what they are good at)
- Prerequisite: make math knowledge machine-actionable \& foundation-independent

2 Modular Representation of Mathematics

Modular Representation of Math (Theory Graph)

- Idea: Follow mathematical practice of generalizing and framing
- framing: If we can view an object a as an instance of concept B, we can inherit all of B properties
(almost for free.)
- state all assertions about properties as general as possible (to maximize inheritance)
- examples and applications are just special framings.
- Modern expositions of Mathematics follow this rule (radically e.g. in Bourbaki)
- formalized in the theory graph paradigm (little/tiny theory doctrine)
- theories as collections of symbol declarations and axioms (model assumptions)
- theory morphisms as mappings that translate axioms into theorems
- Example 2.1 (MMT: Modular Mathematical Theories). MMT is a foundation-indepent theory graph formalism with advanced theory morphisms.
- Problem: With a proliferation of abstract (tiny) theories readability and accessibility suffers (one reason why the Bourbaki books fell out of favor)

Modular Representation of Math (MMT Example)

Concrete MMT Syntax

- Example 2.2 (A Theory and Type for Unital Magmas).

```
theory Unital : base:?Logic =
    include ?Magma |
    theory unital_theory : base:?Logic =
        include ?Magma/magma_theory |
    unit : U | # e prec -1 |
    axiom_leftUnital : + prop_leftUnital op e |
    axiom_rightUnital : & prop_rightUnital op e |
I
    unital = Mod unital_theory |
    unitOf : {G: unital} dom G | # %I1 e prec 5 | = [G] (G.unit) |
```

-

where the following is imported with ?Magma

$$
\begin{aligned}
& \text { prop_leftUnital : \{U : type\} }(U \rightarrow U \rightarrow U) \longrightarrow U \longrightarrow \text { prop | } \\
& \quad=[U, o p, e] \forall[x] \text { op } e x=x \mid \# \text { prop_leftUnital } 23 \text { | } \\
& \text { prop_rightUnital : }\{U: \text { type }\}(U \rightarrow U \rightarrow U) \longrightarrow U \longrightarrow \text { prop | } \\
& \quad=[U, o p, e] \forall[x] \text { op } x e \pm x \mid \# \text { prop_rightUnital } 23 \text { | }
\end{aligned}
$$

The MMT Module System

- Central notion: theory graph with theory nodes and theory morphisms as edges
- Definition 2.3. In MMT, a theory is a sequence of constant declarations optionally with type declarations and definitions
- MMT employs the Curry/Howard isomorphism and treats
- axioms/conjectures as typed symbol declarations
- inference rules as function types
(proof transformers)
- theorems as definitions
- Definition 2.4. MMT had two kinds of theory morphisms
- structures instantiate theories in a new context (also called: definitional link, import) they import of theory S into theory T induces theory morphism $S \rightarrow T$
- views translate between existing theories (also called: postulated link, theorem link) views transport theorems from source to target
- together, structures and views allow a very high degree of re-use
- Definition 2.5. We call a statement t induced in a theory T, iff there is
- a path of theory morphisms from a theory S to T with (joint) assignment σ,
- such that $t=\sigma(s)$ for some statement s in S.
- In MMT, all induced statements have a canonical name, the MMT URI.

bsearch on the LATIN Logic Atlas

- Flattening the LATIN Atlas (once):

type	modular	flat	factor
declarations	2310	58847	25.4
library size	23.9 MB	1.8 GB	14.8
math sub-library	2.3 MB	79 MB	34.3
MathWebSearch harvests	25.2 MB	539.0 MB	21.3

simple bsearch frontend at http://cds.omdoc.org:8181/search.html

Flaisearch DEMO

```
x+y
http://latin.omdoc.org/math?IntAryth?assoc
assoc:==(+(+XY)Z)(+X(+YZ))
Justification
Induced statement found in http://latin.omdoc.org/math?IntAryth
IntAryth is a AbelianGroup if we interpret over view \underline{c}
AbelianGroup contains the statement assoc
http://latin.omdoc.org/math?IntAryth?commut
http://latin.omdoc.org/math?IntAryth?inv_distr
```


Applications for Theories in Physics

- Theory Morphisms allow to "view" source theory in terms of target theory.
- Theory Morphisms occur in Physics all the time.

Theory	Temp. in Kelvin	Temp. in Celsius	Temp. in Fahrenheit
Signature	${ }^{\circ} \mathrm{K}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
Axiom:	absolute zero at $0^{\circ} \mathrm{K}$	Water freezes at $0^{\circ} \mathrm{C}$	cold winter night: $0^{\circ} \mathrm{F}$
Axiom:	$\delta\left({ }^{\circ} \mathrm{K} 1\right)=\delta\left({ }^{\circ} \mathrm{C} 1\right)$	Water boils at $100^{\circ} \mathrm{C}$	domestic pig: $100^{\circ} \mathrm{F}$
Theorem:	Water freezes at $271.3^{\circ} \mathrm{K}$	domestic pig: $38^{\circ} \mathrm{C}$	Water boils at $170^{\circ} \mathrm{F}$
Theorem:	cold winter night: $240^{\circ} \mathrm{K}$	absolute zero at $-271.3^{\circ} \mathrm{C}$	absolute zero at $-460^{\circ} \mathrm{F}$

Views: ${ }^{\circ} \mathrm{C} \xrightarrow{+271.3^{\circ}} \mathrm{K},{ }^{\circ} \mathrm{C} \xrightarrow{-32 / 2^{\circ}} \mathrm{F}$, and ${ }^{\circ} \mathrm{F} \xrightarrow{+240 / 2^{\circ}} \mathrm{K}$, inverses.

