Theory Graphs and Meta-Logical/Grammatical Frameworks: MMT as a Logic/Language/World-Workbench

Michael Kohlhase & the KWARC Group

Professur für Wissensrepräsentation und -verarbeitung Informatik, FAU Erlangen-Nürnberg http://kwarc.info

14. Jan. 2019 - Logik-Kolloquium, Konstanz

1 Introduction & Motivation

- Computers and Humans have complementary strengths.
 - Computers can handle large data and computations flawlessly at enormous speeds.
 - Humans can sense the environment, react to unforeseen circumstances and use their intuitions to guide them through only partially understood situations.

- Computers and Humans have complementary strengths.
 - Computers can handle large data and computations flawlessly at enormous speeds.
 - Humans can sense the environment, react to unforeseen circumstances and use their intuitions to guide them through only partially understood situations.

In mathematics: we exploit this, we

- Iet humans explore mathematical theories and come up with novel insights/proofs,
 - delegate symbolic/numeric computation and typesetting of documents to computers.
 - (sometimes) delegate proof checking and search for trivial proofs to computers

- Computers and Humans have complementary strengths.
 - Computers can handle large data and computations flawlessly at enormous speeds.
 - Humans can sense the environment, react to unforeseen circumstances and use their intuitions to guide them through only partially understood situations.

In mathematics: we exploit this, we

- Iet humans explore mathematical theories and come up with novel insights/proofs,
 - delegate symbolic/numeric computation and typesetting of documents to computers.
 - (sometimes) delegate proof checking and search for trivial proofs to computers

Overlooked Opportunity: management of existing mathematical knowledge

- cataloguing, retrieval, refactoring, plausibilization, change propagation and in some cases even application do not require (human) insights and intuition
 - can even be automated in the near future given suitable representation formats and algorithms.

14. Jan. 19; Konstanz

- Computers and Humans have complementary strengths.
 - Computers can handle large data and computations flawlessly at enormous speeds.
 - Humans can sense the environment, react to unforeseen circumstances and use their intuitions to guide them through only partially understood situations.

In mathematics: we exploit this, we

- Iet humans explore mathematical theories and come up with novel insights/proofs,
 - delegate symbolic/numeric computation and typesetting of documents to computers.
 - (sometimes) delegate proof checking and search for trivial proofs to computers

Overlooked Opportunity: management of existing mathematical knowledge

- cataloguing, retrieval, refactoring, plausibilization, change propagation and in some cases even application do not require (human) insights and intuition
 - can even be automated in the near future given suitable representation formats and algorithms.

2

Math. Knowledge Management (MKM): is the discipline that studies this.

Application: Scaling Math beyond the One-Brain-Barrier

The One-Brain-Barrier

- Observation 1.1. More than 10⁵ math articles published annually in Math.
 Observation 1.2. The libraries of Mizar, Coq, Isabelle,... have ~ 10⁵ statements+proofs each. (but are mutually incompatible)
- Consequence: humans lack overview over let alone working knowledge in all of math/formalizations. (Leonardo da Vinci was said to be the last who had)
- Dire Consequences: duplication of work and missed opportunities for the application of mathematical/formal results.

The One-Brain-Barrier

- Observation 1.1. More than 10⁵ math articles published annually in Math.
 Observation 1.2. The libraries of Mizar, Coq, Isabelle,... have ~ 10⁵ statements+proofs each. (but are mutually incompatible)
- Consequence: humans lack overview over let alone working knowledge in all of math/formalizations. (Leonardo da Vinci was said to be the last who had)
- Dire Consequences: duplication of work and missed opportunities for the application of mathematical/formal results.
- Problem: Math Information systems like arXiv.org, Zentralblatt Math, MathSciNet, etc. do not help (only make documents available)
- Fundamenal Problem: the One-Brain Barrier (OBB)
 - To become productive, math must pass through a brain
 - Human brains have limited capacity (compared to knowledge available online)

The One-Brain-Barrier

- Observation 1.1. More than 10⁵ math articles published annually in Math.
 Observation 1.2. The libraries of Mizar, Coq, Isabelle,... have ~ 10⁵ statements+proofs each. (but are mutually incompatible)
- Consequence: humans lack overview over let alone working knowledge in all of math/formalizations. (Leonardo da Vinci was said to be the last who had)
- Dire Consequences: duplication of work and missed opportunities for the application of mathematical/formal results.
- Problem: Math Information systems like arXiv.org, Zentralblatt Math, MathSciNet, etc. do not help (only make documents available)
- Fundamenal Problem: the One-Brain Barrier (OBB)
 - To become productive, math must pass through a brain
 - Human brains have limited capacity (compared to knowledge available online)

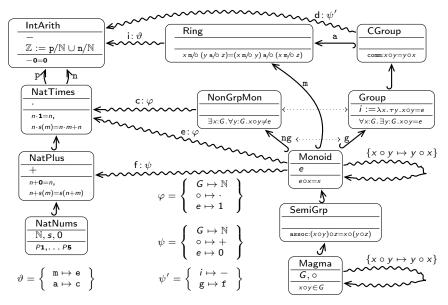
3

- Idea: enlist computers
- Prerequisite: make math knowledge machine-actionable & foundation-independent

(large is what they are good at)

Modular Representation of Mathematics 2

Modular Representation of Math (Theory Graph)


Idea: Follow mathematical practice of generalizing and framing

- framing: If we can view an object a as an instance of concept B, we can inherit all of B properties (almost for free.)
- state all assertions about properties as general as possible (to maximize inheritance)
- examples and applications are just special framings.
- Modern expositions of Mathematics follow this rule (radically e.g. in Bourbaki)
- formalized in the theory graph paradigm (little/tiny theory doctrine)
 - theories as collections of symbol declarations and axioms (model assumptions)
 - theory morphisms as mappings that translate axioms into theorems
- Example 2.1 (MMT: Modular Mathematical Theories). MMT is a foundation-indepent theory graph formalism with advanced theory morphisms.
- Problem: With a proliferation of abstract (tiny) theories readability and accessibility suffers (one reason why the Bourbaki books fell out of favor)

Modular Representation of Math (MMT Example)

