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Central Question

Question.
Given a subfield K ⊆ R, is every definable set A ⊆ Kn Borel
measurable?
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Central Question – Partial Answers

Question.
Given a subfield K ⊆ R, is every definable set A ⊆ Kn Borel
measurable?

Partial Answers.
Yes, if

· K is real closed,
· K is countable.
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Context



Context: Central Objects

Model Theory Statistical Learning Theory

structureM hypothesis space H
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Hypothesis Spaces

Learning Framework.

· instance space ∅ 6= X
· sample space Z = X × {0, 1}
· hypothesis space ∅ 6= H ⊆ {0, 1}X

Example: Battleship.
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Definable Hypothesis Spaces

Definition.
Let L be a language, letM be an L–structure and let
ϕ(x1, . . . , xn;p1, . . . ,p`) be an L–formula. For any w ∈ M`, set

ϕ(M;w) = {a ∈ Mn | M |= ϕ(a;w)}.

Then the hypothesis space Hϕ ⊆ {0, 1}Mn is given by

Hϕ :=
{
1ϕ(M;w)

∣∣w ∈ M`
}
.
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Definable Hypothesis Spaces: Example

Set Lor := {+, ·,−, 0, 1, <}, Ror := (R,+, ·,−, 0, 1, <) and consider the
L–formula ϕ(x1, x2;p1,q1,p2,q2) given by

p1 ≤ x1 ≤ q1 ∧ p2 ≤ x2 ≤ q2.

For w = (p1,q1,p2,q2) ∈ R4, the set ϕ(Ror;w) is an axis-aligned
rectangle in R2 of the form:
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Definable Hypothesis Spaces: Example

Set Lor := {+, ·,−, 0, 1, <}, Ror := (R,+, ·,−, 0, 1, <) and consider the
L–formula ϕ(x1, x2;p1,q1,p2,q2) given by

p1 ≤ x1 ≤ q1 ∧ p2 ≤ x2 ≤ q2.

For w = (p1,q1,p2,q2) ∈ R4, the set ϕ(Ror;w) is an axis-aligned
rectangle in R2 of the form:

The hypothesis h = 1ϕ(Ror;w) ∈ Hϕ sends all points inside this
rectangle to 1 and all points outside to 0.
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Context: Central Notions

Model Theory Statistical Learning Theory

o-Minimality

NIP VC Dimension

PAC Learning

structureM hypothesis space H
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o-Minimality and NIP

The following notion is due to Pillay and Steinhorn 1986.

Recall.
Given a language L = {<, . . . } and an L–structureM = (M, <, . . . )

for which (M, <) is a linear order,M is called o-minimal if for any
L–formula ϕ(x;p1, . . . ,p`) and any w ∈ M` the set ϕ(M;w) ⊆ M can
be expressed as a finite union of points and open intervals.

They further related it to the notion NIP, which was introduced by
Shelah 1971.

Proposition.
IfM = (M, <, . . . ) is o-minimal, thenM has NIP.

A. Pillay and C. Steinhorn, ‘Definable sets in ordered structures‘, I, Trans. Amer. Math.
Soc. 295 (1986) 565–592.
S. Shelah, ‘Stability, the f.c.p., and superstability; model theoretic properties of

formulas in first order theory’, Ann. Math. Logic 3 (1971) 271–362.
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NIP and VC Dimension

The following result is due to Laskowski 1992.

Proposition.
Let L be a language and letM be an L–structure. Then the following
conditions are equivalent:

(1) M has NIP.
(2) The hypothesis space Hϕ has finite VC dimension for any

L–formula ϕ(x;p).

M. C. Laskowski, ‘Vapnik–Chervonenkis classes of definable sets’, J. Lond. Math. Soc.
45 (1992) 377–384.
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VC Dimension and PAC Learning

Fundamental Theorem of Statistical Learning.
Let H be well-behaved. Then H is PAC learnable if and only if H has
finite VC dimension.

Originally, this equivalence result is due to Blumer, Ehrenfeucht,
Haussler and Warmuth 1989.