- Other Examples: Coordinate Transformations,
- Application: Unit Conversion: apply view morphism (flatten) and simplify with UOM.
(For new units, just add theories and views.)
- Application: MathWebSearch on flattened theory
(Explain view path)

3 Foundational Pluralism (the Meta-Meta Level)

Assembling a Global Knowlege Resource (Problems)

- Problems: encountered in practice
- Different systems have different, mutually incompatible logical/mathematical foundations
(hundreds, optimize different aspects)
- the respective communities are largely disjoint
- have built large, incompatible, but mathematically overlapping libraries
- all tools lack crucial features
(cannot afford to develop)
- new logics/foundations/systems seldom get off the ground
- Definition 3.1. A foundation (of mathematics) consists of
- a foundational language (e.g. first-order logic or the calculus of constructions)
- a foundational theory (e.g. axiomatic set theory)

Observation: need a system that can deal with multiple foundations \sim foundational pluralism

Realizing Foundational Pluralism

- Towards Integration at the Foundation Level:

Problem: So far So Obvious! But what should be in the middle?

- Idea (reused): A modular representation of foundations (logics/theories) Bring-Your-Own-Foundation \leadsto foundation independent systems/tools

Representing Logics and Foundations as Theories

- Example 3.2. Logics and foundations represented as MMT theories

- Definition 3.3. Meta-relation between theories - special case of inclusion
- Uniform Meaning Space: morphisms between formalizations in different logics become possible via meta-morphisms.
- Remark 3.4. Semantics of logics as views into foundations, e.g., folsem.
- Remark 3.5. Models represented as views into foundations
- Example 3.6. mod $:=\{G \mapsto \mathbb{Z}, \circ \mapsto+, e \mapsto 0\}$ interprets Monoid in ZFC.

The LATIN Logic Atlas

- Definition 3.7. The LATIN project (Logic Atlas and Integrator)
- Idea: Provide a standardized, well-documented set of theories for logical languages, logic morphisms as theory morphisms.

- Technically: Use MMT as a representation language logics-as-theories
- Integrate logic-based software systems via views.
- State: ~ 1000 modules (theories and morphisms) written in MMT/LF [RS09]

MMT a Module System for Mathematical Content

- MMT: Universal representation language for formal mathematical/logical content
- Implementation: MMT API with generic
- module system for math libraries, logics, foundations
- parsing + type reconstruction + simplification
- IDEs
- change management
- Continuous development since 2007
- Close relatives:
- LF, Isabelle, Dedukti: but flexible choice of logical framework
- Hets: but declarative logic definitions

Concrete MMT Syntax: Propositional Logic

- Example 3.8 (Propositional Logic (Syntax)).
theory PropLogSyntax : ur:?LF = prop : type | \# bool |

```
    and : bool }\longrightarrow\mathrm{ bool }\longrightarrow\mathrm{ bool | # 1 n 2 prec 45 | /T jwedge
    not : bool \longrightarrow bool | # ᄀ1 prec 50 | /T jneg
    or : bool }\longrightarrow\mathrm{ bool }\longrightarrow\mathrm{ bool | # 1 v 2 prec 40 |
            = [a,b] \neg (\neg a ^ ᄀb) | /T jvee |
    implies : bool }\longrightarrow\mathrm{ bool }\longrightarrow\mathrm{ bool | # 1 = 2 prec 35 |
        = [a,b] ᄀa v b | /T jrA |
    iff : bool \longrightarrowbool }\longrightarrow\mathrm{ bool | # 1 & 2 prec 40 | = [a,b] (a mb) ^ (b = a) |
    true : bool | # T | /T jtop |
    false : bool | = ᄀ T | # \perp | /T jbot |
```


Concrete MMT Syntax: Propositional Natural Deduction

- Example 3.9 (Propositional Logic (Natural Deduction)).