Concrete MMT Syntax

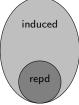
Example 2.2 (A Theory and Type for Unital Magmas).

```
theory Unital : base:?Logic =
       include ?Magma |
       theory unital_theory : base:?Logic =
            include ?Magma/magma theory |
            unit : U | # e prec -1 |
            axiom_leftUnital : + prop_leftUnital op e
            axiom_rightUnital : + prop_rightUnital op e |
       unital = Mod unital_theory |
       unitOf : {G: unital} dom G | # %I1 e prec 5 | = [G] (G.unit) |
where the following is imported with ?Magma
       prop_leftUnital : {U : type} (U \longrightarrow U \longrightarrow U) \longrightarrow U \longrightarrow prop
            = [U, op, e] \forall [x] op e x \doteq x \mid \# prop_leftUnital 2 3 |
       prop_rightUnital : {U : type} (U \longrightarrow U \longrightarrow U) \longrightarrow U \longrightarrow prop
            = [U, op, e] \forall [x] op x e \doteq x \mid \# prop_rightUnital 2 3 \mid
```


The MMT Module System

- Central notion: theory graph with theory nodes and theory morphisms as edges
- Definition 2.3. In MMT, a theory is a sequence of constant declarations optionally with type declarations and definitions
- MMT employs the Curry/Howard isomorphism and treats
 - axioms/conjectures as typed symbol declarations
 - inference rules as function types
 - theorems as definitions

- (propositions-as-types) (proof transformers)
- (proof terms for conjectures)
- **Definition 2.4.** MMT had two kinds of theory morphisms
 - structures instantiate theories in a new context (also called: definitional link, import) they import of theory S into theory T induces theory morphism S → T
 - views translate between existing theories (also called: postulated link, theorem link) views transport theorems from source to target (framing)
- together, structures and views allow a very high degree of re-use
- **Definition 2.5.** We call a statement *t* induced in a theory *T*, iff there is
 - ▶ a path of theory morphisms from a theory S to T with (joint) assignment σ ,
 - such that $t = \sigma(s)$ for some statement s in S.
- ► In MMT, all induced statements have a canonical name, the MMT URI.



b search on the LATIN Logic Atlas

Flattening the LATIN Atlas (once):

type	modular	flat	factor
declarations	2310	58847	25.4
library size	23.9 MB	1.8 GB	14.8
math sub-library	2.3 MB	79 MB	34.3
MathWebSearch harvests	25.2 MB	539.0 MB	21.3

simple b search frontend at http://cds.omdoc.org:8181/search.html

Applications for Theories in Physics

- Theory Morphisms allow to "view" source theory in terms of target theory.
 Theory Morphisms a source in Dhuging all the time.
- Theory Morphisms occur in Physics all the time.

Theory	Temp. in Kelvin	Temp. in Celsius	Temp. in Fahrenheit	
Signature	ture °K °C		°F	
Axiom:	absolute zero at 0°K	Water freezes at $0^{\circ}C$	cold winter night: 0°F	
Axiom:	$\delta(^{\circ}K1) = \delta(^{\circ}C1)$	Water boils at 100° C	domestic pig: 100°F	
Theorem:	Water freezes at 271.3°K	domestic pig: 38°C	Water boils at 170°F	
Theorem:	cold winter night: 240°K	absolute zero at -271.3°C	absolute zero at —460°F	

 $\text{Views: } ^{\circ}\text{C} \xrightarrow{+271.3^{\circ}} \text{K}, \ ^{\circ}\text{C} \xrightarrow{-32/2^{\circ}} \text{F, and } ^{\circ}\text{F} \xrightarrow{+240/2^{\circ}} \text{K, inverses.}$

- Other Examples: Coordinate Transformations,
- Application: Unit Conversion: apply view morphism (flatten) and simplify with UOM. (For new units, just add theories and views.)

9

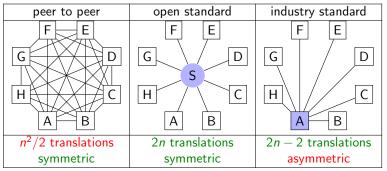
Application: MathWebSearch on flattened theory

(Explain view path)

3 Foundational Pluralism (the Meta-Meta Level)

Problems: encountered in practice

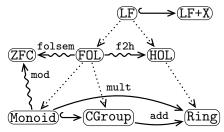
- Different systems have different, mutually incompatible logical/mathematical foundations (hundreds, optimize different aspects)
- the respective communities are largely disjoint
- have built large, incompatible, but mathematically overlapping libraries
- all tools lack crucial features (cannot afford to develop)
- new logics/foundations/systems seldom get off the ground (too expensive)
- Definition 3.1. A foundation (of mathematics) consists of
 - ▶ a foundational language (e.g. first-order logic or the calculus of constructions)
 - a foundational theory


(e.g. axiomatic set theory)

Observation: need a system that can deal with multiple foundations \rightsquigarrow foundational pluralism

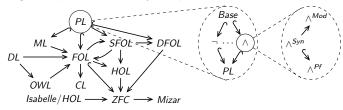
Towards Integration at the Foundation Level:

Problem: So far So Obvious! But what should be in the middle?


► Idea (reused): A modular representation of foundations (logics/theories) Bring-Your-Own-Foundation ~> foundation independent systems/tools

Representing Logics and Foundations as Theories

Example 3.2. Logics and foundations represented as MMT theories



- Definition 3.3. Meta-relation between theories special case of inclusion
- Uniform Meaning Space: morphisms between formalizations in different logics become possible via meta-morphisms.
- **Remark 3.4.** Semantics of logics as views into foundations, e.g., folsem.
- **Remark 3.5.** Models represented as views into foundations (e.g. ZFC)
- ▶ **Example 3.6.** mod := { $G \mapsto \mathbb{Z}$, $\circ \mapsto +$, $e \mapsto 0$ } interprets Monoid in ZFC.

- Definition 3.7. The LATIN project (Logic <u>Atlas and Integrator</u>)
- Idea: Provide a standardized, well-documented set of theories for logical languages, logic morphisms as theory morphisms.