A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth, ‘Learnability and the
Vapnik-Chervonenkis dimension’, J. Assoc. Comput. Mach. 36 (1989) 929–965.
L. S. Krapp and L. Wirth, ’Measurability in the Fundamental Theorem of Statistical

Learning’, Preprint, 2025, arXiv:2410.10243.
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Context: Relationship of Central Conditions

Model Theory Statistical Learning Theory

o-Minimality

NIP VC Dimension

PAC Learning

structureM hypothesis space H !

10



Context: Central Conditions

Model Theory Statistical Learning Theory

Conditions

o-Minimality

NIP VC Dimension

PAC Learning

definability measurability

!
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Measurability

Recall.
A probability space (Ω,Σ,P) consists of

· a domain Ω,
· a σ–algebra Σ ⊆ P(Ω) (containing the measurable subsets),
· and a probability measure P : Σ → [0, 1]
(also called distribution).

Given a probability space (Ω,Σ,P), a map g : Ω → R is called
Σ–measurable if g−1(B) ∈ Σ for any Borel set B ⊆ R.

Fix a σ–algebra ΣZ on the sample space Z = X × {0, 1}.
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Error and Sample Error

Let h ∈ H be a hypothesis, let D be a distribution on (Z,ΣZ), and let
z = (z1, . . . , zm) ∈ Zm be a multi-sample.

The (true) error of h is given by

erD(h) := D({(x, y) ∈ Z | h(x) 6= y}) = D(Z \ Γ(h)).

The sample error of h on z = (z1, . . . , zm) ∈ Zm, given by

êrz(h) :=
1
m

m∑
i=1

1Z\Γ(h)(zi),

provides a useful estimate for the true error.

S. Ben-David and S. Shalev-Shwartz, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).
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Error and Sample Error – Measurability

Remarks.

· The error erD(h) = D(Z \ Γ(h)) is well-defined iff Γ(h) ∈ ΣZ .
· If Γ(h) ∈ ΣZ , then the map

Zm →
{ k
m
∣∣ k ∈ {0, 1, . . . ,m}

}
,

z 7→ êrz(h) =
1
m

m∑
i=1

1Z\Γ(h)(zi)

is Σm
Z–measurable.
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Measurability of Definable Sets



Borel σ–algebra

Let (K, <) be an ordered field and let n ∈ N.

Endow K with the order topology τ , Kn with the product topology τn,
and denote by B(Kn) the Borel σ–algebra on Kn generated by τn.

Recall that B(Kn) is the smallest σ–algebra containing τn as a subset.

For X ⊆ Kn, consider the trace σ–algebra given by

B(X) := {B ∩ X | B ∈ B(Kn)}.
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Towards an Answer to the Central Question
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Defining a Non-Borel Set

Theorem.
There exists a subfield K ⊆ R that has the independence property
(i.e. it is not NIP) and defines a set D ⊆ K with D /∈ B(K).

Question.
Given a subfield K ⊆ R, is every definable set A ⊆ Kn Borel
measurable?

−→ Generally, no.

L. S. Krapp, M. Vermeil and L. Wirth, ‘On Tameness, Measurability and the
Independence Property’, Preprint, 2025, arXiv:2506.08733.
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Proof Sketch

· By a technical construction there exist two disjoint
measure-irregular sets A,A′ ⊆ R (of cardinality c) such that
A ∪̇ A′ is algebraically independent over Q.

· Set
√
A≥0 = {

√
a | a ∈ A,a ≥ 0} and K = Q

(√
A≥0 ∪ A′

)
.

· Write K = F(t), where F is a subfield of K and t is transcendental
over F. By R. Robinson 1964, K defines Z. Therefore, K has the
independence property.

· Consider the formula ∃y x = y2 defining the set
D = {y2 | y ∈ K} ⊆ K .

· Note that A≥0 ⊆ D and A′ ∩ D = ∅.
· Derive from the measure-irregularity of A and A′ that D /∈ B(K).

�

R. M. Robinson, ‘The undecidability of pure transcendental extensions of real fields’,
Z. Math. Logik Grundlagen Math. 10 (1964) 275–282.
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Remarks

The field K is a purely transcendental extension of Q by continuum
many algebraically independent elements.

