Mathematik und Statistik
  Logo der Universitšt Konstanz

Schwerpunkt Analysis und Numerik > Dr. Matthias Kotschote deutsch


:: contact

:: teaching

:: research

:: publications

:: homepage

  • A. Gerisch, M.K., R. Zacher: Well-posedness of a quasilinear hyperbolic-parabolic system arising in mathematical biology. NoDEA Nonlinear Differential Equations Appl. 14, 593-624 (2007).
  • Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25, 4 (2008) 679-696.
  • Maximal L_p-regularity for a linear three phase system of parabolic-elliptic type. J. Evol. Equ. 10, no 2, 293-318 (2010).
  • Strong well-posedness for a Korteweg type model for the dynamics of a compressible non-isothermal fluid. Journal of Mathematical Fluid Mechanics 12, no. 4, 473-484.
  • Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg-type. SIAM J. Math. Anal. 44, pp. 74-101 (2012).
  • Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. to appear IUMJ
  • Strong well-posedness of a quasilinear parabolic-elliptic system with nonlinear transmission condition arising in chemistry. Math. Meth. Appl. Sci. 35, Issue 4, 384-397 (2012).
  • Strong solutions to the compressible non-isothermal Navier-Stokes equations. AMSA 22, 319-347 (2012).
  • Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type. Arch. Ration. Mech. Anal. 206, no. 2, 489--514 (2012).
  • M.K., R. Zacher: Strong solutions in the dynamical theory of compressible two phase fluids, submitted
  • Dynamical stability of non-constant equilibria for the compressible Navier-Stokes equations in Eulerian coordinates. to appear CMP
  • H. Freistühler, M.K.: Diffuse planar phase boundaries in a two-phase fluid with one incompressible phase. arXiv:1306.1905
  • H. Freistühler, M.K.: Diffuse planar phase boundaries in a two-phase fluid with one very dense phase. arXiv:1307.3647
  • H. Freistühler, M.K.: Thermodynamically Consistent Models for the Time-Dependent Flow of Compressible Two-Phase Fluids.