- ► Technically: Use MMT as a representation language logics-as-theories
- Integrate logic-based software systems via views.
- ▶ State: ~ 1000 modules (theories and morphisms) written in MMT/LF [RS09]

MMT a Module System for Mathematical Content

- MMT: Universal representation language for formal mathematical/logical content
- Implementation: MMT API with generic
 - module system for math libraries, logics, foundations
 - parsing + type reconstruction + simplification
 - IDEs
 - change management
- Continuous development since 2007
- Close relatives:
 - ▶ LF, Isabelle, Dedukti: but flexible choice of logical framework
 - Hets: but declarative logic definitions

(web server + JEdit+IntelliJ)

(> 30000 lines of Scala code)


```
Example 3.8 (Propositional Logic (Syntax)).
```

```
theory PropLogSyntax : ur:?LF =
    prop : type | # bool |
           : bool → bool → bool | #1 ∧ 2 prec 45 | /T jwedge |
    and
                                              | # ¬ 1 prec 50 | /T jneg |
         : bool \rightarrow bool
    not
    or : bool \rightarrow bool \rightarrow bool | # 1 v 2 prec 40 |
              = [a,b] \neg (\neg a \land \neg b) \mid /T ivee
    implies : bool \rightarrow bool \rightarrow bool | # 1 \Rightarrow 2 prec 35 |
              = [a,b] \neg a \lor b \mid /T irA \mid
    iff : bool \rightarrow bool \rightarrow bool \mid # 1 \Leftrightarrow 2 prec 40 \mid = [a,b] (a \Rightarrow b) \land (b \Rightarrow a)
    true : bool | # T | /T itop |
    false : bool | = \neg \top | \# \perp | /T ibot
```


I

Concrete MMT Syntax: Propositional Natural Deduction

Example 3.9 (Propositional Logic (Natural Deduction)).

```
theory PropLogNatDed : ur:?LF =
    include ?PropLogSyntax |
```

ded : bool → type | # + 1 prec 1 | /T jvdash | : $\{A, B\} \vdash A \land B \longrightarrow \vdash A \mid \# and El 3 \mid$ andEl andEr : $\{A, B\} + A \land B \longrightarrow + B \mid \# \text{ and } Er 3 \mid$ andI : $\{A, B\} + A \longrightarrow + B \longrightarrow + A \land B \mid \# and I 3 4 \mid$ implI : $\{A,B\} (\vdash A \longrightarrow \vdash B) \longrightarrow \vdash A \Rightarrow B \mid \# implies A$ implE : $\{A,B\} \vdash A \Rightarrow B \longrightarrow \vdash A \longrightarrow \vdash B \mid \# imple 3 4 \mid$ orIl : $\{A,B\} + A \longrightarrow + A \lor B \mid \# \text{ or Il } 3 \mid$: $\{A,B\} + B \longrightarrow + A \lor B \mid \# \text{ or Ir } 3 \mid$ orTr : $\{A, B, C\} \vdash A \lor B \longrightarrow (\vdash A \longrightarrow \vdash C) \longrightarrow (\vdash B \longrightarrow \vdash C) \longrightarrow \vdash C \vdash \# \text{ ore } 4 5 6 \downarrow$ orE notI : {A} $(\vdash A \longrightarrow \vdash \bot) \longrightarrow \vdash \neg A \mid \# notI 2 \mid$ notE : $\{A\} \vdash \neg \neg A \longrightarrow \vdash A \mid \# \text{ notE } 2 \mid$

Example 3.10 (Propositional Logic (Natural Deduction)).

н

Concrete MMT Syntax: First-Order Logic (Syntax)

```
Example 3.11 (First-Order Logic (Syntax)).
               theory FOLSyntax : ur:?LF =
                    include ?PropLogSyntax |
                    ind : type | # 1 | /T jiota |
                    forall : (\iota \longrightarrow bool) \longrightarrow bool \mid \# \forall 1 prec 55 \mid
                    exists : (\iota \rightarrow bool) \rightarrow bool | # \exists 1 prec 60 |
                                   = [P] \neg \forall [x] \neg (Px) | /T iexists |
                   // existsUnique : ??? | = ??? | # ∃! 1 prec 65
               theory FOLEQSyntax : ur:?LF =
                 include ?FOLSyntax |
                    equality : \iota \longrightarrow \iota \longrightarrow bool \mid \# 1 \doteq 2 prec 65 \mid
               I
```


Example 3.12 (First-Order Logic (Natural Deduction)).

```
theory FOLNatDed : ur:?LF =

include ?FOLSyntax |

include ?FOLSyntax |

forallI : {P} ({y : i} + P y) \rightarrow + \forall [x] P x | # forallI 2 |

foralLE : {P,B} + (\forall [x] P x) \rightarrow + P B | # foralLE 3 |

/T Everytime you write \forall \forall P$, somewhere a unicorn cries |

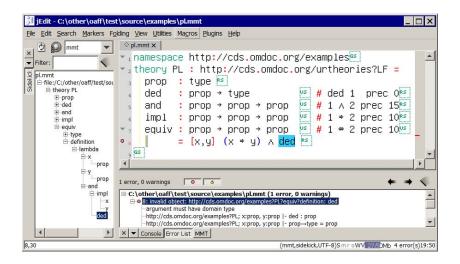
existsI : {P,C} + (P c) \rightarrow + \exists [x] P x | # existsI 3 |

existsE : {P,B} + (\exists [x] P x) \rightarrow ({c} + P c \rightarrow + B) \rightarrow + B | # existsE 3 4 |
```

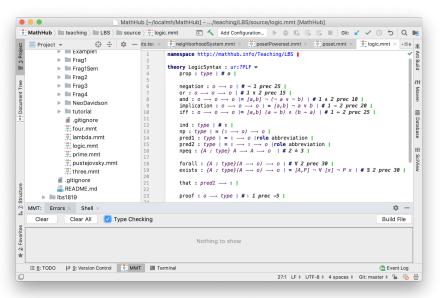

4 MMT Software Eosystem

MMT a Module System for Mathematical Content

- MMT: Universal representation language for formal mathematical/logical content
- Implementation: MMT API with generic
 - module system for math libraries, logics, foundations
 - parsing + type reconstruction + simplification
 - IDEs
 - change management
- Continuous development since 2007
- Close relatives:
 - ▶ LF, Isabelle, Dedukti: but flexible choice of logical framework
 - Hets: but declarative logic definitions


(web server + JEdit+IntelliJ)

(> 30000 lines of Scala code)


MMT API JEdit Integration (IDE)

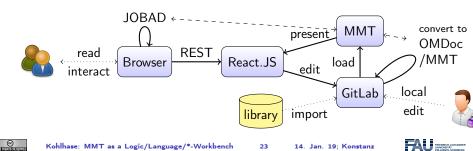
MMT API IntelliJ (IDE)