Wild properties of the (ordered) field K :

· not o-minimal
· not real closed
· not almost real closed
· undecidable
· admits 2c many non-isomorphic archimedean orderings
and 2c many non-isomorphic non-archimedean orderings
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O-Minimal Structures

Lemma.
Let L be a language expanding Lor, let R be an o-minimal
L–expansion of an ordered field, let n ∈ N and let A ⊆ Rn be
L–definable. Then A ∈ B(Rn).

Finish.

M. Karpinski and A. Macintyre, ‘Approximating Volumes and Integrals in o-Minimal
and p-Minimal Theories’, Connections between model theory and algebraic and
analytic geometry (ed. Macintyre), Quad. Mat. 6 (2000) 149–177.
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Learning over o-Minimal Expansions of the Reals

Guided by the work of Karpinski and Macintyre 2000 we proved the
following learnability result:

Theorem. Let

· L be a language expanding Lor,
· R be an o-minimal L–expansion of Ror,
· ϕ(x1, . . . , xn;p1, . . . ,p`) be an L–formula,
· ΣZ be a σ–algebra on Z = Rn × {0, 1} with B(Z) ⊆ ΣZ , and
· D be a set of distributions on (Z,ΣZ) such that (Zm,Σm

Z ,Dm) is
a complete probability space for any D ∈ D and any m ∈ N.

Then Hϕ is PAC learnable with respect to D.

Skip proof.

L. S. Krapp and L. Wirth, ’Measurability in the Fundamental Theorem of Statistical
Learning’, Preprint, 2025, arXiv:2410.10243.
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Roadmap

Model Theory Statistical Learning Theory

Conditions

o-Minimality

NIP VC Dimension

PAC Learning

definability measurability

!
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Relevant Functions

Definition.
A hypothesis space H is called well-behaved with respect to the set
D of distributions on (Z,ΣZ) if it satisfies the following conditions:

· Γ(h) ∈ ΣZ for any h ∈ H.
· There exists mH ∈ N such that the map

U : Zm → [0, 1], z 7→ sup
h∈H

∣∣erD(h)− êrz(h)
∣∣

is Σm
Z–measurable for any m ≥ mH and any D ∈ D,

and the map

V : Z2m → [0, 1], (z, z′) 7→ sup
h∈H

∣∣êrz′(h)− êrz(h)
∣∣

is Σ2m
Z –measurable for any m ≥ mH.
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Proof Sketch

Proof Sketch.

· o-Minimality implies NIP.
· Thus, Hϕ has finite VC dimension.
· Aim: Apply Fundamental Theorem.
· To this end: Verify that Hϕ is well-behaved.
· Γ(h) ∈ B(Z) ⊆ ΣZ for any h ∈ Hϕ

X (follows from Lemma).
· Technical analysis and application of Pollard’s arguments
regarding measurability of suprema establish measurability of
the maps U and V .

�

D. Pollard, Convergence of Stochastic Processes, Springer Ser. Stat. (Springer, New
York, 1984).
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Capacity for Enhancement of the Learnability Theorem

· Can the result be extended to further tame (e.g. o-minimal)
structures?
−→ Yes, but the topological space should satisfy the following

properties that are crucial in the proof:
metrizability, separability and local compactness

· Can the o-minimality assumption be weakended (e.g. to NIP)?
−→ This leads to the following open question:

Question.

Let K be an NIP ordered field and let D ⊆ K be definable in K .
Is D necessarily Borel, i.e. D ∈ B(K)?
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Summary

Model Theory Statistical Learning Theory

o-Minimality

NIP

PAC Learning

VC Dimension

Krapp–W.

definability measurability

Krapp–Vermeil–W.

!

!

L. S. Krapp and L. Wirth, ’Measurability in the Fundamental Theorem of Statistical
Learning’, Preprint, 2025, arXiv:2410.10243.
L. S. Krapp, M. Vermeil and L. Wirth, ’On Tameness, Measurability and the

Independence Property’, Preprint, 2025, arXiv:2506.08733. 26
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Appendix



Learning over o-Minimal Expansions of Ror – Remarks

Definition.
A probability space (Ω,Σ,P) is called complete if

∀N ∈ Σ (P(N) = 0⇒ ∀A ⊆ N A ∈ Σ).