|theory PropLogNatDed : ur:?LF =
include ?PropLogSyntax |

```
ded : bool \longrightarrow type | # +1 prec 1 | /T jvdash |
```

andEl : $\{A, B\}+A \wedge B \longrightarrow+A \mid \#$ andEl 3 |
andEr : $\{A, B\}+A \wedge B \longrightarrow+B \mid \#$ andEr 3 |
andI: $\{A, B\}+A \longrightarrow+B \longrightarrow+A \wedge B \mid \#$ andI 34 |
implI : $\{A, B\}(+A \longrightarrow \vdash B) \longrightarrow+A \Rightarrow B$ | \# implI 3 |
implE : $\{A, B\}+A \Rightarrow B \longrightarrow+A \longrightarrow+B \mid \#$ implE 34 |
orIl : $\{A, B\}+A \longrightarrow+A \vee B \mid$ \# orIl 3 ।
orIr : $\{A, B\}+B \longrightarrow+A \vee B \mid$ \# orIr 3 |
orE : $\{A, B, C\}+A \vee B \longrightarrow(+A \longrightarrow+C) \longrightarrow(+B \longrightarrow+C) \longrightarrow+C \mid \#$ ore $456 \mid$
$\begin{aligned} & \text { notI } \\ & \text { note }:\{A\}(\vdash A \longrightarrow \vdash \perp) \longrightarrow \vdash-A \mid \# \text { notI } 2 \mid\end{aligned}$
I

- Example 3.10 (Propositional Logic (Natural Deduction)).

```
theory Proofs : ?PropLogNatDed =
conjComm : {A,B} 卜 A ^B=>B^A |
    = [A,B] implI ([ab] andI (andEr ab) (andEl ab)) |
```

I

Concrete MMT Syntax：First－Order Logic（Syntax）

－Example 3.11 （First－Order Logic（Syntax））．
theory FOLSyntax ：ur：？LF＝ include ？PropLogSyntax I
ind ：type｜\＃ \boldsymbol{x}｜／T jiota｜
forall ：（ \longrightarrow bool）\longrightarrow bool｜\＃甘 1 prec 55
exists ：（ı \longrightarrow bool）\longrightarrow bool｜\＃ヨ 1 prec 60 $=[P] \neg \forall[x] \neg(P x) \| / T$ jexists｜
／／existsUnique ：？？？｜＝？？？｜\＃ヨ！ 1 prec 65 ｜｜
I
theory FOLEQSyntax ：ur：？LF＝
include ？FOLSyntax I
equality ：$\quad \longrightarrow$ l \longrightarrow bool｜\＃ 1 戸 2 prec 65 ｜
I

Concrete MMT Syntax: First-Order Natural Deduction

Example 3.12 (First-Order Logic (Natural Deduction)).

```
theory FOLNatDed : ur:?LF =
        include ?FOLSyntax |
        include ?PropLogNatDed |
        forallI : {P} ({y : l} & P y) \longrightarrow & \forall [x] P x | # forallI 2 |
        forallE : {P,B} + (\forall [x] P x) \longrightarrow + P B | # forallE 3 |
        /T Everytime you write $\forall P$, somewhere a unicorn cries |
        existsI : {P,c} + (P c) \longrightarrow + \exists [x] P x | # existsI 3 |
        existsE : {P,B} + (\exists [x] P x) \longrightarrow ({c} + P c \longrightarrow & B) \longrightarrow 卜 B | # existsE 3 4 |
```


4 MMT Software Eosystem

MMT a Module System for Mathematical Content

- MMT: Universal representation language for formal mathematical/logical content
- Implementation: MMT API with generic
- module system for math libraries, logics, foundations
- parsing + type reconstruction + simplification
- IDEs
- change management
- Continuous development since 2007
- Close relatives:
- LF, Isabelle, Dedukti: but flexible choice of logical framework
- Hets: but declarative logic definitions

MMT API JEdit Integration (IDE)

MMT API IntelliJ (IDE)

MathHub [~/localmh/MathHub] - .../teaching/LBS/source/logic.mmt [MathHub]

MMT API Browser Integration

MathHub: A Portal and Archive of Flexiformal Maths

- Idea: learn from the open source community, offer a code repository with management support that acts as a hub for publication/development projects.
- MathHub: a collaborative development/hosting/publishing system of open-source, formal/informal math.

MathHub: A Portal and Archive of Flexiformal Maths

- Idea: learn from the open source community, offer a code repository with management support that acts as a hub for publication/development projects.
- MathHub: a collaborative development/hosting/publishing system of open-source, formal/informal math.
(See http://mathhub.info)
- MathHub Architeture: Three core components
(meet requirements above)
- Representation: OMDoc/MMT mechanized by the MMT system.
- Repositories: GitLab
- Front-End: React.JS
(git-based public/private repositories)
(all content served by MMT)

TGView/TGView3D: Flexible Interaction with Theory Graphs

- Definition 4.1. TGView is a flexible facility for viewing and interacting with (theory) graphs in MathHub.
- TGView gives access to MathHub libraries
- MMT API generates JSON graph representation
- TGView draws graph to Browser canvas

TGView3D is a VR version for the Oculus Rift.

- Example 4.2 (CAS Interfaces, MitM Ontology, and Alignments).

5 MMT+GF as a Natural Language Semantics Workbench

Meaning of Natural Language; e.g. Machine Translation

- Idee: Machine Translation is very simple!
- Example 5.1. Peter liebt Maria. \sim Peter loves Mary.
- this only works for simple examples
- Example 5.2. Wirf der Kuh das Heu über den Zaun. 丸ıThrow the cow the hay over the fence. (differing grammar; Google Translate)
- Example 5.3. Grammar is not the only problem
- Der Geist ist willig, aber das Fleisch ist schwach!
- Der Schnaps ist gut, aber der Braten ist verkocht!
- We have to understand the meaning!

