Papers of Oliver Schnürer
Papers of Oliver Schnürer
Ἀγεωμέτρητος μηδεὶς εἰσίτω
(Πλάτων )
See also: arXiv
MathSciNet
Here you can find selected aspects of
some of my papers.
Recent preprints
In refereed journals
Mean
curvature flow in asymptotically flat product spacetimes,
Klaus Kroencke, Oliver Lindblad Petersen, Felix Lubbe, Tobias
Marxen, Wolfgang Maurer, Wolfgang Meiser, Oliver C. Schnürer,
Áron Szabó, Boris Vertman,
J. Geom. Anal. 31 (2021), no. 6, 5451-5479.
Weak
solutions to mean curvature flow respecting obstacles,
Melanie Rupflin and Oliver C. Schnürer,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 20 (2020), no. 4,
1429-1467.
Mean
curvature flow without singularities, Mariel Sáez
Trumper and Oliver C. Schnürer, J. Differential Geom. 97
(2014), no. 3, 545-570.
Stability of hyperbolic
space under Ricci flow,
Oliver C. Schnürer, Felix Schulze, and Miles Simon,
Comm. Anal. Geom. 19 (2011), no. 5, 1023-1047.
Stability of mean convex
cones under mean curvature flow, Julie Clutterbuck and
Oliver C. Schnürer Math. Z. 267 (2011), no. 3-4, 535-547.
Evolution of convex
lens-shaped networks under curve shortening flow, Oliver
C. Schnürer, Abderrahim Azouani, Marc Georgi, Juliette Hell,
Nihar Jangle, Amos Koeller, Tobias Marxen, Sandra Ritthaler, Mariel
Sáez, Felix Schulze, and Brian Smith,
Trans. Amer. Math. Soc. 363 (2011), 2265--2294.
Stability of Euclidean
space under Ricci flow, Oliver C. Schnürer, Felix
Schulze, and Miles Simon, Comm. Anal. Geom. 16 (2008), no. 1,
127-158.
Self-similarly expanding
networks to curve shortening flow, Oliver C. Schnürer and
Felix Schulze, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007),
no. 4, 511-528.
Entire spacelike
hypersurfaces of constant Gauß curvature in Minkowski space,
Pierre Bayard and Oliver C. Schnürer, J. reine
angew. Math. 627 (2009), 1-29.
Convexity estimates for
flows by powers of the mean curvature, Felix Schulze, appendix
with Oliver C. Schnürer, Ann. Sc. Norm. Super. Pisa
Cl. Sci. (5) 5 (2006), no. 2, 261--277.
Stability of translating
solutions to mean curvature flow, Julie Clutterbuck, Oliver
C. Schnürer, and Felix Schulze, Calc. Var. Partial
Differential Equations 29 (2007), no. 3, 281--293.
Convex functions with
unbounded gradient, Results Math. 48 (2005), 158-161.
Surfaces expanding by
the inverse Gauß curvature flow, J. reine
angew. Math. 600 (2006), 117-134.
Surfaces contracting
with speed |A|2 , J. Differential Geom. 71 (2005),
no. 3, 347-363.
Schouten tensor
equations in conformal geometry with prescribed boundary metric,
Electron. J. Diff. Eqns., Vol. 2005 (2005), No. 81, 17 pp.
Stability of gradient
Kähler-Ricci solitons, Albert Chau and Oliver
C. Schnürer, Comm. Anal. Geom. 13 (2005), no. 4, 769-800.
Translating
solutions for Gauß curvature flows with Neumann boundary
condition, Oliver C. Schnürer and Hartmut Schwetlick,
Pacific J. Math. 213 (2004), no. 1, 89-109.
Flows towards
reflectors, Analysis 23 (2003), 261-272.
Translating solutions to the second boundary value
problem for curvature flows, Manuscripta Math. 108 (2002),
319-347.
Neumann and second boundary value problems for
Hessian and Gauß curvature flows, Oliver
C. Schnürer and Knut Smoczyk, Annales de l'Institut
Henri Poincaré. Analyse Non Linéaire 20 (2003),
1043-1073.
Hypersurfaces of prescribed Gauß curvature in
exterior domains, Felix Finster and Oliver C. Schnürer,
Calc. Var. Partial Differential Equations 15 (2002), 67-80.
Evolution of hypersurfaces in central force
fields, Oliver C. Schnürer and Knut Smoczyk, J. reine
angew. Math. 550 (2002), 77-95.
A generalized Minkowski problem with Dirichlet
boundary condition, Trans. Amer. Math. Soc. 355 (2003),
655-663.
The Dirichlet problem for Weingarten hypersurfaces in
Lorentz manifolds, Math. Z. 242 (2002), 159-181.
Other papers
In books Geometric flow equations Geometric flows and
the geometry of space-time, 77–121, Tutor. Sch. Workshops Math. Sci.,
Birkhäuser/Springer, Cham, 2018.
If we don't mention the author, the paper is by Oliver C. Schnürer.