Remarks.

· Completeness condition is crucial for deducing measurability of
the maps U and V .

· Completeness condition is trivially satisfied if Z is countable,
since then ΣZ = B(Z) = P(Z).

· Potential Solution: Replace product spaces with their respective
completions at all relevant places.
−→ All impacted definitions and proofs need to be adjusted

accordingly!

Jump back.



Learning over o-Minimal Expansions of Ror – Remarks

Further Remarks.

· The measurability of V can be established without imposing
further conditions (like e.g. the completeness condition), since it
can be shown to be definable.
−→ Unfortunately, this approach does not work for U.

· Further Work: Extend theorem to general o-minimal structures.

Jump back.
Jump to Summary.



Sufficient Conditions for Well-Behavedness

Remark.
Sufficient conditions for the measurability of the maps U and V :

· X resp. Z is countable.
· H is countable.
· H is universally separable.

Definition.
The hypothesis space H is called universally separable if there exists
a countable subset H0 ⊆ H such that for any h ∈ H there exists a
sequence {hn}n∈N ⊆ H0 converging pointwise to h.



NIP

Notation.
[m] := {1, . . . ,m} for m ∈ N.

Definition.
Let L be a language and letM be an L–structure.
A (partitioned) L–formula ϕ(x1, . . . , xn;p1, . . . ,p`) has NIP overM if
there is m ∈ N such that for any object set {a1, . . . ,am} ⊆ Mn and any
parameter set {wI | I ⊆ [m]} ⊆ M`, there is some J ⊆ [m] such that

M 6|=
∧
i∈J

ϕ(ai;wJ) ∧
∧

i∈[m]\J

¬ϕ(ai;wJ)︸ ︷︷ ︸
ϕ(ai;wJ) is true iff i∈J

.

The L–structureM has NIP if every L–formula has NIP overM.

S. Shelah, ‘Stability, the f.c.p., and superstability; model theoretic properties of
formulas in first order theory’, Ann. Math. Logic 3 (1971) 271–362.



NIP

Definition.
Let L be a language and letM be an L–structure.
A (partitioned) L–formula ϕ(x1, . . . , xn;p1, . . . ,p`) has NIP overM if
there is m ∈ N such that for any object set {a1, . . . ,am} ⊆ Mn and any
parameter set {wI | I ⊆ [m]} ⊆ M`, there is some J ⊆ [m] such that

M 6|=
∧
i∈J

ϕ(ai;wJ) ∧
∧

i∈[m]\J

¬ϕ(ai;wJ)︸ ︷︷ ︸
ϕ(ai;wJ) is true iff i∈J

.

The L–structureM has NIP if every L–formula has NIP overM.

Jump back.

S. Shelah, ‘Stability, the f.c.p., and superstability; model theoretic properties of
formulas in first order theory’, Ann. Math. Logic 3 (1971) 271–362.



VC Dimension

Definition.
Given a hypothesis space H ⊆ {0, 1}X and a set A ⊆ X , we say that H
shatters A if

{h�A | h ∈ H} = {0, 1}A.

If H cannot shatter sets of arbitrarily large size, then we say that H
has finite VC dimension. In this case:

vc(H) := max{d ∈ N | ∃A ⊆ X , |A| = d : H shatters A}.

Jump back.

V. N. Vapnik and A. Ja. Červonenkis, ‘Uniform Convergence of Frequencies of
Occurrence of Events to Their Probabilities’, Dokl. Akad. Nauk SSSR 181 (1968) 781–783
(Russian), Sov. Math. Dokl. 9 (1968) 915–918 (English).



Example

Consider Ror and the hypothesis space Hϕ defined by the
Lor–formula ϕ(x1, x2;p1,q1,p2,q2) given by

p1 ≤ x1 ≤ q1 ∧ p2 ≤ x2 ≤ q2.

We compute vc(Hϕ) = 4:

Jump back.



NIP Formulas and VC Dimension

The following result is due to Laskowski 1992.