Language and Information

- Observation: Humans use words (sentences, texts) in natural languages to represent and communicate information.
- But: what really counts is not the words themselves, but the meaning information they carry.

Language and Information

- Observation: Humans use words (sentences, texts) in natural languages to represent and communicate information.
- But: what really counts is not the words themselves, but the meaning information they carry.

Example 5.4.
Zeitung

- for questions/answers, it would be very useful to find out what words (sentences/texts) mean.

Language and Information

- Observation: Humans use words (sentences, texts) in natural languages to represent and communicate information.
- But: what really counts is not the words themselves, but the meaning information they carry.

Zeitung

- for questions/answers, it would be very useful to find out what words (sentences/texts) mean.
- Interpretation of natural language utterances: three problems

S

composition

Language and Information (Examples)

- Example 5.5 (Abstraction).

car and automobile have the same meaning

Language and Information (Examples)

- Example 5.5 (Abstraction).

car and automobile have the same meaning
- Example 5.6 (Ambiguity).

a bank can be a financial institution or a geographical feature

Language and Information (Examples)

- Example 5.5 (Abstraction).

car and automobile have the same meaning
- Example 5.6 (Ambiguity).

a bank can be a financial institution or a geographical feature
- Example 5.7 (Composition).

Every student sleeps $\sim \forall x$.student $(x) \Rightarrow$ sleep (x)

Context Contributes to the Meaning of NL Utterances

- Observation: Not all information conveyed is linguistically realized in an utterance.
- Example 5.8. The lecture begins at 11:00 am. What lecture? Today?
- Definition 5.9. We call a piece i of information linguistically realized in an utterance U, iff, we can trace i to a fragment of U.
- Possible Mechanism: Inference

Context Contributes to the Meaning of NL Utterances

- Example 5.10. It starts at eleven. What starts?
- Before we can resolve the time, we need to resolve the anaphor it.
- Possible Mechanism: More Inference!

What is the State of the Art In NLU?

- Two avenues of attack for the problem: knowledge-based and statistical techniques

Deep	Knowledge-based We are here	Not there yet cooperation?
Shallow	no-one wants this	Statistical Methods applications
Analysis \uparrow vs. Coverage \rightarrow	narrow	wide

- We will cover foundational methods of deep processing in the course and a mixture of deep and shallow ones in the lab.

Environmental Niches for both Approaches to NLU

- There are two kinds of applications/tasks in NLU
- consumer-grade applications have tasks that must be fully generic, and wide coverage
(e.g. machine translation \sim Google Translate)
- producer-grade applications must be high-precision, but domain-adapted
(multilingual documentation, voice-control, ambulance translation)

Precision 100%	Producer Tasks		
50%		Consumer Tasks	
	$10^{3 \pm 1}$ Concepts	$10^{6 \pm 1}$ Concepts Coverage	

- A producer domain I am interested in: Mathematical/Technical documents

Natural Language Semantics?

Structural Grammar Rules

Definition 5.11. Fragment 1 knows the following eight syntactical categories

S	sentence	NP	noun phrase
N	noun	N_{pr}	proper name
V^{i}	intransitive verb	V^{t}	transitive verb
conj	connective	Adj	adjective

- Definition 5.12. We have the following grammar rules in fragment 1.

S1.	S	\rightarrow	$N P V^{i}$
S2.	S	$\rightarrow N P V^{t} N P$	
N1.	$N P$	$\rightarrow N_{\text {pr }}$	
N2.	$N P$	\rightarrow	the N
S3.	S	\rightarrow	It is not the case that S
S4.	S	\rightarrow	S conj S
S5.	S	\rightarrow	NP is NP
S6.	S	\rightarrow	NP is Adj.

Syntax Example: Jo poisoned the dog and Ethel laughed

- Observation 5.13. Jo poisoned the dog and Ethel laughed is a sentence of fragment 1
- We can construct a syntax tree for it!

Concrete MMT Syntax: Propositional Logic

Example 5.14 (Propositional Logic (Syntax)).

```
theory PropLogSyntax : ur:?LF =
    prop : type | # bool |
```



```
    or : bool }\longrightarrow\mathrm{ bool }\longrightarrow\mathrm{ bool | # 1 v 2 prec 40 |
    = [a,b] ᄀ (\neg a ^ ᄀ b) | /T jvee |
    implies : bool \longrightarrow bool \longrightarrow bool | # 1 = 2 prec 35 |
    = [a,b] ᄀ a v b | /T jrA |
    iff : bool \longrightarrow bool \longrightarrow bool | # 1 & 2 prec 40 | = [a,b] (a = b) ^ (b = a) |
    true : bool | # T | /T jtop |
    false : bool | = ᄀ T | # \perp | /T jbot |
```


Domain Theories for Fragment 1 (Lexicon)

- A "lexicon theory"

```
4 theory frag1Lex : %plngd =
    meta ?gfmeta?correspondsTo `frag1Lex.pgf |
    Ethel_NP: | I
    book_N : pred1
    sing_V: pred1
    read_v2 : predz
    happy_A : pred1
```

declares one logical constant for each from abstract GF grammar (automation?)