MMT API Browser Integration

The MMT Web Server Graph View Administration Help						
Style: hml5 ass1,2013 crossing 10,000 crossing 10,000	eds.omdoc.org / courses / 2013 / ACS1 / exercise_10.mmt ? Problem3 theory Problem3 meta LF include : http://cds.omdoc.org/examples?FOLEQNatDed circ : term \rightarrow term \rightarrow term e : term R : $\vdash \forall xx \circ e \doteq x$ C : $\vdash \forall x \forall yx \circ y \pm y \circ x$ L : $\vdash \forall x e \circ x \doteq x$ $= \begin{bmatrix} x \\ \frac{1}{2} \frac{\nabla e_{x} + x \circ x}{\nabla e_{x} + x} & \text{formE} \\ \frac{1}{2} \frac{\nabla e_{x} + x \circ x}{\nabla e_{x} + x} & \text{result} \\ \frac{1}{2} \frac{\nabla e_{x} + x \circ x}{\nabla e_{x} + x} & \text{result} \end{bmatrix}$					
Enter an object over theory: http://ods.omdon.org/cours [%] X+= [%] analyze [simplify [X & + e [x:term] term	es/201	how				

MathHub: A Portal and Archive of Flexiformal Maths

- Idea: learn from the open source community, offer a code repository with management support that acts as a hub for publication/development projects.
- MathHub: a collaborative development/hosting/publishing system of open-source, formal/informal math. (See http://mathhub.info)



MathHub: A Portal and Archive of Flexiformal Maths

- Idea: learn from the open source community, offer a code repository with management support that acts as a hub for publication/development projects.
- MathHub: a collaborative development/hosting/publishing system of open-source, formal/informal math. (See http://mathhub.info)
- MathHub Architeture: Three core components (meet requirements above)
 Representation: OMDoc/MMT mechanized by the MMT system.
 - Repositories: GitLab

Front-End: React.JS

(git-based public/private repositories) (all content served by MMT)

TGView/TGView3D: Flexible Interaction with Theory Graphs

- Definition 4.1. TGView is a flexible facility for viewing and interacting with (theory) graphs in MathHub.
 - TGView gives access to MathHub libraries

(user selects graph)

- MMT API generates JSON graph representation
- TGView draws graph to Browser canvas
 TGView3D is a VR version for the Oculus Rift.

- (via the vis.js library)
- **Example 4.2 (CAS Interfaces, MitM Ontology, and Alignments).**

5 MMT+GF as a Natural Language Semantics Workbench

Idee: Machine Translation is very simple!

(we have good lexica)

- **Example 5.1.** Peter liebt Maria. \rightsquigarrow Peter loves Mary.
- A this only works for simple examples
- ► Example 5.2. Wirf der Kuh das Heu über den Zaun. → Throw the cow the hay over the fence. (differing grammar; Google Translate)
- Example 5.3. A Grammar is not the only problem
 - Der Geist ist willig, aber das Fleisch ist schwach!
 - Der Schnaps ist gut, aber der Braten ist verkocht!
- We have to understand the meaning!

Language and Information

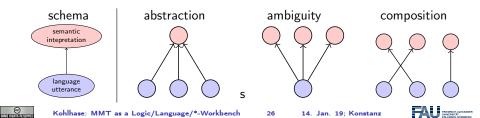
- Observation: Humans use words (sentences, texts) in natural languages to represent and communicate information.
- But: what really counts is not the words themselves, but the meaning information they carry.

Language and Information

- Observation: Humans use words (sentences, texts) in natural languages to represent and communicate information.
- But: what really counts is not the words themselves, but the meaning information they carry.
- Example 5.4.

Zeitung 🛶

for questions/answers, it would be very useful to find out what words (sentences/texts) mean.


Language and Information

- Observation: Humans use words (sentences, texts) in natural languages to represent and communicate information.
- But: what really counts is not the words themselves, but the meaning information they carry.
- Example 5.4.

Zeitung \sim

- for questions/answers, it would be very useful to find out what words (sentences/texts) mean.
- Interpretation of natural language utterances: three problems

Language and Information (Examples)

Example 5.5 (Abstraction).

car and automobile have the same meaning

Language and Information (Examples)

Example 5.5 (Abstraction).

car and automobile have the same meaning

Example 5.6 (Ambiguity).

a bank can be a financial institution or a geographical feature

Language and Information (Examples)

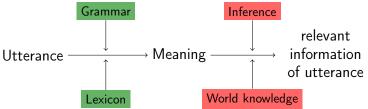
Example 5.5 (Abstraction).

car and automobile have the same meaning

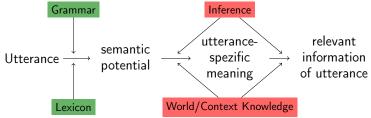
Example 5.6 (Ambiguity).

a bank can be a financial institution or a geographical feature

Example 5.7 (Composition).


```
Every student sleeps \rightsquigarrow \forall x.student(x) \Rightarrow sleep(x)
```


Context Contributes to the Meaning of NL Utterances


- Observation: Not all information conveyed is linguistically realized in an utterance.
- **Example 5.8.** The lecture begins at 11:00 am. What lecture? Today?
- ▶ **Definition 5.9.** We call a piece *i* of information linguistically realized in an utterance *U*, iff, we can trace *i* to a fragment of *U*.
- Possible Mechanism: Inference

- **Example 5.10.** *It starts at eleven.* What starts?
- Before we can resolve the time, we need to resolve the anaphor it.
- Possible Mechanism: More Inference!

What is the State of the Art In NLU?

 Two avenues of attack for the problem: knowledge-based and statistical techniques (they are complementary)

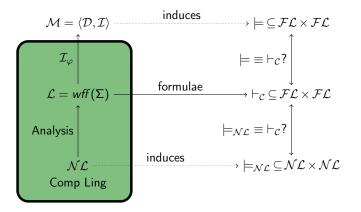
Deep	Knowledge-based We are here	Not there yet cooperation?
Shallow	no-one wants this	Statistical Methods applications
Analysis ↑ VS.	narrow	wide
$Coverage \to$		

30

We will cover foundational methods of deep processing in the course and a mixture of deep and shallow ones in the lab.