Lemma.
Let L be a language, letM be an L–structure and let
ϕ(x1, . . . , xn;p1, . . . ,p`) be an L–formula. Then ϕ has NIP overM if
and only if the hypothesis space Hϕ has finite VC dimension.

M. C. Laskowski, ‘Vapnik–Chervonenkis classes of definable sets’, J. Lond. Math. Soc.
45 (1992) 377–384.



Learning from Examples: Mathematically

A learning function is a map of the form A :
⋃
m∈N

Zm → H.

The input for A is generated according to an arbitrary
distribution D ∈ D:

z = ((x1, y1), . . . , (xm, ym))︸ ︷︷ ︸
iid samples ∼Dm

∈ Zm.

A then predicts a generalization hypothesis h = A(z) ∈ H
based on the multi-sample z.

S. Ben-David and S. Shalev-Shwartz, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).



Learning from Examples – Goal

The goal is to minimize the (true) error of h given by

erD(h) := D({(x, y) ∈ Z | h(x) 6= y}) = D(Z \ Γ(h)︸ ︷︷ ︸
∈ΣZ

).

More precisely, we want to achieve an error that is close to

optD(H) := inf
h∈H

erD(h).

S. Ben-David and S. Shalev-Shwartz, Understanding Machine Learning: From Theory
to Algorithms, (Cambridge University Press, Cambridge, 2014).



PAC Learning

Definition.
A learning function

A :
⋃
m∈N

Zm → H

for H is said to be probably approximately correct (PAC) (with respect
to D) if it satisfies the following condition:

∀ε, δ ∈ (0, 1) ∃m0 ∈ N ∀m ≥ m0 ∀D ∈ D :

Dm({z ∈ Zm | erD(A(z))− optD(H) ≤ ε}) ≥ 1− δ.

The hypothesis space H is said to be PAC learnable if there exists a
learning function for H that is PAC.

L. G. Valiant, ‘A Theory of the Learnable’, Comm. ACM 27 (1984) 1134–1142.



PAC Learning – refined

Definition.
A learning function

A :
⋃
m∈N

Zm → H

for H is said to be probably approximately correct (PAC) (with respect
to D) if it satisfies the following condition:

∀ε, δ ∈ (0, 1) ∃m0 ∈ N ∀m ≥ m0 ∀D ∈ D ∃C ∈ Σm
Z :

C ⊆ {z ∈ Zm | erD(A(z))− optD(H) ≤ ε}
and Dm(C) ≥ 1− δ.

The hypothesis space H is said to be PAC learnable if there exists a
learning function for H that is PAC.



Fundamental Theorem of Statistical Learning: Agnostic Version

Based on Blumer, Ehrenfeucht, Haussler and Warmuth 1989,
we could prove the following:

Theorem.
Let D contain all discrete uniform distributions and let H be
well-behaved with respect to D. Then H is PAC learnable with
respect to D if and only if H has finite VC dimension.

L. S. Krapp and L. Wirth, ’Measurability in the Fundamental Theorem of Statistical
Learning’, Preprint, 2024, arXiv:2410.10243.

https://arxiv.org/abs/2410.10243


Discrete Uniform Distributions

Definition
A discrete uniform distribution on a measurable space (Ω,Σ) with
Pfin(Ω) ⊆ Σ is a probability measure P : Σ → [0, 1] of the form

P =
∑̀
j=1

1
`
δωj ,

where ` ∈ N and ω1, . . . , ω` ∈ Ω.



Measurability in Subfields of R – Borel σ–Algebras

Setting:
K ⊆ R subfield
Y ⊆ Km

ordering < on K

metric d on K

topology τ on K

σ–algebra B on K topology τm on Km

σ–algebra Bm on Km topology τmY on Y

σ–algebra BmY on Y

σ ⊗

⊗ σ ⊗

sub σ



Measurability in Subfields of R – Identity

Setting:
K ⊆ R subfield
Y ⊆ Km

X ⊆ Kn

Z = X × {0, 1} ⊆ Kn+1

σ–algebra BmY on Y

BX := BnX BZ := Bn+1Z

BX ⊗ P({0, 1}) = BZ
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