| 
	 A. Gerisch, M.K., R. Zacher:
	  Well-posedness of a quasilinear hyperbolic-parabolic system arising
	  in mathematical biology.  NoDEA Nonlinear Differential Equations Appl. 14, 593-624 (2007). 
	 Strong solutions for a compressible fluid model of Korteweg type.
	   Ann. Inst. Henri Poincaré Anal. Non Linéaire 25, 4 (2008) 679-696.  
	 Maximal L_p-regularity for a linear three phase system of parabolic-elliptic type. 
	   J. Evol. Equ. 10, no 2, 293-318 (2010).  
	 Strong well-posedness for a Korteweg type model for the dynamics of a compressible non-isothermal fluid.
	   Journal of Mathematical Fluid Mechanics 12, no. 4, 473-484.   
	 Dynamics of compressible non-isothermal fluids of non-Newtonian Korteweg-type. 
	   SIAM J. Math. Anal.  44, pp. 74-101 (2012). 
	 Existence and time-asymptotics of global strong solutions to dynamic Korteweg models. to appear IUMJ
	 Strong well-posedness of a quasilinear parabolic-elliptic system with nonlinear transmission condition
	  arising in chemistry. 
	   Math. Meth. Appl. Sci. 35, Issue 4, 384-397 (2012). 
	 Strong solutions to the compressible non-isothermal Navier-Stokes equations.
	   AMSA 22, 319-347 (2012). 
	 Strong solutions of the Navier-Stokes equations for a compressible fluid of Allen-Cahn type. 
	   Arch. Ration. Mech. Anal. 206, no. 2, 489--514 (2012). 
	 M.K., R. Zacher: Strong solutions in the dynamical theory of compressible two phase fluids, submitted
	 Dynamical stability of non-constant equilibria for the compressible Navier-Stokes equations in Eulerian coordinates.
	  to appear CMP
	 H. Freistühler, M.K.: Diffuse planar phase boundaries in a two-phase fluid with one incompressible phase. arXiv:1306.1905 
	 H. Freistühler, M.K.: Diffuse planar phase boundaries in a
	  two-phase fluid with one very dense phase. arXiv:1307.3647
	 H. Freistühler, M.K.: Thermodynamically Consistent Models for the Time-Dependent Flow of
	Compressible Two-Phase Fluids.
	 |