- Extend by axioms that encode background knowledge about the domain
- Example 5.15 (What makes you sing).

```
12
    happy_sing : \(\forall \forall[x]\) happy \(X \Rightarrow \operatorname{sing} X\) I
    read_happy : \(\forall \forall[x]\) ( \(\exists[y]\) book \(y \wedge\) read \(x y) \Rightarrow\) happy \(x I\)
```


Hello World Example for GF (Syntactic)

- Example 5.16 (A Hello World Grammar).

```
abstract zero \(=\) \{
    flags startcat \(=0\);
    cat
        S; NP; V2 ;
    fun
        spo: V2 \(->\) NP \(->\) NP \(->\) S;
        John, Mary : NP ;
        Love : V2 ;
\}
    concrete zeroEng of zero \(=\{\)
    lincat
    S, NP, V2 = Str ;
    lin
        spo vp so = s ++ vp ++ o;
        John = "John" ;
        Mary = "Mary" ;
        Love \(=\) "loves" ;
\}
```

- parse a sentence in gf: parse "John loves Mary" \sim Love John Mary

Hello World Example for GF (Syntactic)

- Example 5.16 (A Hello World Grammar).

```
abstract zero \(=\{\)
    flags startcat \(=0\);
    cat
        S; NP; V2 ;
    fun
        spo: V2 \(->\) NP \(->\) NP \(->\) S;
        John, Mary : NP ;
        Love : V2 ;
\}
```

concrete zeroEng of zero $=\{$
lincat
S, NP, V2 = Str ;
lin
spo vp so $=\mathrm{s}++\mathrm{vp}++\mathrm{o}$;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;
\}

- Make a French grammar with John="Jean"; Mary="Marie"; Love="aime";
- parse a sentence in gf: parse "John loves Mary" \sim Love John Mary

Hello World Example for GF (Syntactic)

- Example 5.16 (A Hello World Grammar).

```
abstract zero = {
    flags startcat=0;
    cat
        S ; NP ; V2 ;
    fun
        spo: V2 -> NP -> NP -> S ;
        John, Mary : NP ;
        Love: V2 ;
}
```

```
concrete zeroEng of zero \(=\{\)
    lincat
        S, NP, V2 = Str ;
    lin
        spo vp so \(=\mathrm{s}++\mathrm{vp}++\mathrm{o}\);
        John = "John" ;
        Mary = "Mary" ;
        Love \(=\) "loves" ;
\}
```


Embedding GF into MMT

- Observation: GF provides Java bindings and MMT is programed in Scala, which compiles into the Java virtual machine.
- Idea: Use GF as a sophisticated NL-parser/generator for MMT
\sim MMT with a natural language front-end.
\sim GF with a multi-logic back-end
- Definition 5.17. The GF/MMT integration mapping interprets GF abstract syntax trees as MMT terms.
- Observation: This fits very well with our interpretation process in LBS

Syntax Quasi-Logical Form Logical Form

- Implementation: transform GF (Java) data structures to MMT (Scala) ones

Correspondence between GF Grammars and MMT Theories

- Idea: We can make the GF/MMT integration mapping essentially the identity.
- Prerequisite: MMT theory isomorphic to GF grammar (declarations aligned)
- Mechanism: use the MMT metadata mechanism
- symbol correspondsTo in metadata theory gfmeta specifies relation
- import ?gfmeta into domain theories
- meta keyword for "metadata relation whose subject is this theory".
- object is MMT string literal 'grammar.pgf.

```
3 theory gfmeta : ur:?LF = correspondsTo ||
4
theory plngd : ur:?LF =
include ?gfmeta
meta ?gfmeta?correspondsTo `grammar.pgf \
```

- Observation: GF grammars and MMT theories best when organized modularly.
- Best Practice: align "grammar modules" and "little theories" modularly.

6 OMDoc/MMT in Argumentation Theory

6.1 Introduction: Argumentation Theory [adapted from Sarah Gaggl]

Argumentation is Ubiquitous

- Observation: We exchange arguments in politics, in court, when making decisions, and in science

Argumentation is Ubiquitous

- Observation: We exchange arguments in politics, in court, when making decisions, and in science
- Questions: But what is argumentation? Can we model/decide arguments?

Argumentation is Ubiquitous

- Observation: We exchange arguments in politics, in court, when making decisions, and in science
- Questions: But what is argumentation? Can we model/decide arguments?
- Example 6.1. Is this Argumentation?

Background: SPP 1999 RATIO \& Project ALMANAC

- DFG Schwerpunktprogramm (SPP) 1999
(established 2017)
- RATIO: Robust Argumentation Machines
(2018-20; 2021-23)
- Going from mere facts to coherent argumentative structures as information units for decision-making
- Areas involved: semantic web, computational linguistics, information retrieval, Logic, human/computer interaction.