There are two kinds of applications/tasks in NLU

- consumer-grade applications have tasks that must be fully generic, and wide coverage (e.g. machine translation ~> Google Translate)
- producer-grade applications must be high-precision, but domain-adapted (multilingual documentation, voice-control, ambulance translation)

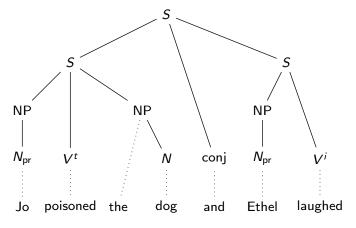

Precision 100%	Producer Tasks		
50%		Consumer Tasks	
	$10^{3\pm1}$ Concepts	$10^{6\pm1}$ Concepts	Coverage

A producer domain I am interested in: Mathematical/Technical documents

Natural Language Semantics?

▶ Definition 5.11. Fragment 1 knows the following eight syntactical categories

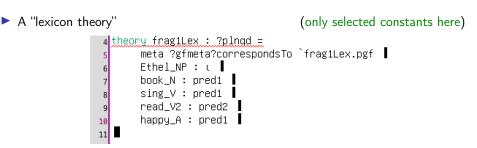
S	sentence	NP	noun phrase
N	noun	N _{pr}	proper name
V^i	intransitive verb	V^t	transitive verb
conj	connective	Adj	adjective


Definition 5.12. We have the following grammar rules in fragment 1.

Syntax Example: Jo poisoned the dog and Ethel laughed

- Observation 5.13. Jo poisoned the dog and Ethel laughed is a sentence of fragment 1
- We can construct a syntax tree for it!

Example 5.14 (Propositional Logic (Syntax)).


```
theory PropLogSyntax : ur:?LF =
    prop : type | # bool |
           : bool → bool → bool | #1 ∧ 2 prec 45 | /T jwedge |
    and
                                              | # ¬ 1 prec 50 | /T jneg |
         : bool \rightarrow bool
    not
    or : bool \rightarrow bool \rightarrow bool | # 1 v 2 prec 40 |
              = [a,b] \neg (\neg a \land \neg b) \mid /T ivee
    implies : bool \rightarrow bool \rightarrow bool | # 1 \Rightarrow 2 prec 35 |
              = [a,b] \neg a \lor b \mid /T irA \mid
    iff : bool \rightarrow bool \rightarrow bool \mid # 1 \Leftrightarrow 2 prec 40 \mid = [a,b] (a \Rightarrow b) \land (b \Rightarrow a)
    true : bool | # T | /T itop |
    false : bool | = \neg \top | \# \perp | /T ibot
```


I

Domain Theories for Fragment 1 (Lexicon)

declares one logical constant for each from abstract GF grammar (automation?)

- Extend by axioms that encode background knowledge about the domain
- Example 5.15 (What makes you sing).

```
12 happy_sing : ⊦ ∀[x] happy x ⇒ sing x ∎
13 read_happy : ⊦ ∀[x] (∃[y] book y ∧ read x y) ⇒ happy x ∎
```


Hello World Example for GF (Syntactic)

Example 5.16 (A Hello World Grammar).

abstract zero = {	<pre>concrete zeroEng of zero = {</pre>
flags startcat=0;	lincat
cat	S, NP, V2 = Str ;
S; NP; V2;	lin
fun	spo vp s $o = s ++ vp ++ o;$
spo : V2 \rightarrow NP \rightarrow NP \rightarrow S ;	John = <i>"John"</i> ;
John, Mary : NP ;	Mary = "Mary";
Love : V2 ;	Love = "loves";
}	}

▶ parse a sentence in gf: parse "John loves Mary" ~> Love John Mary

Hello World Example for GF (Syntactic)

Example 5.16 (A Hello World Grammar).

abstract zero = {	concrete zeroEng of zero = {
flags startcat=Ò;	lincat
cat	S, NP, V2 = Str ;
S; NP; V2;	lin
fun	spo vp s $o = s ++ vp ++ o;$
spo : V2 \rightarrow NP \rightarrow NP \rightarrow S ;	John = <i>"John"</i> ;
John, Mary : NP ;	Mary = "Mary";
Love : V2 ;	Love = "loves";
}	}
	5

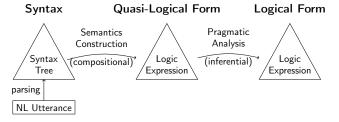
Make a French grammar with John="Jean"; Mary="Marie"; Love="aime";
 parse a sentence in gf: parse "John loves Mary" → Love John Mary

Hello World Example for GF (Syntactic)

Example 5.16 (A Hello World Grammar).

<pre>abstract zero = {</pre>	<pre>concrete zeroEng of zero = {</pre>
flags startcat=0;	lincat
cat	S, NP, V2 = Str ;
S; NP; V2;	lin
fun	spo vp s $o = s + vp + o;$
spo : V2 −> NP −> NP −> S ;	John = <i>"John"</i> ;
John, Mary : NP ;	Mary = "Mary";
Love : V2 ;	Love = "loves";
}	}
	-

Make a French grammar with John="Jean"; Mary="Marie"; Love="aime";


- \blacktriangleright parse a sentence in gf: parse "John loves Mary" \rightsquigarrow Love John Mary
- \blacktriangleright linearize in gf: linearize Love John Mary \rightsquigarrow John loves Mary
- ▶ translate in in gf: parse -lang=Eng "John Loves Mary"| linearize -lang=Fre
- ▶ generate random sentences to test: generate_random -number=10 | linearize -lang=Fre ~> Jean aime Marie

Embedding GF into MMT

- Observation: GF provides Java bindings and MMT is programed in Scala, which compiles into the Java virtual machine.
- Idea: Use GF as a sophisticated NL-parser/generator for MMT
 MMT with a natural language front-end.
 GF with a multi-logic back-end
- Definition 5.17. The GF/MMT integration mapping interprets GF abstract syntax trees as MMT terms.
- Observation: This fits very well with our interpretation process in LBS

38

Implementation: transform GF (Java) data structures to MMT (Scala) ones

Correspondence between GF Grammars and MMT Theories

- Idea: We can make the GF/MMT integration mapping essentially the identity.
- Prerequisite: MMT theory isomorphic to GF grammar (declarations aligned)
- Mechanism: use the MMT metadata mechanism
 - symbol correspondsTo in metadata theory gfmeta specifies relation
 - import ?gfmeta into domain theories
 - meta keyword for "metadata relation whose subject is this theory".
 - object is MMT string literal 'grammar.pgf.

```
3 theory gfmeta : ur:?LF = correspondsTo ┃

4

5 theory plnqd : ur:?LF =

6 include ?gfmeta

7 meta ?gfmeta?correspondsTo `grammar.pgf ┃
```

- Observation: GF grammars and MMT theories best when organized modularly.
- Best Practice: align "grammar modules" and "little theories" modularly.