Background: SPP 1999 RATIO \& Project ALMANAC

- DFG Schwerpunktprogramm (SPP) 1999
(established 2017)
- RATIO: Robust Argumentation Machines
(2018-20; 2021-23)
- Going from mere facts to coherent argumentative structures as information units for decision-making
- Areas involved: semantic web, computational linguistics, information retrieval, Logic, human/computer interaction.
- ca. 12 projects, (see http://spp-ratio.de)
- method interoperability by joint data sets and use case
(Hackathons)

Background: SPP 1999 RATIO \& Project ALMANAC

- DFG Schwerpunktprogramm (SPP) 1999
- RATIO: Robust Argumentation Machines
(2018-20; 2021-23)
- Going from mere facts to coherent argumentative structures as information units for decision-making
- Areas involved: semantic web, computational linguistics, information retrieval, Logic, human/computer interaction.
- ca. 12 projects, (see http://spp-ratio.de)
- method interoperability by joint data sets and use case
(Hackathons)
ALMANAC: Argumentation Logics Manager \& Argument Context Graph,
- WA1: Atlas of Argumentation Logics (representing/organizing logics in LF)
- WP2: Context Graphs for Argumentation (Theory Graphs for Multi-Agent-Logic)
- WP3: Archiving \& Managing Argumentation Logis

Argumentation in History

- Definition 6.2 (Plato's Dialectic).

The dialectical method is discourse between two or more people holding different points of view about a subject, who wish to establish the truth of the matter guided by reasoned arguments. (The Republic (Plato), 348b)

- Definition 6.3 (Leibniz' Dream).

The only way to rectify our reasonings is to make them as tangible as those of the Mathematicians, so that we can find our error at a glance, and when there are disputes among persons, we can simply say: Let us calculate [Calculemus!], without further ado, to see who is right. (Leibniz, Gottfried Wilhelm, The Art of Discovery 1685, Wiener 51)

Abstract Argumentation Systems

- Abstract Argumentation [Dung, 1995]:
- In abstract argumentation frameworks (AAFs) statements (called arguments) are formulated together with a relation (attack) between them.
- Abstraction from the internal structure of the arguments.
- The conflicts between the arguments are resolved on the semantical level.
- Example 6.4.

Legal Reasoning

Decision Support

Social Networks

The Problem with Abstract Argumentation Systems

- Abstract Argumentation [Dung, 1995]:
- In abstract argumentation frameworks (AAFs) statements (called arguments) are formulated together with a relation (attack) between them.
- Abstraction from the internal structure of the arguments.
- The conflicts between the arguments are resolved on the semantical level.
- Example 6.5.

The Problem with Abstract Argumentation Systems

- Abstract Argumentation [Dung, 1995]:
- In abstract argumentation frameworks (AAFs) statements (called arguments) are formulated together with a relation (attack) between them.
- Abstraction from the internal structure of the arguments.
- The conflicts between the arguments are resolved on the semantical level.

Example 6.6.

Robust Representation of Individual Inference

- Idea: To represent arguments, we need to represent everyday reasoning.
- There is a logic for that!

Robust Representation of Individual Inference

- Idea: To represent arguments, we need to represent everyday reasoning.
- There is a logic for that! (actually many many of them)
- Robust Representation of Individual Inference (usually "philosophical logics")
- (multi-)modal logics extend classical logic by notions of possibility and necessity.
- Preference logic allows for stating sentences of the form " A is better/worse than B ". [Han02]
- Relevance logic restricts the classical (i.e. material) implication to protect from implications between seemingly disconnected premises and conclusions,[DR02].
- other paraconsistent logics, which try to deal with inconsistency in a non-fatal manner by systematically avoiding ex falso quodlibet.
- Temporal logics allow for reasoning about time (e.g. " X is true at time t_{0} "), [Bur84],
- probabilistic logics about probabilities. [Nil86].
- Dynamic Logics to model all kinds of anaphora

Robust Representation of Individual Inference

- Idea: To represent arguments, we need to represent everyday reasoning.
- There is a logic for that! (actually many many of them)
- Robust Representation of Individual Inference (usually "philosophical logics")
- (multi-)modal logics extend classical logic by notions of possibility and necessity.
- Preference logic allows for stating sentences of the form " A is better/worse than B ". [Han02]
- Relevance logic restricts the classical (i.e. material) implication to protect from implications between seemingly disconnected premises and conclusions,[DR02].
- other paraconsistent logics, which try to deal with inconsistency in a non-fatal manner by systematically avoiding ex falso quodlibet.
- Temporal logics allow for reasoning about time (e.g. " X is true at time t_{0} "), [Bur84],
- probabilistic logics about probabilities. [Nil86].
- Dynamic Logics to model all kinds of anaphora
- Proof Theory: Most logics have a natural-deduction-style calculus, some even machine-oriented calculi.
- Model Theory: mostly modal \leadsto possible worlds semantics

Robust Representation of Individual Inference

- Idea: To represent arguments, we need to represent everyday reasoning.
- There is a logic for that! (actually many many of them)
- Robust Representation of Individual Inference (usually "philosophical logics")
- (multi-)modal logics extend classical logic by notions of possibility and necessity.
- Preference logic allows for stating sentences of the form " A is better/worse than B ". [Han02]
- Relevance logic restricts the classical (i.e. material) implication to protect from implications between seemingly disconnected premises and conclusions,[DR02].
- other paraconsistent logics, which try to deal with inconsistency in a non-fatal manner by systematically avoiding ex falso quodlibet.
- Temporal logics allow for reasoning about time (e.g. " X is true at time t_{0} "), [Bur84],
- probabilistic logics about probabilities. [Nil86].
- Dynamic Logics to model all kinds of anaphora
- Proof Theory: Most logics have a natural-deduction-style calculus, some even machine-oriented calculi.
- Model Theory: mostly modal \leadsto possible worlds semantics
- Interoperability Problem: Most logics are "formally unrelated", incomparable (evaluation?, duplicated work)

6.2 Work Area 2: Context Graphs for Argumentation

Deep Modeling of Argumentation in STEM Settings

- Observation: Much of the wealth and prospects of central European Countries are based on STEM knowledge. (laid down in technical documents)
- STEM documents often have a non-trivial argumentation structure

Deep Modeling of Argumentation in STEM Settings

- Observation: Much of the wealth and prospects of central European Countries are based on STEM knowledge. (laid down in technical documents)
- STEM documents often have a non-trivial argumentation structure
- Example 6.7. Short excerpt of Coffey's and Sondow's rebuttal [CS12] of Kowalenko's paper [Kow10].

The irrationality of Euler's constant γ [...] has long been conjectured. [...] In 2010 Kowalenko claimed that simple arguments suffice to settle this matter [4]. [...] we [...] describe the flaws in his very limited approach.
[...]
Kowalenko derives the following formula for Euler's constant in equation (65) of [4, p. 428]: [...]
[...]
Here he claims that the sum of a series of positive rational numbers cannot be equal to $C-\pi^{2} / 6$. But, for example, decimal expansion does give such a series: [...]

- Observation: Often the aim of STEM argumentation is uncovering the truth (and reputation/grant money gain)

Deep Modeling of Argumentation in STEM Settings

- Observation: Much of the wealth and prospects of central European Countries are based on STEM knowledge. (laid down in technical documents)
- STEM documents often have a non-trivial argumentation structure
- Example 6.7. Short excerpt of Coffey's and Sondow's rebuttal [CS12] of Kowalenko's paper [Kow10].

The irrationality of Euler's constant γ [...] has long been conjectured. [...] In 2010 Kowalenko claimed that simple arguments suffice to settle this matter [4]. [...] we [...] describe the flaws in his very limited approach.
[...]
Kowalenko derives the following formula for Euler's constant in equation (65) of [4, p. 428]: [...]
[...]
Here he claims that the sum of a series of positive rational numbers cannot be equal to $C-\pi^{2} / 6$. But, for example, decimal expansion does give such a series: [...]

- Observation: Often the aim of STEM argumentation is uncovering the truth (and reputation/grant money gain)
- Idea: RATIO on technical/scientific documents (needs deep modeling)

Deep Modeling of Argumentation in STEM Settings

- Observation: often the ultimate source of differing opinions in STEM lies in differing assumptions.
- Example 6.8 (Example). various models in physics that make differing predictions, e.g. heliocentric vs. geocentric universe.
- Scientific Method: Explore the inferential closure of the model assumptions, contrast to others/experiments, argue for your model.
- Idea: Meta-model differing model assumptions as OMDoc/MMT theory graph
- recast the support, refutation or undercut relations via theory morphisms $+\epsilon$.
- theory morphisms incorporate inferential closure and renaming/framing.
- concept-minimal graphs explicitly manage common ground.
- Extend theory graph algorithms for that.

Modular Representation of Math (MMT Example)

Framing in Arguments

- Definition: In a nutshell, framing means that a concept mapping between argumentation/knowledge contexts (a frame) is established and the facts and assumptions underlying the argument are mapped along the frame.
- Observation: This happens often in counter-arguments by framing the original argument in terms of an obviously wrong argument.
- Example 6.9 (Roe vs. Wade). from www.truthmapping.com/map/647/
- The 1973 Roe vs. Wade decision denied fetus' rights on the basis of personhood.
- The 1857 Dred Scott decision denied Black Americans rights on the basis of personhood.
- Personhood for Black Americans has been denied purely on the basis of cultural consensus.
- Therefore the denial of personhood for fetuses could also be purely on the basis of cultural consensus.
Model in a theory graph using a frames as morphisms approach

Work Area 2: Work Plan

- WP2.1: Annotated Corpus of Technical Documents

1. Subcorpus Identification
2. Argumentation/Context Annotation
3. Distribution

- WP2.2: Context Graph via Argumentation Relations
- WP2.3: Extending the MMT system with Context Graph Relations
- WP2.4: Framing in Arguments

1. Modelling
(work through lots of examples)
2. Automation (use the OMDoc/MMT view finder to discover possible frames)

Visual Conclusion (please ask questions)

- Summary: Understanding/Supporting Logic-Based Deep Modeling of Arg.
- Contribution: develop and manage the targets of semantics extraction!