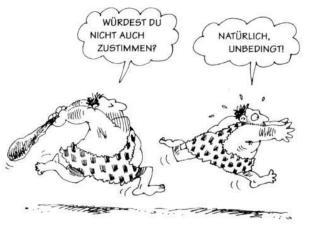
OMDoc/MMT in Argumentation Theory 6

6.1 Introduction: Argumentation Theory [adapted from Sarah GaggI]

Argumentation is Ubiquitous

• Observation: We exchange arguments in politics, in court, when making decisions, and in science

Argumentation is Ubiquitous


- Observation: We exchange arguments in politics, in court, when making decisions, and in science
- Questions: But what is argumentation? Can we model/decide arguments?

Argumentation is Ubiquitous

- Observation: We exchange arguments in politics, in court, when making decisions, and in science
- Questions: But what is argumentation? Can we model/decide arguments?
- **Example 6.1.** Is this Argumentation?

Background: SPP 1999 RATIO & Project ALMANAC

DFG Schwerpunktprogramm (SPP) 1999

RATIO: Robust Argumentation Machines

(established 2017)

(2018-20; 2021-23)

- Going from mere facts to coherent argumentative structures as information units for decision-making
- Areas involved: semantic web, computational linguistics, information retrieval, Logic, human/computer interaction.

Background: SPP 1999 RATIO & Project ALMANAC

DFG Schwerpunktprogramm (SPP) 1999

- RATIO: Robust Argumentation Machines
- Going from mere facts to coherent argumentative structures as information units for decision-making
- Areas involved: semantic web, computational linguistics, information retrieval, Logic, human/computer interaction.
- ca. 12 projects,
- (see http://spp-ratio.de) method interoperability by joint data sets and use case (Hackathons)

(established 2017)

(2018-20; 2021-23)

Background: SPP 1999 RATIO & Project ALMANAC

DFG Schwerpunktprogramm (SPP) 1999

- RATIO: Robust Argumentation Machines
- Going from mere facts to coherent argumentative structures as information units for decision-making
- Areas involved: semantic web, computational linguistics, information retrieval, Logic, human/computer interaction.
- ca. 12 projects,
- method interoperability by joint data sets and use case (Hackathons)

ALMANAC: Argumentation Logics Manager & Argument Context Graph,

- WA1: Atlas of Argumentation Logics (representing/organizing logics in LF) WP2: Context Graphs for Argumentation (Theory Graphs for Multi-Agent-Logic) (MathHub.info)
 - ▶ WP3: Archiving & Managing Argumentation Logis

(established 2017)

(see http://spp-ratio.de)

(2018-20; 2021-23)

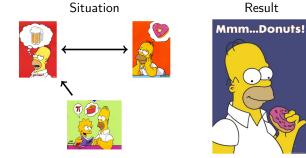
Argumentation in History

Definition 6.2 (Plato's Dialectic).

The dialectical method is discourse between two or more people holding different points of view about a subject, who wish to establish the truth of the matter guided by reasoned arguments. (The Republic (Plato), 348b)

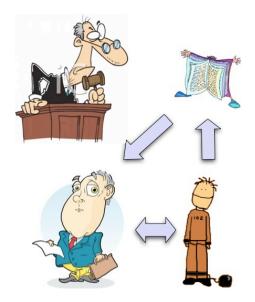
Definition 6.3 (Leibniz' Dream).

The only way to rectify our reasonings is to make them as tangible as those of the Mathematicians, so that we can find our error at a glance, and when there are disputes among persons, we can simply say: Let us calculate [Calculemus!], without further ado, to see who is right. (Leibniz, Gottfried Wilhelm, The Art of Discovery 1685, Wiener 51)

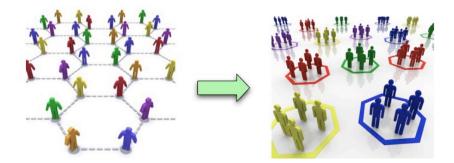


Abstract Argumentation Systems

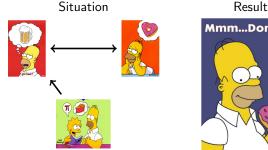
- Abstract Argumentation [Dung, 1995]:
 - In abstract argumentation frameworks (AAFs) statements (called arguments) are formulated together with a relation (attack) between them.
 - Abstraction from the internal structure of the arguments.
 - The conflicts between the arguments are resolved on the semantical level.


Example 6.4.

Legal Reasoning


Decision Support

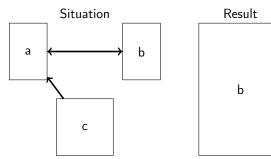
Social Networks


Kohlhase: MMT as a Logic/Language/*-Workbench

The Problem with Abstract Argumentation Systems

- Abstract Argumentation [Dung, 1995]:
 - In abstract argumentation frameworks (AAFs) statements (called arguments) are formulated together with a relation (attack) between them.
 - Abstraction from the internal structure of the arguments.
 - The conflicts between the arguments are resolved on the semantical level.

Example 6.5.



The Problem with Abstract Argumentation Systems

Abstract Argumentation [Dung, 1995]:

- In abstract argumentation frameworks (AAFs) statements (called arguments) are formulated together with a relation (attack) between them.
- Abstraction from the internal structure of the arguments.
- ► The conflicts between the arguments are resolved on the semantical level.

Example 6.6.

Robust Representation of Individual Inference

- ▶ Idea: To represent arguments, we need to represent everyday reasoning.
- There is a logic for that!