7 Application: Serious Games

Framing for Problem Solving (The FramelT Method)

- Example 7.1 (Problem 0.8.15).

How can you measure the height of a tree you cannot climb, when you only have a protactor and a tape measure at hand.

Framing for Problem Solving (The FramelT Method)

- Example 7.1 (Problem 0.8.15).

How can you measure the height of a tree you cannot climb, when you only have a protactor and a tape measure at hand.

Framing for Problem Solving (The FrameIT Method)

- Example 7.1 (Problem 0.8.15).

How can you measure the height of a tree you cannot climb, when you only have a protactor and a tape measure at hand.

- Framing: view the problem as one that is already understood
(using theory

- squiggly (framing) morphisms guaranteed by metatheory of theories!

Example Learning Object Graph

FramelT Method: Problem

- Problem Representation in the game world

- Student can interact with the environment via gadgets so solve problems
- "Scrolls" of mathematical knowledge give hints.

Combining Problem/Solution Pairs

- We can use the same mechanism for combining P / S pairs
- create more complex P / S pairs (e.g. for trees on slopes)

Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Semantic Spreadsheets, Semantic CAD/CAM, Change Mangagement, Global Digital Math Library, Math Search Systems, SMGloM: Semantic Multilingual Math Glossary, Serious Games, ...

Foundations of Math:

- MathML, OpenMath
- advanced Type Theories
- MMT: Meta Meta Theory
- Logic Morphisms/Atlas
- Theorem Prover/CAS Interoperability
- Mathematical Models/Simulation

KM \& Interaction:

- Semantic Interpretation (aka. Framing)
- math-literate interaction
- MathHub: math archives \& active docs
- Semantic Alliance: embedded semantic services

Semantization:

- $\operatorname{AT} T_{E X M L}$ AATEX \rightarrow XML
- $S_{T} T_{E X}$: Semantic $\operatorname{LA} T_{E X}$
- invasive editors
- Context-Aware IDEs
- Mathematical Corpora
- Linguistics of Math
- ML for Math Semantics Extraction

Foundations: Computational Logic, Web Technologies, OMDoc/MMT

References I

John P. Burgess. "Basic Tense Logic". In: Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic. Ed. by D. Gabbay and F. Guenthner. Dordrecht: Springer Netherlands, 1984, pp. 89-133. ISBN: 978-94-009-6259-0. DOI: 10.1007/978-94-009-6259-0_2.
Mark W. Coffey and Jonathan Sondow. "Rebuttal of Kowalenko's paper as concerns the irrationality of Euler's constant". In: (2012). eprint: arXiv:1202. 3093.
J. Michael Dunn and Greg Restall. "Relevance Logic". In: Handbook of Philosophical Logic. Ed. by Dov M. Gabbay and F. Guenthner. Dordrecht: Springer Netherlands, 2002, pp. 1-128. ISBN: 978-94-017-0460-1. DOI: 10.1007/978-94-017-0460-1_1.

Sven Ove Hansson. "Preference Logic". In: Handbook of Philosophical Logic. Ed. by D. M. Gabbay and F. Guenthner. Dordrecht: Springer Netherlands, 2002, pp. 319-393. ISBN: 978-94-017-0456-4. DOI: 10.1007/978-94-017-0456-4_4.

References II

Arif Jinha. "Article 50 million: an estimate of the number of scholarly articles in existence". In: Learned Publishing 23.3 (2010), pp. 258-263. DOI: 10.1087/20100308.
Andrea Kohlhase and Michael Kohlhase. "Communities of Practice in MKM: An Extensional Model". In: Mathematical Knowledge Management (MKM). Ed. by Jon Borwein and William M. Farmer. LNAI 4108. Springer Verlag, 2006, pp. 179-193. URL:
http://kwarc.info/kohlhase/papers/mkm06cp.pdf.
Victor Kowalenko. "Properties and applications of the reciprocal logarithm numbers". In: Acta applicandae mathematicae 109.2 (2010), pp. 413-437.
Peder Olesen Larsen and Markus von Ins. "The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index". In: Scientometrics 84.3 (2010), pp. 575-603. DOI: 10.1007/s11192-010-0202-z.

References III

Nils J. Nilsson. "Probabilistic Logic". In: Artif. Intell. 28.1 (Feb. 1986), pp. 71-88. ISSN: 0004-3702. DOI: 10.1016/0004-3702 (86) 90031-7.

Florian Rabe and C. Schürmann. "A Practical Module System for LF". In: Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP). Ed. by J. Cheney and A. Felty. Vol. LFMTP'09. ACM International Conference Proceeding Series. ACM Press, 2009, pp. 40-48.