(actually many many of them)

Robust Representation of Individual Inference

- ▶ Idea: To represent arguments, we need to represent everyday reasoning.
- There is a logic for that! (actually many many of them)
- Robust Representation of Individual Inference (usually "philosophical logics")
 - (multi-)modal logics extend classical logic by notions of possibility and necessity.
 - Preference logic allows for stating sentences of the form "A is better/worse than B". [Han02]
 - Relevance logic restricts the classical (i.e. material) implication to protect from implications between seemingly disconnected premises and conclusions, [DR02].
 - other paraconsistent logics, which try to deal with inconsistency in a non-fatal manner by systematically avoiding ex falso quodlibet.
 - Temporal logics allow for reasoning about time (e.g. "X is true at time t₀"), [Bur84],
 - probabilistic logics about probabilities. [Nil86].
 - Dynamic Logics to model all kinds of anaphora

Robust Representation of Individual Inference

- ▶ Idea: To represent arguments, we need to represent everyday reasoning.
- There is a logic for that! (actually many many of them)
- Robust Representation of Individual Inference (usually "philosophical logics")
 - (multi-)modal logics extend classical logic by notions of possibility and necessity.
 - Preference logic allows for stating sentences of the form "A is better/worse than B". [Han02]
 - Relevance logic restricts the classical (i.e. material) implication to protect from implications between seemingly disconnected premises and conclusions, [DR02].
 - other paraconsistent logics, which try to deal with inconsistency in a non-fatal manner by systematically avoiding ex falso quodlibet.
 - Temporal logics allow for reasoning about time (e.g. "X is true at time t₀"), [Bur84],
 - probabilistic logics about probabilities. [Nil86].
 - Dynamic Logics to model all kinds of anaphora
- Proof Theory: Most logics have a natural-deduction-style calculus, some even machine-oriented calculi.
- ▶ Model Theory: mostly modal ~> possible worlds semantics

Robust Representation of Individual Inference

- Idea: To represent arguments, we need to represent everyday reasoning.
- There is a logic for that! (actually many many of them)
- Robust Representation of Individual Inference (usually "philosophical logics")
 - (multi-)modal logics extend classical logic by notions of possibility and necessity.
 - Preference logic allows for stating sentences of the form "A is better/worse than B". [Han02]
 - Relevance logic restricts the classical (i.e. material) implication to protect from implications between seemingly disconnected premises and conclusions, [DR02].
 - other paraconsistent logics, which try to deal with inconsistency in a non-fatal manner by systematically avoiding ex falso quodlibet.
 - Temporal logics allow for reasoning about time (e.g. "X is true at time t₀"), [Bur84],
 - probabilistic logics about probabilities. [Nil86].
 - Dynamic Logics to model all kinds of anaphora
- Proof Theory: Most logics have a natural-deduction-style calculus, some even machine-oriented calculi.
- ▶ Model Theory: mostly modal ~> possible worlds semantics
- ► Interoperability Problem: Most logics are "formally unrelated", incomparable

(evaluation?, duplicated work)

6.2 Work Area 2: Context Graphs for Argumentation

- Observation: Much of the wealth and prospects of central European Countries are based on STEM knowledge. (laid down in technical documents)
- STEM documents often have a non-trivial argumentation structure

- Observation: Much of the wealth and prospects of central European Countries are based on STEM knowledge. (laid down in technical documents)
- STEM documents often have a non-trivial argumentation structure
- Example 6.7. Short excerpt of Coffey's and Sondow's rebuttal [CS12] of Kowalenko's paper [Kow10].

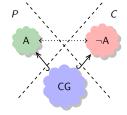
The irrationality of Euler's constant γ [...] has long been conjectured. [...] In 2010 Kowalenko claimed that simple arguments suffice to settle this matter [4]. [...] we [...] describe the flaws in his very limited approach. [...] Kowalenko derives the following formula for Euler's constant in equation (65) of [4, p. 428]: [...] [...] Here he claims that the sum of a series of positive rational numbers cannot be equal to $C - \pi^2/6$. But, for example, decimal expansion does give such a series: [...]

 Observation: Often the aim of STEM argumentation is *uncovering the truth* (and reputation/grant money gain)

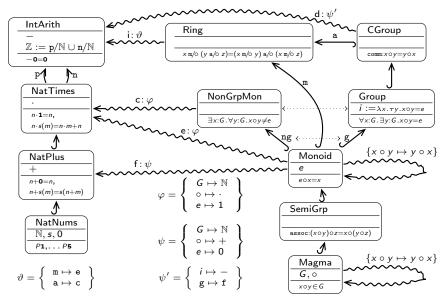
- Observation: Much of the wealth and prospects of central European Countries are based on STEM knowledge. (laid down in technical documents)
- STEM documents often have a non-trivial argumentation structure
- Example 6.7. Short excerpt of Coffey's and Sondow's rebuttal [CS12] of Kowalenko's paper [Kow10].

The irrationality of Euler's constant γ [...] has long been conjectured. [...] In 2010 Kowalenko claimed that simple arguments suffice to settle this matter [4]. [...] we [...] describe the flaws in his very limited approach. [...] Kowalenko derives the following formula for Euler's constant in equation (65) of [4, p. 428]: [...] [...] Here he claims that the sum of a series of positive rational numbers cannot be equal to $C - \pi^2/6$. But, for example, decimal expansion does give such a series: [...]

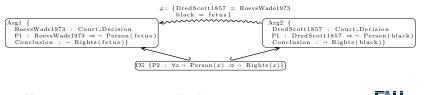
 Observation: Often the aim of STEM argumentation is *uncovering the truth* (and reputation/grant money gain)


Idea: RATIO on technical/scientific documents

(needs deep modeling)


- Observation: often the ultimate source of differing opinions in STEM lies in differing assumptions.
- **Example 6.8 (Example).** various models in physics that make differing predictions, e.g. heliocentric vs. geocentric universe.
- Scientific Method: Explore the inferential closure of the model assumptions, contrast to others/experiments, argue for your model.
- ► Idea: Meta-model differing model assumptions as OMDoc/MMT theory graph
 - recast the support, refutation or undercut relations via theory morphisms + ε.
 - theory morphisms incorporate inferential closure and renaming/framing.
 - concept-minimal graphs explicitly manage common ground.
 - Extend theory graph algorithms for that.

Modular Representation of Math (MMT Example)


Kohlhase: MMT as a Logic/Language/*-Workbench

Framing in Arguments

- Definition: In a nutshell, framing means that a concept mapping between argumentation/knowledge contexts (a frame) is established and the facts and assumptions underlying the argument are mapped along the frame.
- Observation: This happens often in counter-arguments by framing the original argument in terms of an obviously wrong argument.
- Example 6.9 (Roe vs. Wade). from www.truthmapping.com/map/647/
 - ▶ The 1973 Roe vs. Wade decision denied fetus' rights on the basis of personhood.
 - ▶ The 1857 Dred Scott decision denied Black Americans rights on the basis of personhood.
 - Personhood for Black Americans has been denied purely on the basis of cultural consensus.
 - Therefore the denial of personhood for fetuses could also be purely on the basis of cultural consensus.

Model in a theory graph using a frames as morphisms approach

WP2.1: Annotated Corpus of Technical Documents

- 1. Subcorpus Identification
- 2. Argumentation/Context Annotation
- 3. Distribution
- WP2.2: Context Graph via Argumentation Relations
- ▶ WP2.3: Extending the MMT system with Context Graph Relations
- WP2.4: Framing in Arguments
 - 1. Modelling

(work through lots of examples)


2. Automation (use the OMDoc/MMT view finder to discover possible frames)

Visual Conclusion (please ask questions)

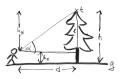
- Summary: Understanding/Supporting Logic-Based Deep Modeling of Arg.
- Contribution: develop and manage the targets of semantics extraction!

7 Application: Serious Games

Framing for Problem Solving (The FramelT Method)

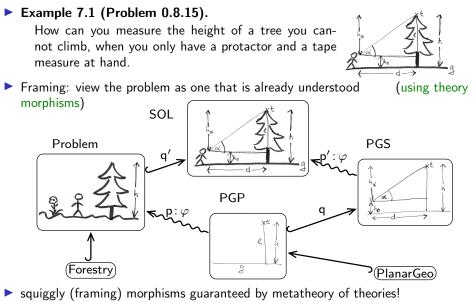
• Example 7.1 (Problem 0.8.15).

How can you measure the height of a tree you cannot climb, when you only have a protactor and a tape measure at hand.



Framing for Problem Solving (The FramelT Method)

• Example 7.1 (Problem 0.8.15).


How can you measure the height of a tree you cannot climb, when you only have a protactor and a tape measure at hand.

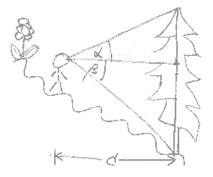
Framing for Problem Solving (The FramelT Method)

Kohlhase: MMT as a Logic/Language/*-Workbench

Example Learning Object Graph

FrameIT Method: Problem

Student can interact with the environment via gadgets so solve problems
 "Scrolls" of mathematical knowledge give hints.



Kohlhase: MMT as a Logic/Language/*-Workbench

57 14.

Combining Problem/Solution Pairs

We can use the same mechanism for combining P/S pairs
 create more complex P/S pairs (e.g. for trees on slopes)

Applications: eMath 3.0, Active Documents, Semantic Spreadsheets, Semantic CAD/CAM, Change Mangagement, Global Digital Math Library, Math Search Systems, SMGloM: Semantic Multilingual Math Glossary, Serious Games, ... Foundations of Math: KM & Interaction: Semantization: ► LATEXWT: ALEX → XWT MathML, OpenMath Semantic Interpretation

- advanced Type Theories
- MMT: Meta Meta Theory
- Logic Morphisms/Atlas
- Theorem Prover/CAS Interoperability
- Mathematical Models/Simulation

- (aka. Framing)
- math-literate interaction
- MathHub: math archives & active docs
- Semantic Alliance: embedded semantic services

- STFX: Semantic LATFX
- invasive editors
- Context-Aware IDEs
- Mathematical Corpora
- Linguistics of Math
- ML for Math Semantics Extraction

Foundations: Computational Logic, Web Technologies, OMDoc/MMT

References I

John P. Burgess. "Basic Tense Logic". In: Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic. Ed. by D. Gabbay and F. Guenthner. Dordrecht: Springer Netherlands, 1984, pp. 89–133. ISBN: 978-94-009-6259-0. DOI: 10.1007/978-94-009-6259-0_2.

Mark W. Coffey and Jonathan Sondow. "Rebuttal of Kowalenko's paper as concerns the irrationality of Euler's constant". In: (2012). eprint: arXiv:1202.3093.

J. Michael Dunn and Greg Restall. "Relevance Logic". In: Handbook of Philosophical Logic. Ed. by Dov M. Gabbay and F. Guenthner. Dordrecht: Springer Netherlands, 2002, pp. 1–128. ISBN: 978-94-017-0460-1. DOI: 10.1007/978-94-017-0460-1_1.

Sven Ove Hansson. "Preference Logic". In: Handbook of Philosophical Logic. Ed. by D. M. Gabbay and F. Guenthner. Dordrecht: Springer Netherlands, 2002, pp. 319–393. ISBN: 978-94-017-0456-4. DOI: 10.1007/978-94-017-0456-4_4.

References II

- Arif Jinha. "Article 50 million: an estimate of the number of scholarly articles in existence". In: *Learned Publishing* 23.3 (2010), pp. 258–263. DOI: 10.1087/20100308.
- Andrea Kohlhase and Michael Kohlhase. "Communities of Practice in MKM: An Extensional Model". In: *Mathematical Knowledge Management (MKM)*. Ed. by Jon Borwein and William M. Farmer. LNAI 4108. Springer Verlag, 2006, pp. 179–193. URL: http://kwarc.info/kohlhase/papers/mkm06cp.pdf.
- Victor Kowalenko. "Properties and applications of the reciprocal logarithm numbers". In: *Acta applicandae mathematicae* 109.2 (2010), pp. 413–437.
- Peder Olesen Larsen and Markus von Ins. "The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index". In: *Scientometrics* 84.3 (2010), pp. 575–603. DOI: 10.1007/s11192-010-0202-z.

Nils J. Nilsson. "Probabilistic Logic". In: Artif. Intell. 28.1 (Feb. 1986), pp. 71–88. ISSN: 0004-3702. DOI: 10.1016/0004-3702(86)90031-7.

Florian Rabe and C. Schürmann. "A Practical Module System for LF". In: *Proceedings of the Workshop on Logical Frameworks: Meta-Theory and Practice (LFMTP)*. Ed. by J. Cheney and A. Felty. Vol. LFMTP'09. ACM International Conference Proceeding Series. ACM Press, 2009, pp. 40–48.

